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Abstract. The ability for machines to compose novel, interesting and
human-esque music is an important and recurring theme in the history
of computer music. Modern staff notation remains the most common
tool for music composition, and despite the emergence and abundance
of highly flexible computer-based score editors, efforts to incorporate
generative music techniques into such systems and subsequent composer
workflow are seldom explored. This paper explores and develops both
theoretical and practical models that address these concerns, and present
these in the context of a software prototype. The paper is constructed
as a work in progress, detailing the work so far and how future research
will be conducted.
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1 Introduction

Generative music, automated composition and algorithmic music are interchange-
able terms referring to a formal process in which music is made with minimal
human intervention [1]. Wooller et al [2] define generative music as a process
whereby the output of some operation has more general musical predisposition
than the input data (e.g. parameters) and the size of such data (e.g. notes) has
increased. Generative music is used primarily in one of two contexts:

– For live music performance, where each recital is different to the next, for
example, Terry Riley’s in C [3].

– For a fixed composition, where generative processes are used to create a
static composition, performed by musicians that is the same for each recital,
for example Melomics [4].

The system discussed here is the latter type.
Contemporary generative music systems and languages often require the ex-

pression of generative algorithms using programming language syntax, a skill
that must be developed by composers in addition to western score notation.
For example, Sonic Pi [5], Impromptu [6] and Supercollider [7] to name a few,
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provide tools supporting generative music but require expert knowledge of the
system and require a transition into a different style of composition workflow.
Many other systems such as Neural Networks and Evolutionary techniques of-
ten require the user to be competent with the underlying mathematical models,
before being able to utilise them as tools for music composition, these systems
are designed primarily for computer scientists, not musicians.

Open Music [8] is an environment for music composition that uses visual pro-
gramming languages for the generation or manipulation of musical material. This
provides a lower entry threshold than more traditional programming languages,
and also allows familiar items such as scored elements to be retained. Nash’s [9]
Manhattan programming language extends a music tracker environment with
spreadsheet based programming, therefore allowing the user to experiment with
rule based and generative music inside an existing workflow. Following on with
similar ideas, the aim of the research here is to extend score editor workflows
with generative music tools.

Before designing a system that integrates interactive generative music with
score notation, three overarching problems must be discussed, and these are:

– How can the various automated techniques for generating music be cate-
gorised?

– How can the workflow of using interactive generative music be modelled?
– How can the overall interaction and choices made by the user be measured

and compared?

The central aim of the paper is to propose a series of ideas that can integrate
generative music techniques inside score editor workflows, through proposed soft-
ware prototypes.

In the sections that follow, a brief summary of existing generative techniques
and systems is followed by a discussion on how such techniques may be cate-
gorised. Section 3 describes how identified problems with existing systems can be
remedied through both closer integration with the composer’s workflow, and by
improving the interactivity for each generative technique. Section 4 discusses a
model designed to capture the process of generative music, exploring briefly how
this aligns with existing research into algorithmic composition systems. A pro-
totype software implementation is discussed in section 5, and section 6 explores
how such systems can be evaluated.

2 Generative Music Systems

A number of techniques and systems exist for generative music, however only
a subset is relevant to this research. For example systems that incorporate su-
pervised learning methods (for example neural networks [10, 11]) require exten-
sive training before use. Systems such as rule based and stochastic models [12]
are easy to comprehend and implement, as well as being fast to run, but can
be criticised for producing simple music. Evolutionary techniques for producing
music [13] on the other hand can produce sophisticated work, but require greater
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knowledge and take time to compute, requiring the user to guide the generative
process [14]. For fuller treatment on the vast use and history of generative music
systems see [15, 16] and [17].

A prominent interactive generative music system that works in unison with a
composer is the Continuator system developed by Pachet [18]. The Continuator
uses Markov models to learn musical structure through either existing material
or in real time from a performer, and can then reproduce music in either a
standalone mode or in collaboration with the user. The system is intended for
performance rather than traditional composition, but it does however conclude
that the underlying complexity of using Markov models for composition can be
made accessible for musicians.

3 Categorising Generative Music Techniques

Although many techniques exist for generative composition, it is difficult to
appropriately group and categorise them. Wooller et al [2] define a framework
for comparing algorithmic music processes that allows different systems to be
related and contrasted. They group the techniques into three categories:

– Analytic: Reduce the size of input (or training) data to extract specific fea-
tures, for example obtaining an appropriate set of notes from a database of
sequences.

– Transformational: Transform a certain structural element of the music, for
example modifying pitches without altering rhythm.

– Generative: Produces music from input data, or rules, resulting in an increase
in data size, for example a chaos music algorithm utilising a single numbered
seed to produce a sequence of randomised notes.

These elements are also considered in terms of their contextual breadth.
Wooller et al [2] define this as the size of the surrounding data that has in-
fluence over the computation of the algorithm, this can be directly related to
the size of the training set in a machine learning application for example. Ap-
plying retrograde, a type of transformational algorithm, takes an input sequence
and reverses the play order. This type of process has no contextual breadth,
whereas a pitch quantization function requires knowledge of the tonal context
(key and scale).

This research looks to extendWooller’s [2] framework by adding an interactiv-
ity dimension, something overlooked in the original. The first type of interaction
introduced for this research is One Shot Interaction (OSI), whereby the output is
the result of pushing-a-button, for example using musical dice games [19] or sim-
ple musical transformations (Inversion, Retrograde, Transposition). These types
of process create all the musical material in one step, without further user inter-
vention. The second type is defined as Continuous Feedback Interaction (CFI),
whereby the generative applications parameters are continuously updated either
by the user or feedback from earlier processes. Examples of this include arpeggia-
tors, the Continuator [18] and certain types of supervised learning systems [20].
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CFI techniques can be seen as more interactive than OSI techniques, however
CFI techniques are more challenging to integrate due to their inherit additional
interaction complexity.

4 Problems with Generative Music

Summarizing findings in existing generative music research revealed several is-
sues with the musical quality. Todd [21] notes that generative programs can
easily get stuck in cyclical loops. Existing theories as observed by Pearce [22]
focus on certain musical elements in isolation, whereas music in reality is a com-
plex combination of these elements. Pearce and Wiggins [23] suggest that some
computational models often fail to meet the intrinsic stylistic constraints of the
genre. The computer can easily make music that hits the extremes of ranges, or
groups notes all in the same register [24], therefore becoming inappropriate for
the instrument, or performer. Finally, many of the systems reviewed are isolated
away into scientific research projects [4] without conforming to existing compo-
sitional practice, requiring domain specific knowledge [25] and competency with
the notation [6].

The most prominent issue within current systems is the lack of high-level
structure [11, 14, 24]. A solution to this and other issues previously discussed is to
introduce the human as an active agent within the system [6]. Creating a system
that acknowledges the strengths of both the human composer and the generative
process, enables an effective collaboration to take place. The aim is not to replace
the human composer, but rather to aid them. Furthermore Myhill [26] argues
that algorithmic music should have both deterministic and stochastic elements
without the loss of stylistic coherence, therefore it is suggested in this project
that the human composer can control the style and deterministic elements with
the computer providing the stochastic elements.

5 Modelling Generative Music

An important consideration for exploring generative music, is how the interactive
process and workflow is modelled. This research utilizes the ideas presented by
Logic Pro X’s [27] smart drummer, in that a piece of drum music is divided
into generative sections. Each of these sections has a set of parameters that
are evaluated to create music content that remains the same until a parameter
is changed. The core idea being that the notes themselves are not specified
but rather the parameters and techniques used to create them (Figure 1). For
example in Figure 1 the amount and complexity of the hi-hat pattern used in
the section is controlled by a single slider. The overall pattern is controlled by
a 2D grid through specifying the amount of Complexity vs Simplicity and Loud
vs Soft (left in Figure 1). Incorporating these ideas here requires the addition of
an option that will lock or store the previous iteration so no further iterations
are evaluated.
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Fig. 1. Logic Pro X’s [27] Smart Drummer plugin.

5.1 Iteration Management

A further consideration for this work is how each iteration is stored. A user
may create many iterations of music formed through the model, only to find
the most suitable has been lost. To address this, the system must make use
of source/version control techniques. Providing both a method for capturing
un-reproducible music parts, and the ability to recall generative interactions in
a list, facilitating and encouraging musical experimentation. Finally Duignan,
[28] notes that version control and snapshot tools are practically non-existent in
existing music software, noting that users have to work around such issues, this
therefore suggests music software systems could benefit from such tools.

5.2 Creativity

Formal and generalised models for capturing a generative composition workflow
have little exploration in current literature. There is however some more notable
work, modelling generalised music composition. For example, Alty [29] presents
work in which the composition process is modelled as a journey through a series
of state spaces, with each state representing a possible option in which the mu-
sical direction can take. Constraints are often applied to the states, limiting the
choice of direction and morphing the task into a problem solving exercise. Such
exercises are prime candidates for solving with a variety of different computer
models and algorithms.

A more general issue around creativity is that there is no one solution for
supporting creative tasks. Creativity by its very definition results in a wide
variety of different workflows and approaches. The models discussed in this paper
are only an example way of working, acknowledging that other users may prefer
a yet unknown model or solution, more suited to their own workflow.

Finally, Jacob [30] draws concern over the authorship of music composed by
algorithmic methods, attributing the music to the designer of the algorithm not
the user of it. His solution to avoid this criticism is to implement one’s own
algorithm. However, the focus in this project is on the arrangement, interaction,
and combination of different techniques, not the design of the technique itself.
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Fig. 2. Prototype model of generative music interaction.

5.3 The Model

Figure 2 shows the prototype model used in this research for defining genera-
tive music as a composition process. The problem/idea is defined as the input
material, this can be a collection of pitches, or a sequence (time series) of notes.
The process takes the Input and modifies it based on a series of rules or trans-
formations to create solutions, with certain controlling parameters exposed for
live interaction. Following on from this is the output, at which point the music
becomes audible. The evaluation stage creates a branch, where the user is either
satisfied with the output, or provides feedback to the initial seed and parameters
in the process stage. This loop continues until the evaluation stage is complete,
at which point a capture is created, and the next frame begins. The constraint
space [29] governs restrictions placed upon the composition, for example using
the key C-major makes certain choices of pitch more likely [31].

The previous frame has influence on the current frame in that it can im-
pose restrictions over the constraint space. The evaluation stage is considered
in reference to the previous frame, as music is auditioned in respect to a time-
line. Likewise, changes made from the feedback stage in the current frame have
a knock-on effect for the next and subsequent frames. A frame has no defined
length, but in general should be considered something that is more than a single
note, but less than an entire section. A key consideration that differentiates this
model from other generative music systems, is that each frame of music is care-
fully controlled and unlikely to spiral into chaos, but retains inter-frame influence
(higher level musical structure) through attentive links between frames.

An arpeggiator is a simple transformation based music generation technique
that can be easily mapped to the above model. The input (problem/idea) is the
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Fig. 3. Prototype Software showing how the individual blocks are arranged (arrange
view).

notes of the arpeggiator, the parameters represent the speed, octave and rhyth-
mic pattern controls. The net result of the input notes and specified parameters
produces an output. Upon hearing the output, the user may either update the
input notes, or arpeggiator parameters which in turn creates different output
material. Once the user is happy then a capture is created for a given number of
bars. The next frame after this is influenced by the previous frame in that certain
parameters are likely to be shared between the two. The constraint space in this
example is governed by the limitations of the arpeggiator effect, for example the
arpeggiator may only work with a total of 6 input notes at a time.

5.4 Existing models

The model proposed here is similar to existing research in modelling different
music composition processes. For example Papadopoulos et al [32] describe al-
gorithmic composition as a set of rules for solving a problem of combing musical
parts into a whole composition. Relating the proposed model to this statement,
the frames are each of the musical parts that form the composition. The set of
rules in their work relate to this model’s constraint space.
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Fig. 4. Prototype Software showing how the input material, output material and gen-
erative parameters are interacted with.

6 Software Implementation

The prototype software displayed in Figures 3 and 4 show the arrange view
and edit view respectively. The first is responsible for arranging the individual
parts (blocks) of music, the second is for editing the individual blocks. Both
of these views relate to existing computer music workflows (e.g. Digital Audio
Workstations).

Figure 4 shows the edit view, the entry editor (top) shows the standard
western score the user interacts with for composing an initial piece of music. In
this example, the generative technique used is a simple random note generator,
whereby green notes illustrate notes that will randomly update on each iteration,
by an amount specified by the parameters in the bottom right. Each iteration is
listed in the table on the right hand side, storing the seed, parameters and result
(green highlights no change, orange highlights a change). The output from the
current (or selected) iteration is shown on the bottom.

Each iteration of the algorithm can be computed as a recursive or non-
recursive system. In a non-recursive state, the initial seed is simply re-evaluated
each time, producing a finite amount of unique outputs. A recursive setup means
that the output becomes the seed, and subsequent iterations derive sequentially
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Fig. 5. A: Iterating through the generative model, B: Changing generative model pa-
rameters, C: Changing the initial input material (seed).

from each other. A negative effect of this means that notes can slowly progress
towards the extremes of each register, meaning that wide intervals between notes
become more likely. This is in general not in-keeping with analysis conducted of
existing music [31]. It is however important to keep these options open to users,
allowing them to decide whether or not they are suitable.

7 Evaluating Generative Music Systems

Although there are many specific goals for music composition, the primary con-
sideration for evaluating generative music in this situation is measuring whether
the output is suitable for the composition task, as defined by the composer.
During music composition, the composer will likely try out many different mu-
sical ideas before ultimately committing to some final material. The generative
music element is to help inspire ideas and solutions to these musical problems.
Evaluating the musical quality of work produced by this system is not currently
a focus of this research.

The current goal of the system is to measure how users interact with the
software to find suitable music solutions. For example a list of all changes and
iterations (version control) are stored (as shown in Figure 6), therefore the re-
sultant musical journey can be analysed to find patterns. For example composer
A using technique 1 used 50 iterations before finding suitable material, whereas
the same composer using technique 2 needed only 5 iterations. This will be con-
trasted with other methodologies such as using questionnaires with Likert scales
to subjectively evaluate qualitative opinions, for example “I found this technique
to be enjoyable/frustrating”. At this stage it is unclear whether lots of iterations
within a generative music model is correlated with enjoyment (enjoying listing to
the different iterations) or frustration (taking to long to find a suitable solution).

In general the three observable variables in this model are changes in seed
(initial musical material), changes in model parameters and the number of iter-
ations. This can be visualised (Figure 5) using a three-dimensional grid, where
changes in X represent changes in seed (Figure 5-C), changes in Y (5-B) represent
changes in parameters, and changes in Z or layers (5-A) representing iterations
(changes in each of the dimensions are shown in Figure 5). The diagram in Fig-
ure 6 shows a specific configuration, but in reality, changes in X, Y and Z can
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Fig. 6. A visulisation example of the changes made by a user.

happen in any order. A useful side effect of this configuration is the choices made
can be visualised to produce a quick overview.

Gathering the choices made by users when interacting with the proposed soft-
ware is easy accomplished by interaction logging. Brown et al [33] summarise the
evaluation techniques used within the NIME and ICMC conference proceedings,
and note that interaction logs are often used to measure usability. Nash [34] also
notes that as interaction logging is non-invasive it enables the study of real-world
creativity, without interfering with the individuals creative process or intruding
in their environment.

In summary the technique discussed in relation to Figure 5, interaction log-
ging techniques, and qualitative user surveys will be used in conjunction with one
another to evaluate and draw conclusions around this proposed system. A series
of pilot of studies are also planned, to showcase the software and its workflow to
professional composers.
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8 Conclusions

This paper sets out initial thoughts and arguments for integrating generative
music techniques inside a score editor workflow. The next step is to extended
the software prototype shown in Figures 3 and 4 so that it can be given to a
series of pilot users. Initially only using a small number of simple generative
techniques (for example random, rule based and Markov models) to observe
primary findings in usage patterns. The integration of more complex techniques
(neural networks and evolutionary techniques) are reliant on positive results in
using these more simple techniques. Overall this research aims to make generative
music techniques more accessible to composers whose primary software is rooted
in score editor paradigms.
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