

DING DIGITAL KFORCE CAPACITY LS FOR DATA-INTEN NCE

Dr Michelle Barker OECD Global Science Forum Expert Group Cha Director, Research Software Alliance

Building Digital Workforce Capacity

<u>Goal:</u> Make recommendations to policy makers on how to facilitate the digital workforce capacity needed for data-intensive science, based on analysis of best practice

Contents:

- 1. What is known about the digital workforce needs for data-intensive science?
- 2. Five focus areas
- 3. Recommendations for actors incl. universities

- Importance of digital skills highlighted
- Shared access to open data, software and code is critical to COVID-19 responses
- But not yet commonplace enough to respond to emergencies
- Not enough digital skills in research sector to have created and maintain this
- Need long-term support for this area to be ready for next emergency

European Union: cost of not having FAIR research data is EUR 10.2 billion a year in Europe alone

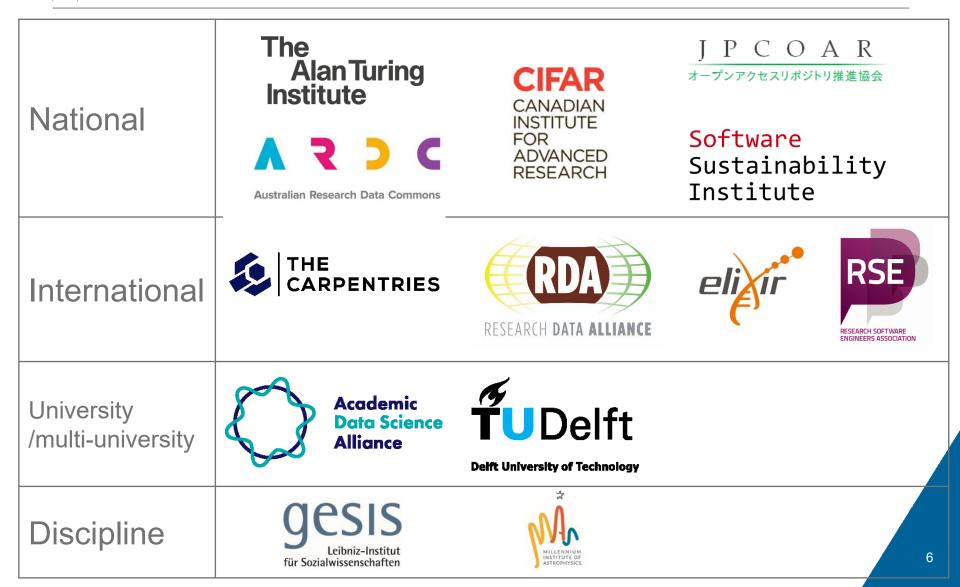
How much upskilling is needed?

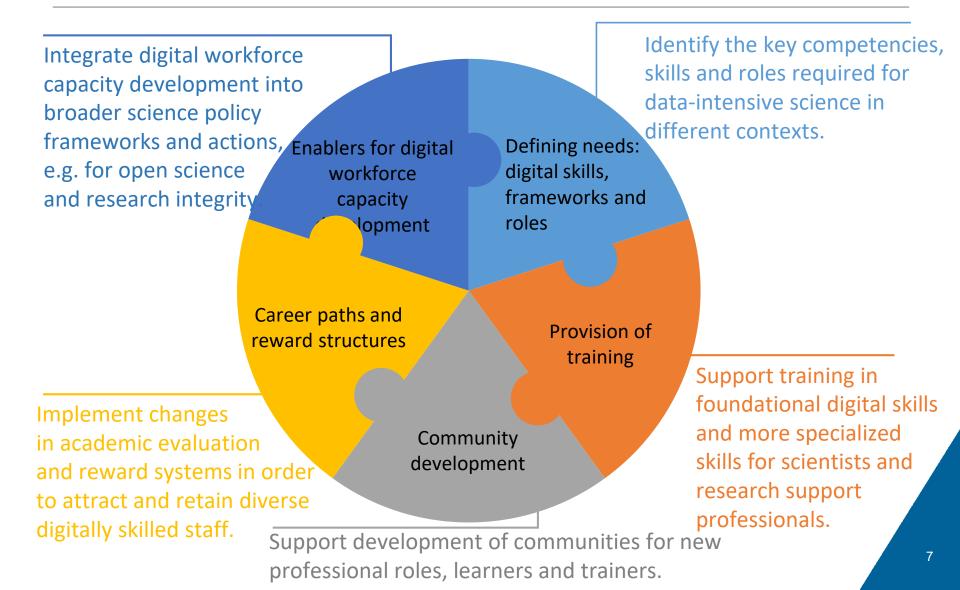
• 1 digital support professional: 20 researchers?

What exists:

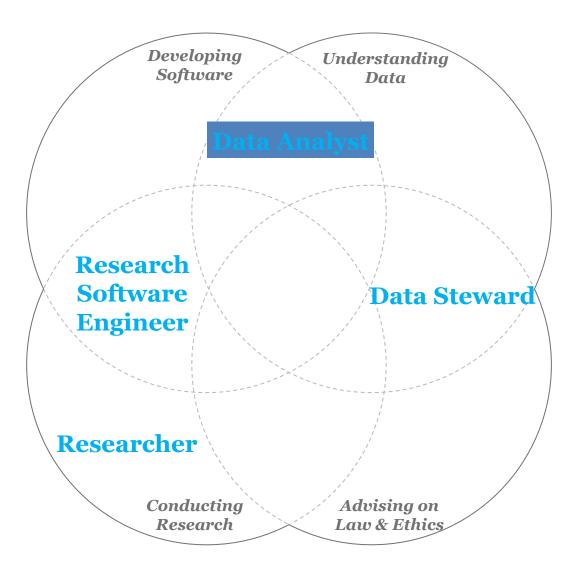
US R1 universities: 2 data librarians per university

Australian universities:


- 1 research data management advisor: 65 researchers
- 1 software engineering advisor: 100 researchers


The need for a digital skilled workforce for science

	 More than 90% of researchers acknowledged software as being important for their own research. 70% of researchers said that their research would not be possible without software.
* * *	• More than 60% of researchers "Greatest need was additional training."
	• 41% of staff in research libraries were not familiar with data management planning.



1. Digital skills, frameworks & roles

Training

• Not enough trainers to meet demand.

Scaling up

- Scaling up training is challenging.
- Most of the cases rely on un-certified trainers and volunteer workforces.

Diversity

• Inequalities persist.

Private sector's role

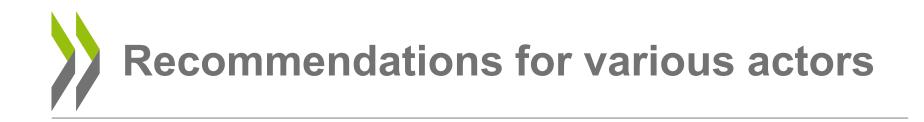
• Commercial initiatives play an important part of the overall ecosystem

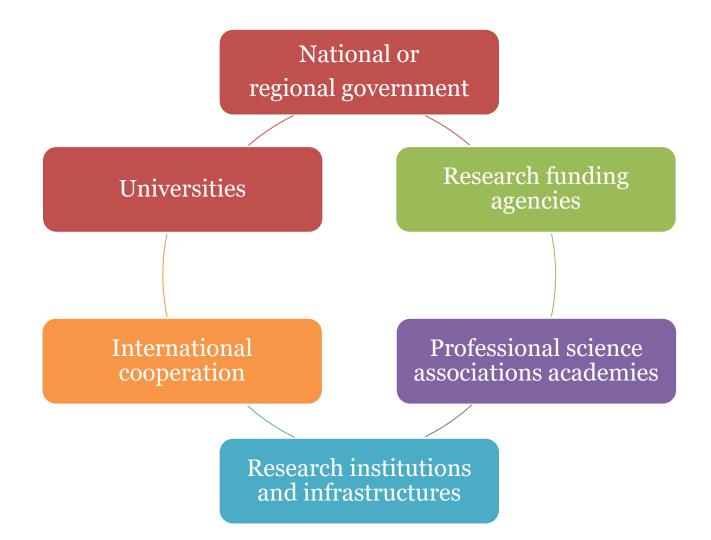
Challenges

Communities are essential for knowledge transfer, mutual learning, enabling collaborative development

Challenges

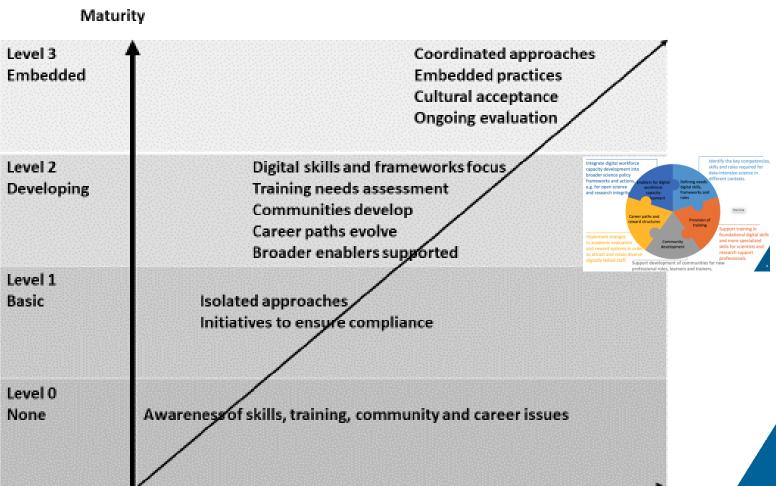
Long-term career pathways for professional support staff (data stewards, RSEs) is unclear.


 Librarians, archivists and curators play new roles who coordinate and manage digital assets.


Actions

- Recognise the value of each skill set and providing progression opportunities.
- Establish long-term career pathway. (E.g., TU Delft)
- Lack of strong incentive for researchers and research support professionals who acquire and apply digital skills.
- Difficulty of human resource movement between industry and academia.
- Exchange schemes and joint appointments between academia and industry. (E.g., CIFAR)
- Recognise data and software as valuable outputs and assets for science. (E.g., ELIXIR)

Reward structures


Career paths

Recommendations

Timé

Recognise

• The need for a digitally skilled workforce in research across all 5 areas

Actions

- Analyse national needs and responses, including international and disciplinary initiatives developments, to understand leveraging opportunities
- Support workforce development across all 5 areas

Connected with universities and national and international networks.

- Provide training to researchers and research support staff
- Develop new career paths with appropriate evaluation and reward mechanisms

International cooperation

- Engage in international collaboration
- Share training materials and experiences

Defining the Third Space 20 August 2020

> Invited Speakers A/Prof. Celia Whitchurch, UCL Prof. William Locke, U Melb. Keith Russel, ARDC

> > Breakout Discussions Identity Engagement Teams

Society of Research Software Engineering

Professionalising Data Stewardship IG

FAIR Principles Implementation Networks News Events Resources About GO FAIR Q

Data Stewardship Competence Centers (DSCC)

Netherlands: <u>Room for everyone's</u> <u>talent</u>

US: <u>NSF grant proposal guidelines</u> (2013): Biosketch can include products

UK: <u>The Hidden REF</u> (Research Excellence Framework) recognises all research outputs and every role that makes research possible.

Latin America: <u>FOLEC</u> (Latin American Forum for Research Assessment)

Room for everyone's tale

towards a new balance in the recognition and rewards of acade

Policy instruments

Example Indicators

Specific markers for impact on research, practice and

society

Impact

- San Francisco <u>Declaration on</u> <u>Research Assessment (</u>DORA) recognises the need to improve the ways in which outputs of scholarly research are evaluated.
- Sorbonne Declaration on Research
 Data Rights emphasises the
 development of appropriate
 recognition for researchers who
 make their data FAIR and share it
 with appropriate open data licenses.

Hong Kong Principles for assessing researchers researchers are explicitly recognised and rewarded for behaviors that strengthen research integrity (Including quality assurance of data and data sharing).

•Open Science Registry (EU-OSPP) will provide a global registry of pilots and implementations to inspire best practices and new assessment mechanisms for Open Science [upcoming event at RDA].

•<u>European Open Science Cloud</u> <u>Working Group: Skills and Training</u>

•<u>Knowledge Exchange Openness</u> <u>Profile</u> is working towards a possible solution of the lack of incentivising mechanisms & research evaluation practices for open scholarship contributions. Defining the Concepts

Open Scholarship

🛱 31 January 2020 Openness Profile: Defining the Concepts

Purpose: Report: 10.5281/zenodo.3607579 File type: PDF

🕹 Download

openscienceregistry.org/

<u>Creating the Open Science</u> <u>Registry on rewards and</u> <u>incentives</u> - 12 Nov, RDA Plenary

.... open science is the new normal

How can you organisation move towards this goal?