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Abstract. In this paper we extend R-VAE, a system designed for the
modeling and exploration of latent spaces of musical rhythms. R-VAE
employs a data representation that encodes simple and compound me-
ter rhythms, common in some contemporary popular music genres. It
can be trained with small datasets, enabling rapid customization and
exploration by individual users. To facilitate the exploration of the la-
tent space, we provide R-VAE with a web-based visualizer designed for
the dynamic representation of rhythmic latent spaces. To the best of our
knowledge, this is the first time that a dynamic visualization has been
implemented to observe a latent space learned from rhythmic patterns.
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1 Introduction

In this paper, we present research on customizing a variational autoencoder
(VAE) neural network (Kingma & Welling, 2014) to play with musical rhythms
encoded within a latent space. A number of publications, datasets, data struc-
tures, and network architectures to encode rhythmic patterns using VAEs have
been recently released (e.g., Roberts et al., 2018, Gillick et al., 2019, Callender
et al., 2020), however none of them can encode rhythms in compound meter,
common in many traditional rhythms from Latin America or Africa, and in con-
temporary music genres, such as footwork, trap, 2-step, gqom, or dembow. We
observe that biases not only appear from the data we use to train models, but
also from the representation we choose to encode the data. In addition, none
of the previous approaches to create rhythmic latent spaces provides a dynamic
way of visualizing the space as a whole, and so the performer is blind to how the
rhythmic patterns are organized in the space and has to explore and play with
them without visual cues.

The system we designed can generate a series of models using minimal train-
ing data, with as few as one dozen MIDI clips with rhythms. It uses a data
structure that is capable of encoding rhythms in simple and compound meter.
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To facilitate the exploration of the latent space, we provide our system with a
web-based visualizer designed for the dynamic representation of rhythmic latent
spaces that relies directly on the pulsing rhythmic patterns to trigger visual cues
in the canvas of the browser.

To the best of our knowledge, this is the first time that a network architecture
has been used to encode rhythms with simple and compound meter and the first
time that a visualization has been implemented to observe dynamically a latent
space learned from rhythmic patterns.

2 Implementation

We have implemented a variational autoencoder-based rhythm explorer called
R-VAE (Vigliensoni, McCallum, & Fiebrink, 2020). It is built upon tfjs-vae* and
MA4L.RhythmVAE (Tokui, 2020). While the former contributes the Tensorflow
backend for the VAE, the latter provides a data structure based on the one pro-
posed by Gillick et al. (2019) that encodes the onsets of rhythms, their velocities,
and microtimings, and comes conveniently packed as a Node for Max application
that can be opened as a Max for Live device in Ableton Live.

2.1 Data representation

In R-VAE we extend the data representation of M4L.RhythmVAE to encode
rhythms in simple and compound meter. Most previous approaches for encoding
rhythms using VAEs used sixteen 16'" notes per bar of 4/4 time, corresponding
to a resolution of four ticks (i.e., subdivisions) per quarter note. However, the
encoding of most contemporary music genres needs a much finer grid of up to a
3274 triplet note, which we consequently choose as the basic unit in our data rep-
resentation. Therefore, the encoding of one bar of 4/4 time in R-VAE comprises
three matrices (for onsets, velocities, and microtimings) of dimensions 96 x 3.
These dimensions represent 24 ticks x 4 quarter notes x 3 drum instruments.

2.2 Network configuration

The network configuration for model training consists of a vanilla VAE archi-
tecture with 864 dimensions for the input, 512 for the intermediate layer, and
2 dimensions for the resulting latent space. The batch size is set to 64, the op-
timization algorithm to Adam, and the activation function to LeakyReLU. The
favouring of fully connected feedforward layers by Tokui instead of Gillick et
al.’s bidirectional LSTMs allows for faster training using CPUs. We compared
the performance of this implementation with much larger and complex archi-
tectures such as MusicVAE (Roberts et al., 2018) and GrooVAE (Gillick et al.,
2019) and found R-VAE required considerably less data and processing power
to converge into a useful model.

4 https://github.com/songer1993/tfjs-vae
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2.3 Web-based model player and visualizer

R-~VAE can be used for model training and playback as a Max for Live device.
Using it as an Ableton device comes with the big advantage of being embedded
in a DAW, offering fast and simple MIDI and audio routing for changing and
processing drum sounds, and easy mapping using MIDI or OSC to explore the
latent space using a gestural controller at performance time, or to automatize
the device for fine control during recording or mixdown.

In addition to the Ableton device, we also released R-VAE as a web-based
application that can be used as a rhythm model player, enabling people to ex-
plore rhythmic latent spaces and make music directly in the browser. The we-
bapp has a GUI that provides that reveals all rhythmic patterns in the latent
space at the same time. From a human-computer interaction point of view this
poses challenges because the latent space is a continuous function where salient
characteristics of the original distribution are encoded but the space axes have
no clear labels. Therefore, instead of implementing metrics for characterizing
rhythms and their similarities (e.g., Toussaint et al., 2004), using dimensionality
reduction techniques such as self-organizing maps (Kohonen, 1990), or adapting
metrics to try to represent how rich or smooth (Berthelot, Raffel, Roy, & Good-
fellow, 2019) is the rhythmic latent space, we implemented a visualization that
relies on the temporal nature of the musical events to generate a dynamic repre-
sentation of the latent space. The interface allows the performer to dynamically
visualize the whole space at once, providing a helpful visual feedback during
improvisation and musical performance.

The implementation of the visualization is based on the mapping of the onset
probability values of the instruments in the latent space to the brightness of their
representation in the browser canvas. To achieve this, we sample the original,
continuous two-dimensional latent space at discrete points over time and retrieve
the onset probabilities for each drum instrument (e.g., kick, snare, and hi-hat).
Then, we scale the instruments’ probability values to the range [0,255] and fill
square matrices of order 2 or 3 with these scaled probability values. Cells within
each matrix correspond to a specific drum instrument. These instruments are
rendered in the browser using a single color per instrument and 8-bit RGBA
values. Their onset probability is mapped to their brightness.

A graphic representation of how the instruments per latent space point are
mapped to the visualization canvas is shown in Figure 1. In the figure, we see four
matrices of order 3 corresponding to four discrete points (i.e., four rhythms) in
the latent space. Using a clocking system sync to a specific tempo, an imaginary
playback head traverses all the matrices from time ¢ = 0 to ¢t = T'— 1. Each
instrument in a rhythmic pattern will trigger a specific matrix cell with a single
color. For example, a kick will only trigger red pixels in the position [0, 0] of the
matrices, a snare will only trigger green pixels in position [0, 1], and hi-hats will
only highlight pixels in blue in position [0,2]. The time dimension ¢ shows how
the colors within each of the matrices change according to the onset probabilities
retrieved from the latent space for the corresponding instruments, so that each
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Fig.1. A diagram illustrating how the dynamically changing instrument patterns in
the latent space are mapped to the canvas of the browser. Four discrete points (i.e.,
four rhythms) of the latent space are sampled, each represented in the figure as a 3-by-3
matrix. Each instrument in a rhythmic pattern will trigger a specific matrix cell with
a single color.

pixel of the visualization canvas is mapped to the latent space and updated
accordingly over time.

Although the data representation of R-VAE encodes up to nine drum instru-
ments, in order to limit the amount of information displayed in the visualizer we
opted to display only the three main drum instruments in contemporary music
genres (i.e., kick, snare, and hi-hat). Additional knobs for threshold and noise
help the performer control how the latent space is sampled. Mute buttons enable
the performer to silence individual instruments.

A video demonstrating the capabilities of R-VAE and snippets of renditions
performed with it can be accessed at https://vimeo.com/433780684. Both im-
plementations of R-VAE, for Ableton Live® and the R-VAE-JS browser-based
model player,® are available. A series of models trained on rhythms with simple
and compound meter are also available.”

3 Conclusions and Future Work

The main contributions of this research are twofold: (i) a data representation
that broadens the type of rhythms that can be encoded using VAE towards con-
temporary music genres, and (ii) a dynamic visualizer that displays all rhythmic
patterns in the latent space at once. Although the first contribution could be
seen as a modest technical extension to previous implementations, we think it

® https://github.com/vigliensoni/R-VAE
5 https://github.com/vigliensoni/R-VAE-JS
" https://github.com/vigliensoni/R-VAE-models
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entails a great musical contribution since, for the first time in the modelling
of rhythms using VAEs, we can now encode rhythms in compound meter, thus
reducing the biases (e.g., toward particular genres and cultures) produced by
data representations that only encode certain types of rhythms. In regards to
the second contribution, our visualization advances research in latent spaces for
music by moving beyond conventional mapping towards a more integrated visual
expression of the sonic material.

When experimenting with data selection and model training of rhythms in
simple and compound meter, we found that R-VAE was able to learn useful
and playable models with as low as one dozen MIDI clips. However, when we
increased the number of clips to a few dozen, the learned latent spaces exhib-
ited a more even topology, therefore broadening the boundary zones, improving
the interpolations, and creating smoother and richer spaces, which is good for
performance.

We investigated the viability of R-VAE in live performance contexts at the
MUTEK International Festival of Digital Creativity and Electronic Music and
the Network Music Festival 2020, and observed that the visualizer captures nicely
how the different patterns are distributed in the latent space and provides a
much needed visual feedback when interacting with the model. Since patterns
are synced in time, similar, neighbouring zones flash synchronously, exposing pre-
viously hidden rhythmic clusters in the space. On the contrary, adjacent zones
with elements in different meter flash asynchronously, giving the performer a
natural visual cue to discriminate these zones and their boundaries. The thresh-
old knob was a also very important parameter in live contexts because it helped
the performer to control the complexity of the rhythmic patterns by limiting the
number of onsets retrieved from the latent space at any given time. Sometimes it
was interesting to stay in certain point of the latent space and only play with the
threshold to obtain interesting rhythmic variations. Currently, the thresholding
parameter only updates latent space that the audio is generated from without
changing what is being represented by the visualiser. We plan to rectify this in
future.

Our experience with R-VAE has reinforced the idea that a system for the
exploration of latent spaces of musical rhythms is worth pursuing further. For
example, systems like this could be also used for browsing through libraries of
rhythms, common in contemporary music production, or for the generation of
non-linear music soundtracks, common in videogames. Finally, the visualizer
presented in this work as part of R-VAE was implemented for models created
with a VAE network, however its design is easily generalizable and has the
potential to be used with other network architectures.
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