
Improved AI Planning for Cooperating Teams of Humans and Robots

Stefan-Octavian Bezrucav, Burkhard Corves
Institute of Mechanism Theory, Machine Dynamics and Robotics

RWTH Aachen University
Eilfschornsteinstraße 18

52062 Aachen
bezrucav@igmr.rwth-aachen.de
corves@igmr.rwth-aachen.de

Abstract

Each human usually plans his or her future activities in ad-
vance, trying to select those actions and to sort them in such a
way that as many goals as possible are accomplished. The real
world is dynamic and some elements are characterized by a
high degree of uncertainty. Nonetheless, the humans manage
to adapt their plan fast and easy to the changes and problems
that occur, being able to recover or reorganize the activities
such that the goals can be further reached.
Considering the same requirements for adaptability, the auto-
mated task planning for systems with autonomous robots was
introduced. However, the existing task planning approaches
do not satisfy well enough the requirements from use-cases
with cooperating humans and robots, where beside the adapt-
ability, the computation time and the modelling possibilities
are of high importance.
Considering exactly the requirements from such scenarios,
in this work, the automated task planning is integrated in
a Three-Level Planning strategy. This strategy has enriched
modelling capabilities and ensures a high adaptability to un-
foreseen situations. Moreover, together with the Replanning
approach, with its parallel planning and dispatching features,
it results in qualitative plans that can be sent for execution in
a short period of time. The implemented methods were vali-
dated in a realistic simulation of an industrial environment.

Introduction
Task planning is one important software component of a
cognitive system used in any scenario in which robots are
involved, that selects and supervises the actors’ actions. This
component plays an even greater role in human-robot coop-
erating scenarios, as it must ensure the generation of reliable
and flexible plans, considering the presence and the needs of
the humans.

One of the most promising application areas for cooperat-
ing humans and robots, for the next couple of years, is in in-
dustrial scenarios. These scenarios are characterized by typi-
cal tasks and teams of actors. Some of the common tasks are:
bolts or screw tightening, glue application, glue spreading,
components assembly or disassembly, cleaning, transporta-
tion and inspection. Further on, in such environments mixed

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

teams of intelligent actors as humans and robots usually co-
operate for the execution of these tasks. This combination of
types of tasks and mixed team of actors comes with a set of
specific requirements for the planning system.

The most important requirement is time. In order to in-
crease the acceptance of the humans for the cooperative
work with autonomous agents the generation of a plan and
its dispatch, both at the beginning as well as in case that
a replanning is requested, must happen in a couple of sec-
onds. A deadline of five seconds is selected. Further require-
ments imply a high flexibility for the system, planning for
actors with different capabilities (e.g. humans and robots)
and planning for many goals (e.g. more than 10).

In this paper a complex planning strategy with special fea-
tures is presented. This strategy tries to integrate the best so-
lutions for the above mentioned requirements and thus, to
close the gap between the abstract planning and the real sce-
nario for which it is planned.

The paper is structured as follows. The next section pro-
vides an overview of task planning approaches for different
use-cases. Continuing, in the Preliminaries section a theo-
retical introduction to automated planning and a brief intro-
duction of the used framework is given. The main section of
this article contains the description of the Three-Level Plan-
ning approach and of the Replanning strategy with the par-
allel planning and dispatching features. Last but not least,
the implementation, the validation setup, the results and the
conclusions are presented.

Related Work
In the last years, task planning has became an essential
software module for all systems that integrate autonomous
robots. Different planning strategies and specialized features
were developed and are used in different scenarios.

Automated planning approaches are an important part of
the invoked planning strategies. (Keller, Eyerich, and Nebel
2010) have used such an approach for the planning of the
tasks that an autonomous service robot should execute in
a typical kitchen environment. Extensions for that are rep-
resented by an approach which considers automated task
planning on more levels (Buksz et al. 2018). The hierar-
chisation of the planning process on two levels reduces the

search space and thus, the planning time and increases the
solution quality, by maintaining the flexibility of the auto-
mated planning. The scenarios used for validation involved
the mission control for a long period of time of Underwater
Vehicles (AUVs).

Planning in environments where humans are also present
is considered in a couple of works. In order to take care of
the human’s presence, special planning approaches were de-
veloped. In (Cirillo, Karlsson, and Saffiotti 2009) the effects
of future human actions are considered for the planning of
the robot’s actions. The validation of this approach was done
within a household scenario, involving a vacuum cleaner and
a human. For collaborative tasks in production spaces, (Re-
iterer and Hofbaur 2017) present an extended approach for
planning: planning with opportunities. To the plan that was
generated to reach the goals ensuring safety conditions, op-
portunities, as optimizations (e.g. higher speeds) or short-
cuts were allowed. The work done by (Sanelli et al. 2017)
for short-term human-robot interactions, where the users do
not know what the capabilities of the robot are, include the
generation of a condition plan that considers in a structure
similar to a tree all possible outcomes of all actions. Thus,
the reaction times are very low.

Planning can be also done for teams of multiple
robots. MAPJA (Chouhan and Niyogi 2017) is a domain-
independent approach through which plans for multi-agent
systems are generated. The speciality of these plans is the
fact that they can integrate both individual and joint ac-
tions. Planning for multiple mobile robots, within a complex
framework which includes perception and execution mod-
ules, was presented in (Silva Miranda, de Souza, and Sousa
Bastos 2018). The planning was sustained by a multi-robot
trajectory planning which ensured non-collision paths and
thus influenced the way in which the actions were allocated
to the actors.

The planning module is usually integrated in a much more
complex framework. Continual planning which involves a
reactive loop consisting of an observation, a monitoring,
a planning and an execution module was deployed in the
TedyUp project (Dornhege and Hertle 2013), a scenarios
with a mobile manipulator in a household environment. An-
other framework which integrates Internet-of-Things sen-
sors and actuators with task planning for realistic robot con-
trolling in dynamic environments is presented in (Harman,
Chintamani, and Simoens 2017).

To our knowledge there is no work that combines all task
planning features presented in the related work and needed
for scenarios with a team of cooperating humans and robots.
The approach presented in this paper integrates character-
istics of the automated planning for dynamic environments,
the task planning for robots which are active in environments
shared with humans and task planning for multiple actors, as
part of a complex software framework. Further on, the sug-
gested implementation and integration of the task planning
module considers the requirements from scenarios with co-
operating humans and robots regarding the short planning
and dispatching times, modelling of actors with different ca-
pabilities, a high flexibility and for a high number of goals
(e.g. more than 10). Furthermore, the integration of the hu-

man in the planning process goes beyond the state-of-the-art,
as in the process, tasks are also allocated to humans, tasks
that should be executed in a given duration, but are charac-
terized by uncertainties both in the achieved duration and
effects and may also fail.

Preliminaries
From the different planning strategies, the focus of this pa-
per is set on the Automated planning, also known as AI Plan-
ning. This approach is presented in the following. Moreover,
as it is used in the special field of robotics the state-of-the-art
framework ROSPlan, that integrates the AI planning in the
ROS middelware, is also presented.

AI Planning Problem Formulation A propositional AI
planning problem can be represented as the tuple Π =
(F,A, I,G) (Kambhampati and Srivastava 1996), where:

• F is a set of Boolean propositions that describe the state
of the world

• A is a set of actions, for each of which a set of precondi-
tions, a set of effects and a cost are defined

• I is the initial state of the system, represented by instanti-
ations, as true or false, of all propositions from F

• G is the goal state of the system, represented by other
instantiations, as true or false, of all propositions from F

A solution for the planning problem is a plan π =
[a1, ..., an], an ordered sequence of actions. Before the ac-
tion ai can start, the propositions from its preconditions must
become true. The preconditions of a1 will be satisfied in the
initial state and the effects of action an will set the values
of the propositions such that the described state is the goal
state.

For the classical, propositional AI planning a series of
restrictive assumptions apply (Ghallab, Nau, and Traverso
2016). First, it is assumed that the state of the environment
can be mapped complete enough only through the proposi-
tions from F and the only changes that occur in the envi-
ronment appear only through the effects of the actions from
A. Second, no time is considered and thus, no concurrencies
between the actions are possible. Last, it is assumed that the
environment is always deterministic. Therefore, no uncer-
tainties can be considered. Given these restrictions the gap
between the modelled world for the task planning and the
real world is quite large. In order to reduce it the proposi-
tional temporal planning (Fox and Long 2003) was intro-
duced.

The propositional temporal AI planning formulation ex-
tends the one presented above through a more complex rep-
resentation of actions. The set F , the initial state I and the
goal state G remain the same, while the new set A con-
tains new type of actions. For each action ai conditions at
the start, at the end or during its entire execution, effects at
the start or at the end of the execution and a duration are de-
fined. With this formulation the time factor is introduced and
therefore, more realistic problems can be modelled. Action
synchronisations and actions concurrences are only some of
the new aspects that can be considered. The solution of a

propositional temporal AI planning problem is a schedule
σ = [〈a1, t1, d1〉, ..., 〈an, tn, dn〉], which integrates not only
a correct logical sequence of the conditions and effects, but
also the time ti when the action ai should start and its dura-
tion di.

Planning Domain Definition Language (PDDL) (Ghallab
et al. 1998) has became the standard language for the repre-
sentation of such planning problems. Beside its characteris-
tic syntax it imposes the splitting of the planning instance in
two parts, the domain and the problem. In the domain part
the used propositions, in PDDL named predicates, and the
available actions are defined. An example of such a predi-
cate and an action is represented in Listing 1.

(: p r e d i c a t e s
(agv_at_pose ?agv-agv ?pose-pose) . . .

)
(: d u r a t i v e− a c t i o n generic_action_1

: p a r a m e t e r s (?agv-agv ?tool-tool ?←↩
item-item ?pose-pose)

: d u r a t i o n (= ?duration (cost1))
: c o n d i t i o n (and

(at start (agv_at_pose ?agv ?pose))
(at start (agv_has_tool ?agv ?tool)) . . .

)
: e f f e c t (and

(at end (item_processed ?item) . . .
))

Listing 1: Example of PDDL predicates and actions in the
domain part

The problem part contains the definition of the used types,
of the initial and goals state. The initial position of the agv1
at tool bank 1, as well as the goal that item1 must be pro-
cessed can be encoded as presented in Listing 2.

(: o b j e c t s
agv1 agv2 - agv . . .)

(: i n i t
(agv_at_pose agv1 tb1_pose) . . .)

(: g o a l (and
(item_processed item1) . . .))

Listing 2: Example of the objects initialization and the
setting of the initial and goal states in PDDL problem part

ROSPlan ROSPlan (Cashmore et al. 2015) is a framework
that is specially developed to integrate AI planning tech-
niques, represented in the PDDL language, in the ROS mid-
dleware (Quigley et al. 2009). It contains more ROS nodes,
each being responsible for a specific processing step. It also
integrates a Knowledge Base. At the start of the planning
process, the pieces of information from the planning domain
and planning problem, and thus the initial state and desired
end state of the world, are saved in the Knowledge Base.
During the execution of the actions the state of the world
changes and the values of the propositions from the knowl-
edge base are adapted correspondingly. Therefore, the ac-
tual state of the world is always available and can be put at

the disposal to the other nodes, when needed. The nodes of
ROSPlan are usually executed in a sequential order:

1. In the Problem Generation node a planning instance,
based on the status of the environment and on the de-
fined goals, as saved in the knowledge base, is created
and saved to corresponding files

2. In the Planner Interface node, the previously created files
are passed to an automated planner which generates a plan
in a text file

3. In the Plan Parser node, the generated plan is parsed to
computer data

4. In the Plan Dispatcher node, the actions of the plan are
dispatched corresponding their order to the low-level ex-
ecution modules through specific interfaces

5. In the Action Interface nodes, the interfaces to the low-
level execution modules are implemented. These inter-
faces are defined for each PDDL action.
The automated planners used in the node are search algo-

rithms with specialized heuristics that find a solution (e.g.
a plan) for any given planning instances, passed as PDDL
problem and PDDL domain. For this work the temporal au-
tomated planner OPTIC (Benton, Coles, and Coles 2012)
was used.

The Plan Dispatcher node contains a method, the Esterel
plan dispatcher, specially developed for temporal task plan-
ning problems, in which not only the logical sequence of
the condition and effects, but also the dispatch time and the
durations of the actions are considered.

Adapting AI planning for scenarios with
cooperating humans and robots

In this section the new planning approach with its particular
features is presented. This approach is centred on AI Plan-
ning and it is integrated in the ROSPlan framework. The
developed methods consider the requirements of scenarios
with a team of cooperating humans and robots mentioned in
the first sections.

Before starting with the presentation of the methods the
considered types of actors will be described in more detail.
There are two types: humans and complex robots in form of
a serial manipulator on a mobile platform. Both types of ac-
tors can execute two types of basic actions ba: move in the
x−y plane on the floor and move the tool center point (TCP)
or the hand along a trajectory. Thus, we can define complex
actions ai composed of more basic-actions baij . Each com-
plex action ai, called from now on only action, has a fixed set
of basic-actions baij , that are always executed in the same
order. For example, the load action al consists of three basic
actions balj : move TCP to table and grab object, move TCP
to pose above the mobile platform and release object, move
TCP to home position. The only degrees of freedom for the
actions are represented by the parametrization and duration
of each of the basic-actions baij of an action ai. More ac-
tions ai can be grouped together in a cluster.

In the following sub-sections the Three-Level Planning
approach and a time effective replanning strategy are ex-
plained.

Cluster 1

G1

G2
G3

First Planning Level

Cluster 2

G4

G5

G6

G7

...

Cluster n

G...

G...

Second Planning Level

...
Planned Actions for Cluster 2 Goals:
(0 . 0: move agv1 pose1 pose2 [5])
(5 . 0: load agv1 item1 pose2 [2])
(7 . 0: move agv1 pose2 pose4 [6])

Third Planning Level

State Machine for Action load

BA1 BA2 BA3 BA4
...

Figure 1: Structure of the Three-Level Planning approach
with an example

Three-Level Planning
The need of combining different types of planning comes
from the fact that each planning strategy has its advantages
and disadvantages, but when combined together generate
better results than each individual one. We propose a Three-
Level Planning approach as presented in Figure 1. This is
similar to a hierarchical approach. On the first level all given
goals are grouped in clusters. On the second level automated
AI planning approaches are invoked to bring the system in a
state fulfilling the goals from each of the clusters. On the last
level, state-machine representation of the actions planned on
the second level are described. The state-machine are com-
posed of hardware-close basic actions.

First Planning Level One disadvantage of search prob-
lems and, thus, of automated planners is that by increasing
the number of degrees of freedom of the problem, it becomes
more difficult for the solving algorithm to find an optimal so-
lution. One such degree of freedom for planning problems is
represented by the goals that must be achieved. The more
goals the planning instance has, the more challenging it will
be for the algorithm to find an optimal plan, such that each
of these goals are reached.

In order to reduce the search space and increase the qual-
ity of the plans obtained on the Second Planning Level, all
original goals are grouped in clusters and passed to the next
level in a given order. A visual example for clustering is pre-
sented in the top of Figure 1.

There are two degrees of freedom that can influence the
quality of the results. The first one represents the criteria,
based on which the clusters are created. The optimization
aim for this process is to find the clustering function that
maximizes the synergies between the goals in a cluster, and

reduces the synergies between the clusters. Different clus-
tering functions can be used. They are usually scenario spe-
cific and imply the knowledge of an expert about the sys-
tem in determining the most suitable clustering function. A
first clustering methods is the spatial clustering of the goals
which implies the grouping of the goals that are reached at
poses close one to another. Another alternative is to deter-
mine in a first step the number and types of actions that must
be executed to fulfil each of the goals. Afterwards the goals
can be grouped such that the number of actions correspond-
ing to the goals of one cluster are almost the same over all
clusters. A last clustering alternative presented in this article
relates to the types of the goals. In each cluster n goals of at
least two different types are grouped.

The second degree of freedom for the First Planning Level
is given by the order in which the generated clusters are
passed to the Second Planning Level. This order can once
again be determined by a function of the characteristics of
the cluster’s elements.

The main advantage of creating the clusters is represented
by the reduction of the search space for the Second Plan-
ning Level. The downside of this method is represented by
the fact that through the grouping process not all syner-
gies between the goals are considered, which leads to sub-
optimality. Based on how well chosen the bundling criteria
and ordering functions are, the distance to the optimum can
be quite major influenced.

Second Planning Level The planning on the second level
is done for a cluster of goals using automated planning ap-
proaches. An example for this step is presented in the middle
of Figure 1.

On this planning level the actors with their capabilities
and possible actions, their initial state and that of the envi-
ronment as well as the goal state, represented by the goals
from the passed cluster, are modelled in PDDL. Automated
planning approaches are chosen for this level due to the flex-
ibility that they bring with them. Automated planners are
used to find a plan which takes a system from any given
initial condition to a state in which the goals are achieved.
Therefore, this level brings the adaptability of the system
both to new or different goals, but also for the cases in which
a generated plan can not be executed until the end due to a
failure and a replanning must occur from a new initial state.

For scenarios with cooperating humans and robots both
the logical order of the actions, based on their precondi-
tions and effects, and their durations are of importance. Fur-
ther on, it must be planned simultaneous for multiple actors,
which implies parallel actions executions and synchronisa-
tion issues. Based on these aspects the planning instance
must be modelled as a temporal planning problem, as pre-
sented in the Preliminaries section.

Planning for multiple actors of different types and with
different characteristics also requires specialized PDDL
predicates that ensure that only the qualified actors or only
the actors that have the required tools are allowed to exe-
cute a specific action. An example for that are the actions
generic action 1 and generic action 2 that can be exe-
cuted only if the actor has the corresponding tool. Thus the

predicates mentioned in Listing 3 must be introduced and
used as a precondition in those two actions.

(tool_for_generic_action_1 ?tool - tool)
(tool_for_generic_action_2 ?tool - tool)

Listing 3: Modelling of different capabilities in PDDL

In the scenarios to be modelled, it must be ensured that the
movement of the actors can be controlled correctly. Partic-
ular predicates must be introduced to manage occupancy of
the positions where the actions should be executed. For ex-
ample, through a free station predicate it can be ensured
that only one actor is at a specific station at a certain time.
In other words, at the time that one actor reaches a posi-
tion at the end of a move action, the corresponding predicate
free station must have been set to true by the effects of the
move action of another actor that has already departed from
there. A last important predicate through which the assign-
ment of the actions to the actors is controlled is not acting.
If required, by using this predicate it can be ensured that
each actor executes its actions in a sequential matter, the
parallel execution being possible only for actions done by
different actors.

Third Planning Level On the third level the state ma-
chines for the PDDL actions planned on the second level are
created. An example for such a state-machine is presented in
the bottom of Figure 1.

In the general formulation, the state machine for an action
ai implements the order of the corresponding basic-actions
baij that must be executed. Further on, recovery procedures
are also integrated. If during the execution of the action ai
one of its basic-actions baij has failed, that specific basic ac-
tion baij is retried. Upon a new failure, the execution of the
action ai to the desired state is abandoned and it is tried to
bring the system to its state before starting the execution of
action ai. This is done by reverting its already finished sub-
actions. Upon succeess, the system comes back to a known
state. If during the reverting another basic actions fails, the
entire action ai is marked as failed and the human interven-
tion is asked for. The entire recovery procedures are mod-
elled similar to a process done by a human, that would try
to finish the task, retry on failure and if he or she gets stuck,
tries to bring the process to the initial state before a com-
pletely new try.

The combination of these Three-Level Planning types of
planning brings a series of advantages to the planning pro-
cess, which are of high importance for scenarios with coop-
erating humans and robots. Creating clusters of goals and us-
ing fixed state-machines for the actions ai, reduces the total
search space and thus, the planning time. Using automated
planning with PDDL on the Second Planning Level gives
the system the needed characteristic to adapt to changes or
failures, common in use-cases in which humans are also in-
volved. The only disadvantage that must be mentioned is
with respect to set of synergies that cannot be considered.

Replanning
Beside the Three-Level Planning approach, the replanning
feature improves the integration of planning in real systems.
Due to the dynamicity of the environment and the coopera-
tion between humans and autonomous robots, many replan-
ning requests are expected.

There are two types of situations when a replanning is
needed: if one of the already planned actions has failed or
if the list of goals that must be achieved has changed. In
case of a replan request, the system must not only be able to
automatically create a new plan, but also this must be ready
for dispatch in a couple of seconds.

Given the Three-Level Planning approach, the generation
of a new plan happens on the second level. It is assumed
that a replanning call does not influence the bundling rules
or the order in which these clusters are offered to the second
level. Further on, the fixed order of basic-actions execution
from the third level of the planning can not be influenced. In
this context the critical replan time results from the Second
Planning Level.

The delay that occurs due to a replanning has two reasons.
The first one represents the time during which the automated
planner searches for a new solution, tplan. The second one
relates to the way in which the AI planning works. A new
plan can be created only from a state of the environment and
of the actors that can be encoded with the available, but lim-
ited, PDDL predicates and PDDL types. In scenarios with
cooperating humans and robots there are usually more ac-
tors involved. In most cases the replan request comes only
from one of the actors, while the other actors are still exe-
cuting one of their tasks. In such cases a replanning cannot
be started directly at that specific time point, when some ac-
tions are still being executed, as the system is not in a state
that can be encoded in PDDL with the given artefacts. Thus,
it must be waited until all actions that were active at the time
of the replan request have been finalized and the system has
moved to a known state, and afterwards the planning process
can be started. This waiting time is represented by the vari-
able tto known state. In this case the total replan time treplan
can be computed as:

treplan = tplan + tto known state. (1)

In order to reduce treplan one solution would be to pre-
empt all active actions when a replan is requested and in
this way to obtain a stationary state from which planning
can start. There is one important disadvantage for this pro-
cedure. The executing actions must be pre-empted only to
specific states that can be encoded with the given PDDL
artefacts. In most cases, for these specific pre-empted states
special PDDL types or actions are needed, that would not be
required to obtain the original plan. By increasing the num-
ber of PDDL artefacts for the pre-empted states, the search
space also increases, which results in longer and more in-
effective computations of new plans, even when no failure
occurs.

The same PDDL load action, as the one previously pre-
sented, is used in the following example. Assume that this
action must be pre-empted during one of its sub-actions. In
this case the actor will be in an intermediate state for the

Schedule for the original approach:

Action 1.1

Action 1.2
Plan

Action 2.1

Action 2.2

Schedule for the approach with parallel planning:

Action 1.1

Action 1.2

Plan

Action 2.2

Action 2.1

Schedule for the approach with parallel planning
and dispatching:

Action 1.1

Action 1.2

Plan Action 2.1

Action 2.2

0 1 2 3 4 5 6 7
t

Replan requested

Figure 2: Qualitative comparison of the schedules obtained
with the original approach and with the approaches en-
hanced with the parallel planning and dispatching features

load action, that can not be encoded with the given predi-
cates. For example the item is neither on the item bank nor
on the mobile platform. Thus, new predicates and eventu-
ally new actions are required. But these specific predicates
and actions will be needed only for such situations, as for the
generation of a valid plan assuming no pre-emptions they are
not required. Such new predicates and actions just increase
the search space.

Given the strict time requirements and the restrictions of
the automated planning with the PDDL representation the
above presented approaches are not suitable. A solution for
these challenges is the parallel planning and dispatching
strategy presented in the following section of this paper.

Parallel Planning and Dispatching The main idea of par-
allel planning feature is to start the search for a new plan on
the second level, immediately after the replan command is
sent. Further on, the parallel dispatching imposes the im-
mediate dispatching of the newly generated plan, possibly
before all actions of the previous plan have been finished.

There are two important characteristics for the parallel
planning feature. First, all actions that were being executed
when the replan was requested will not be pre-empted, but
they will be executed until they finish. Second, the initial
state from which it will be replanned is that actual state of
the system to which the effects of the executing actions are
added. In other words, it is the future state, assuming that the
active actions will successfully be finished.

With this procedure, the generation of a new plan is done
in parallel with the execution of the old one. However, the
new plan is dispatched only after the old active actions have
been finished. Therefore, the replanning time is reduced to

the maximum between the plan time and the time needed by
that active action to finish that will be finalized the latest:

treplan = max(tplan, tto known state). (2)

In order to further reduce the replan time the parallel dis-
patching approach is also integrated. This implies that the
new plan is dispatched immediately after the planning pro-
cess on the second level has been finished and possibly be-
fore all active actions from the previous plan have been final-
ized. With this procedure those actions of the new plan that
can be activated given their preconditions, will be started,
while, in parallel, some of the old active actions are still run-
ning.

A qualitative comparison between the non-modified ap-
proach, the approach with parallel planning and the ap-
proach with parallel planning and dispatching can be seen
in Figure 2. The duration of the scheduled actions obtained
with the first approach is the longest as a new planning
is started only after the active actions have been finished
and the new actions are dispatched afterwards. With the ap-
proach enhanced with the parallel planning feature, the new
plan is computed in parallel to the execution of the old ac-
tions. There is still a dead time until Action 1.2 has been fin-
ished and the new actions can be dispatched, but the entire
duration has been reduced. For a more important reduction
of the total time the approach with the parallel planning and
parallel dispatching should be used. This is a best-case ex-
ample when the reduction of the total plan time is consider-
able. In the worst-case the Actions 1.1 and 1.2 would finish
at the same time, and thus the new actions can be started
only after the new plan is generated. In this case no parallel
planning and no parallel dispatching is possible.

A critical assumption was made for the new plan: it was
presumed that the active actions will be successfully final-
ized. For the case that they will not finalize as expected a re-
covery procedure must be implemented. This generates the
need to implement a ”supervisor”, a mechanism that checks
what has happened with those active actions and to request
a new replanning if one of them has failed.

Based on the way in which the recovery actions are im-
plemented on the Third Planning Level, if one action has
failed during its execution, it will be undone to its start state.
This is an important knowledge that will be used as a new
assumption for the future state for which the new planning
process will be started. In the case that the recovery action
has also failed, the human intervention is asked for and the
entire planning process over all three levels is interrupted.

Implementation
The two approaches presented above, Three-Level Planning
and Replanning, were integrated in ROSPlan, the framework
presented in the Preliminaries section.

The functionalities of the main nodes from ROSPlan:
Problem Generation, Planner Interface, Parsing Interface,
Esterel Dispatcher, Action Interface and of the Knowledge
Base keep the functionalities presented in the Preliminaries
section. In this new implementation, two nodes, the Goal
Clustering and the Supervisor and a second Knowledge
Base, PKB, are added and the Esterel Dispatcher and the

Problem
Generation

Goal
Clustering

Planner
Interface

Parsing
Interfaces

Esterel
Dispatcher

Supervisor

PKB

KB

Action
Interface 1

Action
Interface 2

...

Figure 3: Nodes structure with two Knowledge Bases and
the Supervisor

Action Interface nodes are modified. The new structure of
the framework is presented in Figure 3. The blocks from the
left side of the figure represent the original modules of the
ROSPlan framework, while the blocks in the lower and in
the central part the new ones. The two knowledge bases and
their connections to the nodes of the modified framework
can also be visualized.

In essence, the suggested Three-Level Planning approach
was integrated in the ROSPlan framework with the introduc-
tion of the Goals Clustering module, its connection to the
available modules and the modification of the Dispatcher
and Action Interfaces modules. The Goals Clustering mod-
ule implements the functionalities for the First Planning
Level. The old ROSPlan modules represent the Second Plan-
ning Level. The Third Planning Level was implemented by
replacing the simple logic in the Action Interface module
with the state-machines composed of more basic actions and
recovery procedures, corresponding for each defined PDDL
action.

While the implementation for the Three-Level Planning
approach is quite straight-forward, the implementation of
the Replanning feature needs a more in-depth description.
Before detailing it, the reason for the introduction of a sec-
ond knowledge base and the characteristics of both of them
must be discussed. In the KB knowledge base, the actual
status of the system is saved. Moreover, the values of the
propositions from this knowledge base are modified in real
time when the effects of the executing actions occur. The
KB Knowledge Base is only connected to the EsterelDis-
patcher module. The second knowledge base, PKB is used

for the parallel planning procedures. It contains the actual
state of the environment, modified by applying the effects
of the active actions, those actions that are being executed
when a replan is requested. In other words, it contains the
state in which the system will be after all active actions have
been finished.

Based on the implementation of the state-machine in the
third planning level one active action is executed to its end
state if no double-failures have occurred. If these failures
have occurred, the action is executed to its start state. In the
first case, the future state in which the system will be, if ev-
erything is executed as planned, corresponds to the actual
state, to which the end effects of the executing action are ap-
plied. In the second case, if the action is executed to its start
state, the future state in which the system will be, if every-
thing is executed as planned, corresponds to the actual state,
to which the start effects of the executing action are undone.
This can be exemplified with the simple move action. If the
actor is executing the move action from pose1 to pose2,
when a replan is requested, the future state of the world that
will be saved in PKB is the one in which the actor is at
pose2. If the actor is executing the recovery procedure for
the move action and travels from pose2 to pose1, the ini-
tial state, the future state of the world that will be saved in
PKB is the one in which the actor is at pose1. The PKB is
connected to the other three modules of ROSPlan Problem
Generation, Planner Interface, Parsing Interface.

Given the description of the two knowledge bases, the
logic implemented in the Supervisor module is detailed. Its
main component is the Plan function. This function is called
at the beginning of the session and each time when a re-
plan is requested. In the first step the state of the system is
copied from KB to the PKB. Given the actions that were
active at the time point when the replanning was requested
and their state (e.g. normal execution to the end state or re-
covery execution to the start state) the corresponding effects
are applied to the propositions from PKB. In this way, the
values of the propositions of PKB correspond to the state
in which the world will be when all active actions have fin-
ished. Knowing this future state a new planning problem is
defined, solved and parsed. The generated plan is sent after-
wards for dispatching. An overview of the procedures can
be seen in Algorithm 1.

The changes done in the EsterelDispatcher are related to
those actions that are active at the time point when a replan-
ning is called. They are gathered and sent to the Supervisor.
Further on, they are not pre-empted when the new plan ar-
rives, as in the original implementation.

Validation
In the first part of this section the scenario that was used
for validation is presented. In the second part the results are
outlined and discussed.

Description of the Scenario
The chosen scenario is an industrial scenario in which a team
of actors is executing a series of specific tasks. This scenario
is simulated in the Gazebo programme.

Algorithm 1 Plan
1: procedure PLAN()
2: PKB ← KB
3: for ai ∈ active actions do
4: if ai to end state then
5: Set the at end effect of the ai in PKB
6: else if ai to start state then
7: Undo the at start effects of the ai in PKB
8: end if
9: end for

10: Call the Problem Generation service
11: Call the Planner Interface service
12: Call the Parsing Interface service
13: Call the Esterel Dispatcher service
14: end procedure

The scenario has two components: the simulation of the
physical world and a software module which contains the
extended ROSPlan framework. The simulation of the physi-
cal world is further composed of two types of elements: the
environment and the actors. For the presented results two
mobile actors have been used. They can either be two au-
tonomous mobile robots or a human and an autonomous mo-
bile robot. Both types of actors can execute the same basic-
actions: move in the x − y plane and move their arm along
a given trajectory. For simplicity reasons, in the simulation
itself two autonomous mobile robots are used. It must be
noted that this does not influence the generality of the pre-
sented methods, as each of the autonomous mobile robots
are specialized for specific actions. Moreover, those actions
that can be executed by both actors can be parametrized dif-
ferently for each of them. The autonomous mobile robots
contain a mobile platform to which a robotic arm is at-
tached. Their basic actions are simulated through ROS spe-
cific MoveBase and MoveIt algorithms, that will not be fur-
ther detailed here. One aspect that should be mentioned is
that each of the actors is aware only about its environment
and they do not move in the x − y plane along pre-defined
paths. This results in natural behaviours as the exploration of
new paths to the destination, last-second avoidance manoeu-
vrers for almost-collision situations, situations in which the
robots get stuck or navigation or localization algorithm fail.
These behaviours make the simulations more realistic, by in-
troducing the specific uncertainties and failures. The two au-
tonomous robots and the used environment are represented
in Figure 4.

The environment consists of two tool-banks, two item-
banks and two work benches. The tool-banks have only one
specific x− y pose before them, that the robot must reach in
order to execute further related actions. They are to be seen
in Figure 4 where the mobile robots are parked. In the pre-
sented scenario, each of them has one different tool. The
item-banks also have only one specific x − y pose aside
of them and are represented in the right side of Figure 4.
They have stored more items. The work benches can be eas-
ily identified in Figure 4 as each of them have two specific
poses, one at each side, where the processing actions are ex-

Figure 4: Two actors and the environment in the Gazebo sim-
ulation

ecuted.
Beside the physical world, the ROSPlan framework ex-

tended with the Three-Level Planning approach and the
Replanning feature is integrated in the system. For its
different modules and features the following configura-
tions are used. For the First Planning Level, the cluster-
ing function which groups n goals of at least two dif-
ferent types of goals is selected. For the Second Plan-
ning Level, the PDDL domain and problem are defined.
The initial state, the actions that can be executed by the
actors and the goals are presented in the following. At
the initial state two different tools are located, one at
tool bank 1 and one at tool bank 2. nitems items are
distributed between item bank 1 and item bank 2. The
autonomous robots start from the parking pose in front
of the tool banks. The actions that the robots can exe-
cute are move base, attach tool, detach tool, load item,
unload item, generic action 1 and generic action 2.
The generic actions must be executed at the work bench
and each of them can be executed only with the corre-
sponding tool: tool 1 for generic action 1 and tool 2 for
generic action 2. Further on, generic action 1 implies
the processing of an item, while generic action 2 the ex-
ecution of a specific task taski. The goals that must be
reached are that all items must be processed and all spe-
cific tasks taski must be fulfilled. Further on, for each of
these goals is set at which side of which work bench they
must be fulfilled. Two examples of how to reach each of the
two goals are detailed. In order to process item 1, agv 1
attaches the tool 1 at tool bank 1, moves to item bank 2
where item 1 is located and loads it. Afterwards it moves
to work bench 21, the specific pose from which it must
be processed, unloads the item and executes the final ac-
tion on the item, generic action 1, to reach that goal. In

order to execute a task i, agv 2 attaches the tool 2 at
tool bank 2, moves to work bench 22 the specific pose at
which the task must be fulfilled, and carries out the task
with a generic action 2 action. For the Second Planning
Level, the parallel planning and dispatching features are ac-
tivated. For the above presented PDDL actions, on the Third
Planning Level, the corresponding state-machines are de-
fined. The move base action contains one move basic ac-
tion, while all other actions contain between three and five
trajectory execution basic actions.

Results
In the first part of the subsection the testing methodology
for the new features is detailed. Afterwards, the results are
discussed.

For the Three-Level Planning approach two features are
suggested in this paper through which the search space can
be reduced: the clustering on the first level and the state-
machines on the last level. Each of these features was indi-
vidually tested. Further on, the influence of the parallel plan-
ning and dispatching approach on the execution was anal-
ysed by imposing two types of replan situations. In the first
one, in the case that one of the agvs did not have any further
actions to execute, the goals of the next cluster were added
to the goals not yet achieved and a replan was called. In the
second one, action failures were imposed. For all tests the
above presented scenario was used.

In the first series of tests the state machines from the Third
Planning Level were removed and the corresponding basic
actions were implemented as PDDL action on the Second
Planning level. The problem instance turned out so com-
plicated that neither the planner OPTIC nor LPG returned
a suitable result after more than 60 second of computation
time. This emphasises the need of a Third Planning Level
for those basic actions. Further advantages of that level are
the recovery actions that were not translated in this test in
PDDL actions, as this would further complicate the planning
instance.

The next set of tests was concentrated on the cluster-
ing method integrated in the first level of the Three-Level
Planning approach. In the considered industrial scenario, 16
goals, of two types, item processed and task executed,
are declared. The used clustering function selects for each
group n goals of type item processed and n goals of type
task executed.

Test1 Test2 Test3 Test4 Test5 Mean
[s] [s] [s] [s] [s] [s]

n = 8 516,5 490 510 481 528 505

Table 1: Durations of tests with no clustering

In table 1 the durations of the simulations are presented.
With n = 8 in this test series, all goals are sent from the
beginning to the Second Planning Level and, thus, no clus-
tering was done. The mean duration over 5 runs was 505
seconds. These values are used as reference for the follow-
ing validation procedures.

Test1 Test2 Test3 Test4 Test5 Mean
[s] [s] [s] [s] [s] [s]

n = 2 488 475 483 477 479 480
n = 4 535 531 537 527 559 538

Table 2: Durations of tests with clustering

In the next step, the parameter of the cluster function n
was set to 2 and to 4. In these simulations a new cluster of
goals was sent to the second level only after all previously
sent goals were achieved. The durations of the correspond-
ing simulations are presented in table 2. It can be observed,
that the mean duration for n = 2, of 480 seconds, is lower
than the mean duration of 505 seconds obtained during the
tests with no clustering. Therefore, the goals are reached ear-
lier. On the other hand, the longer durations for the tests with
n = 4 can be explained by the special goals for this plan-
ning instance and the resulted plans. In these plans one of the
agvs finishes its actions much earlier than the other one and
must wait for it, until a new plan can be generated. These
waiting time should be reduced through the parallel plan-
ning and dispatching feature which was enabled for the next
set of tests. The obtained results can be seen in table 3.

Test1 Test2 Test3 Test4 Test5 Mean
[s] [s] [s] [s] [s] [s]

n = 2 482 468 494 480 476 480
n = 4 499 475 477 467 470 477

Table 3: Durations of tests with clustering and parallel plan-
ning and dispatching

For the case n = 2 the results do not improve. Because
these clusters have only 2 goals of each type, efficient plans
are generated from the beginning, in which the waiting times
are low. Through the activation of the parallel features noth-
ing changes. On the other hand, a significant improvement
can be observed for the tests with n = 4. By directly re-
planning and dispatching the new plan, the waiting times
are reduced drastically.

ppd Test1 Test2 Test3 Test4 Test5 Mean
[s] [s] [s] [s] [s] [s]

no 248 232 247 285 321 266
yes 223 208 210 240 232 222

Table 4: Durations of tests with 4 goals and action failures

In the last series of tests the advantages of the parallel
planning and dispatching features were validated in use-case
in which during the execution more actions fail. For the first
use case, 4, and for the second, 6 goals were set. In order
to impose action failures all work bench poses were blocked
by a box. This resulted in failures of the move actions to the
goal poses. After the failure of such an action, that corre-
sponding box was removed.

The results obtained over five tests, for 4 goals (Table 4)
and for 6 goals (Table 5), with fourmove actions failed, with

ppd Test1 Test2 Test3 Test4 Test5 Mean
[s] [s] [s] [s] [s] [s]

no 325 344 353 348 310 336
yes 334 333 312 310 290 315

Table 5: Durations of tests with 6 goals and action failures

the parallel planning and dispatching (ppd) feature activated
(yes) and deactivated (no) are presented. It can be seen that
through the parallel planning and dispatching feature impor-
tant waiting times are reduced almost to zero, resulting in
much shorter executions.

Conclusion
In this paper a new modelling approach for task planning
and scheduling is presented, which is specially developed
in order to accommodate the requirements from scenarios
involving collaborating teams of humans and robots.

The Three-Level Planning approach is based on automatic
planning strategies and is constructed around the ROSPlan
framework. It consists of a goals clustering level, an auto-
mated planning level and a hardware-close level for which
state-machines containing basic actions and recovery pro-
cedures are implemented. Beside this approach the parallel
planning and dispatching features were developed, through
which the waiting times that occur due to replan requests
are minimized. The presented methods enhance the planning
system with a set of new features, filling the research gap
that did not allow a realistic planning procedure for teams of
cooperating humans and robots.

Acknowledgements
This article was created as part of the Sharework project,
that has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No. 820807.

References
Benton, J.; Coles, A.; and Coles, A. 2012. Temporal plan-
ning with preferences and time-dependent continuous costs.
In McCluskey, L.; Williams, B.; Silva, J. R.; and Bonet, B.,
eds., Proceeding of the Twenty-Second International Con-
ference on Automated Planning and Scheduling. AAAI
Press.
Buksz, D.; Cashmore, M.; Krarup, B.; Magazzeni, D.; and
Ridder, B. 2018. Strategic-tactical planning for autonomous
underwater vehicles over long horizons. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 3565–3572. IEEE.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtós, N.; and Carreras, M.
2015. Rosplan: Planning in the robot operating system. In
Brafman, R.; Domschlak, C.; Haslum, P.; and Zilberstein,
S., eds., Proceedings of the Twenty-Fifth International Con-
ference on Automated Planning and Scheduling, 333–341.
Palo Alto, California: AAAI Press.

Chouhan, S. S., and Niyogi, R. 2017. Mapja: Multi-
agent planning with joint actions. Applied Intelligence
47(4):1044–1058.
Cirillo, M.; Karlsson, L.; and Saffiotti, A. 2009. Human-
aware task planning for mobile robots. In Proceeding of the
14th International Conference on Advanced Robotics, 1–7.
Stuttgart: Gesellschaft für Produktionssysteme.
Dornhege, C., and Hertle, A. 2013. Integrated symbolic
planning in the tidyup-robot project. In Designing intelligent
robots, Technical Report / Association for the Advancement
of Artificial Intelligence SS. Palo Alto, Calif.: AAAI Press.
18–20.
Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. Journal of Arti-
ficial Intelligence Research 20:61–124.
Ghallab, M.; Knoblock, C.; Wilkins, D.; Barrett, A.; Chris-
tianson, D.; Friedman, M.; Kwok, C.; Golden, K.; Pen-
berthy, S.; Smith, D.; Sun, Y.; and Weld, D. 1998. Pddl -
the planning domain definition language.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2016. Automated
planning and acting. [New York, NY]: Cambridge Univer-
sity Press.
Harman, H.; Chintamani, K.; and Simoens, P. 2017. Archi-
tecture for incorporating internet-of-things sensors and actu-
ators into robot task planning in dynamic environments. In
2017 IEEE International Symposium on Robotics and Intel-
ligent Sensors (IRIS), 13–18. IEEE.
Kambhampati, S., and Srivastava, B. 1996. Universal classi-
cal planner: An algorithm for unifying state-space and plan-
space planning.
Keller, T.; Eyerich, P.; and Nebel, B. 2010. Task planning
for an autonomous service robot. In Dillmann, R.; Bey-
erer, J.; Hanebeck, U. D.; and Schultz, T., eds., KI 2010:
Advances in Artificial Intelligence, 358–365. Berlin, Hei-
delberg: Springer Berlin Heidelberg.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. 2009. Ros: an open-
source robot operating system. In Workshop on Open Source
Software in Robotics.
Reiterer, B., and Hofbaur, M. 2017. Opportunistic plan-
ning with recovery for robot safety. In Kern-Isberner, G.;
Fürnkranz, J.; and Thimm, M., eds., KI 2017: Advances in
Artificial Intelligence, volume 10505 of Lecture Notes in
Computer Science. Cham: Springer International Publish-
ing. 352–358.
Sanelli, V.; Cashmore, M.; Magazzeni, D.; and Iocchi, L.
2017. Short-term human-robot interaction through condi-
tional planning and execution. In Barbulescu, L., ed., Pro-
ceedings of the Twenty-Seventh International Conference on
Automated Planning and Scheduling. Palo Alto, California,
USA: AAAI Press.
Silva Miranda, D. S.; de Souza, L. E.; and Sousa Bastos,
G. 2018. A rosplan-based multi-robot navigation system.
In 2018 Latin American Robotic Symposium, 2018 Brazil-
ian Symposium on Robotics (SBR) and 2018 Workshop on
Robotics in Education (WRE), 248–253. IEEE.

