
Program Analysis Benchmarks Submitted to the
Model Counting Competition MC 2020
Sibylle Möhle

Johannes Kepler University Linz
Linz, Austria

Cunjing Ge
Johannes Kepler University Linz

Linz, Austria

Armin Biere
Johannes Kepler University Linz

Linz, Austria

I. SYMBOLIX EXECUTION

Symbolic execution is a program analysis technique that
systematically explores program execution paths by using
symbolic inputs instead of concrete data. For each execution
path, it is possible to construct a path condition (PC) using
symbolic condition. The path condition is satisfiable if and
only if the path is executable. Thus satisfiability solvers can
be used to generate input data for exercising the program
paths and traversing the flow graph. This is an essential task
in software testing and static analysis (for bug finding). A
further question is: How often can the path be executed, given
a random input? This is the path execution frequency problem.
And it can be solved with counting tools.

II. BENCHMARK GENERATION

The benchmarks are generated by a symbolic execution
bug finding tool called CAnalyze [1] with default settings.
We analyzed 7 different programs: ’cubature’ (an adap-
tive multi-dimensional integration program), ’gjk’ (Gilbert-
Johnson-Keerthi collision detection), ’http-parser’ (an HTTP

Supported by the LIT Secure and Correct Systems Lab and LIT AI Lab
funded by the State of Upper Austria.

message parser), ’muFFT’ (fast Fourier transforming), ’Sim-
pleXML’(a light weight XML parser), ’tcas’ (traffic collision
avoidance system) and ’timeout’ (tickless hierarchical timing
wheel). . They are ranging from 0.4k to 7.7k lines of source
code. The original output of CAnalyze is SMT(BV) language.
We then translate them into CNF using Boolector 3.2.0 [2].

Different formulae might represent the same path con-
ditions, and their CNF representations then coincide. We
removed duplicates and discarded all benchmarks which were
solved by sharpSAT [3] within less than one second. Some of
the benchmarks on which sharpSAT timed out were retained
in the selection.

REFERENCES

[1] Z. Xu, J. Zhang, Z. Xu, and J. Wang, “Canalyze: a static bug-finding tool
for C programs,” in ISSTA. ACM, 2014, pp. 425–428.

[2] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0 system description,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 9, pp.
53–58, 2014 (published 2015).

[3] M. Thurley, “sharpSAT – counting models with advanced component
caching and implicit BCP,” in SAT, ser. Lecture Notes in Computer
Science, vol. 4121. Springer, 2006, pp. 424–429.


