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Section 1

Introduction

Dr. Dmitry Ustalov (Yandex) Graph Clustering for NLP November 26, 2020 4 / 62



Introduction

• Natural Language Processing (NLP) focuses on analysis and synthesis
of natural language
• Linguistic phenomena instantinate in linguistic data, showing

interconnections and relationships
• Graph clustering, as an unsupervised learning technique, captures the

implicit structure of the data
• Today, we will learn how to do it!

Core Idea: Graphs are a Representation
After constructing it explicitly, we can extract useful knowledge from it.
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Motivation I
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Source: Ustalov et al. (2019)

Look at this distributional
thesaurus!
• It represents words and

their connections
• Can we learn word

meanings from its
structure?
• Can we infer linguistic

knowledge
computationally?
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Motivation II

Yes, as soon as we employ its structure and observe linguistic regularities.
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Source: Ustalov et al. (2019)

This graph is a disambiguated distributional thesaurus.
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Successful Applications

Graph clustering helps in addressing very challenging NLP problems:
• word sense induction (Biemann, 2006)
• cross-lingual semantic relationship induction (Lewis et al., 2013)
• unsupervised term discovery (Lyzinski et al., 2015)
• making sense of word embeddings (Pelevina et al., 2016)
• text summarization (Azadani et al., 2018)
• entity resolution from multiple sources (Tauer et al., 2019)

Other well-known applications of graph-based methods (not clustering):
• PageRank, a citation-based ranking algorithm (Page et al., 1999)
• BabelNet, a multilingual semantic network (Navigli et al., 2012)
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Section 2

Graph Theory Recap
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Graph Theory Recap I

• A graph is a tuple G = (V,E), where V is a set of objects called nodes
and E ⊆ V 2 is a set of pairs called edges
• Graphs can be undirected (edges are unordered)

or directed (edges are called arcs)
• The maximal number of edges in an undirected graph is |V |(|V |−1)2
• The maximal number of arcs in a directed graph is |V |(|V | − 1)

• Graphs can be weighted, i.e., there is w : (u, v)→ R, ∀(u, v) ∈ E
• A neighborhood Gu = (Vu, Eu) is a subgraph induced from G

containing the nodes incident to u ∈ V without u
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Graph Theory Recap II

• There is a lot of ways to represent a graph, the most common is
adjacency matrix Ai,j = 1E(Vi, Vj):

A =



0 1 0 1 0 0
1 0 1 1 1 1
0 1 0 0 0 1
1 1 0 0 1 0
0 1 0 1 0 0
0 1 1 0 0 0


streambank

1

bank

2

building

3

riverbank4

streamside

5

bank building

6

• Sparse matrices can be efficiently represented in such formats as
CSC (Duff et al., 1989), CSR (Buluç et al., 2009), etc.
• A node degree is the number of nodes incident to this node, e.g.,

deg(riverbank) = 3; the maximal degree ∆ in this graph is 5

• In a directed graph, succ(u) ⊂ V is a set of successors,
which are the nodes reachable from u ∈ V
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Graph Clustering: Problem Formulation

• Given an undirected graph G = (V,E), we are interested in obtaining
a set cover for V called clustering C of this graph:

V =
⋃

Ci∈C

Ci

• Hard clustering algorithms (partitionings) produce non-overlapping
clusters: Ci ∩ Cj = ∅ ⇐⇒ i 6= j,∀Ci, Cj ∈ C
• Soft clustering algorithms permit cluster overlapping, i.e., a node can

be a member of several clusters: ∃u ∈ V : |Ci ∈ C : u ∈ Ci| > 1

• Like in other unsupervised learning tasks, similar objects are expected
to be close, while non-similar are not
• Every algorithm defines what good clustering is
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Graph Clustering: Example

Hard Clustering

1

2

3

4 567 8

9

10 11

Soft Clustering

streambank bank building

riverbank

streamside bank building
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Can We Trust Graphs?

Graphs representing languistic
phenomena exhibit small world
properties (Biemann, 2012):
• co-occurrence networks tend to

follow the Dorogovtsev-Mendes
distribution (2001),
• semantic networks tend to follow

the scale-free properties
(Steyvers et al., 2005), etc.

Yes We Can
These properties do not depend on a
language w.r.t. the parameters.

Source: Steyvers et al. (2005)
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Section 3

Clustering Algorithms
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Clustering Algorithms

We will focus on four different clustering algorithms:
• Chinese Whispers (CW)
• Markov Clustering (MCL)
• MaxMax
• Watset

There are a lot of other clustering algorithms!
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Chinese Whispers (CW)

• Chinese Whispers (CW) is a randomized
hard clustering algorithm for both
weighted and unweighted graphs
(Biemann, 2006)
• Named after a famous children’s game,

it uses random shuffling to induce
clusters
• Originally designed for such NLP tasks

as word sense induction, language
separation, etc.

Source: Adamovich (2015)
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Chinese Whispers: Algorithm

Input: graph G = (V,E), weight : (Gu, i)→ R,∀u ∈ V, 1 ≤ i ≤ |V |
Output: clustering C

1: label(Vi)← i for all 1 ≤ i ≤ |V | . Initialization
2: while labels change do . labels(Gu) is a set of node labels in Gu

3: for all u ∈ V in random order do
4: label(u)← arg maxi∈labels(Gu) weight(Gu, i)

. Pick the most weighted label in Gu

5: C ← {{u ∈ V : label(u) = i} : i ∈ labels(G)}
6: return C
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Chinese Whispers: Label Weighting

Typical strategies to weigh the labels in the neighborhood Gu of u in G:
• Sum of the edge weights corresponding to the label i (top):

weight(Gu, i) =
∑
{u,v}∈Eu:label(v)=iw(u, v)

• Use the node degree deg(v) to amortize highly-weighted edges
(linear):

weight(Gu, i) =
∑
{u,v}∈Eu:label(v)=i

w(u,v)
deg(v)

• Use log-degree for amortization (log):

weight(Gu, i) =
∑
{u,v}∈Eu:label(v)=i

w(u,v)
log(1+deg(v))
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Chinese Whispers: Example

Ï We consider an example on a graph from Biemann (2006, Figure 2)
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Chinese Whispers: Discussion

Pros:
+ Very simple and non-parametric
+ Very fast, the running time is O(|E|)
+ Works well for a lot of NLP tasks

Cons:
− Every run yields different results
− Node oscillation is possible
− No convergence guarantee

Implementations:
� https://github.com/uhh-lt/chinese-whispers

� https://github.com/nlpub/chinese-whispers-python
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Markov Clustering (MCL)

• Markov Clustering (MCL) is a stochastic
hard clustering algorithm that
simulates flows in a graph using
random walks (van Dongen, 2000)
• The algorithm makes a series of

adjacency matrix transformations to
obtain the partitioning: expansion and
inflation
• MCL has been applied in a number of

different domains, mostly in
bioinformatics (Vlasblom et al., 2009)
• Similar to Affinity Propagation (Frey

et al., 2007)

Source: Merrill (2014)
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Markov Clustering: Algorithm

Input: graph G = (V,E), adjacency matrix A,
expansion parameter e ∈ N, inflation parameter r ∈ R+

Output: clustering C
1: Ai,i ← 1 for all 1 ≤ i ≤ |V | . Add self-loops
2: Ai,j ← Ai,j∑

1≤k≤|V | Ak,j
for all 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V | . Normalize

3: while A changes do
4: A← Ae . Expand
5: Ai,j ← Ar

i,j for all 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V | . Inflate
6: Ai,j ← Ai,j∑

1≤k≤|V | Ak,j
for all 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V | . Normalize

7: C ← {{Vj ∈ V : Ai,j 6= 0} : 1 ≤ i ≤ |V |, 1 ≤ j ≤ |V |}
8: return C
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Markov Clustering: Example

Ï We consider an example on a graph from Biemann (2006, Figure 2)
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Markov Clustering: Discussion

Pros:
+ Eventually, the algorithm converges (but there is no formal proof)
+ Works well for a lot of NLP tasks

Cons:
− Relatively slow, the worst-case running time is O(|V |3)
− An efficient implementation requires sparse matrices

Implementations:
� https://micans.org/mcl/
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This Clustering is Very Hard!

• OK, but how about the fact that the
word “bank” is polysemeous?
• Hard clustering algorithms will treat

this word incorrectly

streambank bank building

riverbank

streamside bank building

Source: McGuire (2015)
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MaxMax

• MaxMax is a soft clustering algorithm
designed for weighted graphs, such as
co-occurrence graphs (Hope et al.,
2013a)
• MaxMax transforms the input

undirected weighted graph G into an
unweighted directed graph G′

• Then, it extracts quasi-strongly
connected subgraphs from G′, which are
overlapping clusters

Source: Rahman Rony (2016)
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MaxMax: Algorithm

Input: graph G = (V,E), weigthing function w : E → R
Output: clustering C

1: E′ ← ∅
2: for all {u, v} ∈ E do
3: if w(u, v) = maxv′∈Vu w(u, v′) then
4: E′ ← E′ ∪ {(v, u)}
5: G′ = (V,E′)
6: root(u)← true for all u ∈ V
7: for all u ∈ V do . Can be done using BFS
8: if root(u) then
9: for all v ∈ succ(u) do . Successors of u in G′

10: root(u)← false
11: C ← {{u} ∪ succ(u) : u ∈ V, root(u)}
12: return C
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MaxMax: Example

Ï We consider an example from Hope et al. (2013a, Figure 3)
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MaxMax: Discussion

Pros:
+ The algorithm is non-parametric
+ Very fast, the running time is O(|E|), like CW
+ Works well for word sense induction (Hope et al., 2013b)

Cons:
− Assumptions are not clear
− Applicability seems to be limited (Ustalov et al., 2019)
− No implementation offered by the authors
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Graph-Based Word Sense Induction (WSI)

• Dorow et al. (2003) proposed a nice
approach for word sense induction
(WSI) using graphs
• Extract the node neighborhood, remove

the node, and cluster the remaining
graph
• Every cluster Ci corresponds to the

context of the i-th sense of the node

streambank bank building

riverbank

streamside bank building

streambank building

riverbank

streamside bank building

Source: Kittner (2015)
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Watset

• Watset is not a clustering algorithm
• However, it is a meta-algorithm for

turning hard clustering algorithms into
soft clustering algorithms
• Watset transforms the input graph by

replacing each node with one or more
senses of this node using word sense
induction (Dorow et al., 2003) and
context disambiguation (Faralli et al.,
2016)
• We will focus on the better variation

called Simplified Watset (or Watset§) as
described in Ustalov et al. (2019,
Section 3.4)

wat
Source: FreePhotosART (2016)
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Watset: Algorithm

Input: graph G = (V,E), algorithms ClusterLocal and ClusterGlobal
Output: clusters C

1: for all u ∈ V do . Local Step
2: Vu ← {v ∈ V : {u, v} ∈ E} . Note that u /∈ Vu
3: Eu ← {{v, w} ∈ E : v, w ∈ Vu}
4: Gu ← (Vu, Eu)
5: Cu ← ClusterLocal(Gu) . Cluster the open neighborhood of u
6: for all Ci

u ∈ Cu do
7: for all v ∈ Ci

u do
8: senses[u][v]← i . Node v is connected to the i-th sense of u
9: V ← V ∪ {ui}

10: E ← {{usenses[u][v], vsenses[v][u]} ∈ V2 : {u, v} ∈ E} . Global Step
11: G ← (V, E)
12: C ← ClusterGlobal(G) . Prepare to remove node labels
13: return {{u ∈ V : û ∈ Ci} ⊆ V : Ci ∈ C}
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Watset: Example

Ï We consider an example from Ustalov et al. (2019)
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Watset: Discussion

Pros:
+ Conceptually, very simple
+ Scales very well
+ Shows very good results on very different tasks (Ustalov et al., 2019)

Cons:
− Adds overhead for local clustering of O(|V |2∆2) for CW and

O(|V |3∆3) for MCL
− As good as the underlying clustering algorithms are good

Implementations:
� https://github.com/dustalov/watset

� https://github.com/nlpub/watset-java

The Java implementation of Watset also contains CW, MCL, and
MaxMax. Feel free to play with them!
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Section 4

Evaluation
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Evaluation

• Clustering is an unsupervised task, so evaluation is not easy
• For evaluating hard clustering algorithms, it is possible to use the

evaluation techniques for flat clustering, see Manning et al. (2008,
Chapter 16)
• Evaluation of soft clustering is an even more challenging task, we

will focus on paired F-score and normalized modified purity
• There are a lot of others, such as generalized conventional mutual

information (Viamontes Esquivel et al., 2012), etc.
• Also, apparently, NLP researchers do not pay enough attention to

statistical significance of their results (Dror et al., 2018)
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Paired Precision, Recall, and F1-score

• Every cluster Ci can be represented as a complete graph of
|Ci|(|Ci|−1)

2 undirected edges (pairs) P i

• A clustering C can be then compared to a gold clustering CG using
paired F-score between pair unions P and PG (Manandhar et al., 2010):

TP = |P ∪ PG|, FP = |P \ PG|, FN = |PG \ P |

Pr =
TP

TP + FP
, Re =

TP

TP + FN
, F1 = 2

Pr× Re

Pr + Re

• This is a very straightforward and interpretable approach, but it does
not explicitly assess the quality of overlapping clusters
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Normalized Modified Purity

• Purity is a measure of the extent to which clusters contain a single
class (Manning et al., 2008), which is useful for evaluating hard
clusterings:

PU =
1

|C|

|C|∑
i

max
j
|Ci ∩ Cj

G|

• Kawahara et al. (2014) proposed normalized modified purity for soft
clustering that considers weighted overlaps δCi(Ci ∩ Cj

G):

nmPU =
1

|C|

|C|∑
i s.t. |Ci|>1

max
1≤j≤|CG|

δCi(Ci ∩ Cj
G)

niPU =
1

|CG|

|G|∑
j=1

max
1≤i≤|C|

δ
Cj

G
(Ci ∩ Cj

G)

F1 = 2
nmPU× niPU

nmPU + niPU
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Statistical Significance

• It is not enough just to measure the
clustering quality, it is necessary to
evaluate the statistical significance!
• However, the use of statistical tests is

not yet widespread in NLP
experiments (Dror et al., 2018)
• Use computationally-intensive

randomization tests for precision, recall
and F-score (Yeh, 2000)
• “No difference in means after

shuffling”
• Consider the sigf toolkit (Padó, 2006)

that implements these tests in Java Source: Alexas Fotos (2017)
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Randomization Test for Average Values

Input: vectors ~A and ~B, number of trials N ∈ N
Output: two-tailed p-value

1: uncommon← {1 ≤ i ≤ | ~A| : Ai 6= Bi}
2: s← 0
3: for all 1 ≤ n ≤ N do
4: ~A′ ← ~A . Copy ~A
5: ~B′ ← ~B . Copy ~B
6: for all i ∈ uncommon do
7: if rand(1) = 0 then . Flip a coin
8: A′

i, B
′
i ← Bi, Ai . Shuffle by swapping the values if tails

9: if |mean( ~A′)−mean( ~B′)| ≥ |mean( ~A)−mean( ~B)| then
10: s← s + 1 . The test is two-tailed
11: return s

N . This value can be compared to a significance level
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Randomization Test for Average Values: Example

Example from Padó (2006):
• ~A = (1, 2, 1, 2, 2,2, 0), mean( ~A) ≈ 1.4286

• ~B = (4, 5, 5, 4, 3,2, 1), mean( ~B) ≈ 3.4286

• uncommon = {1, 2, 3, 4, 5, 7}
• |mean( ~A)−mean( ~B)| = 2

• N = 106

• p ≈ 0.0313

• Given the significance level of 0.05, the difference is significant
This technique can be generalized to F-score and others (Yeh, 2000).
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Section 5

Case Studies
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Case Studies

We describe two case studies from our COLI
paper (Ustalov et al., 2019):
• Synset Induction from Synonymy

Dictionaries
• Unsupervised Semantic

Frame Induction

Source: Finnsson (2017)
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Synset Induction

• Ontologies and thesauri are crucial to
many NLP applications that require
common sense reasoning
• The building blocks of

WordNet (Fellbaum, 1998) are synsets,
sets of mutual synonyms
{broadcast, program, programme}
• Can we build synsets from scratch using

just synonymy dictionaries like
Wiktionary?

Source: Buissinne (2016)
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Synset Induction: WordNet

WordNet Search - 3.1
- WordNet home page - Glossary - Help

Word to search for: cat Search WordNet

Display Options: (Select option to change)  Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

S: (n) cat, true cat (feline mammal usually having thick soft fur and no ability to roar: domestic cats; wildcats)
direct hyponym / full hyponym

S: (n) domestic cat, house cat, Felis domesticus, Felis catus (any domesticated member of the genus Felis)
S: (n) wildcat (any small or medium-sized cat resembling the domestic cat and living in the wild)

direct hypernym / inherited hypernym / sister term
S: (n) feline, felid (any of various lithe-bodied roundheaded fissiped mammals, many with retractile claws)

S: (n) carnivore (a terrestrial or aquatic flesh-eating mammal) "terrestrial carnivores have four or five clawed digits on each
limb"

S: (n) placental, placental mammal, eutherian, eutherian mammal (mammals having a placenta; all mammals except
monotremes and marsupials)

S: (n) mammal, mammalian (any warm-blooded vertebrate having the skin more or less covered with hair; young
are born alive except for the small subclass of monotremes and nourished with milk)

S: (n) vertebrate, craniate (animals having a bony or cartilaginous skeleton with a segmented spinal column
and a large brain enclosed in a skull or cranium)

S: (n) chordate (any animal of the phylum Chordata having a notochord or spinal column)
S: (n) animal, animate being, beast, brute, creature, fauna (a living organism characterized by
voluntary movement)

S: (n) organism, being (a living thing that has (or can develop) the ability to act or function
independently)

S: (n) living thing, animate thing (a living (or once living) entity)
S: (n) whole, unit (an assemblage of parts that is regarded as a single entity)
"how big is that part compared to the whole?"; "the team is a unit"

S: (n) object, physical object (a tangible and visible entity; an entity that
can cast a shadow) "it was full of rackets, balls and other objects"

S: (n) physical entity (an entity that has physical existence)
S: (n) entity (that which is perceived or known or inferred to
have its own distinct existence (living or nonliving))

Source: http://wordnetweb.princeton.edu/perl/webwn
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Synset Induction: Approach

1 Construct a weighted undirected graph using synonymy pairs from
Wiktionary as edges

2 Weight them using cosine similarity between the corresponding word
embeddings

3 Cluster this graph and treat the clusters as the synsets

Code and Data: https://github.com/dustalov/watset
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Synset Induction: Results

• Watset showed the best results as according to paired F1-score

CW MCL MaxMax ECO CPM Watset
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Synset Induction: Example

Size Synset
2 decimal point, dot
2 wall socket, power point
3 gullet, throat, food pipe
3 CAT, computed axial tomography, CT
4 microwave meal, ready meal, TV dinner, frozen dinner
4 mock strawberry, false strawberry, gurbir, Indian strawberry
5 objective case, accusative case, oblique case, object case,

accusative
5 discipline, sphere, area, domain, sector
6 radio theater, dramatized audiobook, audio theater, radio play,

radio drama, audio play
6 integrator, reconciler, consolidator, mediator, harmonizer, uniter
7 invite, motivate, entreat, ask for, incentify, ask out, encourage
7 curtail, craw, yield, riding crop, harvest, crop, hunting crop
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Frame Induction

• A semantic frame is a collection of facts
that specify features, attributes, and
functions (Fillmore, 1982)

FrameNet Role Lexical Units (LU)
Perpetrator Subject kidnapper, alien, militant
FEE Verb snatch, kidnap, abduct
Victim Object son, people, soldier, child
• Used in question answering, textual

entailment, event-based predictions of
stock markets, etc.
• Can we build frames from scratch using

just subject-verb-object (SVO) triples like
DepCC (Panchenko et al., 2018)? Source: rawpixel (2017)
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Frame Induction: FrameNet

Source: https://framenet.icsi.berkeley.edu/fndrupal/luIndex
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Frame Induction: Approach

1 Use word embeddings to embed each triple t = (s, v, o) in a
low-dimensional vector space as ~t = ~s⊕ ~v ⊕ ~o

2 Construct a weighted undirected graph using k ∈ N nearest neighbors
of each triple vector

3 Cluster this graph and extract triframes by aggregating the
corresponing roles

government, run, market

government, run, show

government, run, hospital

government, run, society

failure, rattle, market

failure, spook, market

protection, protect, consumer

Code and Data: https://github.com/uhh-lt/triframes
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Frame Induction: Results

• Triframes outperformed state-of-the-art frame induction approaches,
including Higher-Order Skip-Gram (HOSG) and LDA-Frames, on the
FrameNet corpus (Baker et al., 1998) as according to F1 (nmPU/niPU)

LDA−Frames NOAC HOSG Trifr. Watset
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Element: verb, subject, object, frame
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Frame Induction: Good Example

Subjects: expert, scientist, lecturer, engineer, analyst
Verbs: study, examine, tell, detect, investigate, do, observe, hold, find,

have, predict, claim, notice, give, discover, explore, learn, monitor,
check, recognize, demand, look, call, engage, spot, inspect, ask

Objects: view, problem, gas, area, change, market

Subjects: leader, officer, khan, president, government, member, minister,
chief, chairman

Verbs: belong, run, head, spearhead, lead
Objects: party, people

Subjects: evidence, research, report, survey
Verbs: prove, reveal, tell, show, suggest, confirm, indicate, demonstrate
Objects: method, evidence
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Frame Induction: Bad Example

Subjects: wine, act, power
Verbs: hearten, bring, discourage, encumber, ...432 more verbs...,

build, chew, unsettle, snap
Objects: right, good, school, there, thousand

Subjects: parent, scientist, officer, event
Verbs: promise, pledge
Objects: parent, be, good, government, client, minister, people, coach

Subjects: people, doctor
Verbs: spell, steal, tell, say, know
Objects: egg, food, potato
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Section 6

Miscellaneous
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Which Algorithm to Choose?

? Is your graph relatively small and you need hard clustering?
* Markov Clustering

? Is your graph big and you still need hard clustering?
* Chinese Whispers

? Do you need soft clustering?
* Watset
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...but My Objects are Just Vectors!

It is possible to represent the objects in a
vector space as a graph (von Luxburg, 2007):
• use the k nearest neighbors,
• use all the neighbors within the
ε-radius,
• use a fully-connected weighted graph

Think of a graph as a discretized vector space.

Source: Wikipedia (2007)
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Resources

Events:
• TextGraphs, the Workshop on Graph-Based Algorithms for NLP,
http://www.textgraphs.org/

Books:
• Graph-Based NLP & IR (Mihalcea et al., 2011)
• Structure Discovery in Natural Language (Biemann, 2012)

Datasets:
• Stanford Network Analysis Project,
https://snap.stanford.edu/data/
• Leipzig Corpora Collection (Goldhahn et al., 2012)
• Wiktionary (Zesch et al., 2008; Krizhanovsky et al., 2013)

NLPub, https://nlpub.ru/ (in Russian)
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Section 7

Conclusion
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Conclusion

• A graph is a meaningful representation;
clustering captures its implicit structure as
exhibited by data
• The algorithms are well-developed and ready

to use as soon as a graph is constructed
• Not covered here:
• spectral graph theory, see a great tutorial by

von Luxburg (2007)
• community detection algorithms from

network science, see Fortunato (2010)
• A few promising research directions:
• graph convolutional networks (Marcheggiani

et al., 2017),
• graph embeddings (Goyal et al., 2018)

Source: bamenny (2016)
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Thank You!

Questions?
Contacts
Dr. Dmitry Ustalov

Data Analysis and Research Group
Yandex, Saint Petersburg, Russia

¥ https://github.com/dustalov

! mailto:dustalov@yandex-team.ru

� 0000-0002-9979-2188

Revision: be13c4b
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