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A strengthened form of the strong Goldbach conjecture 
 

Ralf Wüsthofen ¹ 
 
 
 
 
Abstract. This paper presents a proof of a strengthened form of the strong Goldbach 
conjecture. Whereas the traditional approaches focus on the control over the distribution of 
the prime numbers by means of circle method and sieve theory, we will show that the 
solution lies in the constructive properties of the primes, reflecting their multiplicative 
character within the natural numbers. 
 
Notations. Let  denote the natural numbers starting from 1, let n denote the natural 
numbers starting from n > 1 and let 3 denote the prime numbers starting from 3. 
 
 
Theorem (Strengthened strong Goldbach conjecture (SSGB)).  Every even integer greater 
than 6 can be expressed as the sum of two different primes. 
 
Proof. We define the set 
 

Sg := { (pk, mk, qk) | k, m  ; p, q  3, p < q; m = (p + q) / 2 }. 
 
SSGB is equivalent to saying that every integer x ≥ 4 is the arithmetic mean of two different 
odd primes and so it is equivalent to saying that all integers x ≥ 4 appear as m in a middle 
component mk of Sg. The negation SSGB means that there is at least one n ≥ 4 such that 
nk ≠ mk for every (pk, mk, qk)  Sg. Correspondingly, SSGB means there is no such n. 

Let us assume SSGB now and define Sg- to be Sg, i.e. SSGB => Sg = Sg-. In the 
following, we will determine the elements of Sg-, i.e. the elements of Sg under the condition 
of the existing n. 

The whole range of 3 can be expressed by the triple components of Sg, since every 
integer x ≥ 3 can be written as some pk with k = 1 when x is prime, as some pk with k ≠ 1 
when x is composite and not a power of 2, or as (3 + 5)k / 2  when x is a power of 2, where  
p  3, k  . 

According to the above three kinds of expression by Sg triple components, for any n ≥ 4 
given by SSGB we have the property 

(C):   k     Ǝ (pk', mk', qk')  Sg     nk = pk'    nk = mk' = 4k'. 

 
So, every nk given by SSGB equals a component of some Sg triple that exists by 
definition. 
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Moreover, since all pairs (p, q) of odd primes with p < q are used in Sg and so all arithmetic 
means m of two odd primes are generated, we have that an n ≥ 4 given by SSGB cannot 
be the arithmetic mean of a pair of odd primes not used in Sg. This results in the property 
 

(M):  ∄ p, q  3, p < q     n = (p + q) / 2. 

 
 
Because the properties (C) and (M) hold for any n given by SSGB, the set Sg- can be 
written as the union of the following triples, which would otherwise be impossible. 
 
(i) Sg triples of the form (pk' = nk, mk', qk') with k' = k in case n is prime, due to (C) 
 
(ii) Sg triples of the form (pk' = nk, mk', qk') with k' ≠ k in case n is composite and not a 
power of 2, due to (C) 
 
(iii) Sg triples of the form (3k', 4k' = nk, 5k') in case n is a power of 2, due to (C) 

 
(iv) all remaining Sg triples of the form (pk' = nk, mk', qk'), (pk', mk' = nk, qk') or (pk', mk', qk' 
= nk) 
 
and 

 
(v) Sg triples of the form (pk' ≠ nk, mk' ≠ nk, qk' ≠ nk), i.e. those Sg triples where none of the 
nk’s equals a component. 
 
 
 
 
The triples in (iv) comprise all Sg triples where nk occurs as a component redundantly to the 
occurrences in (i) - (iii). We can split the triples in (iv) as follows. 
 
(iv, a) Sg triples of the form (pk', mk', qk' = nk) with k' = k in case n is prime 
 
(iv, b) Sg triples of the form (pk', mk' = nk, qk') with k' = k in case n is prime 

 
(iv, c) Sg triples of the form (pk', mk', qk' = nk) with k' ≠ k in case n is composite and not a 
power of 2 

 
(iv, d) Sg triples of the form (pk', mk' = nk, qk') with k' ≠ k in case n is composite and not a 
power of 2 
 
(iv, e) Sg triples of the form (pk', mk' = nk, qk') with k' = k in case n is composite 

 
(iv, f) Sg triples of the form (pk' = nk, mk', qk') in case n is a power of 2 
 
(iv, g) Sg triples of the form (pk', mk', qk' = nk) in case n is a power of 2 
 
(iv, h) Sg triples of the form (pk', mk' = nk, qk') with m ≠ 4 in case n is a power of 2. 
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The types (iv, a) - (iv, h) are of merely informative character. For the sake of completeness 
also the triples of type (iv, b) and (iv, e) are listed. Of course, they cannot exist due to (M). 
Also, depending on n and k the triples of some other types may not exist. 

Let Sn denote the union of the triples of types (i) to (iv), i.e. Sn is the set of all triples in Sg 
such that one of the three components is a multiple of n, and let S denote the union of the 
triples of type (v), i.e. S is the set of all triples in Sg such that none of the three components 
is a multiple of n. 

Sn = { (pk', mk', qk')  Sg | Ǝ k     pk' = nk    mk' = nk    qk' = nk }  

S = { (pk', mk', qk')  Sg |  k     pk' ≠ nk    mk' ≠ nk    qk' ≠ nk } 

Then, as Sg- consists of all triples of the types (i) to (v) we have Sg- = Sn ∪ S. Since Sn and 
S are complementary subsets of Sg, we conclude that Sg- equals Sg where an n  4 
different from all m no longer exists. 

Note. The above splitting of all the Sg triples into two complementary subsets Sn and S is 
independent of our information about Sg and it is also independent of the property behind n. 
The splitting works solely on the basis of the existence of n. 

 

Now, let us assume SSGB and let Sg+ be the set such that SSGB => Sg = Sg+. When we 
determine the elements of Sg+, i.e. the elements of Sg under the condition of the non-
existence of n, we trivially obtain that also Sg+ equals Sg where an n  4 different from all 
m does not exist. 

 

Therefore, all in all, we have proven 

SSGB => Sg = Sg-  and  SSGB => Sg = Sg+, where 

Sg- = Sg+  and  { m | (pk, mk, qk)  Sg- } = { m | (pk, mk, qk)  Sg+ } = 4. 

 

This means that we have Sg = Sg- = Sg+  which proves SSGB. 

                                                                                                                                             □ 

 


