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Abstract—Analysis pipelines commonly use high-level tech-
nologies that are popular when created, but are unlikely to be
readable, executable, or sustainable in the long term. A set of
criteria is introduced to address this problem: Completeness (no
execution requirement beyond a minimal Unix-like operating
system, no administrator privileges, no network connection,
and storage primarily in plain text); modular design; minimal
complexity; scalability; verifiable inputs and outputs; version
control; linking analysis with narrative; and free software. As
a proof of concept, we introduce “Maneage” (Managing data
lineage), enabling cheap archiving, provenance extraction, and
peer verification that been tested in several research publications.
We show that longevity is a realistic requirement that does not
sacrifice immediate or short-term reproducibility. The caveats
(with proposed solutions) are then discussed and we conclude
with the benefits for the various stakeholders. This paper is itself
written with Maneage (project commit eeff5de).

Appendices — Two comprehensive appendices that review the
longevity of existing solutions; available after main body of paper
(Appendices A and B).

Reproducibility — All products in zenodo.4291207, Git history
of source at gitlab.com/makhlaghi/maneage-paper , which is also
archived in SoftwareHeritage.

Index Terms—Data Lineage, Provenance, Reproducibility, Sci-
entific Pipelines, Workflows

I. INTRODUCTION

Reproducible research has been discussed in the sciences

for at least 30 years [1], [2]. Many reproducible workflow

solutions (hereafter, “solutions”) have been proposed that

mostly rely on the common technology of the day, starting

with Make and Matlab libraries in the 1990s, Java in the 2000s,

and mostly shifting to Python during the last decade.

However, these technologies develop fast, e.g., code written

in Python 2 (which is no longer officially maintained) often

cannot run with Python 3. The cost of staying up to date within

this rapidly-evolving landscape is high. Scientific projects,

in particular, suffer the most: scientists have to focus on

their own research domain, but to some degree, they need

to understand the technology of their tools because it deter-

mines their results and interpretations. Decades later, scientists

are still held accountable for their results and therefore the

evolving technology landscape creates generational gaps in

the scientific community, preventing previous generations from

sharing valuable experience.

II. LONGEVITY OF EXISTING TOOLS

Reproducibility is defined as “obtaining consistent results

using the same input data; computational steps, methods, and

code; and conditions of analysis” [2]. Longevity is defined
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as the length of time that a project remains functional after

its creation. Functionality is defined as human readability

of the source and its execution possibility (when necessary).

Many usage contexts of a project do not involve execution:

for example, checking the configuration parameter of a single

step of the analysis to re-use in another project, or checking

the version of used software, or the source of the input data.

Extracting these from execution outputs is not always possible.

A basic review of the longevity of commonly used tools is

provided here (for a more comprehensive review, please see

appendices A and B).

To isolate the environment, VMs have sometimes been

used, e.g., in SHARE (awarded second prize in the Elsevier

Executable Paper Grand Challenge of 2011, discontinued in

2019). However, containers (e.g., Docker or Singularity) are

currently the most widely-used solution. We will focus on

Docker here because it is currently the most common.

It is hypothetically possible to precisely identify the used

Docker “images” with their checksums (or “digest”) to re-

create an identical OS image later. However, that is rarely

done. Usually images are imported with operating system (OS)

names; e.g., [3] uses ‘FROM ubuntu:16.04’. The extracted

tarball (from https://partner-images.canonical.com/core/xenial)

is updated almost monthly, and only the most recent five are

archived there. Hence, if the image is built in different months,

it will contain different OS components. In the year 2024,

when this version’s long-term support (LTS) expires (if not

earlier, like CentOS 8 which will terminate 8 years early), the

image will not be available at the expected URL.

Generally, pre-built binary files (like Docker images) are

large and expensive to maintain and archive. Because of

this, in October 2020 Docker Hub (where many workflows

are archived) announced that inactive images (more than 6

months) will be deleted in free accounts from mid 2021. Fur-

thermore, Docker requires root permissions, and only supports

recent (LTS) versions of the host kernel. Hence older Docker

images may not be executable (their longevity is determined

by the host kernel, typically a decade).

Once the host OS is ready, PMs are used to install the

software or environment. Usually the OS’s PM, such as ‘apt’

or ‘yum’, is used first and higher-level software are built

with generic PMs. The former has the same longevity as the

OS, while some of the latter (such as Conda and Spack)

are written in high-level languages like Python, so the PM

itself depends on the host’s Python installation with a typical

longevity of a few years. Nix and GNU Guix produce bit-wise

identical programs with considerably better longevity; that of

their supported CPU architectures. However, they need root

permissions and are primarily targeted at the Linux kernel.

Generally, in all the package managers, the exact version of
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each software (and its dependencies) is not precisely identified

by default, although an advanced user can indeed fix them.

Unless precise version identifiers of every software package

are stored by project authors, a third-party PM will use the

most recent version. Furthermore, because third-party PMs

introduce their own language, framework, and version history

(the PM itself may evolve) and are maintained by an external

team, they increase a project’s complexity.

With the software environment built, job management is

the next component of a workflow. Visual/GUI workflow

tools like Apache Taverna, GenePattern (deprecated), Kepler

or VisTrails (deprecated), which were mostly introduced in

the 2000s and used Java or Python 2 encourage modularity

and robust job management. However, a GUI environment

is tailored to specific applications and is hard to generalize,

while being hard to reproduce once the required Java Virtual

Machine (JVM) is deprecated. These tools’ data formats are

complex (designed for computers to read) and hard to read by

humans without the GUI. The more recent solutions (mostly

non-GUI, written in Python) leave this to the authors of the

project. Designing a robust project needs to be encouraged and

facilitated because scientists (who are not usually trained in

project or data management) will rarely apply best practices.

This includes automatic verification, which is possible in many

solutions, but is rarely practiced. Besides non-reproducibility,

weak project management leads to many inefficiencies in

project cost and/or scientific accuracy (reusing, expanding, or

validating will be expensive).

Finally, to blend narrative and analysis, computational note-

books [4], such as Jupyter, are currently gaining popularity.

However, because of their complex dependency trees, their

build is vulnerable to the passage of time; e.g., see Figure 1

of [5] for the dependencies of Matplotlib, one of the simpler

Jupyter dependencies. It is important to remember that the

longevity of a project is determined by its shortest-lived

dependency. Furthermore, as with job management, compu-

tational notebooks do not actively encourage good practices

in programming or project management. The “cells” in a

Jupyter notebook can either be run sequentially (from top to

bottom, one after the other) or by manually selecting the cell

to run. By default, cell dependencies are not included (e.g.,

automatically running some cells only after certain others),

parallel execution, or usage of more than one language. There

are third party add-ons like sos or extension’s (both written

in Python) for some of these. However, since they are not part

of the core, a shorter longevity can be assumed. The core

Jupyter framework has few options for project management,

especially as the project grows beyond a small test or tutorial.

Notebooks can therefore rarely deliver their promised potential

[4] and may even hamper reproducibility [6].

III. PROPOSED CRITERIA FOR LONGEVITY

The main premise here is that starting a project with a

robust data management strategy (or tools that provide it) is

much more effective, for researchers and the community, than

imposing it just before publication [2], [7]. In this context,

researchers play a critical role [7] in making their research

more Findable, Accessible, Interoperable, and Reusable (the

FAIR principles). Simply archiving a project workflow in a

repository after the project is finished is, on its own, insuf-

ficient, and maintaining it by repository staff is often either

practically unfeasible or unscalable. We argue and propose

that workflows satisfying the following criteria can not only

improve researcher flexibility during a research project, but

can also increase the FAIRness of the deliverables for future

researchers:

Criterion 1: Completeness. A project that is complete

(self-contained) has the following properties. (1) No execution

requirements apart from a minimal Unix-like operating system.

Fewer explicit execution requirements would mean larger

execution possibility and consequently longer longevity. (2)

Primarily stored as plain text (encoded in ASCII/Unicode), not

needing specialized software to open, parse, or execute. (3) No

impact on the host OS libraries, programs, and environment

variables. (4) No root privileges to run (during development

or post-publication). (5) Builds its own controlled software

with independent environment variables. (6) Can run locally

(without an internet connection). (7) Contains the full project’s

analysis, visualization and narrative: including instructions

to automatically access/download raw inputs, build necessary

software, do the analysis, produce final data products and final

published report with figures as output, e.g., PDF or HTML.

(8) It can run automatically, without human interaction.

Criterion 2: Modularity. A modular project enables and

encourages independent modules with well-defined inputs/out-

puts and minimal side effects. In terms of file management,

a modular project will only contain the hand-written project

source of that particular high-level project: no automatically

generated files (e.g., software binaries or figures), software

source code, or data should be included. The latter two (devel-

oping low-level software, collecting data, or the publishing and

archival of both) are separate projects in themselves because

they can be used in other independent projects. This optimizes

the storage, archival/mirroring, and publication costs (which

are critical to longevity): a snapshot of a project’s hand-written

source will usually be on the scale of ×100 kilobytes, and the

version-controlled history may become a few megabytes.

In terms of the analysis workflow, explicit communication

between various modules enables optimizations on many lev-

els: (1) Modular analysis components can be executed in

parallel and avoid redundancies (when a dependency of a

module has not changed, it will not be re-run). (2) Usage

in other projects. (3) Debugging and adding improvements

(possibly by future researchers). (4) Citation of specific parts.

(5) Provenance extraction.

Criterion 3: Minimal complexity. Minimal complexity can

be interpreted as: (1) Avoiding the language or framework

that is currently in vogue (for the workflow, not necessarily

the high-level analysis). A popular framework typically falls

out of fashion and requires significant resources to translate

or rewrite every few years (for example Python 2, which is

no longer supported). More stable/basic tools can be used

with less long-term maintenance costs. (2) Avoiding too many

different languages and frameworks; e.g., when the workflow’s

PM and analysis are orchestrated in the same framework, it
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becomes easier to maintain in the long term.

Criterion 4: Scalability. A scalable project can easily be

used in arbitrarily large and/or complex projects. On a small

scale, the criteria here are trivial to implement, but can rapidly

become unsustainable.

Criterion 5: Verifiable inputs and outputs. The project

should automatically verify its inputs (software source code

and data) and outputs, not needing any expert knowledge.

Criterion 6: Recorded history. No exploratory research

is done in a single, first attempt. Projects evolve as they

are being completed. Naturally, earlier phases of a project

are redesigned/optimized only after later phases have been

completed. Research papers often report this with statements

such as “we [first] tried method [or parameter] X, but Y is

used here because it gave lower random error”. The derivation

“history” of a result is thus not any the less valuable as itself.

Criterion 7: Including narrative that is linked to analy-

sis. A project is not just its computational analysis. A raw plot,

figure, or table is hardly meaningful alone, even when accom-

panied by the code that generated it. A narrative description is

also a deliverable (defined as “data article” in [7]): describing

the purpose of the computations, interpretations of the result,

and the context in relation to other projects/papers. This is

related to longevity, because if a workflow contains only the

steps to do the analysis or generate the plots, in time it may

get separated from its accompanying published paper.

Criterion 8: Free and open-source software: Non-

free or non-open-source software typically cannot be dis-

tributed, inspected, or modified by others. They are reliant

on a single supplier (even without payments) and prone to

proprietary obsolescence. A project that is free software (as

formally defined by GNU), allows others to run, learn from,

distribute, build upon (modify), and publish their modified

versions. When the software used by the project is itself also

free, the lineage can be traced to the core algorithms, possibly

enabling optimizations on that level and it can be modified for

future hardware.

Proprietary software may be necessary to read proprietary

data formats produced by data collection hardware (for ex-

ample micro-arrays in genetics). In such cases, it is best to

immediately convert the data to free formats upon collection

and safely use or archive the data as free formats.

IV. PROOF OF CONCEPT: MANEAGE

With the longevity problems of existing tools outlined

above, a proof-of-concept solution is presented here via an

implementation that has been tested in published papers [8],

[9]. Since the initial submission of this paper, it has also

been used in zenodo.3951151 (on the COVID-19 pandemic)

and zenodo.4062460. It was also awarded a Research Data

Alliance (RDA) adoption grant for implementing the recom-

mendations of the joint RDA and World Data System (WDS)

working group on Publishing Data Workflows [7], from the

researchers’ perspective.

It is called Maneage, for Managing data Lineage (the ending

is pronounced as in “lineage”), hosted at https://maneage.org.

It was developed as a parallel research project over five years

of publishing reproducible workflows of our research. Its

primordial implementation was used in [10], which evolved

in zenodo.1163746 and zenodo.1164774.

Technically, the hardest criterion to implement was the

first (completeness); in particular restricting execution require-

ments to only a minimal Unix-like operating system. One

solution we considered was GNU Guix and Guix Workflow

Language (GWL). However, because Guix requires root access

to install, and only works with the Linux kernel, it failed the

completeness criterion. Inspired by GWL+Guix, a single job

management tool was implemented for both installing software

and the analysis workflow: Make.

Make is not an analysis language, it is a job manager. Make

decides when and how to call analysis steps/programs (in

any language like Python, R, Julia, Shell, or C). Make has

been available since 1977, it is still heavily used in almost

all components of modern Unix-like OSs and is standardized

in POSIX. It is thus mature, actively maintained, highly op-

timized, efficient in managing provenance, and recommended

by the pioneers of reproducible research [1], [11]. Researchers

using free software have also already had some exposure to it

(most free research software are built with Make).

Linking the analysis and narrative (criterion 7) was his-

torically our first design element. To avoid the problems

with computational notebooks mentioned above, we adopt a

more abstract linkage, providing a more direct and traceable

connection. Assuming that the narrative is typeset in LATEX,

the connection between the analysis and narrative (usually

as numbers) is through automatically-created LATEX macros,

during the analysis. For example, [8] writes ‘... detect the outer

wings of M51 down to S/N of 0.25 ...’. The LATEX source of the

quote above is: ‘detect the outer wings of M51 down to S/N

of $\demosfoptimizedsn$’. The macro ‘\demosfoptimizedsn’

is automatically generated after the analysis and expands to

the value ‘0.25’ upon creation of the PDF. Since values like

this depend on the analysis, they should also be reproducible,

along with figures and tables.

These macros act as a quantifiable link between the narrative

and analysis, with the granularity of a word in a sentence and

a particular analysis command. This allows automatic updates

to the embedded numbers during the experimentation phase of

a project and accurate post-publication provenance. Through

the former, manual updates by authors (which are prone to

errors and discourage improvements or experimentation after

writing the first draft) are by-passed.

Acting as a link, the macro files build the core skeleton of

Maneage. For example, during the software building phase,

each software package is identified by a LATEX file, containing

its official name, version, and possible citation. These are com-

bined at the end to generate precise software acknowledgment

and citation that is shown in the appendices (C), for other

examples, see [8], [9]. Furthermore, the machine-related spec-

ifications of the running system (including CPU architecture

and byte-order) are also collected to report in the paper (they

are reported for this paper in the acknowledgments). These

can help in root cause analysis of observed differences/issues

in the execution of the workflow on different machines. The

macro files also act as Make targets and prerequisites to

https://www.gnu.org/proprietary/proprietary-obsolescence.html
https://www.gnu.org/philosophy/free-sw.en.html
https://doi.org/10.5281/zenodo.3951151
https://doi.org/10.5281/zenodo.4062460
https://maneage.org
http://doi.org/10.5281/zenodo.1163746
http://doi.org/10.5281/zenodo.1164774
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allow accurate dependency tracking and optimized execution

(in parallel, no redundancies), for any level of complexity

(e.g., Maneage builds Matplotlib if requested; see Figure 1

of [5]). All software dependencies are built down to precise

versions of every tool, including the shell, important low-level

application programs (e.g., GNU Coreutils) and of course, the

high-level science software. The source code of all the free

software used in Maneage is archived in, and downloaded

from, zenodo.3883409. Zenodo promises long-term archival

and also provides a persistent identifier for the files, which

are sometimes unavailable at a software package’s web page.

On GNU/Linux distributions, even the GNU Compiler

Collection (GCC) and GNU Binutils are built from source

and the GNU C library (glibc) is being added (task 15390).

Currently, TEXLive is also being added (task 15267), but that

is only for building the final PDF, not affecting the analysis

or verification.

Building the core Maneage software environment on an

8-core CPU takes about 1.5 hours (GCC consumes more

than half of the time). However, this is only necessary once

in a project: the analysis (which usually takes months to

write/mature for a normal project) will only use the built

environment. Hence the few hours of initial software building

is negligible compared to a project’s life span. To facilitate

moving to another computer in the short term, Maneage’d

projects can be built in a container or VM. The README.md

file has thorough instructions on building in Docker. Through

containers or VMs, users on non-Unix-like OSs (like Microsoft

Windows) can use Maneage. For Windows-native software that

can be run in batch-mode, evolving technologies like Windows

Subsystem for Linux may be usable.

The analysis phase of the project however is naturally

different from one project to another at a low-level. It was

thus necessary to design a generic framework to comfortably

host any project, while still satisfying the criteria of mod-

ularity, scalability, and minimal complexity. This design is

demonstrated with the example of Figure 1 (left) which is

an enhanced replication of the “tool” curve of Figure 1C in

[12]. Figure 1 (right) is the data lineage that produced it.

The analysis is orchestrated through a single point of entry

(top-make.mk, which is a Makefile; see Listing 1). It is only

responsible for include-ing the modular subMakefiles of the

analysis, in the desired order, without doing any analysis itself.

This is visualized in Figure 1 (right) where no built (blue)

file is placed directly over top-make.mk. A visual inspection

of this file is sufficient for a non-expert to understand the

high-level steps of the project (irrespective of the low-level

implementation details), provided that the subMakefile names

are descriptive (thus encouraging good practice). A human-

friendly design that is also optimized for execution is a critical

component for the FAIRness of reproducible research.

All projects first load initialize.mk and download.mk,

and finish with verify.mk and paper.mk (Listing 1). Project

authors add their modular subMakefiles in between. Except for

paper.mk (which builds the ultimate target: paper.pdf), all

subMakefiles build a macro file with the same base-name (the

.tex file at the bottom of each subMakefile in Figure 1). Other

built files (“targets” in intermediate analysis steps) cascade

down in the lineage to one of these macro files, possibly

through other files.

Listing 1
THIS PROJECT’S SIMPLIFIED top-make.mk, ALSO SEE FIGURE 1.

FOR FULL FILE, SEE SOFTWAREHERITAGE

# Default target/goal of project.

all: paper.pdf

# Define subMakefiles to load in order.

makesrc = initialize \ # General

download \ # General

format \ # Project-specific

demo-plot \ # Project-specific

verify \ # General

paper # General

# Load all the configuration files.

include reproduce/analysis/config/*.conf

# Load the subMakefiles in the defined order

include $(foreach s,$(makesrc), \

reproduce/analysis/make/$(s).mk)

Just before reaching the ultimate target (paper.pdf), the

lineage reaches a bottleneck in verify.mk to satisfy the

verification criteria (this step was not available in [9]). All

project deliverables (macro files, plot or table data, and other

datasets) are verified at this stage, with their checksums, to

automatically ensure exact reproducibility. Where exact repro-

ducibility is not possible (for example, due to parallelization),

values can be verified by the project authors. For example see

verify-parameter-statistically.sh of zenodo.4062460.

To further minimize complexity, the low-level implemen-

tation can be further separated from the high-level execution

through configuration files. By convention in Maneage, the

subMakefiles (and the programs they call for number crunch-

ing) do not contain any fixed numbers, settings, or parameters.

Parameters are set as Make variables in “configuration files”

(with a .conf suffix) and passed to the respective program

by Make. For example, in Figure 1 (bottom), INPUTS.conf

contains URLs and checksums for all imported datasets,

thereby enabling exact verification before usage. To illustrate

this, we report that [12] studied 53 papers in 1996 (which

is not in their original plot). The number 1996 is stored

in demo-year.conf and the result (53) was calculated after

generating tools-per-year.txt. Both numbers are expanded

as LATEX macros when creating this PDF file. An interested

reader can change the value in demo-year.conf to auto-

matically update the result in the PDF, without knowing the

underlying low-level implementation. Furthermore, the con-

figuration files are a prerequisite of the targets that use them.

If changed, Make will only re-execute the dependent recipe

and all its descendants, with no modification to the project’s

source or other built products. This fast and cheap testing

encourages experimentation (without necessarily knowing the

implementation details; e.g., by co-authors or future readers),

and ensures self-consistency.

In contrast to notebooks like Jupyter, the analysis scripts,

configuration parameters and paper’s narrative are therefore

not blended into in a single file, and do not require a unique

editor. To satisfy the modularity criterion, the analysis steps

https://doi.org/10.5281/zenodo.3883409
http://savannah.nongnu.org/task/?15390
http://savannah.nongnu.org/task/?15267
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=http://git.maneage.org/project.git
https://archive.softwareheritage.org/swh:1:cnt:d552dc18749fbb16249b642cd4f8107c1ce8ff68;origin=https://gitlab.com/makhlaghi/maneage-paper.git;visit=swh:1:snp:ee7cc3bb558c4af703e8de53dd590654c8967663;anchor=swh:1:rev:e4f61544facf8a3bd88c8466e7d3d847544c8228;path=/reproduce/analysis/make/top-make.mk
https://archive.softwareheritage.org/browse/origin/content/?branch=refs/heads/postreferee_corrections&origin_url=https://codeberg.org/boud/elaphrocentre.git&path=reproduce/analysis/bash/verify-parameter-statistically.sh
https://doi.org/10.5281/zenodo.4062460
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Fig. 1. Left: an enhanced replica of Figure 1C in [12], shown here for demonstrating Maneage. It shows the fraction of the number of papers mentioning
software tools (green line, left vertical axis) in each year (red bars, right vertical axis on a log scale). Right: Schematic representation of the data lineage, or
workflow, to generate the plot on the left. Each colored box is a file in the project and arrows show the operation of various software: linking input file(s) to
the output file(s). Green files/boxes are plain-text files that are under version control and in the project source directory. Blue files/boxes are output files in the
build directory, shown within the Makefile (*.mk) where they are defined as a target. For example, paper.pdf is created by running LATEX on project.tex

(in the build directory; generated automatically) and paper.tex (in the source directory; written manually). Other software is used in other steps. The solid
arrows and full-opacity built boxes correspond to the lineage of this paper. The dotted arrows and built boxes show the scalability of Maneage (ease of adding
hypothetical steps to the project as it evolves). The underlying data of the left plot is available at zenodo.4291207/tools-per-year.txt.

and narrative are written and run in their own files (in different

languages) and the files can be viewed or manipulated with

any text editor that the authors prefer. The analysis can benefit

from the powerful and portable job management features of

Make and communicates with the narrative text through LATEX

macros, enabling much better-formatted output that blends

analysis outputs in the narrative sentences and enables direct

provenance tracking.

To satisfy the recorded history criterion, version control

(currently implemented in Git) is another component of

Maneage (see Figure 2). Maneage is a Git branch that contains

the shared components (infrastructure) of all projects (e.g.,

software tarball URLs, build recipes, common subMakefiles,

and interface script). The core Maneage git repository is hosted

at git.maneage.org/project.git (archived at Software Heritage).

Derived projects start by creating a branch and customizing it

(e.g., adding a title, data links, narrative, and subMakefiles for

its particular analysis, see Listing 2). There is a thoroughly

elaborated customization checklist in README-hacking.md.

The current project’s Git hash is provided to the authors

as a LATEX macro (shown here at the end of the abstract),

as well as the Git hash of the last commit in the Maneage

branch (shown in the acknowledgments). These macros are

created in initialize.mk, with other basic information from

the running system like the CPU architecture, byte order or

address sizes (shown in the acknowledgments).

Figure 2 shows how projects can re-import Maneage at a

later time (technically: merge), thus improving their low-level

infrastructure: in (a) authors do the merge during an ongoing

project; in (b) readers do it after publication; e.g., the project

remains reproducible but the infrastructure is outdated, or a

bug is fixed in Maneage. Generally, any Git flow (branching

strategy) can be used by the high-level project authors or

future readers. Low-level improvements in Maneage can thus

propagate to all projects, greatly reducing the cost of project

curation and maintenance, before and after publication.

Listing 2
STARTING A NEW PROJECT WITH MANEAGE, AND BUILDING IT

# Cloning main Maneage branch and branching off it.

$ git clone https://git.maneage.org/project.git

$ cd project

$ git remote rename origin origin-maneage

$ git checkout -b master

# Build the raw Maneage skeleton in two phases.

$ ./project configure # Build software environment.

$ ./project make # Do analysis, build PDF paper.

# Start editing, test-building and committing

$ emacs paper.tex # Set your name as author.

$ ./project make # Re-build to see effect.

$ git add -u && git commit # Commit changes.

Finally, a snapshot of the complete project source is usually

∼ 100 kilo-bytes. It can thus easily be published or archived in

many servers, for example, it can be uploaded to arXiv (with

the LATEX source, see the arXiv source in [8]–[10]), published

on Zenodo and archived in SoftwareHeritage.

https://zenodo.org/record/4291207/files/tools-per-year.txt
http://git.maneage.org/project.git
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=http://git.maneage.org/project.git
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Maneage

Project

1d72e26

0c120cb

5781173

0774aac

3c05235

6ec4881

852d996

4483a81

5e830f5

01dd812

2ed0c82

f62596e

f69e1f4

716b56b

(a) pre-publication:
Collaborating on a project while

working in parallel, then merging.

Maneage

Project

Derived
project

1d72e26

0c120cb

b47b2a3

340a7ec

a92b25a

6e1e3ff

4483a81

eeff5de

b177c7e

5ae1fdc

bcf4512

(b) post-publication:
Other researchers building upon

previously published work.

Fig. 2. Maneage is a Git branch. Projects using Maneage are branched off it and apply their customizations. (a) A hypothetical project’s history before
publication. The low-level structure (in Maneage, shared between all projects) can be updated by merging with Maneage. (b) A finished/published project can
be revitalized for new technologies by merging with the core branch. Each Git “commit” is shown on its branch as a colored ellipse, with its commit hash
shown and colored to identify the team that is/was working on the branch. Briefly, Git is a version control system, allowing a structured backup of project
files, for more see Appendix A-C. Each Git “commit” effectively contains a copy of all the project’s files at the moment it was made. The upward arrows at
the branch-tops are therefore in the direction of time.

V. DISCUSSION

We have shown that it is possible to build workflows

satisfying all the proposed criteria. Here we comment on our

experience in testing them through Maneage and its increasing

user-base (thanks to the support of RDA).

Firstly, while most researchers are generally familiar with

them, the necessary low-level tools (e.g., Git, LATEX, the

command-line and Make) are not widely used. Fortunately,

we have noticed that after witnessing the improvements in

their research, many, especially early-career researchers, have

started mastering these tools. Scientists are rarely trained

sufficiently in data management or software development, and

the plethora of high-level tools that change every few years

discourages them. Indeed the fast-evolving tools are primarily

targeted at software developers, who are paid to learn and use

them effectively for short-term projects before moving on to

the next technology.

Scientists, on the other hand, need to focus on their own

research fields and need to consider longevity. Hence, arguably

the most important feature of these criteria (as implemented

in Maneage) is that they provide a fully working template or

bundle that works immediately out of the box by producing a

paper with an example calculation that they just need to start

customizing. Using mature and time-tested tools, for blending

version control, the research paper’s narrative, the software

management and a robust data management strategies. We

have noticed that providing a clear checklist of the initial

customizations is much more effective in encouraging mastery

of these core analysis tools than having abstract, isolated

tutorials on each tool individually.

Secondly, to satisfy the completeness criterion, all the

required software of the project must be built on various Unix-

like OSs (Maneage is actively tested on different GNU/Linux

distributions, macOS, and is being ported to FreeBSD also).

This requires maintenance by our core team and consumes

time and energy. However, because the PM and analysis

components share the same job manager (Make) and design

principles, we have already noticed some early users adding,

or fixing, their required software alone. They later share their

low-level commits on the core branch, thus propagating it to

all derived projects.

Thirdly, Unix-like OSs are a very large and diverse group

(mostly conforming with POSIX), so our completeness con-

dition does not guarantee bit-wise reproducibility of the soft-

ware, even when built on the same hardware. However our

focus is on reproducing results (output of software), not the

software itself. Well written software internally corrects for

differences in OS or hardware that may affect its output

(through tools like the GNU Portability Library, or Gnulib).

On GNU/Linux hosts, Maneage builds precise versions of

the compilation tool chain. However, glibc is not install-

able on some Unix-like OSs (e.g., macOS) and all programs

link with the C library. This may hypothetically hinder the

exact reproducibility of results on non-GNU/Linux systems,

but we have not encountered this in our research so far.

With everything else under precise control in Maneage, the

effect of differing hardware, Kernel and C libraries on high-

level science can now be systematically studied in follow-up

research (including floating-point arithmetic or optimization

differences). Using continuous integration (CI) is one way to
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precisely identify breaking points on multiple systems.

Other implementations of the criteria, or future improve-

ments in Maneage, may solve some of the caveats, but this

proof of concept already shows many advantages. For exam-

ple, the publication of projects meeting these criteria on a wide

scale will allow automatic workflow generation, optimized

for desired characteristics of the results (e.g., via machine

learning). The completeness criterion implies that algorithms

and data selection can be included in the optimizations.

Furthermore, through elements like the macros, natural

language processing can also be included, automatically ana-

lyzing the connection between an analysis with the resulting

narrative and the history of that analysis+narrative. Parsers

can be written over projects for meta-research and provenance

studies, e.g., to generate Research Objects (see Appendix

B-Q). Likewise, when a bug is found in one science software,

affected projects can be detected and the scale of the effect can

be measured. Combined with SoftwareHeritage, precise high-

level science components of the analysis can be accurately

cited (e.g., even failed/abandoned tests at any historical point).

Many components of “machine-actionable” data management

plans can also be automatically completed as a byproduct,

useful for project PIs and grant funders.

From the data repository perspective, these criteria can also

be useful, e.g., the challenges mentioned in [7]: (1) The burden

of curation is shared among all project authors and readers

(the latter may find a bug and fix it), not just by database

curators, thereby improving sustainability. (2) Automated and

persistent bidirectional linking of data and publication can

be established through the published and complete data lin-

eage that is under version control. (3) Software management:

with these criteria, each project comes with its unique and

complete software management. It does not use a third-party

PM that needs to be maintained by the data center (and the

many versions of the PM), hence enabling robust software

management, preservation, publishing, and citation. For exam-

ple, see zenodo.1163746, zenodo.3408481, zenodo.3524937,

zenodo.3951151 or zenodo.4062460 where we distribute the

source code of all software used in each project in a tarball,

as deliverables. (4) “Linkages between documentation, code,

data, and journal articles in an integrated environment”, which

effectively summarizes the whole purpose of these criteria.
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APPENDIX A

SURVEY OF EXISTING TOOLS FOR VARIOUS PHASES

Data analysis workflows (including those that aim for repro-

ducibility) are commonly high-level frameworks that employ

various lower-level components. To help in reviewing existing

reproducible workflow solutions in light of the proposed

criteria in Appendix B, we first need to survey the most

commonly employed lower-level tools.

A. Independent environment

The lowest-level challenge of any reproducible solution is to

avoid the differences between various run-time environments,

to a desirable/certain level. For example different hardware,

operating systems, versions of existing dependencies, etc.

Therefore, any reasonable attempt at providing a reproducible

workflow starts with isolating its running environment from

the host environment. Three general technologies are used

for this purpose and reviewed below: 1) Virtual machines, 2)

Containers, 3) Independent build in the host’s file system.

1) Virtual machines: Virtual machines (VMs) host a binary

copy of a full operating system that can be run on other

operating systems. This includes the lowest-level operating

system component or the kernel. VMs thus provide the ul-

timate control one can have over the run-time environment of

the analysis. However, the VM’s kernel does not talk directly

to the running hardware that is doing the analysis, it talks

to a simulated hardware layer that is provided by the host’s

kernel. Therefore, a process that is run inside a virtual machine

can be much slower than one that is run on a native kernel.

An advantage of VMs is that they are a single file that can

be copied from one computer to another, keeping the full

environment within them if the format is recognized. VMs are

used by cloud service providers, enabling fully independent

operating systems on their large servers where the customer

can have root access.

VMs were used in solutions like SHARE [13] (which

was awarded second prize in the Elsevier Executable Paper

Grand Challenge of 2011 [14]), or in suggested reproducible

papers like [15]. However, due to their very large size,

these are expensive to maintain, thus leading SHARE to

discontinue its services in 2019. The URL to the VM file

provenance machine.ova that is mentioned in [15] is also

not currently accessible (we suspect that this is due to size

and archival costs).

2) Containers: Containers also host a binary copy of a run-

ning environment but do not have their own kernel. Through

a thin layer of low-level system libraries, programs running

within a container talk directly with the host operating system

kernel. Otherwise, containers have their own independent

software for everything else. Therefore, they have much less

overhead in hardware/CPU access. Like VMs, users often

choose an operating system for the container’s independent

operating system (most commonly GNU/Linux distributions

which are free software).

We review some of the most common container solutions:

Docker, Singularity, and Podman.

• Docker containers: Docker is one of the most popular tools

nowadays for keeping an independent analysis environ-

ment. It is primarily driven by the need of software de-

velopers for reproducing a previous environment, where

they have root access mostly on the “cloud” (which is

usually a remote VM). A Docker container is composed

of independent Docker “images” that are built with a

Dockerfile. It is possible to precisely version/tag the

images that are imported (to avoid downloading the

latest/different version in a future build). To have a

reproducible Docker image, it must be ensured that all

the imported Docker images check their dependency tags

down to the initial image which contains the C library.

An important drawback of Docker for high-performance

scientific needs is that it runs as a daemon (a program

that is always running in the background) with root

permissions. This is a major security flaw that discourages

many high-performance computing (HPC) facilities from

providing it.

• Singularity: Singularity [16] is a single-image container

(unlike Docker, which is composed of modular/indepen-

dent images). Although it needs root permissions to be

installed on the system (once), it does not require root

permissions every time it is run. Its main program is

also not a daemon, but a normal program that can be

stopped. These features make it much safer for HPC

administrators to install compared to Docker. However,

the fact that it requires root access for the initial install

is still a hindrance for a typical project: if Singularity is

not already present on the HPC, the user’s science project

cannot be run by a non-root user.

• Podman: Podman uses the Linux kernel containerization

features to enable containers without a daemon, and

without root permissions. It has a command-line interface

very similar to Docker, but only works on GNU/Linux

operating systems.

Generally, VMs or containers are good solutions to repro-

ducibly run/repeating an analysis in the short term (a couple

of years). However, their focus is to store the already-built

(binary, non-human readable) software environment. Because

of this, they will be large (many Gigabytes) and expensive to

archive, download, or access. Recall the two examples above

for VMs in Section A-A1. But this is also valid for Docker

images, as is clear from Dockerhub’s recent decision to delete

images of free accounts that have not been used for more

than 6 months. Meng & Thain [17] also give similar reasons

on why Docker images were not suitable in their trials.

On a more fundamental level, VMs or containers do not

store how the core environment was built. This information is

usually in a third-party repository, and not necessarily inside

the container or VM file, making it hard (if not impossible)

to track for future users. This is a major problem in relation

to the proposed completeness criteria and is also highlighted

as an issue in terms of long term reproducibility by [18].

The example of Dockerfile of [3] was previously men-

tioned in in Section III. Another useful example is the

Dockerfile of [19] (published in June 2015) which starts

with FROM rocker/verse:3.3.2. When we tried to build

https://github.com/benmarwick/1989-excavation-report-Madjedbebe/blob/master/Dockerfile
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it (November 2020), we noticed that the core down-

loaded image (rocker/verse:3.3.2, with image “digest”

sha256:c136fb0dbab...) was created in October 2018 (long

after the publication of that paper). In principle, it is possible to

investigate the difference between this new image and the old

one that the authors used, but that would require a lot of effort

and may not be possible when the changes are not available

in a third public repository or not under version control. In

Docker, it is possible to retrieve the precise Docker image with

its digest, for example, FROM ubuntu:16.04@sha256:XXXXXXX

(where XXXXXXX is the digest, uniquely identifying the core

image to be used), but we have not seen this often done in

existing examples of “reproducible” Dockerfiles.

The “digest” is specific to Docker repositories. A more

generic/long-term approach to ensure identical core OS com-

ponents at a later time is to construct the containers or VMs

with fixed/archived versions of the operating system ISO files.

ISO files are pre-built binary files with volumes of hundreds

of megabytes and not containing their build instructions. For

example, the archives of Debian1 or Ubuntu2 provide older

ISO files.

The concept of containers (and the independent images that

build them) can also be extended beyond just the software en-

vironment. For example, [20] propose a “data pallet” concept

to containerize access to data and thus allow tracing data back

to the application that produced them.

In summary, containers or VMs are just a built product

themselves. If they are built properly (for example building a

Maneage’d project inside a Docker container), they can be use-

ful for immediate usage and fast-moving of the project from

one system to another. With a robust building, the container or

VM can also be exactly reproduced later. However, attempting

to archive the actual binary container or VM files as a black

box (not knowing the precise versions of the software in them,

and how they were built) is expensive, and will not be able to

answer the most fundamental questions.

3) Independent build in host’s file system: The virtual

machine and container solutions mentioned above, have their

own independent file system. Another approach to having an

isolated analysis environment is to use the same file system

as the host, but installing the project’s software in a non-

standard, project-specific directory that does not interfere with

the host. Because the environment in this approach can be

built in any custom location on the host, this solution generally

does not require root permissions or extra low-level layers like

containers or VMs. However, “moving” the built product of

such solutions from one computer to another is not generally

as trivial as containers or VMs. Examples of such third-

party package managers (that are detached from the host

OS’s package manager) include (but are not limited to) Nix,

GNU Guix, Python’s Virtualenv package, Conda. Because it is

highly intertwined with the way software is built and installed,

third party package managers are described in more detail as

part of Section A-B.

1https://cdimage.debian.org/mirror/cdimage/archive/
2http://old-releases.ubuntu.com/releases

Maneage (the solution proposed in this paper) also follows

a similar approach of building and installing its own soft-

ware environment within the host’s file system, but without

depending on it beyond the kernel. However, unlike the third-

party package manager mentioned above, Maneage’d software

management is not detached from the specific research/analy-

sis project: the instructions to build the full isolated software

environment is maintained with the high-level analysis steps

of the project, and the narrative paper/report of the project.

This is fundamental to achieve the Completeness criteria.

B. Package management

Package management is the process of automating the

build and installation of a software environment. A package

manager thus contains the following information on each

software package that can be run automatically: the URL of the

software’s tarball, the other software that it possibly depends

on, and how to configure and build it. Package managers can

be tied to specific operating systems at a very low level (like

apt in Debian-based OSs). Alternatively, there are third-party

package managers that can be installed on many OSs. Both

are discussed in more detail below.

Package managers are the second component in any work-

flow that relies on containers or VMs for an independent

environment, and the starting point in others that use the

host’s file system (as discussed above in Section A-A). In

this section, some common package managers are reviewed,

in particular those that are most used by the reviewed repro-

ducibility solutions of Appendix B. For a more comprehensive

list of existing package managers, see Wikipedia. Note that we

are not including package managers that are specific to one

language, for example pip (for Python) or tlmgr (for LATEX).

1) Operating system’s package manager: The most com-

monly used package managers are those of the host operating

system, for example, apt, yum or pkg which are respectively

used in Debian-based, Red Hat-based and FreeBSD-based OSs

(among many other OSs).

These package managers are tightly intertwined with the

operating system: they also include the building and updating

of the core kernel and the C library. Because they are part of

the OS, they also commonly require root permissions. Also,

it is usually only possible to have one version/configuration

of the software at any moment and downgrading versions for

one project, may conflict with other projects, or even cause

problems in the OS. Hence if two projects need different

versions of the software, it is not possible to work on them at

the same time in the OS.

When a container or virtual machine (see Appendix A-A)

is used for each project, it is common for projects to use the

containerized operating system’s package manager. However,

it is important to remember that operating system package

managers are not static: software is updated on their servers.

Hence, simply running apt install gcc, will install different

versions of the GNU Compiler Collection (GCC) based on the

version of the OS and when it has been run. Requesting a

special version of that special software does not fully address

the problem because the package managers also download

https://cdimage.debian.org/mirror/cdimage/archive/
http://old-releases.ubuntu.com/releases
https://en.wikipedia.org/wiki/List_of_software_package_management_systems
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and install its dependencies. Hence a fixed version of the

dependencies must also be specified.

In robust package managers like Debian’s apt it is possible

to fully control (and later reproduce) the built environment

of a high-level software. Debian also archives all packaged

high-level software in its Snapshot3 service since 2005 which

can be used to build the higher-level software environment on

an older OS [21]. Therefore it is indeed theoretically possible

to reproduce the software environment only using archived

operating systems and their own package managers, but un-

fortunately, we have not seen it practiced in (reproducible)

scientific papers/projects.

In summary, the host OS package managers are primarily

meant for the low-level operating system components. Hence,

many robust reproducible analysis workflows (reviewed in

Appendix B) do not use the host’s package manager, but an

independent package manager, like the ones discussed below.

2) Blind packaging of already built software: An already-

built software contains links to the system libraries it uses.

Therefore one way of packaging a software is to look into

the binary file for the libraries it uses and bring them into a

file with the executable so on different systems, the same set

of dependencies are moved around with the desired software.

Tools like AppImage4, Flatpak5 or Snap6 are designed for this

purpose: the software’s binary product and all its dependencies

(not including the core C library) are packaged into one file.

This makes it very easy to move that single software’s built

product and already built dependencies to different systems.

However, because the C library is not included, it can fail on

newer/older systems (depending on the system it was built

on). We call this method “blind” packaging because it is

agnostic to how the software and its dependencies were built

(which is important in a scientific context). Moreover, these

types of packagers are designed for the Linux kernel (using

its containerization and unique mounting features). They can

therefore only be run on GNU/Linux operating systems.

3) Nix or GNU Guix: Nix7 [22] and GNU Guix8 [23] are

independent package managers that can be installed and used

on GNU/Linux operating systems, and macOS (only for Nix,

prior to macOS Catalina). Both also have a fully functioning

operating system based on their packages: NixOS and “Guix

System”. GNU Guix is based on the same principles of Nix

but implemented differently, so we focus the review here on

Nix.

The Nix approach to package management is unique in that

it allows exact dependency tracking of all the dependencies,

and allows for multiple versions of software, for more details

see [22]. In summary, a unique hash is created from all the

components that go into the building of the package (including

the instructions on how to build the software). That hash is

then prefixed to the software’s installation directory. As an

example from [22]: if a certain build of GNU C Library

3https://snapshot.debian.org/
4https://appimage.org
5https://flatpak.org
6https://snapcraft.io
7https://nixos.org
8https://guix.gnu.org

2.3.2 has a hash of 8d013ea878d0, then it is installed under

/nix/store/8d013ea878d0-glibc-2.3.2 and all software

that is compiled with it (and thus need it to run) will link to

this unique address. This allows for multiple versions of the

software to co-exist on the system, while keeping an accurate

dependency tree.

As mentioned in [23], one major caveat with using these

package managers is that they require a daemon with root

privileges (failing our completeness criteria). This is necessary

“to use the Linux kernel container facilities that allow it to

isolate build processes and maximize build reproducibility”.

This is because the focus in Nix or Guix is to create bit-

wise reproducible software binaries and this is necessary for

the security or development perspectives. However, in a non-

computer-science analysis (for example natural sciences), the

main aim is reproducible results that can also be created with

the same software version that may not be bit-wise identical

(for example when they are installed in other locations, be-

cause the installation location is hard-coded in the software

binary or for a different CPU architecture).

Finally, while Guix and Nix do allow precisely reproducible

environments, it requires extra effort on the user’s side to

ensure that the built environment is reproducible later. For

example, simply running guix install gcc (the most com-

mon way to install a new software) will install the most recent

version of GCC, that can be different at different times. Hence,

similar to the discussion in host operating system package

managers, it is up to the user to ensure that their created

environment is recorded properly for reproducibility in the

future. It is not a complex operation, but like the Docker digest

codes mentioned in Appendix A-A2, many will probably not

know, forget or ignore it. Generally, this is an issue with

projects that rely on detached (third party) package managers

for building their software, including the other tools mentioned

below. We solved this problem in Maneage by including the

package manager and analysis steps into one project: it is

simply not possible to forget to record the exact versions of

the software used.

4) Conda/Anaconda: Conda is an independent package

manager that can be used on GNU/Linux, macOS, or Windows

operating systems, although all software packages are not

available in all operating systems. Conda is able to maintain

an approximately independent environment on an operating

system without requiring root access.

Conda tracks the dependencies of a package/environment

through a YAML formatted file, where the necessary software

and their acceptable versions are listed. However, it is not

possible to fix the versions of the dependencies through the

YAML files alone. This is thoroughly discussed under issue

787 (in May 2019) of conda-forge9. In that discussion, the

authors of [24] report that the half-life of their environment

(defined in a YAML file) is 3 months, and that at least

one of their dependencies breaks shortly after this period.

The main reply they got in the discussion is to build the

Conda environment in a container, which is also the suggested

solution by [25]. However, as described in Appendix A-A,

9https://github.com/conda-forge/conda-forge.github.io/issues/787

https://snapshot.debian.org/
https://appimage.org
https://flatpak.org
https://snapcraft.io
https://nixos.org
https://guix.gnu.org
https://github.com/conda-forge/conda-forge.github.io/issues/787
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containers just hide the reproducibility problem, they do not

fix it: containers are not static and need to evolve (i.e., get re-

built) with the project. Given these limitations, [24] are forced

to host their conda-packaged software as tarballs on a separate

repository.

Conda installs with a shell script that contains a binary-

blob (+500 megabytes, embedded in the shell script). This is

the first major issue with Conda: from the shell script, it is

not clear what is in this binary blob and what it does. After

installing Conda in any location, users can easily activate that

environment by loading a special shell script. However, the

resulting environment is not fully independent of the host

operating system as described below:

• The Conda installation directory is present at the start of

environment variables like PATH (which is used to find

programs to run) and other such environment variables.

However, the host operating system’s directories are also

appended afterward. Therefore, a user or script may not

notice that the software that is being used is actually

coming from the operating system, and not from the

controlled Conda installation.

• Generally, by default, Conda relies heavily on the oper-

ating system and does not include core commands like

mkdir (to make a directory), ls (to list files) or cp

(to copy). Although a minimal functionality is defined

for them in POSIX and generally behave similarly for

basic operations on different Unix-like operating systems,

they have their differences. For example, mkdir -p is a

common way to build directories, but this option is only

available with the mkdir of GNU Coreutils (default on

GNU/Linux systems and installable in almost all Unix-

like OSs). Running the same command within a Conda

environment that does not include GNU Coreutils on

a macOS would crash. Important packages like GNU

Coreutils are available in channels like conda-forge, but

they are not the default. Therefore, many users may not

recognize this, and failing to account for it, will cause

unexpected crashes when the project is run on a new

system.

• Many major Conda packaging “channels” (for example

the core Anaconda channel, or very popular conda-forge

channel) do not include the C library, that a package was

built with, as a dependency. They rely on the host operat-

ing system’s C library. C is the core language of modern

operating systems and even higher-level languages like

Python or R are written in it, and need it to run. Therefore

if the host operating system’s C library is different from

the C library that a package was built with, a Conda-

packaged program will crash and the project will not

be executable. Theoretically, it is possible to define a

new Conda “channel” which includes the C library as

a dependency of its software packages, but it will take

too much time for any individual team to practically

implement all their necessary packages, up to their high-

level science software.

• Conda does allow a package to depend on a special build

of its prerequisites (specified by a checksum, fixing its

version and the version of its dependencies). However,

this is rarely practiced in the main Git repositories of

channels like Anaconda and conda-forge: only the name

of the high-level prerequisite packages is listed in a

package’s meta.yaml file, which is version-controlled.

Therefore two builds of the package from the same Git

repository will result in different tarballs (depending on

what prerequisites were present at build time). In Conda’s

downloaded tarball (that contains the built binaries and

is not under version control) the exact versions of most

build-time dependencies are listed. However, because the

different software of one project may have been built at

different times, if they depend on different versions of

a single software there will be a conflict and the tarball

cannot be rebuilt, or the project cannot be run.

As reviewed above, the low-level dependence of Conda

on the host operating system’s components and build-time

conditions, is the primary reason that it is very fast to install

(thus making it an attractive tool to software developers who

just need to reproduce a bug in a few minutes). However, these

same factors are major caveats in a scientific scenario, where

long-term archivability, readability, or usability are important.
5) Spack: Spack is a package manager that is also influ-

enced by Nix (similar to GNU Guix), see [26]. But unlike Nix

or GNU Guix, it does not aim for full, bit-wise reproducibility

and can be built without root access in any generic location.

It relies on the host operating system for the C library.

Spack is fully written in Python, where each software

package is an instance of a class, which defines how it should

be downloaded, configured, built, and installed. Therefore if

the proper version of Python is not present, Spack cannot

be used and when incompatibilities arise in future versions

of Python (similar to how Python 3 is not compatible with

Python 2), software building recipes, or the whole system,

have to be upgraded. Because of such bootstrapping problems

(for example how Spack needs Python to build Python and

other software), it is generally a good practice to use simpler,

lower-level languages/systems for a low-level operation like

package management.

In conclusion for all package managers, there are two com-

mon issues regarding generic package managers that hinder

their usage for high-level scientific projects:

• Pre-compiled/binary downloads: Most package managers

primarily download the software in a binary (pre-

compiled) format. This allows users to download it very

fast and almost instantaneously be able to run it. However,

to provide for this, servers need to keep binary files

for each build of the software on different operating

systems (for example Conda needs to keep binaries for

Windows, macOS and GNU/Linux operating systems). It

is also necessary for them to store binaries for each build,

which includes different versions of its dependencies.

Maintaining such a large binary library is expensive,

therefore once the shelf-life of a binary has expired, it will

be removed, causing problems for projects that depend on

them.

• Adding high-level software: Packaging new software is not

trivial and needs a good level of knowledge/experience
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with that package manager. For example, each one has its

own special syntax/standards/languages, with pre-defined

variables that must already be known before someone

can package new software for them. However, in many

research projects, the most high-level analysis software

is written by the team that is doing the research, and

they are its primary/only users, even when the software

is distributed with free licenses on open repositories.

Although active package manager members are com-

monly very supportive in helping to package new soft-

ware, many teams may not be able to make that extra

effort and time investment to package their most high-

level (i.e., relevant) software in it. As a result, they man-

ually install their high-level software in an uncontrolled,

or non-standard way, thus jeopardizing the reproducibility

of the whole work. This is another consequence of the

detachment of the package manager from the project

doing the analysis.

Addressing these issues has been the basic reason behind the

proposed solution: based on the completeness criteria, instruc-

tions to download and build the packages are included within

the actual science project, and no special/new syntax/language

is used. Software download, built and installation is done

with the same language/syntax that researchers manage their

research: using the shell (by default GNU Bash in Maneage)

for low-level steps and Make (by default, GNU Make in

Maneage) for job management.

C. Version control

A scientific project is not written in a day; it usually takes

more than a year. During this time, the project evolves signifi-

cantly from its first starting date, and components are added or

updated constantly as it approaches completion. Added with

the complexity of modern computational projects, is not trivial

to manually track this evolution, and the evolution’s affect of

on the final output: files produced in one stage of the project

can mistakenly be used by an evolved analysis environment

in later stages (where the project has evolved).

Furthermore, scientific projects do not progress linearly: ear-

lier stages of the analysis are often modified after later stages

are written. This is a natural consequence of the scientific

method; where progress is defined by experimentation and

modification of hypotheses (results from earlier phases).

It is thus very important for the integrity of a scientific

project that the state/version of its processing is recorded as

the project evolves. For example, better methods are found or

more data arrive. Any intermediate dataset that is produced

should also be tagged with the version of the project at the

time it was created. In this way, later processing stages can

make sure that they can safely be used, i.e., no change has

been made in their processing steps.

Solutions to keep track of a project’s history have existed

since the early days of software engineering in the 1970s and

they have constantly improved over the last decades. Today the

distributed model of “version control” is the most common,

where the full history of the project is stored locally on

different systems and can easily be integrated. There are many

existing version control solutions, for example, CVS, SVN,

Mercurial, GNU Bazaar, or GNU Arch. However, currently,

Git is by far the most commonly used in individual projects.

Git is also the foundation upon which this paper’s proof of

concept (Maneage) is built. Archival systems aiming for long

term preservation of software like Software Heritage [27] are

also modeled on Git. Hence we will just review Git here,

but the general concept of version control is the same in all

implementations.

1) Git: With Git, changes in a project’s contents are

accurately identified by comparing them with their previous

version in the archived Git repository. When the user decides

the changes are significant compared to the archived state,

they can be “committed” into the history/repository. The

commit involves copying the changed files into the repository

and calculating a 40 character checksum/hash that is calcu-

lated from the files, an accompanying “message” (a narrative

description of the purpose/goals of the changes), and the

previous commit (thus creating a “chain” of commits that are

strongly connected to each other like Figure 2). For example

f4953ccf1ca8a33616ad602ddf4cd189c2eff97b is a commit

identifier in the Git history of this project. Commits are is

commonly summarized by the checksum’s first few characters,

for example, f4953cc of the example above.

With Git, making parallel “branches” (in the project’s his-

tory) is very easy and its distributed nature greatly helps in

the parallel development of a project by a team. The team can

host the Git history on a web page and collaborate through

that. There are several Git hosting services for example

codeberg.org, gitlab.com, bitbucket.org or github.com (among

many others). Storing the changes in binary files is also

possible in Git, however it is most useful for human-readable

plain-text sources.

D. Job management

Any analysis will involve more than one logical step. For

example, it is first necessary to download a dataset and do

some preparations on it before applying the research software

on it, and finally to make visualizations/tables that can be

imported into the final report. Each one of these is a logically

independent step, which needs to be run before/after the others

in a specific order.

Hence job management is a critical component of a research

project. There are many tools for managing the sequence of

jobs, below we review the most common ones that are also

used the existing reproducibility solutions of Appendix B and

Maneage.

1) Manual operation with narrative: The most commonly

used workflow system for many researchers is to run the

commands, experiment on them, and keep the output when

they are happy with it (therefore loosing the actual command

that produced it). As an improvement, some researchers also

keep a narrative description in a text file, and keep a copy

of the command they ran. At least in our personal experience

with colleagues, this method is still being heavily practiced

by many researchers. Given that many researchers do not get

trained well in computational methods, this is not surprising.

http://codeberg.org
http://gitlab.com
http://bitbucket.org
http://github.com
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As discussed in Section V, based on this observation we

believe that improved literacy in computational methods is the

single most important factor for the integrity/reproducibility of

modern science.

2) Scripts: Scripts (in any language, for example GNU

Bash, or Python) are the most common ways of organizing

a series of steps. They are primarily designed to execute each

step sequentially (one after another), making them also very

intuitive. However, as the series of operations become complex

and large, managing the workflow in a script will become

highly complex.

For example, if 90% of a long project is already done and

a researcher wants to add a followup step, a script will go

through all the previous steps every time it is run (which can

take significant time). In other scenarios, when a small step in

the middle of the analysis has to be changed, the full analysis

needs to be re-run from the start. Scripts have no concept

of dependencies, forcing authors to “temporarily” comment

parts that they do not want to be re-run. Therefore forgetting

to un-comment them afterwards is the most common cause of

frustration.

This discourages experimentation, which is a critical com-

ponent of the scientific method. It is possible to manually add

conditionals all over the script, thus manually defining depen-

dencies, or only run certain steps at certain times, but they just

make it harder to read, add logical complexity and introduce

many bugs themselves. Parallelization is another drawback of

using scripts. While it is not impossible, because of the high-

level nature of scripts, it is not trivial and parallelization can

also be very inefficient or buggy.

3) Make: Make was originally designed to address the

problems mentioned above for scripts [28]. In particular, it was

originally designed in the context of managing the compilation

of software source code that are distributed in many files. With

Make, the source files of a program that have not been changed

are not recompiled. Moreover, when two source files do not

depend on each other, and both need to be rebuilt, they can be

built in parallel. This was found to greatly help in debugging

software projects, and in speeding up test builds, giving Make

a core place in software development over the last 40 years.

The most common implementation of Make, since the early

1990s, is GNU Make. Make was also the framework used in

the first attempts at reproducible scientific papers [1], [11].

Our proof-of-concept (Maneage) also uses Make to organize

its workflow. Here, we complement that section with more

technical details on Make.

Usually, the top-level Make instructions are placed in a file

called Makefile, but it is also common to use the .mk suffix for

custom file names. Each stage/step in the analysis is defined

through a rule. Rules define recipes to build targets from pre-

requisites. In Unix-like operating systems, everything is a file,

even directories and devices. Therefore all three components

in a rule must be files on the running filesystem.

To decide which operation should be re-done when ex-

ecuted, Make compares the timestamp of the targets and

prerequisites. When any of the prerequisite(s) is newer than

a target, the recipe is re-run to re-build the target. When all

the prerequisites are older than the target, that target does not

need to be rebuilt. A recipe is just a bundle or shell commands

that are executed if necessary. Going deeper into the syntax of

Make is beyond the scope of this paper, but we recommend

interested readers to consult the GNU Make manual for a very

good introduction10.

4) Snakemake: Snakemake is a Python-based workflow

management system, inspired by GNU Make (discussed

above). It is aimed at reproducible and scalable data analysis

[29]11. It defines its own language to implement the “rule” con-

cept of Make within Python. Technically, calling command-

line programs within Python is very slow, and using complex

shell scripts in each step will involve a lot of quotations that

make the code hard to read.

Currently, Snakemake requires Python 3.5 (released in

September 2015) and above, while Snakemake was originally

introduced in 2012. Hence it is not clear if older Snakemake

source files can be executed today. As reviewed in many

tools here, depending on high-level systems for low-level

project components causes a major bootstrapping problem that

reduces the longevity of a project.

5) Bazel: Bazel12 is a high-level job organizer that depends

on Java and Python and is primarily tailored to software

developers (with features like facilitating linking of libraries

through its high-level constructs).

6) SCons: Scons13 is a Python package for managing oper-

ations outside of Python (in contrast to CGAT-core, discussed

below, which only organizes Python functions). In many

aspects it is similar to Make, for example, it is managed

through a ‘SConstruct’ file. Like a Makefile, SConstruct is

also declarative: the running order is not necessarily the top-

to-bottom order of the written operations within the file (unlike

the imperative paradigm which is common in languages like C,

Python, or FORTRAN). However, unlike Make, SCons does

not use the file modification date to decide if it should be

remade. SCons keeps the MD5 hash of all the files in a hidden

binary file and checks them to see if it is necessary to re-run.

SCons thus attempts to work on a declarative file with an

imperative language (Python). It also goes beyond raw job

management and attempts to extract information from within

the files (for example to identify the libraries that must be

linked while compiling a program). SCons is, therefore, more

complex than Make and its manual is almost double that

of GNU Make. Besides added complexity, all these “smart”

features decrease its performance, especially as files get larger

and more numerous: on every call, every file’s checksum has

to be calculated, and a Python system call has to be made

(which is computationally expensive).

Finally, it has the same drawback as any other tool that

uses high-level languages, see Section A-F. We encountered

such a problem while testing SCons: on the Debian-10 testing

system, the python program pointed to Python 2. However,

since Python 2 is now obsolete, SCons was built with Python

3 and our first run crashed. To fix it, we had to either manually

change the core operating system path, or the SCons source

10http://www.gnu.org/software/make/manual/make.pdf
11https://snakemake.readthedocs.io/en/stable
12https://bazel.build
13https://scons.org

http://www.gnu.org/software/make/manual/make.pdf
https://snakemake.readthedocs.io/en/stable
https://bazel.build
https://scons.org
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hashbang. The former will conflict with other system tools that

assume python points to Python-2, the latter may need root

permissions for some systems. This can also be problematic

when a Python analysis library, may require a Python version

that conflicts with the running SCons.

7) CGAT-core: CGAT-Core is a Python package for man-

aging workflows, see [30]. It wraps analysis steps in Python

functions and uses Python decorators to track the dependencies

between tasks. It is used in papers like [31]. However, as

mentioned in [31] it is good for managing individual outputs

(for example separate figures/tables in the paper, when they are

fully created within Python). Because it is primarily designed

for Python tasks, managing a full workflow (which includes

many more components, written in other languages) is not

trivial. Another drawback with this workflow manager is that

Python is a very high-level language where future versions

of the language may no longer be compatible with Python 3,

that CGAT-core is implemented in (similar to how Python 2

programs are not compatible with Python 3).

8) Guix Workflow Language (GWL): GWL is based on

the declarative language that GNU Guix uses for package

management (see Appendix A-B), which is itself based on

the general purpose Scheme language. It is closely linked with

GNU Guix and can even install the necessary software needed

for each individual process. Hence in the GWL paradigm,

software installation and usage does not have to be separated.

GWL has two high-level concepts called “processes” and

“workflows” where the latter defines how multiple processes

should be executed together.

9) Nextflow (2013): Nextflow14 [32] workflow language

with a command-line interface that is written in Java.

10) Generic workflow specifications (CWL and WDL):

Due to the variety of custom workflows used in existing

reproducibility solution (like those of Appendix B), some

attempts have been made to define common workflow stan-

dards like the Common workflow language (CWL15, with

roots in Make, formatted in YAML or JSON) and Workflow

Description Language (WDL16, formatted in JSON). These are

primarily specifications/standards rather than software. With

these standards, ideally, translators can be written between the

various workflow systems to make them more interoperable.

In conclusion, shell scripts and Make are very common

and extensively used by users of Unix-based OSs (which

are most commonly used for computations). They have also

existed for several decades and are robust and mature. Many

researchers that use heavy computations are also already

familiar with them and have already used them already (to

different levels). As we demonstrated above in this appendix,

the list of necessary tools for the various stages of a research

project (an independent environment, package managers, job

organizers, analysis languages, writing formats, editors, etc)

is already very large. Each software/tool/paradigm has its

own learning curve, which is not easy for a natural or social

scientist for example (who need to put their primary focus

14https://www.nextflow.io
15https://www.commonwl.org
16https://openwdl.org

on their own scientific domain). Most workflow management

tools and the reproducible workflow solutions that depend

on them are, yet another language/paradigm that has to be

mastered by researchers and thus a heavy burden.

Furthermore as shown above (and below) high-level tools

will evolve very fast causing disruptions in the reproducible

framework. A good example is Popper [33] which initially

organized its workflow through the HashiCorp configuration

language (HCL) because it was the default in GitHub. How-

ever, in September 2019, GitHub dropped HCL as its default

configuration language, so Popper is now using its own custom

YAML-based workflow language, see Appendix B-W for more

on Popper.

E. Editing steps and viewing results

In order to reproduce a project, the analysis steps must be

stored in files. For example Shell, Python, R scripts, Makefiles,

Dockerfiles, or even the source files of compiled languages like

C or FORTRAN. Given that a scientific project does not evolve

linearly and many edits are needed as it evolves, it is important

to be able to actively test the analysis steps while writing the

project’s source files. Here we review some common methods

that are currently used.

1) Text editors: The most basic way to edit text files is

through simple text editors which just allow viewing and

editing such files, for example, gedit on the GNOME graphic

user interface. However, working with simple plain text editors

like gedit can be very frustrating since its necessary to save

the file, then go to a terminal emulator and execute the source

files. To solve this problem there are advanced text editors

like GNU Emacs that allow direct execution of the script, or

access to a terminal within the text editor. However, editors

that can execute or debug the source (like GNU Emacs), just

run external programs for these jobs (for example GNU GCC,

or GNU GDB), just as if those programs was called from

outside the editor.

With text editors, the final edited file is independent of the

actual editor and can be further edited with another editor,

or executed without it. This is a very important feature and

corresponds to the modularity criteria of this paper. This type

of modularity is not commonly present for other solutions

mentioned below (the source can only be edited/run in a

specific browser). Another very important advantage of ad-

vanced text editors like GNU Emacs or Vi(m) is that they can

also be run without a graphic user interface, directly on the

command-line. This feature is critical when working on remote

systems, in particular high performance computing (HPC)

facilities that do not provide a graphic user interface. Also,

the commonly used minimalistic containers do not include a

graphic user interface. Hence by default all Maneage’d projects

also build the simple GNU Nano plain-text editor as part of

the project (to be able to edit the source directly within a

minimal environment). Maneage can also also optinally build

GNU Emacs or Vim, but its up to the user to build them (same

as their high-level science software).

2) Integrated Development Environments (IDEs): To facil-

itate the development of source code in special programming

https://www.nextflow.io
https://www.commonwl.org
https://openwdl.org
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languages, IDEs add software building and running envi-

ronments as well as debugging tools to a plain text editor.

Many IDEs have their own compilers and debuggers, hence

source files that are maintained in IDEs are not necessarily

usable/portable on other systems. Furthermore, they usually

require a graphic user interface to run. In summary, IDEs are

generally very specialized tools, for special projects and are

not a good solution when portability (the ability to run on

different systems and at different times) is required.
3) Jupyter: Jupyter (initially IPython) [34] is an imple-

mentation of Literate Programming [35]. Jupyter’s name is

a combination of the three main languages it was designed

for: Julia, Python, and R. The main user interface is a web-

based “notebook” that contains blobs of executable code and

narrative. Jupyter uses the custom built .ipynb format17. The

.ipynb format, is a simple, human-readable format that can

be opened in a plain-text editor) and formatted in JavaScript

Object Notation (JSON). It contains various kinds of “cells”,

or blobs, that can contain narrative description, code, or multi-

media visualizations (for example images/plots), that are all

stored in one file. The cells can have any order, allowing the

creation of a literal programming style graphical implemen-

tation, where narrative descriptions and executable patches of

code can be intertwined. For example to have a paragraph of

text about a patch of code, and run that patch immediately on

the same page.

The .ipynb format does theoretically allow dependency

tracking between cells, see IPython mailing list (discussion

started by Gabriel Becker from July 201318). Defining de-

pendencies between the cells can allow non-linear execution

which is critical for large scale (thousands of files) and

complex (many dependencies between the cells) operations.

It allows automation, run-time optimization (deciding not to

run a cell if it is not necessary), and parallelization. However,

Jupyter currently only supports a linear run of the cells: always

from the start to the end. It is possible to manually execute only

one cell, but the previous/next cells that may depend on it, also

have to be manually run (a common source of human error, and

frustration for complex operations). Integration of directional

graph features (dependencies between the cells) into Jupyter

has been discussed, but as of this publication, there is no plan

to implement it (see Jupyter’s GitHub issue 117519).

The fact that the .ipynb format stores narrative text, code,

and multi-media visualization of the outputs in one file,

is another major hurdle and against the modularity criteria

proposed here. The files can easily become very large (in

volume/bytes) and hard to read when the Jupyter web-interface

is not accessible. Both are critical for scientific processing, es-

pecially the latter: when a web browser with proper JavaScript

features is not available (can happen in a few years). This is

further exacerbated by the fact that binary data (for example

images) are not directly supported in JSON and have to be

converted into a much less memory-efficient textual encoding.

Finally, Jupyter has an extremely complex dependency

graph: on a clean Debian 10 system, Pip (a Python package

17https://nbformat.readthedocs.io/en/latest
18https://mail.python.org/pipermail/ipython-dev/2013-July/010725.html
19https://github.com/jupyter/notebook/issues/1175

manager that is necessary for installing Jupyter) required

19 dependencies to install, and installing Jupyter within Pip

needed 41 dependencies. [36] reported such conflicts when

building Jupyter into the Active Papers framework (see Ap-

pendix B-K). However, the dependencies above are only on the

server-side. Since Jupyter is a web-based system, it requires

many dependencies on the viewing/running browser also (for

example special JavaScript or HTML5 features, which evolve

very fast). As discussed in Appendix A-F having so many

dependencies is a major caveat for any system regarding

scientific/long-term reproducibility. In summary, Jupyter is

most useful in manual, interactive, and graphical operations

for temporary operations (for example educational tutorials).

F. Project management in high-level languages

Currently, the most popular high-level data analysis lan-

guage is Python. R is closely tracking it and has superseded

Python in some fields, while Julia [37] is quickly gaining

ground. These languages have themselves superseded previ-

ously popular languages for data analysis of the previous

decades, for example, Java, Perl, or C++. All are part of the C-

family programming languages. In many cases, this means that

the language’s execution environment are themselves written

in C, which is the language of modern operating systems.

Scientists, or data analysts, mostly use these higher-level

languages. Therefore they are naturally drawn to also apply

the higher-level languages for lower-level project management,

or designing the various stages of their workflow. For exam-

ple Conda or Spack (Appendix A-B), CGAT-core (Appendix

A-D), Jupyter (Appendix A-E) or Popper (Appendix B-W) are

written in Python. The discussion below applies to both the

actual analysis software and project management software. In

this context, it is more focused on the latter.

Because of their nature, higher-level languages evolve very

fast, creating incompatibilities on the way. The most prominent

example is the transition from Python 2 (released in 2000)

to Python 3 (released in 2008). Python 3 was incompatible

with Python 2 and it was decided to abandon the former by

2015. However, due to community pressure, this was delayed

to January 1st, 2020. The end-of-life of Python 2 caused many

problems for projects that had invested heavily in Python 2:

all their previous work had to be translated, for example, see

[38] or Appendix B-R. Some projects could not make this

investment and their developers decided to stop maintaining

it, for example VisTrails (see Appendix B-G).

The problems were not just limited to translation. Python 2

was still being actively used during the transition period (and

is still being used by some, after its end-of-life). Therefore,

developers had to maintain (for example fix bugs in) both

versions in one package. This is not particular to Python, a

similar evolution occurred in Perl: in 2000 it was decided to

improve Perl 5, but the proposed Perl 6 was incompatible with

it. However, the Perl community decided not to abandon Perl

5, and Perl 6 was eventually defined as a new language that

is now officially called “Raku” (https://raku.org).

It is unreasonably optimistic to assume that high-level lan-

guages will not undergo similar incompatible evolutions in the

https://nbformat.readthedocs.io/en/latest
https://mail.python.org/pipermail/ipython-dev/2013-July/010725.html
https://github.com/jupyter/notebook/issues/1175
https://raku.org
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(not too distant) future. For industial software developers, this

is not a major problem: non-scientific software, and the general

population’s usage of them, has a similarly fast evolution and

shelf-life. Hence, it is rarely (if ever) necessary to look into

industrial/business codes that are more than a couple of years

old. However, in the sciences (which are commonly funded

by public money) this is a major caveat for the longer-term

usability of solutions.

In summary, in this section we are discussing the boot-

strapping problem as regards scientific projects: the work-

flow/pipeline can reproduce the analysis and its dependencies.

However, the dependencies of the workflow itself should not

be ignored. Beyond technical, low-level, problems for the

developers mentioned above, this causes major problems for

scientific project management as listed below:

1) Dependency hell: The evolution of high-level languages

is extremely fast, even within one version. For example,

packages that are written in Python 3 often only work with a

special interval of Python 3 versions. For example Snakemake

and Occam which can only be run on Python versions 3.4 and

3.5 or newer respectively, see Appendices A-D4 and B-Y. This

is not just limited to the core language, much faster changes

occur in their higher-level libraries. For example version 1.9

of Numpy (Python’s numerical analysis module) discontinued

support for Numpy’s predecessor (called Numeric), causing

many problems for scientific users [36].

On the other hand, the dependency graph of tools written in

high-level languages is often extremely complex. For example,

see Figure 1 of [5], it shows the dependencies and their inter-

dependencies for Matplotlib (a popular plotting module in

Python). Acceptable version intervals between the dependen-

cies will cause incompatibilities in a year or two, when a robust

package manager is not used (see Appendix A-B).

Since a domain scientist does not always have the re-

sources/knowledge to modify the conflicting part(s), many are

forced to create complex environments with different versions

of Python and pass the data between them (for example just

to use the work of a previous PhD student in the team). This

greatly increases the complexity of the project, even for the

principal author. A well-designed reproducible workflow like

Maneage that has no dependencies beyond a C compiler in

a Unix-like operating system can account for this. However,

when the actual workflow system (not the analysis software)

is written in a high-level language like the examples above.

Another relevant example of the dependency hell is men-

tioned here: merely installing the Python installer (pip) on

a Debian system (with apt install pip2 for Python 2

packages), required 32 other packages as dependencies. pip is

necessary to install Popper and Sciunit (Appendices B-W and

B-R). As of this writing, the pip3 install popper and pip2

install sciunit2 commands for installing each, required

17 and 26 Python modules as dependencies. It is impossible

to run either of these solutions if there is a single conflict in

this very complex dependency graph. This problem actually

occurred while we were testing Sciunit: even though it was

installed, it could not run because of conflicts (its last commit

was only 1.5 years old), for more see Appendix B-R. [36] also

report a similar problem when attempting to install Jupyter

(see Appendix A-E). Of course, this also applies to tools that

these systems use, for example Conda (which is also written

in Python, see Appendix A-B).

2) Generational gap: This occurs primarily for domain

scientists (for example astronomers, biologists, or social sci-

ences). Once they have mastered one version of a language

(mostly in the early stages of their career), they tend to

ignore newer versions/languages. The inertia of programming

languages is very strong. This is natural because they have

their own science field to focus on, and re-writing their high-

level analysis toolkits (which they have curated over their

career and is often only readable/usable by themselves) in

newer languages every few years is not practically possible.

When this investment is not possible, either the mentee has

to use the mentor’s old method (and miss out on all the newly

fashionable tools that many are talking about), or the mentor

has to avoid implementation details in discussions with the

mentee because they do not share a common language. The

authors of this paper have personal experiences in both men-

tor/mentee relational scenarios. This failure to communicate

in the details is a very serious problem, leading to the loss of

valuable inter-generational experience.

APPENDIX B

SURVEY OF COMMON EXISTING REPRODUCIBLE

WORKFLOWS

The problem of reproducibility has received considerable

attention over the last three decades and various solutions

have already been proposed. The core principles that many

of the existing solutions (including Maneage) aim to achieve

are nicely summarized by the FAIR principles [39]. In this

appendix, some of the solutions are reviewed. We are not

just reviewing solutions that can be used today. The main

focus of this paper is longevity, therefore we also spent

considerable time on finding and inspecting solutions that have

been aborted, discontinued or abandoned.

The solutions are based on an evolving software landscape,

therefore they are ordered by date: when the project has a

web page, the year of its first release is used for the sorting.

Otherwise their paper’s publication year is used. For each

solution, we summarize its methodology and discuss how

it relates to the criteria proposed in this paper. Freedom

of the software/method is a core concept behind scientific

reproducibility, as opposed to industrial reproducibility where

a black box is acceptable/desirable. Therefore proprietary

solutions like Code Ocean20 or Nextjournal21 will not be

reviewed here. Other studies have also attempted to review

existing reproducible solutions, for example, see [40].

We have tried our best to test and read through the doc-

umentation of almost all reviewed solutions to a sufficient

level. However, due to time constraints, it is inevitable that

we may have missed some aspects the solutions, or incorrectly

interpreted their behavior and outputs. In this case, please let

us know and we will correct it in the text on the paper’s Git

repository and publish the updated PDF on zenodo.3872247

20https://codeocean.com
21https://nextjournal.com

https://doi.org/10.5281/zenodo.3872247
https://codeocean.com
https://nextjournal.com
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(this is the version-independent DOI, that always points to the

most recent Zenodo upload).

A. Suggested rules, checklists, or criteria

Before going into the various implementations, it is useful

to review some existing suggested rules, checklists, or criteria

for computationally reproducible research.

Sandve et al. [41] propose “ten simple rules for reproducible

computational research” that can be applied in any project.

Generally, these are very similar to the criteria proposed here

and follow a similar spirit, but they do not provide any

actual research papers following up all those points, nor do

they provide a proof of concept. The Popper convention [33]

also provides a set of principles that are indeed generally

useful, among which some are common to the criteria here

(for example, automatic validation, and, as in Maneage, the

authors suggest providing a template for new users), but the

authors do not include completeness as a criterion nor pay

attention to longevity: Popper has already changed its core

workflow language once and is written in Python with many

dependencies that evolve fast, see A-F. For more on Popper,

please see Section B-W.

For improved reproducibility Jupyter notebooks, [42] pro-

pose ten rules and also provide links to example implemen-

tations. These can be very useful for users of Jupyter but

are not generic for non-Jupyter-based computational projects.

Some criteria (which are indeed very good in a more general

context) do not directly relate to reproducibility, for example

their Rule 1: “Tell a Story for an Audience”. Generally, as

reviewed in Section IIand Section A-E3 (below), Jupyter itself

has many issues regarding reproducibility. To create Docker

images, Nüst et al. propose “ten simple rules” in [43]. They

recommend some issues that can indeed help increase the

quality of Docker images and their production/usage, such as

their rule 7 to “mount datasets [only] at run time” to separate

the computational environment from the data. However, the

long-term reproducibility of the images is not included as a

criterion by these authors. For example, they recommend using

base operating systems, with version identification limited to a

single brief identifier such as ubuntu:18.04, which has a se-

rious problem with longevity issues (Section II). Furthermore,

in their proof-of-concept Dockerfile (listing 1), rocker is used

with a tag (not a digest), which can be problematic due to the

high risk of ambiguity (as discussed in Section A-A2).

Previous criteria are thus primarily targeted to immediate

reproducibility and do not consider longevity. Therefore, they

lack a strong/clear completeness criterion (they mainly only

suggest, rather than require, the recording of versions, and

their ultimate suggestion of storing the full binary OS in a

binary VM or container is problematic (as mentioned in A-A

and [18]).

B. Reproducible Electronic Documents, RED (1992)

RED22 is the first attempt that we could find on doing

reproducible research, see [1], [11]. It was developed within

22http://sep.stanford.edu/doku.php?id=sep:research:reproducible

the Stanford Exploration Project (SEP) for Geophysics publi-

cations. Their introductions on the importance of reproducibil-

ity, resonate a lot with today’s environment in computational

sciences. In particular, the heavy investment one has to make

in order to re-do another scientist’s work, even in the same

team. RED also influenced other early reproducible works,

for example [44].

To orchestrate the various figures/results of a project, from

1990, they used “Cake” [45], a dialect of Make, for more

on Make, see Appendix A-D. As described in [11], in the

latter half of that decade, they moved to GNU Make, which

was much more commonly used, better maintained, and came

with a complete and up-to-date manual. The basic idea behind

RED’s solution was to organize the analysis as independent

steps, including the generation of plots, and organizing the

steps through a Makefile. This enabled all the results to be

re-executed with a single command. Several basic low-level

Makefiles were included in the high-level/central Makefile.

The reader/user of a project had to manually edit the central

Makefile and set the variable RESDIR (result directory), this

is the directory where built files are kept. The reader could

later select which figures/parts of the project to reproduce by

manually adding its name in the central Makefile, and running

Make.

At the time, Make was already practiced by individual

researchers and projects as a job orchestration tool, but SEP’s

innovation was to standardize it as an internal policy, and

define conventions for the Makefiles to be consistent across

projects. This enabled new members to benefit from the

already existing work of previous team members (who had

graduated or moved to other jobs). However, RED only used

the existing software of the host system, it had no means to

control them. Therefore, with wider adoption, they confronted

a “versioning problem” where the host’s analysis software had

different versions on different hosts, creating different results,

or crashing [46]. Hence in 2006 SEP moved to a new Python-

based framework called Madagascar, see Appendix B-D.

C. Apache Taverna (2003)

Apache Taverna23 [47] is a workflow management system

written in Java with a graphical user interface which is still

being used and developed. A workflow is defined as a directed

graph, where nodes are called “processors”. Each Processor

transforms a set of inputs into a set of outputs and they

are defined in the Scufl language (an XML-based language,

where each step is an atomic task). Other components of the

workflow are “Data links” and “Coordination constraints”. The

main user interface is graphical, where users move processors

in the given space and define links between their inputs

and outputs (manually constructing a lineage like Figure 1).

Taverna is only a workflow manager and is not integrated with

a package manager, hence the versions of the used software

can be different in different runs. [48] have studied the problem

of workflow decays in Taverna.

23https://taverna.incubator.apache.org

http://sep.stanford.edu/doku.php?id=sep:research:reproducible
https://taverna.incubator.apache.org
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D. Madagascar (2003)

Madagascar24 [49] is a set of extensions to the SCons

job management tool (reviewed in A-D6). Madagascar is a

continuation of the Reproducible Electronic Documents (RED)

project that was discussed in Appendix B-B. Madagascar has

been used in the production of hundreds of research papers or

book chapters25, 120 prior to [49].

Madagascar does include project management tools in the

form of SCons extensions. However, it is not just a repro-

ducible project management tool. The Regularly Sampled File

(RSF) file format26 is a custom plain-text file that points

to the location of the actual data files on the file system

and acts as the intermediary between Madagascar’s analysis

programs. Therefore, Madagascar is primarily a collection of

analysis programs and tools to interact with RSF files and

plotting facilities. For example in our test of Madagascar

3.0.1, it installed 855 Madagascar-specific analysis programs

(PREFIX/bin/sf*). The analysis programs mostly target geo-

physical data analysis, including various project-specific tools:

more than half of the total built tools are under the build/user

directory which includes names of Madagascar users.

Besides the location or contents of the data, RSF also

contains name/value pairs that can be used as options to

Madagascar programs, which are built with inputs and outputs

of this format. Since RSF contains program options also, the

inputs and outputs of Madagascar’s analysis programs are read

from, and written to, standard input and standard output.

In terms of completeness, as long as the user only uses

Madagascar’s own analysis programs, it is fairly complete at a

high level (not lower-level OS libraries). However, this comes

at the expense of a large amount of bloatware (programs that

one project may never need, but is forced to build), thus adding

complexity. Also, the linking between the analysis programs

(of a certain user at a certain time) and future versions of that

program (that is updated in time) is not immediately obvious.

Furthermore, the blending of the workflow component with the

low-level analysis components fails the modularity criteria.

E. GenePattern (2004)

GenePattern27 [50] (first released in 2004) is a client-server

software containing many common analysis functions/mod-

ules, primarily focused for Gene studies. Although it is highly

focused to a special research field, it is reviewed here because

its concepts/methods are generic.

Its server-side software is installed with fixed software pack-

ages that are wrapped into GenePattern modules. The modules

are used through a web interface, the modern implementation

is GenePattern Notebook [51]. It is an extension of the

Jupyter notebook (see Appendix A-E), which also has a special

“GenePattern” cell that will connect to GenePattern servers for

doing the analysis. However, the wrapper modules just call an

existing tool on the running system. Given that each server

may have its own set of installed software, the analysis may

24http://ahay.org
25http://www.ahay.org/wiki/Reproducible Documents
26http://www.ahay.org/wiki/Guide to RSF file format
27https://www.genepattern.org

differ (or crash) when run on different GenePattern servers,

hampering reproducibility.

The primary GenePattern server was active since 2008 and

had 40,000 registered users with 2000 to 5000 jobs running

every week [51]. However, it was shut down on November

15th 2019 due to the end of funding. All processing with this

sever has stopped, and any archived data on it has been deleted.

Since GenePattern is free software, there are alternative public

servers to use, so hopefully, work on it will continue. However,

funding is limited and those servers may face similar funding

problems.

This is a very nice example of the fragility of solutions that

depend on archiving and running the research codes with high-

level research products (including data and binary/compiled

codes that are expensive to keep in one place). The data and

software may have backups in other places, but the high-level

project-specific workflows that researchers spent most time on,

have been lost due to the deletion (unless they were backed

up privately by the authors!).

F. Kepler (2005)

Kepler28 [52] is a Java-based Graphic User Interface work-

flow management tool. Users drag-and-drop analysis compo-

nents, called “actors”, into a visual, directional graph, which is

the workflow (similar to Figure 1). Each actor is connected to

others through Ptolemy II29 [53]. In many aspects, the usage

of Kepler and its issues for long-term reproducibility is like

Apache Taverna (see Section B-C).

G. VisTrails (2005)

VisTrails30 [54] was a graphical workflow managing system.

According to its web page, VisTrails maintenance has stopped

since May 2016, its last Git commit, as of this writing, was in

November 2017. However, given that it was well maintained

for over 10 years is an achievement.

VisTrails (or “visualization trails”) was initially designed

for managing visualizations, but later grew into a generic

workflow system with meta-data and provenance features.

Each analysis step, or module, is recorded in an XML schema,

which defines the operations and their dependencies. The XML

attributes of each module can be used in any XML query

language to find certain steps (for example those that used

a certain command). Since the main goal was visualization

(as images), apparently its primary output is in the form

of image spreadsheets. Its design is based on a change-

based provenance model using a custom VisTrails provenance

query language (vtPQL), for more see [55]. Since XML is

a plain text format, as the user inspects the data and makes

changes to the analysis, the changes are recorded as “trails”

in the project’s VisTrails repository that operates very much

like common version control systems (see Appendix A-C).

. However, even though XML is in plain text, it is very

hard to read/edit without the VisTrails software (which is no

28https://kepler-project.org
29https://ptolemy.berkeley.edu
30https://www.vistrails.org

http://ahay.org
http://www.ahay.org/wiki/Reproducible_Documents
http://www.ahay.org/wiki/Guide_to_RSF_file_format
https://www.genepattern.org
https://kepler-project.org
https://ptolemy.berkeley.edu
https://www.vistrails.org
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longer maintained). VisTrails, therefore, provides a graphic

user interface with a visual representation of the project’s inter-

dependent steps (similar to Figure 1). Besides the fact that it

is no longer maintained, VisTrails did not control the software

that is run, it only controlled the sequence of steps that they

are run in.

H. Galaxy (2010)

Galaxy31 is a web-based Genomics workbench [56]. The

main user interface is the “Galaxy Pages”, which does not re-

quire any programming: users graphically manipulate abstract

“tools” which are wrappers over command-line programs.

Therefore the actual running version of the program can be

hard to control across different Galaxy servers. Besides the

automatically generated metadata of a project (which include

version control, or its history), users can also tag/annotate

each analysis step, describing its intent/purpose. Besides some

small differences, Galaxy seems very similar to GenePattern

(Appendix B-E), so most of the same points there apply here

too. For example the very large cost of maintaining such a

system, being based on a graphic environment and blending

hand-written code with automatically generated (large) files.

I. Image Processing On Line journal, IPOL (2010)

The IPOL journal32 [57] (first published article in July 2010)

publishes papers on image processing algorithms as well as the

the full code of the proposed algorithm. An IPOL paper is a

traditional research paper, but with a focus on implementation.

The published narrative description of the algorithm must be

detailed to a level that any specialist can implement it in

their own programming language (extremely detailed). The

author’s own implementation of the algorithm is also published

with the paper (in C, C++, or MATLAB), the code must

be commented well enough and link each part of it with

the relevant part of the paper. The authors must also submit

several example of datasets that show the applicability of their

proposed algorithm. The referee is expected to inspect the

code and narrative, confirming that they match with each other,

and with the stated conclusions of the published paper. After

publication, each paper also has a “demo” button on its web

page, allowing readers to try the algorithm on a web-interface

and even provide their own input.

IPOL has grown steadily over the last 10 years, publishing

23 research articles in 2019. We encourage the reader to visit

its web page and see some of its recent papers and their

demos. The reason it can be so thorough and complete is its

very narrow scope (low-level image processing algorithms),

where the published algorithms are highly atomic, not needing

significant dependencies (beyond input/output of well-known

formats), allowing the referees and readers to go deeply into

each implemented algorithm. In fact, high-level languages like

Perl, Python, or Java are not acceptable in IPOL precisely

because of the additional complexities, such as the dependen-

cies that they require. However, many data-intensive projects

31https://galaxyproject.org
32https://www.ipol.im

commonly involve dozens of high-level dependencies, with

large and complex data formats and analysis, so while it is

modular (a single module, doing a very specific thing) this

solution is not scalable.

Furthermore, by not publishing/archiving each paper’s ver-

sion control history or directly linking the analysis and pro-

duced paper, it fails criteria 6 and 7. Note that on the web page,

it is possible to change parameters, but that will not affect

the produced PDF. A paper written in Maneage (the proof-of-

concept solution presented in this paper) could be scrutinized

at a similar detailed level to IPOL, but for much more complex

research scenarios, involving hundreds of dependencies and

complex processing of the data.

J. WINGS (2010)

WINGS33 [58] is an automatic workflow generation algo-

rithm. It runs on a centralized web server, requiring many

dependencies (such that it is recommended to download

Docker images). It allows users to define various workflow

components (for example datasets, analysis components, etc),

with high-level goals. It then uses selection and rejection

algorithms to find the best components using a pool of

analysis components that can satisfy the requested high-level

constraints.

K. Active Papers (2011)

Active Papers34 attempts to package the code and data of

a project into one file (in HDF5 format). It was initially

written in Java because its compiled byte-code outputs in

JVM are portable on any machine [59]. However, Java is

not a commonly used platform today, hence it was later

implemented in Python [36].

In the Python version, all processing steps and input data

(or references to them) are stored in an HDF5 file. When

the Python module contains a component written in other

languages (mostly C or C++), it needs to be an external

dependency to the Active Paper.

As mentioned in [36], the fact that it relies on HDF5 is

a caveat of Active Papers, because many tools are necessary

to merely open it. Downloading the pre-built “HDF View”

binaries (a GUI browser of HDF5 files that is provided by

the HDF group) is not possible anonymously/automatically

(login is required). Installing it using the Debian or Arch Linux

package managers also failed due to dependencies in our trials.

Furthermore, as a high-level data format HDF5 evolves very

fast, for example HDF5 1.12.0 (February 29th, 2020) is not

usable with older libraries provided by the HDF5 team.

While data and code are indeed fundamentally similar

concepts technically [60], they are used by humans differently.

The hand-written code of a large project involving Terabytes of

data can be 100 kilo bytes. When the two are bundled together,

merely seeing one line of the code, requires downloading Ter-

abytes volume that is not needed, this was also acknowledged

in [36]. It may also happen that the data are proprietary (for

33https://wings-workflows.org
34http://www.activepapers.org
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example medical patient data). In such cases, the data must

not be publicly released, but the methods that were applied to

them can. Furthermore, since all reading and writing is done

in the HDF5 file, it can easily bloat the file to very large sizes

due to temporary files. These files can later be removed as part

of the analysis, but this makes the code more complicated and

hard to read/maintain. For example the Active Papers HDF5

file of [61, in zenodo.2549987] is 1.8 giga-bytes.

In many scenarios, peers just want to inspect the processing

by reading the code and checking a very special part of it

(one or two lines, just to see the option values to one step

for example). They do not necessarily need to run it or obtain

the output the datasets (which may be published elsewhere).

Hence the extra volume for data and obscure HDF5 format

that needs special tools for reading its plain-text internals is

an issue.

L. Collage Authoring Environment (2011)

The Collage Authoring Environment [62] was the winner of

Elsevier Executable Paper Grand Challenge [14]. It is based on

the GridSpace235 distributed computing environment, which

has a web-based graphic user interface. Through its web-based

interface, viewers of a paper can actively experiment with

the parameters of a published paper’s displayed outputs (for

example figures) through a web interface. In their Figure 3,

they nicely vizualize how the “Executable Paper” of Collage

operates through two servers and a computing backend.

Unfortunately in the paper no webpage has been provided

follow up on the work and find its current status. A web search

also only pointed us to its main paper ( [62]). In the paper they

do not discuss the major issue of software versioning and its

verification to ensure that future updates to the backend do

not affect the result; apparently it just assumes the software

exist on the “Computing backend”. Since we could not access

or test it, from the descriptions in the paper, it seems to be

very similar to the modern day Jupyter notebook concept (see

A-E3), which had not yet been created in its current form in

2011. So we expect similar longevity issues with Collage.

M. SHARE (2011)

SHARE36 [13] is a web portal that hosts virtual machines

(VMs) for storing the environment of a research project.

SHARE was recognized as the second position in the Elsevier

Executable Paper Grand Challenge [14]. Simply put, SHARE

was just a VM library that users could download or connect

to, and run. The limitations of VMs for reproducibility were

discussed in Appendix A-A1, and the SHARE system does not

specify any requirements or standards on making the VM itself

reproducible, or enforcing common internals for its supported

projects. As of January 2021, the top SHARE web page still

works. However, upon selecting any operation, a notice is

printed that “SHARE is offline” since 2019 and the reason

is not mentioned.

35http://dice.cyfronet.pl
36https://is.ieis.tue.nl/staff/pvgorp/share

N. Verifiable Computational Result, VCR (2011)

A “verifiable computational result”37 is an output (table,

figure, etc) that is associated with a “verifiable result identifier”

(VRI), see [63]. It was awarded the third prize in the Elsevier

Executable Paper Grand Challenge [14].

A VRI is a hash that is created using tags within the pro-

gramming source that produced that output, also recording its

version control or history. This enables the exact identification

and citation of results. The VRIs are automatically generated

web-URLs that link to public VCR repositories containing the

data, inputs, and scripts, that may be re-executed. According

to [63], the VRI generation routine has been implemented in

MATLAB, R, and Python, although only the MATLAB version

was available on the webpage in January 2021. VCR also has

special LATEX macros for loading the respective VRI into the

generated PDF. In effect this is very similar to what have done

at the end of the caption of Figure 1, where you can click on

the given Zenodo link and be taken to the raw data that created

the plot. However, instead of a long and hard to read hash,

we simply point to the plotted file’s source as a Zenodo DOI

(which has long term funding for logevity).

Unfortunately, most parts of the web page are not complete

as of January 2021. The VCR web page contains an example

PDF38 that is generated with this system, but the linked VCR

repository39 did not exist (again, as of January 2021). Finally,

the date of the files in the MATLAB extension tarball is set

to May 2011, hinting that probably VCR has been abandoned

soon after the publication of [63].

O. SOLE (2012)

SOLE (Science Object Linking and Embedding) defines

“science objects” (SOs) that can be manually linked with

phrases of the published paper [64], [65]. An SO is any code/-

content that is wrapped in begin/end tags with an associated

type and name. For example, special commented lines in a

Python, R, or C program. The SOLE command-line program

parses the tagged file, generating metadata elements unique to

the SO (including its URI). SOLE also supports workflows as

Galaxy tools [56].

For reproducibility, [64] suggest building a SOLE-based

project in a virtual machine, using any custom package man-

ager that is hosted on a private server to obtain a usable URI.

However, as described in Appendices A-A and A-B, unless

virtual machines are built with robust package managers, this

is not a sustainable solution (the virtual machine itself is not

reproducible). Also, hosting a large virtual machine server with

fixed IP on a hosting service like Amazon (as suggested there)

for every project in perpetuity will be very expensive.

The manual/artificial definition of tags to connect parts

of the paper with the analysis scripts is also a caveat due

to human error and incompleteness (the authors may not

consider tags as important things, but they may be useful later).

In Maneage, instead of using artificial/commented tags, the

analysis inputs and outputs are automatically linked into the

37http://vcr.stanford.edu
38http://vcr.stanford.edu/paper.pdf
39http://vcr-stat.stanford.edu
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paper’s text through LATEX macros that are the backbone of

the whole system (are not artifical/extra features).

P. Sumatra (2012)

Sumatra40 [66] attempts to capture the environment infor-

mation of a running project. It is written in Python and is a

command-line wrapper over the analysis script. By controlling

a project at running-time, Sumatra is able to capture the

environment it was run in. The captured environment can be

viewed in plain text or a web interface. Sumatra also provides

LATEX/Sphinx features, which will link the paper with the

project’s Sumatra database. This enables researchers to use

a fixed version of a project’s figures in the paper, even at later

times (while the project is being developed).

The actual code that Sumatra wraps around, must itself be

under version control, and it does not run if there are non-

committed changes (although it is not clear what happens if

a commit is amended). Since information on the environment

has been captured, Sumatra is able to identify if it has changed

since a previous run of the project. Therefore Sumatra makes

no attempt at storing the environment of the analysis as in

Sciunit (see Appendix B-R), but its information. Sumatra thus

needs to know the language of the running program and is not

generic. It just captures the environment, it does not store how

that environment was built.

Q. Research Object (2013)

The Research object41 is collection of meta-data ontologies,

to describe aggregation of resources, or workflows, see [67]

and [68]. It thus provides resources to link various workflow/-

analysis components (see Appendix A) into a final workflow.

[67] describes how a workflow in Apache Taverna (Ap-

pendix B-C) can be translated into research objects. The im-

portant thing is that the research object concept is not specific

to any special workflow, it is just a metadata bundle/standard

which is only as robust in reproducing the result as the running

workflow. Therefore if implemented over a complete workflow

like Maneage, it can be very useful in analysing/optimizing

the workflow, finding common components between many

Maneage’d workflows, or translating to other complete work-

flows.

R. Sciunit (2015)

Sciunit42 [69] defines “sciunit”s that keep the executed

commands for an analysis and all the necessary programs and

libraries that are used in those commands. It automatically

parses all the executable files in the script and copies them,

and their dependency libraries (down to the C library), into

the sciunit. Because the sciunit contains all the programs

and necessary libraries, it is possible to run it readily on

other systems that have a similar CPU architecture. Sciunit

was originally written in Python 2 (which reached its end-

of-life on January 1st, 2020). Therefore Sciunit2 is a new

implementation in Python 3.

40http://neuralensemble.org/sumatra
41http://www.researchobject.org
42https://sciunit.run

The main issue with Sciunit’s approach is that the copied

binaries are just black boxes: it is not possible to see how the

used binaries from the initial system were built. This is a major

problem for scientific projects: in principle (not knowing how

the programs were built) and in practice (archiving a large

volume sciunit for every step of the analysis requires a lot of

storage space and archival cost).

S. Umbrella (2015)

Umbrella [70] is a high-level wrapper script for isolating the

environment of the analysis. The user specifies the necessary

operating system, and necessary packages for the analysis

steps in various JSON files. Umbrella will then study the host

operating system and the various necessary inputs (including

data and software) through a process similar to Sciunits

mentioned above to find the best environment isolator (maybe

using Linux containerization, containers, or VMs). We could

not find a URL to the source software of Umbrella (no

source code repository is mentioned in the papers we reviewed

above), but from the descriptions in [17], it is written in Python

2.6 (which is now deprecated).

T. ReproZip (2016)

ReproZip43 [71] is a Python package that is designed to

automatically track all the necessary data files, libraries, and

environment variables into a single bundle. The tracking is

done at the kernel system-call level, so any file that is accessed

during the running of the project is identified. The tracked files

can be packaged into a .rpz bundle that can then be unpacked

into another system.

ReproZip is therefore very good to take a “snapshot” of

the running environment into a single file. However, the

bundle can become very large when many/large datasets are

involved, or if the software environment is complex (many

dependencies). Since it copies the binary software libraries, it

can only be run on systems with a similar CPU architecture

to the original. Furthermore, ReproZip just copies the bina-

ry/compiled files used in a project, it has no way to know

how the software was built. As mentioned in this paper, and

also [18] the question of “how” the environment was built is

critical for understanding the results, and simply having the

binaries cannot necessarily be useful.

For the data, it is similarly not possible to extract which data

server they came from. Hence two projects that each use a 1-

terabyte dataset will need a full copy of that same 1-terabyte

file in their bundle, making long-term preservation extremely

expensive.

U. Binder (2017)

Binder44 is used to containerize already existing Jupyter

based processing steps. Users simply add a set of Binder-

recognized configuration files to their repository and Binder

will build a Docker image and install all the dependencies

inside of it with Conda (the list of necessary packages comes

43https://www.reprozip.org
44https://mybinder.org
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from Conda). One good feature of Binder is that the imported

Docker image must be tagged, although as mentioned in

Appendix A-A2, tags do not ensure reproducibility. However,

it does not make sure that the Dockerfile used by the imported

Docker image follows a similar convention also. So users can

simply use generic operating system names. Binder is used by

[31].

V. Gigantum (2017)

Gigantum45 is a client/server system, in which the client is a

web-based (graphical) interface that is installed as “Gigantum

Desktop” within a Docker image. Gigantum uses Docker

containers for an independent environment, Conda (or Pip)

to install packages, Jupyter notebooks to edit and run code,

and Git to store its history. The reproducibility issues with

these tools has been thoroughly discussed in A.

Simply put, it is a high-level wrapper for combining these

components. Internally, a Gigantum project is organized as

files in a directory that can be opened without their own

client. The file structure (which is under version control)

includes codes, input data, and output data. As acknowledged

on their own web page, this greatly reduces the speed of Git

operations, transmitting, or archiving the project. Therefore

there are size limits on the dataset/code sizes. However, there

is one directory that can be used to store files that must not

be tracked.

W. Popper (2017)

Popper46 is a software implementation of the Popper Con-

vention [33]. The Popper team’s own solution is through a

command-line program called popper. The popper program

itself is written in Python. However, job management was

initially based on the HashiCorp configuration language (HCL)

because HCL was used by “GitHub Actions” to manage

workflows at that time. However, from October 2019 GitHub

changed to a custom YAML-based language, so Popper also

deprecated HCL. This is an important issue when low-level

choices are based on service providers (see Appendix A-F).

To start a project, the popper command-line program builds

a template, or “scaffold”, which is a minimal set of files that

can be run. By default, Popper runs in a Docker image (so

root permissions are necessary and reproducible issues with

Docker images have been discussed above), but Singularity is

also supported. See Appendix A-A for more on containers, and

Appendix A-F for using high-level languages in the workflow.

Popper does not comply with the completeness, minimal

complexity, and including the narrative criteria. Moreover, the

scaffold that is provided by Popper is an output of the program

that is not directly under version control. Hence, tracking

future low-level changes in Popper and how they relate to

the high-level projects that depend on it through the scaffold

will be very hard. In Maneage, users start their projects by

branching-off of the core maneage git branch. Hence any

future change in the low level features will directly propagated

45https://gigantum.com
46https://falsifiable.us

to all derived projects (and be clear as Git conflicts if the user

has customized them).

X. Whole Tale (2017)

Whole Tale47 is a web-based platform for managing a

project and organizing data provenance, see [72]. It uses online

editors like Jupyter or RStudio (see Appendix A-E) that are

encapsulated in a Docker container (see Appendix A-A).

The web-based nature of Whole Tale’s approach and its

dependency on many tools (which have many dependencies

themselves) is a major limitation for future reproducibility.

For example, when following their own tutorial on “Creating

a new tale”, the provided Jupyter notebook could not be

executed because of a dependency problem. This was reported

to the authors as issue 11348 and fixed. But as all the second-

order dependencies evolve, it is not hard to envisage such

dependency incompatibilities being the primary issue for older

projects on Whole Tale. Furthermore, the fact that a Tale is

stored as a binary Docker container causes two important

problems: 1) it requires a very large storage capacity for

every project that is hosted there, making it very expensive to

scale if demand expands. 2) It is not possible to see how the

environment was built accurately (when the Dockerfile uses

operating system package managers like apt). This issue with

Whole Tale (and generally all other solutions that only rely on

preserving a container/VM) was also mentioned in [18], for

more on this, please see Appendix A-B.

Y. Occam (2018)

Occam49 [18] is a web-based application to preserve soft-

ware and its execution. To achieve long-term reproducibility,

Occam includes its own package manager (instructions to build

software and their dependencies) to be in full control of the

software build instructions, similar to Maneage. Besides Nix

or Guix (which are primarily a package manager that can also

do job management), Occam has been the only solution in our

survey here that attempts to be complete in this aspect.

However it is incomplete from the perspective of require-

ments: it works within a Docker image (that requires root

permissions) and currently only runs on Debian-based, Red

Hat based, and Arch-based GNU/Linux operating systems that

respectively use the apt, pacman or yum package managers. It

is also itself written in Python (version 3.4 or above).

Furthermore, it does not account for the minimal complexity

criteria because the instructions to build the software and their

versions are not immediately viewable or modifiable by the

user. Occam contains its own JSON database that should be

parsed with its own custom program. The analysis phase of

Occam is also through a drag-and-drop interface (similar to

Taverna, Appendix B-C) that is a web-based graphic user

interface. All the connections between various phases of the

analysis need to be pre-defined in a JSON file and manually

linked in the GUI. Hence for complex data analysis operations

that involve thousands of steps, it is not scalable.

47https://wholetale.org
48https://github.com/whole-tale/wt-design-docs/issues/113
49https://occam.cs.pitt.edu
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APPENDIX C

SOFTWARE ACKNOWLEDGEMENT

This research was done with the following free software pro-

grams and libraries: Bzip2 1.0.6, CMake 3.18.1, cURL 7.71.1,

Dash 0.5.10.2, Discoteq flock 0.2.3, Expat 2.2.9, File 5.39,

Fontconfig 2.13.1, FreeType 2.10.2, Git 2.28.0, GNU Autoconf

2.69.200-babc, GNU Automake 1.16.2, GNU AWK 5.1.0,

GNU Bash 5.0.18, GNU Binutils 2.35, GNU Compiler Col-

lection (GCC) 10.2.0, GNU Coreutils 8.32, GNU Diffutils 3.7,

GNU Findutils 4.7.0, GNU gettext 0.21, GNU gperf 3.1, GNU

Grep 3.4, GNU Gzip 1.10, GNU Integer Set Library 0.18,

GNU libiconv 1.16, GNU Libtool 2.4.6, GNU libunistring

0.9.10, GNU M4 1.4.18-patched, GNU Make 4.3, GNU Mul-

tiple Precision Arithmetic Library 6.2.0, GNU Multiple Preci-

sion Complex library, GNU Multiple Precision Floating-Point

Reliably 4.0.2, GNU Nano 5.2, GNU NCURSES 6.2, GNU

Readline 8.0, GNU Sed 4.8, GNU Tar 1.32, GNU Texinfo 6.7,

GNU Wget 1.20.3, GNU Which 2.21, GPL Ghostscript 9.52,

Less 563, Libbsd 0.10.0, Libffi 3.2.1, libICE 1.0.10, Libidn

1.36, Libjpeg v9b, Libpaper 1.1.28, Libpng 1.6.37, libpthread-

stubs (Xorg) 0.4, libSM 1.2.3, Libtiff 4.0.10, libXau (Xorg)

1.0.9, libxcb (Xorg) 1.14, libXdmcp (Xorg) 1.1.3, libXext

1.3.4, Libxml2 2.9.9, libXt 1.2.0, Lzip 1.22-rc2, Metastore

(forked) 1.1.2-23-fa9170b, Minizip 1.2.11, OpenSSL 1.1.1a,

PatchELF 0.10, Perl 5.32.0, pkg-config 0.29.2, Python 3.8.5,

Unzip 6.0, util-Linux 2.35, util-macros (Xorg) 1.19.2, X11

library 1.6.9, XCB-proto (Xorg) 1.14, XLSX I/O 0.2.21,

xorgproto 2020.1, xtrans (Xorg) 1.4.0, XZ Utils 5.2.5, Zip 3.0

and Zlib 1.2.11. The LATEX source of the paper was compiled to

make the PDF using the following packages: cite 5.5, courier

35058 (revision), etoolbox 2.5k, IEEEtran 1.8b, inconsolata

1.121, listings 1.8d, multibib 1.4, pgfplots 1.17, ps2eps 1.68,

times 35058 (revision), ulem 53365 (revision), xcolor 2.12 and

xkeyval 2.8. We are very grateful to all their creators for freely

providing this necessary infrastructure. This research (and

many other projects) would not be possible without them.
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[25] B. Grüning, J. Chilton, J. Köster, R. Dale, N. Soranzo, M. van den
Beek, J. Goecks, R. Backofen, A. Nekrutenko, and J. Taylor, “Practical
computational reproducibility in the life sciences,” Cell Systems, vol. 6,
p. 631. bioRxiv:200683, DOI:10.1016/j.cels.2018.03.014, 2018.

[26] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody,
B. R. de Supinski, and S. Futral, “The spack package manager:
bringing order to hpc software chaos,” IEEE SC15, vol. 1, p. 1,
DOI:10.1145/2807591.2807623 , 2015.

[27] R. Di Cosmo, M. Gruenpeter, and S. Zacchiroli, “Identifiers for digital
objects: The case of software source code preservation,” Proceedings of

iPRES 2018, p. 204.4, DOI:10.17605/osf.io/kde56, 2018.

[28] S. I. Feldman, “Make – a program for maintaining computer pro-
grams,” Journal of Software: Practice and Experience, vol. 9, p. 255,
DOI:10.1002/spe.4380090402, 1979.
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