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Abstract.  In this paper we present a wearable high rate MIMU (magnetic-

inertial measurement unit) based body tracking system. It is designed using low 

cost state-of-art hardware and MEMS sensors to reduce errors and improve 

computational latency. Our system allows for high rate data acquisition and 

sensor fusion at low power budget. It can be used for range of applications from 

extreme activity capture and biomechanical analysis to clinical evaluation and 

ambulatory health monitoring/rehabilitation. The package size of sensing nodes 

is small, and we use textile wires which make it very flexible. Thus entire 

system can be easily integrated with body worn suit/pants. Up to 7x nodes can 

be connected without compromising the maximum sampling frequency            

(1 KHz), with the possibility to add more nodes using additional bridge stations 

between nodes. The acquisition rate can be preset from 1 KHz to 100 Hz to suit 

the application or accuracy requirements. To the best of our knowledge, our 

inertial motion capture system is the first to offer such high rate output at 1 

KHz for multiple nodes. The high rate of inertial data provides intrinsic 

accuracy to sensor fusion as well as capture high frequency features for clinical 

diagnostics and biomechanical analysis in ambient settings. The system also 

runs an embedded sensor fusion algorithm for accurate orientation estimation. 

We introduce a novel accelerometer and magnetometer measurement correction 

with adaptive sensor covariance approach in EKF, which makes it robust to 

both magnetic disturbances and body accelerations. Thus it is well suited for 

indoor human motion analysis and monitoring highly dynamic motion.  
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1 Introduction 

Body worn magnetic-inertial measurement unit (MIMU) sensors have become an 

excellent choice for non-invasive human motion capture, biomechanical analysis and 

body tracking in non-clinical and ambulatory settings. These wearable sensors are 

used for applications as diverse as neurological deficit assessment, elderly fall 

detection, rehabilitation exercises, sports performance, posture and gait analysis, and 

in Virtual-Augmented Reality (VR/AR). Both harness based and wireless IMU nodes 

are used for human body tracking, however the wireless IMUs suffer from reliability 

and synchronization issues, need more power and have bigger form factor for 

individual nodes. On the contrary, flexible harness based IMUs remain a viable option 

for less invasive (due to low form factor), reliable and high rate body worn systems 

with very low energy consumption (cf. Xsens harness based MVN Link
®
 vis-à-vis 



wireless Awinda
®
 system [1]). Another desirable feature is the inbuilt processing 

ability of body-worn IMU systems for sensor fusion. These systems are based on low-

cost miniaturized MEMS sensors, which are not very accurate and thus require signal 

preprocessing and sensor fusion. Most commercial systems support limited onboard 

processing and are able to deliver orientation estimates (obtained from propriety 

sensor fusion algorithms) in addition to raw sensor data. However, these propriety 

filters are not very robust to magnetic disturbances and motion induced errors arising 

out of body accelerations [2]. The sensor fusion approaches reported in past literature 

which are claimed robust to magnetic disturbances and fast motion, are either 

computationally intensive, or do not give very satisfactory results except under 

restricted assumptions [3-5]. More recently, few authors have turned to kinematic 

chain constraints[6, 7] to dispense with magnetometer data and use only rate 

gyros/accelerometers, but again this approach does not prevent orientation drift in the 

long run.  

 

Thus body accelerations and magnetic disturbance induced artifacts remain the 

main issue to be resolved for reliable and robust orientation estimation using low cost 

MIMUs in various ambulatory settings. The pace of evolution and improvement in 

MEMS sensors is very fast. Better magnetometers, rate gyros and accelerometer are 

becoming available, driven by needs of personal mobile devices and ubiquitous 

computing. The rate of adoption of new sensor in MIMU based body tracking and 

monitoring systems is however not as fast. The primary reason is perhaps the redesign 

overhead. Nevertheless hardware improvements with better algorithms can lead to 

state-of-art results. Since the new MEMS based inertial sensors offer much higher 

sampling rates at less noise/power and give more precise readings, this feature can be 

used advantageously in both sensor preprocessing and sensor fusion algorithms to 

achieve higher accuracy. Also data acquisition at high rate is essential to capture fast 

motion dynamics accurately during extreme activity and/or biomechanical analysis, 

for example in sports. Some high frequency features in tremors and body seizures 

may also be crucial to investigate neuromuscular anomalies, which need sampling 

rates higher than customary 100-120 Hz. At present, wireless based MIMU systems 

due to their inherent limitations do not offer high rate of data acquisition. In fact the 

rate of data acquisition from such sensors does not scale very well, as the number of 

sensors is increased. 

In this paper, we present our development of a high rate wearable MIMU based 

system built using flexible textile harness (all nodes also support optional wireless). 

Our system offers high rate data acquisition, while estimating orientation through an 

Extended Kalman Filter (EKF) implemented on embedded hardware with very low 

latency. Our EKF uses novel accelerometer and magnetometer measurement 

correction with adaptive sensor covariance approach. The orientation results from 

individual IMUs in our system are compared with the ground truth orientation 

obtained from submillimeter accurate OptiTrack
®
 optical motion capturing system. It 

shows excellent match after hand-eye calibration of two systems. Moreover the 

orientation estimated using our new EKF is shown to be robust to both soft/hard 

magnetic disturbances as well as body accelerations.  



Although many commercial MIMU based motion tracking systems are available 

(Xsens MVN, InertialLabs 3DSuit, iSen STT-IBS, Rokoko SmartSuit Pro). Our 

harness based wearable MIMU system claims low form factor (25x20x5mm) for 

individual nodes, a Wi-Fi hub based on Intel Edison
®
 module with embedded 

processing/storage option (up to 1.0 GB), efficient cache management with low 

latency, good synchronization protocol with a flexible I
2
C bus and a low power 

consumption.  Additionally, we describe our improved prototype MIMU system with 

low noise sensors and ultra-low power consumption, which achieves state-of-art 

sampling rate (1 KHz for each of 7x IMU nodes) and provide tradeoff between high 

sampling rates vs. low power consumption, in various application settings. Each IMU 

node in this new implementation also supports Bluetooth Low Energy (BLE) protocol 

and can run on-chip code for modest pre-processing and orientation estimation 

directly. Hence the need of flexible harness/Wi-Fi module is optional. 

2 Design and Prototyping 

2.1 Hardware Design 

The design of our harness based IMU motion tracking system has partly developed 

and matured as a “meta-product” under collaborative Easy-IMP project supported by 

European Union Grant No. (anonymized).  The aim has been ‘to develop a lightweight 

and low form factor MIMU based motion tracking system for ambulatory and non-

clinical settings, with low power consumption, decent embedded processing power as 

well as sufficient on-board storage’. Intel Edison
®
 platform is selected as the hub for 

being low-power, low-cost solution with embedded processing ability and on-board 

storage.  

The sensing nodes are based on Invensense
®
 MPU-9150, integrated 9-axis 

Motion Tracking device that combines a 3-axis MEMS gyroscope, a 3-axis MEMS 

accelerometer, a 3-axis MEMS magnetometer and a Digital Motion Processor™. This 

MPU has external triggering option, which makes it extremely useful when 

combining multiple sensor units.  NXP PCA9501 EPROM module has been added to 

store calibration data of each node, thus calibration information stays on plug-in 

sensor node. The data transmission happens through a differential I
2
C bus connected 

to the microcontroller of the Edison development board. Differential I
2
C bus can run 

up to 400 KHz, while data acquisition from the 7x IMU sensors take place at 100 Hz 

sampling rate in this baseline system. The flexible textile wires are used for both 

power and communication between hub and sensor nodes. Figure 1 shows  the Intel 

Edison
®
 hub connected with textile differential I

2
C wire to 7x sensor nodes as well as 

with textile micro USB wire to the 5V power bank.  

The package size of miniaturized sensing nodes is 25x20x5mm, making the 

system almost non-invasive (Xsens MTw wireless series has IMU size of 

47x30x13mm [1]). The flexible textile harness allows easy routing and differential 

I
2
C bus/external trigger of MPU-9150 provides very good synchronization. There is 



sufficient free memory/cache (up to 1.0 GB) on Intel Edison module to record an 

outdoor session. The low current consumption feature of the system is tested with 7x 

IMU nodes at 100 Hz sampling rate and its current consumption was found out to be 

300mA, running raw data calibration, sensor fusion algorithm for all 7x nodes and 

TCP data transfer on Wi-Fi. This system has been reliably tested for lower body 

tracking with 7x IMUs and is extendable up to 10 sensors with existing hardware 

design. Two such sub-systems with synchronization are used for simultaneous upper 

and lower body tracking.  

 

Figure 1: Complete Flexible Harness based MIMU Tracking System 

2.2 Plugin Software Architecture 

The system has been built with plug-in software architecture in consideration, as 

shown in Figure 2.  

 

Figure 2: Plugin Software Architecture 

 

Intel Edison
®
 platform runs Yocto Linux. The application can be extended with user 

compiled code at runtime via a dynamically linked shared library plugin interface. 



The definition of the plugin interface and all the application specific API calls are 

stored on the device itself. The plugins can be activated via generic protocol on the 

TCP socket. Various types of data are transmitted to the application layer through  

Wi-Fi (or USB Ethernet) using TCP protocol. The firmware/software framework 

gathers the sensor data and runs data calibration/fusion algorithm for orientation 

estimation. It is written in C++ and can be compiled for different platforms with the 

GNU Compiler. The firmware is set to run on Edison
®

 module as soon as it is 

accessed by Web API for host application. Both the raw sensor data and orientation 

estimation from all IMU nodes are available over Wi-Fi. 

2.3 Improved Hardware 

In sensor fusion and body tracking it is always required to improve the quality of the 
data delivered by the sensors, in order to implement more accurate tracking. 
Therefore we evolved our design to a new hardware platform using newer MEMS 
sensors with better performance in terms of noise levels and bias stability. This new 
design also offers us flexibility of choosing between wireless and wired 
communication. 

The new prototype for the sensor node design is based on the nRF52832 System 
on Chip (SoC) that combines an ARM Cortex-M4F microprocessor with a 2.4GHz 
multi-protocol radio supporting Bluetooth Low Energy (BLE) and ANT multicast 
protocol. The presence of a low power microcontroller in every node provides the 
possibility to perform local data preprocessing, thus decreasing the computational 
load on the hub as well as save on intra-system communication bandwidth.  

On every node, there is an ICM20602 6-axis MotionTracking device that 
combines a 3-axis gyroscope and 3-axis accelerometer in a small 3x3x0.75mm 
package.  The node also contains the MMC3416PJ ultra small 1.6x 1.6x0.6mm, 3-axis 
magnetic sensor. The nRF52832 SoC communicates through SPI and I

2
C with the 

ICM20602 and MMC3416PJ, respectively. The sampling rate of the system is 1 KHz 
for the accelerometer and gyroscope, and 500 Hz for the magnetic sensor. 

This high sampling rate allows to perform more accurate computations and 
motion analysis, since more data is available per unit of time, making the system able 
of capturing fast movements, or to apply preprocessing at node level to increase the 
measurement accuracy and decrease intrinsic noise level. 

The system offers a trade-off between high sample rate and low power 
consumption, depending on the application and accuracy required, as depicted in 
Table 1 (the hub performs streaming over Wi-Fi for this budget as well). 

TABLE 1: NEW PROTOTYPE- CURRENT CONSUMPTION @ 3.3V 
Sampling 

Frequency 

Node Current 

Consumption 
Hub Current 

Consumption 
Idle* 3.8mA 60mA 

60 Hz 4mA 100mA 

100 Hz 4.2mA 110mA 
500 Hz 4.65mA 125mA 

1000Hz 6.7mA 140mA 

*The idle state occurs when Hub is waiting for the start of a 
TCP transmission on Wi-Fi. 



 

The improvement in the performance by the new sensors used in this prototype can be 
observed on Figure 3, where the Allan Variances of the gyroscope and accelerometer 
are plotted for each axis of the MPU9150 (old inertial sensors) and the ICM20602 
(new inertial sensors).  It can be observed from the plot that the bias stability of the 
new sensors (both gyro and accelerometer) is considerably enhanced and intrinsic 
noise baseline is reduced for new accelerometers.  

   

Figure 3: Experimental Comparison of Allen variances of Rate Gyro and Accelerometer 
used in our Baseline (MPU9150) and Improved System (ICM20602) 

 

The PCB size (Figure 4) of the sensor node for the new prototype is 25.5x18x1.5mm, 
including a coaxial antenna connector for possible BLE implementations. The 
packaging for prototype system is in progress. 

 

 

Figure 4: Improved Sensor Node based on nRF52832 System on 
Chip (SoC) and ICM20602 Motion Tracking    

 

The communication between the new nodes is implemented through textile wires 
using a 4Mbps SPI Daisy chain protocol. The synchronization is handled by sending a 
sync signal to every node. Up to 7x nodes can be connected without compromising 



the maximum output frequency (1 KHz), with the possibility to add more nodes using 
additional bridge stations between nodes. For comparison, Xsen harness based MVN 
Link

®
 offer a maximum output rate of 240 Hz (while internal update rate is 1000 Hz) 

[1]. 

The advantage of the new prototype hardware is that it can be adapted to a wide 
range of possibilities, those that demand the highest output rate can be implemented 
with the Daisy chain SPI solution using textile harness. On the other hand, the 
applications that tolerate lower output frequencies can be implemented with the BLE 
capability that the nRF52832 offers, eliminating the need of Wi-Fi hub, hence 
decreasing the overall system current consumption (see column 3 in Table 1). 

3 Body Integration 

The advantage of using textile wires for both data and power sharing is that the 

system can be conveniently integrated with body worn suit (upper body) and/or pants 

(lower body) as shown in Figure 5. Enough length of flexible wire between sensor 

nodes located on different body parts, allows it to stretch and twist while staying 

integrated with body-fit suit/pant made of stretchable fabric. Thus any maneuver or 

extreme activity can be performed without hindrance. The weight of nodes and hub is 

almost negligible and a small weight contribution comes from battery pack itself. 

  

4 Embedded Sensor Fusion 

4.1 Sensors Modelling 

Inertial sensors such as accelerometers and rate gyros do not measure the quantities of 

interest only. The measurement of accelerometer has both a constant acceleration due 

to gravity component as well as acceleration arising from self-motion. Similarly rate 

gyro measurement has a constant term due to earth rotation. However in case of low 

cost MEMS rate gyro, this additional term is insignificant and often neglected. In 

  

Figure 5: Body Integration of MIMU Motion Capture System 



general for MEMS rate gyro and accelerometer, we can write following Equations 

relating raw measurements with physical quantities. We follow the convention in this 

paper that bold small letters represent vectors and bold capital letters are matrices. 

𝝎𝑟𝑎𝑤 =  𝑺𝑔𝝎 + 𝒃𝑔 + 𝒘𝑔 (1) 

𝒂𝑟𝑎𝑤 = 𝑺𝑎 ∙ 𝑹 𝑛
𝑏 (𝒂 + 𝒈) + 𝒃𝑎 + 𝒘𝑎 (2) 

 

In Equations above, 𝑺 are 3x3 scaling and misalignment matrices and 𝒃 are bias 

terms, while 𝒘 represent the white Gaussian noise intrinsic to each sensor. 𝑹𝑛
𝑏  is a 

3x3 rotation matrix that rotate the physical vectors 𝒂 and 𝒈 represented in navigation 

frame of reference to body fixed frame of reference. The vector 𝝎 is the angular rate, 

while 𝒈 is the acceleration due to gravity. The body acceleration 𝒂 (in navigation 

frame) is often the quantity of interest for navigation purpose. But in orientation and 

attitude determination problem, body acceleration 𝒂 represents an undesired 

disturbance added to reference gravity vector 𝒈. Similarly we write sensor Equation 

for magnetometer.   

 

𝒎𝑟𝑎𝑤 = 𝑺𝑚 ∙ 𝑹𝑛
𝑏  (𝒎𝑛 + 𝒅) + 𝒃𝑚 +  𝒘𝑚 (3) 

The difference with inertial sensors is that 𝑺𝑚 is a 3x3 matrix that in addition to 

scaling, misalignment and non-orthogonality, also account for soft iron effects. The 

soft-iron effects are distortions that appear in the measurement due to ferrous 

materials fixed to body frame. Similarly 𝒃𝑚 include both the sensor bias as well as 

hard iron effects due to permanent magnetic sources fixed to body. It is interesting to 

note that 𝒎𝑛 - magnetic reference vector for indoor and urban outdoor settings, is 

often very different from the earth’s magnetic field. Also magnetic reference is 

continuously changed by a position dependent (and slow time varying) disturbance 𝒅 

caused by magnetic sources and ferrous materials present in environment. 

4.2 Sensors Calibration 

The deterministic errors and effects which are intrinsic to the magnetic and inertial 

sensors, like scaling, misalignment and non-orthogonality (as well as soft-iron effects) 

represented by 𝑺 or biases (and hard iron effects) terms  𝒃, must be determined in a 

calibration procedure. In application where quantities of interest are computed by 

integrating sensor measurements over time, even slight errors in determining 𝑺 and 𝒃 

can lead to a drift error which increases with time in unbounded fashion. For example, 

when position is computed from accelerometers or orientation is integrated from rate 

gyros etc. Thus quality of sensor fusion performed using different sensor modalities is 

directly dependent on accuracy achieved in intrinsic calibration of sensors. We use a 

multi-position based procedure [8] for a robust accelerometer calibration. The rate 

gyros are calibrated using a turn-table procedure, for best accuracy and in order to 

find precise physical alignment. Thereafter, an in-field quick sensor calibration is 

carried out before use, in order to fully calibrate magnetometers [9] and update rate 

gyro biases for any residual errors. These calibration parameters are stored on sensor 



node, for later use in sensor fusion. At run-time the calibrated readings (in physical 

units) are obtained for all sensors as follows. 

𝝎𝑐𝑎𝑙 = 𝑺𝑔−1
(𝝎𝑟𝑎𝑤 −  𝒃𝑔) = 𝝎 +  𝒘̃𝑔 (4) 

𝒂𝑐𝑎𝑙 = 𝑺𝑎−1
(𝒂𝑟𝑎𝑤 −  𝒃𝑎) = 𝑹𝑛

𝑏  (𝒂 + 𝒈) +  𝒘̃𝑎  (5) 

𝒎𝑐𝑎𝑙 = 𝑺𝑚−1
(𝒎𝑟𝑎𝑤 − 𝒃𝑚) =  𝑹 𝑛

𝑏 (𝒎𝒏 + 𝒅) +  𝒘̃𝑚 (6) 

 

4.3 Sensor Fusion 

Body segment orientation is the primary quantity of interest in human motion capture 
and biomechanical analysis. The MIMU sensor nodes are attached to rigid body 
segments and orientation is obtained through sensor fusion. Two known non-collinear 
global reference vectors (like Earth’s gravity and magnetic field) can provide a global 
reference frame to define a rigid body orientation. Since the accelerometer measures 
reference gravity vector, it can give absolute tilt (pitch/roll) information w.r.t gravity 
vector. Similarly horizontal component of a reference magnetic vector  𝒎𝒏 can define 
magnetic north and gives heading (yaw) information. However as evident from 
Equation 5 and 6 (Left hand side), both these reference vectors in measurements 𝒂𝑐𝑎𝑙  
and 𝒎𝑐𝑎𝑙  are affected by disturbance vectors 𝒂 and 𝒅 respectively. Thus Equations 5 

and 6 even if solved together, do not provide accurate orientation 𝑹𝑛
𝑏 . On the other 

hand, Equation 4 shows that angular rate 𝝎𝑐𝑎𝑙  does not suffer from any disturbance 
(if all bias is eliminated).  Hence the following rate equation can be integrated over 
time from a known initial orientation to predict current orientation.  

𝑹̇𝑛
𝑏 =

1

2
𝞨 ∙ 𝑹𝑛

𝑏  
(7) 

 

Here 𝞨 is a 3x3 skew-symmetric matrix obtained from 𝝎. The discretization of 
integration based on Equation 7 is however only approximate and hence small error 
appears at each time step. Even if gyro bias and calibration is accurately known, 
integration of Gaussian white noise in gyro readings causes a random walk to appear, 
even under stationary conditions. Bearing these anomalies in mind, the sensor fusion 
is the preferred approach for orientation estimation from MIMU sensors.   

 A robust sensor fusion algorithm ensures that the error converges and the system 
is also robust to outliers i.e. disturbed accelerometer and magnetometer readings are 
rejected. The results of past algorithms on account of later goal can still be improved, 
because when the robustness is checked practically in unrestricted ambulatory 
settings, drift or random walk error in yaw is very common. This is due to the reason 
that magnetic disturbances unlike body accelerations are of more permanent nature, as 
humans move indoor. 

Extended Kalman Filter (EKF) has been found computationally cost effective for 
orientation estimation from noisy MIMU or MARG (magnetic, acceleration and rate 
gyro) sensors, based on sensor fusion. The unit quaternion representation of 
orientation is widely popular in these EKF implementations [3], as it avoids Gimbal 
Lock problem and is less memory intensive than rotation matrix or DCM (Direction 
Cosine Matrix) representation.  It is also very convenient to impose unit norm 



constraint on a unit quaternion after each step. Our sensor fusion algorithm is also 
based on a quaternion based EKF formulation. We implement two EKF filters. 
EKF#1 is a baseline sensor fusion algorithm without any measurement covariance 
adaptation. The process and measurement covariance are assumed constant in this 
implementation. Whereas EKF#2 demonstrates our novel covariance adaptation 
scheme as well as a new magnetometer measurement correction. Thus the difference 
between two implementations is only in the process and measurement covariance, and 
will be duly highlighted in description below. 

Our state at time step k is simply 𝑿𝑘 = 𝒒𝑘, where 𝒒𝑘 is a unit quaternion 
representing orientation at time step k. We initialize with an arbitrary orientation state 
𝒒𝑘 = [1 0 0 0] i.e. body is assumed aligned with reference North-East-Up global 
frame. The filter converges very fast to true orientation in few times steps. The state 
covariance 𝑷0 is initialized as diagonal matrix of low values. During this initialization 
period, average local reference vector 𝒎𝒏 is computed as  𝒎𝑎𝑣𝑔 = 𝒎̅𝑐𝑎𝑙   for few time 

steps. 

We have not included gyro bias estimation in our state vector to reduce 
computational overhead. Also in practical considerations, bias estimated online by 
EKF is dependent on calibration accuracy of other sensors, which is not always 
guaranteed.  In our case we have seen convergence of state to wrong bias estimates, 
when it is verified with value obtained from a static test. Instead we prefer to carry out 
a prior in-field calibration of gyro bias through a static test. This way, we are able to 
estimate residual gyro bias to high accuracy, till noise threshold of our sensors. Since 
the bias stability of our MEMS gyro is high (Figure 3), it experiences only minor drift 
over period of hours. The sensor fusion algorithm is robust to take care of it. 

We perform the state prediction step using an average of 𝝎𝑐𝑎𝑙  readings of last    

k-1 and current time step k, i.e. 𝝎̅ =
𝟏

𝟐
(𝝎𝑘 + 𝝎𝑘−1). This assumes constant angular 

acceleration (first order integration) model. Taylor’s expansion of the integration of 
quaternion equivalent of Equation 7 then reduces to 

 𝑿̃𝑘 =   𝒒̃𝑘  = 𝒒𝑘−1 ⊕ 𝒒∆𝑘 (8) 

 

Here ⊕ represents quaternion multiplication, 𝒒∆𝑘 = [cos
|𝝎̅|

2
∆𝑘 , sin

|𝝎̅|

2
∆𝑘 ∙ (

𝝎̅

|𝝎̅|
)]  

represents the change in orientation for this time step and 𝒒̃𝑘 is the current prediction. 
The state covariance is updated by 

𝑷𝑘|𝑘−1 = 𝑭𝑘𝑷𝑘−1𝑭𝑘
𝑇 +  𝑸𝑘 (9) 

 

The 𝑷𝑘|𝑘−1 represent the uncertainty of new prediction. 𝑭𝑘 is the Jacobian evaluated 

for Equation 8 at 𝒒𝑘−1  and 𝑸𝑘  is the process covariance arising due to uncertainty of 
prediction step. In our EKF#2, we have adapted 𝑸𝑘  in relation to ‖𝝎̅‖ as follows 

𝑄ii
𝑘 =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑠𝑐𝑎𝑙𝑒 ∗ (Max(|𝝎̅| − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 0)) (10) 

 

Now, 𝑸𝑘 = 𝐷𝑖𝑎𝑔(𝑄ii
𝑘). The parameters variance, scale and threshold can be set 

separately for Equation 10 (or later for Equation 12-13, 19-20). Typical values of 
these parameters are not given here (for propriety reasons), but algorithm is found 



robust for a range of these parameters values.  In Equation 10, the first term defines a 
baseline variance due to integration of gyro noise (random walk), while second term 
defines the uncertainty arising due to calibration and integration errors that scale with 
|𝝎̅| for a known time step. In contrast, EKF#1 assumes a constant value for process 
covariance, 𝑸𝑘. 
 
 The correction step with measurements is carried out one by one. First the gravity 
vector in body reference frame is estimated using predicted quaternion for step k 
 

𝒈𝑘
𝑝

= 𝒒̃𝑘 ⊕  𝒈 ⊕ 𝒒̃𝑘
∗  (11) 

 

Where 𝒒∗ represents conjugate quaternion of 𝒒. Gravity vector is assumed Up 
i.e. 𝒈 = [0 0 1]. Now the residual with measured normalized acceleration is obtained, 

 𝒂̂ = (
𝒂𝒄𝒂𝒍

|𝒂𝒄𝒂𝒍|
) , 𝒚𝒂 = (𝒂̂ − 𝒈𝑘

𝑝
) . Our EKF#1 implementation always uses a constant 

value for measurement covariance 𝑹𝑘
𝑎, while measurement covariance in our EKF#2  

algorithm is adapted in two different ways 

𝑅ii
𝒂,𝑘 =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑠𝑐𝑎𝑙𝑒 ∗ (Max(abs(|𝒂𝑐𝑎𝑙| − g𝑎𝑣𝑔) − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 0)) (12)   

𝑅ii
𝒂,𝑘 =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑠𝑐𝑎𝑙𝑒 ∗ (Max((|𝒚𝒂|) − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 0)) (13) 

So as, 𝑹𝑘
𝑎 = 𝐷𝑖𝑎𝑔(𝑅ii

𝒂,𝑘). EKF#2 approach uses Equation 12 during initialization 
/convergence period, thereafter Equation 13 is used. Equation 13 is a novel 
covariance adaptation proposed in this paper and the motivation is explained as 
follows. When the body segments experience downward and sideward acceleration 
together, a situation may arise when norm of acceleration vector is still equal to 
normal gravity i.e. 9.81 m/s

2
, however acceleration vector direction is perturbed by 

significant sideward component. Therefore |𝒚𝒂| which defines Euclidean norm 
between actual and predicted measurements, gives a better estimate of how good is 
the actual measurement. Since in general predicted measurement is never same as 
actual, we allow a threshold, in which covariance (uncertainty) of actual measurement 
is kept constant. Our process of adapting measurement covariance is depicted in 
Figure 6. 

 
Figure 6: Adaptive Covariance 𝑹𝑘

𝑎 and 𝑹𝑘
𝑚 for Robust EKF    



The innovation 𝑺𝑘
𝑎 is now obtained from 

𝑺𝑘
𝑎 = 𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑘

𝑇 + 𝑹𝑘
𝑎 (14) 

 

Again 𝑯𝑘 is the Jacobian of measurement Equation 11 evaluated at 𝒒̃𝑘 . We get 
Kalman gain for accelerometer measurement residual, apply error correction to state 
and update state covariance as follows  

𝑲𝑘
𝑎 = 𝑷𝑘|𝑘−1𝑯𝑘

𝑇  (𝑺𝑘
𝑎)−1 (15) 

 𝑿𝑘
𝑎 = 𝑿̃𝑘 +  𝑲𝑘 

𝑎 ∙ 𝒚𝒂 (16) 

𝑷𝑘|𝑘
𝑎 = (𝑰 −  𝑲𝑘

𝑎 𝑯𝑘
𝑇) 𝑷𝑘|𝑘−1 (17) 

 

Since quaternion addition does not respect unit norm constraint, a renormalization 
after Equation 16 is essential.  

While human motion causes only transient acceleration errors to appear in 
sensing of gravity vector, the sensing of local magnetic field suffers from lot of local 
variations and sometimes extreme disturbances [2]. Many works have reported 
success dealing with in particular magnetic disturbances [4, 5, 10]. However, the 
results reported are often for short durations and obtained by using only rate gyro 
during periods of magnetometer disturbance. Slight inaccuracies in rate gyro 
calibration/bias can thus lead to error accumulating over long term, especially 
indoors. Another approach [11] focuses on modelling, predicting and incorporating 
magnetic disturbance vector itself.  But it is very hard to accurately track magnetic 
disturbances in the environment. Therefore we have again applied a novel way to deal 
with it in our EKF#2 implementation.  

In order to remain consistent with other orientation determination algorithms 
(which assume local magnetic field as North or x-axis), we initialize with magnetic 

reference vector  𝒎𝑛 = [√ 𝑚𝑥
2 +  𝑚𝑦

2  0   𝑚𝑧 ] , where 𝑚𝑥,  𝑚𝑦 ,  𝑚𝑧   are obtained 

from  𝒎𝑎𝑣𝑔 initially. We normalize  𝒎𝑛 i.e. 𝒎̂ = (
𝒎𝒏

|𝒎𝒏|
) , then perform measurement 

update steps in line with equivalent of Equation 11-12 and 14-17 as done for 
accelerometer  measurement, till convergence to initial orientation is achieved in few 
time steps. Our EKF#1 implementation then continues with these steps, even after 
initialization, assuming a constant 𝑹𝑘

𝑚 . Except after initialization period, we obtain 

 𝒎𝑛 = [√ 𝑚𝑥
2 +  𝑚𝑦

2  0   𝑚𝑧 ] at each next step by using 𝑚𝑥 ,  𝑚𝑦 ,  𝑚𝑧   obtained 

from   𝑹𝑏
𝑛  𝒎𝑘−1 , where 𝑹𝑏

𝑛 =  ( 𝑹𝑛
𝑏 )𝑇. This step is equivalent to a reset of magnetic 

reference vector to its best guess at time step k. 

In our EKF#2 approach, we eliminate the need to explicitly track or reset the 
reference magnetic vector using a novel approach. Once initialized, we no longer 
follow equivalent of measurement Equation 11. Instead we use the fact that change in 
orientation 𝒒∆𝑘 can rotate the magnetic vector  𝒎𝑘−1 to  𝒎𝑘. Thus our new 
measurement equation becomes 

𝒎𝑘
𝑝

= 𝒒∆𝑘 ⊕  𝒎𝑘−1  ⊕   𝒒∆𝑘
∗  (18) 

 



Now measurement residual is computed using Equation 18 as  𝒚𝒎 = (𝒎̂ − 𝒎𝑘
𝑝

) . 

Since 𝒎𝑘−1 and 𝒎𝑘 are disturbed by almost same magnetic disturbance, it is 

implicitly taken care of. The measurement covariance  𝑹𝑘
𝑚 = 𝐷𝑖𝑎𝑔(𝑅ii

𝒎,𝑘) is now 
adapted according to following novel criteria 

𝑅ii
𝒂,𝑘 =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑠𝑐𝑎𝑙𝑒 ∗ (Max((|𝒚𝒂|) − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 0))      if |𝝎̅| ≤ 𝑙𝑖𝑚𝑖𝑡 (19) 

𝑅ii
𝒎,𝑘 =  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑠𝑐𝑎𝑙𝑒 ∗ (Max(abs(𝜃𝑘

𝑖𝑛𝑐𝑙
− 𝜃𝑘−1

𝑖𝑛𝑐𝑙
) − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 0)) (20) 

where estimate of inclination angle 𝜃𝑖𝑛𝑐𝑙  of local magnetic reference w.r.t gravity is 

obtained as 𝜃𝑘
𝑖𝑛𝑐𝑙 = cos−1 (

𝒈𝑘
𝑝

 ∙ 𝒎̅𝑐𝑎𝑙

‖𝒈𝑘
𝑝

‖ ∙ ‖𝒎̅𝑐𝑎𝑙‖
) . Equation 19 employs same Euclidean norm 

between actual and predicted measurements as described earlier. However, in case of 
magnetometer, covariance adaptation using this Equation is only used if |𝝎̅| ≤ 𝑙𝑖𝑚𝑖𝑡. 

At higher |𝝎̅|, bad magnetometer readings cannot be discriminated from bad 
predicted measurements using Euclidean norm of residual. Due to gyro calibration 
errors, higher |𝝎̅| lead to more prediction error. Hence, we employ a more robust 
criteria of checking for good magnetometer readings using inclination angle of 𝒎𝑘−1 
and 𝒎𝑘. 

After we obtain measurement corrected states 𝑿𝑘
𝑎 and 𝑿𝑘

𝑚 and corresponding 

covariance matrices 𝑷𝑘|𝑘
𝑎  and 𝑷𝑘|𝑘

𝑚  , we simply perform the final fusion step as 

𝑷𝑘|𝑘 = ((𝑷𝑘|𝑘
𝑎 )−1 + (𝑷𝑘|𝑘

𝑚 )−1)
−1

 (21) 

𝑿𝑘|𝑘 = 𝑷𝑘|𝑘[(𝑷𝑘|𝑘
𝑎 )−1𝑿𝑘

𝑎 +   (𝑷𝑘|𝑘
𝑚 )−1𝑿𝑘

𝑚] (22) 

The state 𝑿𝒌|𝒌 obtained from Equation 22 is renormalized to get unit quaternion 𝒒𝒌 

5 Evaluation Methodology 

In our first experiment, we performed evaluation of 1 KHz sampling rate versus 
100Hz sampling of our MIMU system to signify the differences and underline the 
importance of higher rate sampling for highly dynamic body tracking and health 
monitoring. The data of a single sensor was segmented from 7x sensors data stream 
which were mounted on a stable platform and moved by right hand of the subject. 
Various arbitrary gestures with varying speed were performed with intervening rest 
positions (the platform designed by us allowed for 20 stable rest positions). The stable 
positions allowed us to segment data of different movement periods (fast versus slow) 
for analysis. 

In second experiment, The real-time results of our EKF#2 implemented on 

Edison
® 

module of IMU tracking system were compared with ground truth obtained 

from submillimeter accurate OptiTrack
®
 system. The hand-eye calibration for the two 

systems has been performed using procedure in [12]. The rigid body configuration 

with placement of optical markers is shown in Figure 7. A single sensor with Edison
® 

module was used for this experiment. 

 



 
Figure 7: Rigid Body setup of IMU with Infrared Optical Markers 

for Combined OptiTrack® and IMU Tracking     
 

We initially started from a rest position, carried out first set of sudden movement for 
computing temporal alignment between two systems. The first set of movements was 
also employed for hand-eye calibration (spatial frame alignment). Then various set of 
movements were performed for short-to-moderate durations with intervening rest 
positions to segment out these movements. The data obtained from two systems (after 
temporal and spatial frame alignment) were then compared. Both fast and slow 
movements with different degree of amplitude were performed in this experiment. 

In order to evaluate the robustness of our sensor fusion algorithm for orientation 
estimation against body accelerations and magnetic disturbances, we further 
performed experiment 3 and 4 respectively. In particular performance of our EKF#1 
(baseline) implementation against EKF#2 were compared.  For experiment 3, we 
again obtained the data of a single sensor segmented from 7x sensors stream, which 
was mounted on a stable platform and moved by right hand of the subject. Various 
arbitrary gestures with varying speed were performed, similar to experiment 1. These 
movement periods were interjected with static rest positions. The magnitude profile of 
acceleration during these movements is shown in Figure 13 (Results section). Apart 
from body vibrations (tremors), significant fast accelerations can be observed to occur 
during change from one rest position to another in the norm of observed acceleration. 
We chose intervening rest positions after movement periods, in order that filter 
response can be easily observed in the plots.  

For experiment 4, we chose the same set-up, except now we introduced hard and 

soft magnetic disturbance. The magnitude profile of these magnetic disturbances is 

easily observable in Figure 14 (Results section). We introduce these disturbances 

during rest periods to easily observe the resulting filter behavior. Soft iron 

disturbances are introduced by bringing in a cubic ferrous block of 5cm×5cm×5cm 

close to MIMU and are discernible by slight change of magnetic norm in Figure 14.  

For hard iron disturbances we used stack of small Neodymium magnets with varying 

strength (by adding to or removing from stack) in the range 100-500µT (our observed 

ambient indoor field strength was in the range 25-88µT and 25µT is mapped as unit 

norm in plot). Hard iron disturbance can be observed as sharp spike in Figure 14. 



6 Results and Discussion 

6.1 Advantage of High Rate Inertial Sensors Data acquisition 

The results of our first experiment are depicted in Figure 8 and 9 for accelerometer 
and rate gyro respectively for 100 Hz and 1000 Hz sample rate. It is important to 
observe in Figure 8 that the high frequency features present at 1000 Hz are quite 
under-sampled at 100 Hz in acceleration data.  

 

 
Figure 8: Accelerometer sampling at 100 Hz leads to sparse features in 

region of fast motion/body tremors etc.   

 

Apparently in Figure 9, rate gyro readings at 100 Hz appear good approximation 

of trajectory at 1000 Hz. However since in sensor fusion (sub-section 4.3) Equation 

10 represents only a first order integration model of Equation 7, we observe that the 

assumption regarding constant angular acceleration is not valid between two samples 

of rate gyro measurements at 100Hz. Hence during periods of fast motion, orientation 

integration error increases. 

Since the resulting integration error is cumulative, Equation 10 or any other 

approximate discrete model for integration of Equation 7 provides better accuracy 

with higher rate. Even with sensor fusion, during periods (or time steps) of bad 

magnetometer readings, our heading (yaw) estimates depend largely on rate gyro 

integration.  Unlike gravity, there is no absolute magnetic reference indoors, hence 

rate gyro integration errors only get accumulated slowly. Thus depending on accuracy 

and application, we must choose an appropriate rate of data acquisition from 

accelerometer and rate gyro.   



 

 
Figure 9: Sampling of rate gyro at 100 Hz, while trajectory at 1000 

Hz shows angular acceleration is not constant 

6.2 Comparison of IMU tracking with OptiTrack
®
 System 

In second experiment, we ran our EKF#2 implemented on Edison
® 

module of IMU 
tracking system and the ground truth was simultaneously obtained from submillimeter 
accurate OptiTrack

®
 system. The error in Euler angles w.r.t ground truth over 

multiple test sequences is summarized in Table 3. It shows that the error increases 
significantly for fast movements, but 95% of time the error remains in the range of 
±5

ο
. This finding is in agreement with [13] , which reports that accuracy of IMU 

tracking depends upon both the amplitude and frequency of movement. Our error 
performance is also better than that reported for Xsens MTw sensors, which only 
report static and dynamic RMS accuracy instead of 95% range. Xsen MTw series 
static accuracy for pitch/roll is reported 0.5

ο
 RMS and for yaw is 1.0

ο
 RMS, dynamic 

accuracy for pitch/roll is reported 0.75
ο
 RMS and for yaw is 1.5

ο
 RMS [1]. Compared 

with Xsen MTw series, we also report our accuracy for high rate dynamic movements 
of large amplitude (column-3 in Table 2), where filtering performance is crucial. 

TABLE 2: ERROR ANALYSIS 

 

At Rest Slow 

Movements 

Fast 

Movements 

Yaw error ±0.01 ±0.5 ±5 
    

Pitch error ±0.0025 ±0.25 ±4.25 

    
Roll Error ±0.15 ±1.25 ±5 

@ 100Hz Sampling rate of OptiTrack
®

 and IMU 

tracking. 95% of errors lie within reported limits 



Figure 10-12 display our results for yaw, pitch and roll angles (ZXY order) tracked via 
both OptiTrack

®
 and IMU based systems for test duration of 10 min. Only a part of 

sequence comprising of fast movements (comprising of 70 seconds) is shown for better 
visualization of amplitude changes. The inset plot in each figure tries to depict the error 
between two systems more clearly. 
 

 

Figure 10: Comparison of OptiTrack® and IMU Tracking    
(Yaw Angle- ZXY order) 

 

 

Figure 11: Comparison of OptiTrack® and IMU Tracking    (Pitch 
Angle- ZXY order) 

 



 

Figure 12: Comparison of OptiTrack® and IMU Tracking     
(Roll Angle- ZXY order) 

6.3 Robustness  against  Body Acceleration 

The accurate real-time performance of EKF#2 obtained in experiment 2, lies in strong 
rejection of acceleration induced errors and magnetic disturbances. It is compared 
with EKF#1 algorithm in experiment 3 and 4 to elaborate this feature further.  Figure 
13 describes the performance comparison of EKF#2 with EKF#1 in presence of 
strong accelerations. Only pitch angle output is shown, as both pitch/roll are affected 
by the acceleration in a similar manner. Also for ease of visualization, EKF#1 and 
EKF#2 outputs are shown with an offset (these overlap in real).  It can be seen that 
pitch angle output of EKF#1 is affected by even small accelerations (even due to 
tremors/vibrations) while that of EKF#2 is smooth. Also fast convergence of filter 
algorithm can still be seen despite strong rejection of acceleration, during pitch angle 
change to new rest position. 

 

Figure 13: Performance Comparison of EKF#1 and #2            
(outputs shown with offset), Rejection of Acceleration Errors 



6.4 Performance in presence of Magnetic disturbances 

A strong magnetic disturbance was introduced in experiment 4, as shown by changes 

in the norm of local magnetic field in Figure 14 (soft iron disturbances appear as 

smaller spikes in norm value, while hard iron disturbance induce a sharp spike in 

norm of magnetic field). Since the magnetic disturbance predominantly affect the 

heading (yaw) angle, therefore only a plot of yaw angle is shown. Again for ease of 

visualization, EKF#1 and EKF#2 outputs are shown with an offset (these overlap in 

real). The yaw angle estimation by EKF#1 was not robust to these magnetic 

variations, while EKF#2 has been shown to be less perturbed, despite magnetic 

disturbance. 

 
Figure 14: Performance Comparison of EKF#1 and #2 (outputs shown 

with offset), Rejection of Magnetic Disturbances 

Experiments were also made with Xsens MTi-28A##G## sensor running propriety 

XKF sensor fusion using Xsens MT manager. When subjected to same magnetic 

disturbances, the sensor lost its yaw orientation and drifted to align with direction of 

new magnetic field. XKF sensor fusion algorithm also shows a constant drift in yaw 

angle (due to residual gyro bias). The results of two sensor systems are compared in 

our supplementary video. 

7 Conclusion 

Using improved hardware, a low power high rate wearable MIMU based body 
tracking system has been designed to operate at 1 KHz (or lower sampling rates). The 
system is both non-invasive and ambulatory in view of its small size and onboard data 
storage. A real-time on-chip EKF robust to body accelerations and magnetic 
disturbances has been implemented on this embedded system with low computational 
latency. Our system provides great flexibility of use and is particularly well-suited to 
capture fast motion dynamics accurately during extreme activity and/or 
biomechanical applications, especially in indoor settings. The high rate of inertial data 



also provides intrinsic accuracy to sensor fusion as well as capture high frequency 
features for clinical diagnostics and biomechanical analysis in such ambient settings. 
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