
NPAQ Benchmarks: Model Counting
Benchmarks from Quantitative Verification
of Neural Networks
Teodora Baluta1, Shiqi Shen1, Shweta Shinde2, Kuldeep S. Meel1, and
Prateek Saxena1

1National University of Singapore
2University of California, Berkeley

ABSTRACT

The following benchmarks stem from a new and exciting application domain: the verification of neural
networks. More specifically, we propose and formalize quantitative verification for neural networks in (1).
In quantitative verification, we are interested in how often a certain property holds true for a neural
network, rather than the classic notion of verification where we want to check if the property always holds.
We instantiate our algorithmic framework by building a prototype tool called NPAQ (Neural Property
Approximate Quantifier) that enables checking rich properties over binarized neural networks. We show
how emerging security analyses can utilize our framework in 3 applications: quantifying robustness to
adversarial inputs, efficacy of trojan attacks, and fairness/bias of given neural networks.
Our prototype’s code and usage instructions are available at https://github.com/teobaluta/
NPAQ. Project page is located at https://teobaluta.github.io/NPAQ.

1 BENCHMARK DESCRIPTION
We divide the benchmarks in three applications: robustness, fairness and trojan attack success. We refer
the reader to our paper for the formal encoding of these three applications and give here only explanations
on the benchmarks. Each formula represents an encoding of a binarized neural network (BNN) along
with the property specification. The naming convention for all the benchmarks is: the encoding type, i.e.,
card, the dataset, the input size, the architecture and other problem-specific parameters.

We included in this benchmarks binarized neural networks with the following architecture:

• ARCH1 (1blk 100): 1 block 100 neurons

• ARCH2 (2blk 50 20): 2 blocks 50, 20 neurons

• ARCH3 (2blk 100 50): 2 blocks, 100, 50 neurons

There are models trained on MNIST and models trained on the UCI Adult dataset. The MNIST dataset
has been resized to 10x10 and the UCI Adult dataset has 66 binarized input features.

MNIST. Standard MNIST dataset, resized to 10x10. In the filename, the size of the input is given before
the architecture description. For example, in card-adv 3 mnist-100-bnn 2blk 50 20-epoch 1-
robustness-perturb 2-id 9, the third field, i.e., 100, represents the size of the input feature
vector.

UCI Adult. This datasets predicts the annual income for an individual, given a set of features such as
gender, age, whether the person is married, single or divorced. We preprocess these features and binarize
them.

We use the models trained on MNIST for quantifying local robustness, comparing the robustness of
plain BNNs and hardened BNNs, along with quantifying the success of trojaning attacks. The UCI Adult
dataset is used for quantifying fairness in our evaluation.

https://github.com/teobaluta/NPAQ
https://github.com/teobaluta/NPAQ
https://teobaluta.github.io/NPAQ


Robustness. We include formulas that encode how many adversarial inputs (Goodfellow et al.) of
2-bit and up to 3-bit perturbation are there for a given BNN. There are two types of formulas here:
the ones encoding robustness for plain BNNs and the ones encoding robustness of BNNs trained us-
ing adversarial training, a hardening technique to make networks more robust by adding adversarial
examples in the training. Hence, the naming convention is the encoding card, then there are two
datasets mnist, for plain BNNs and adv 3 mnist for adversarially trained networks. For the plain
BNNs, the convention is to have architecture-robustness-xtttperturbation size-image id, e.g.,
card-mnist-100-bnn 2blk 50 20-robustness-perturb 2-id 5.

Trojan. We perform trojaning attacks (Liu et al.) on the MNIST models with trojan labels as 0, 1, 4,
5 and 9. The formulas encode how many inputs with a trojan pattern are labeled as per the attacker’s
target label. For each label, during the training of the models with the poisoned dataset containing
the trojan, we snapshot the models at epochs 1, 10 and 30. Please note that we follow the following
naming convention dataset-target-input size-architecture-epoch. For example, card-
trojan mnist 1-target 0-100-bnn 2blk 50 20-epoch 1-trojan-label 0 stands for BNN
with 2 blocks, 50, and 20 neurons, respectively, trained on MNIST to insert a trojan in the training such
that when that trojan is present in the input the model classifies it as target class 0 (target 0) and
trained for 1 epoch (epoch 1).

Fairness. For fairness, the naming convention is card-uci adult-66-bnn 2blk 50 20-uci adult,
followed by the sensitive attribute, either marital, race or sex. The last field (e.g., fair.bnn2[0]=1
or fair.bnn1[0]=1) has three options that encode whether it is a bias towards a particular value of
the sensitive attribute, e.g., married or divorced, or the predictins of the neural networks happen without
the influence of the sensitive feature.

REFERENCES
[1] Baluta, T., Shen, S., Shinde, S., Meel, K. S., and Saxena, P. (2019). Quantitative verification of

neural networks and its security applications. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1249–1264.

[Goodfellow et al.] Goodfellow, I., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial
examples. In ICLR’15.

[Liu et al.] Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W., and Zhang, X. Trojaning attack on
neural networks. In NDSS’18.

2/2


	Benchmark Description
	References

