

Musebots at One Year: A Review

Arne Eigenfeldt
School for the Contemporary Arts, Simon Fraser University, Vancouver, Canada

arne_e@sfu.ca

Abstract
A musebot is defined as a piece of software that autono-
mously creates music collaboratively with other musebots.
The musebot project is concerned with putting together
musebot ensembles, consisting of community-created
musebots, and setting them up as ongoing autonomous mu-
sical installations. The specification was released early in
2015, and several developers have contributed musebots to
ensembles that have been presented in the USA, Canada,
and Italy. To date, there are over sixty publically available
musebots. Furthermore, the author has used the musebot
protocol in several personal MuMe projects, as they have
provided a flexible method for generative systems in per-
formance and installation. This paper will review the past
year, and how musebots have been used in both their origi-
nal community-oriented installations, as well as the author’s
works.

Introduction
Musebots are pieces of software that autonomously create
music, collaboratively with other musebots. A defining
goal of the musebot project [Bown et al. 2015] is to estab-
lish a creative platform for experimenting with musical
autonomy, open to people developing cutting-edge music
intelligence, or simply exploring the creative potential of
generative processes in music. Not simply a robot jam, but
individual virtual instrumentalists coming together, like a
band, to autonomously create music.

The second aim of the Musebot project is to establish a
playful and experimental platform for research, education
and making, that will stimulate interest and advance inno-
vation in musical metacreation (MuMe). Above all, the
musebot project is a collaborative, creative experiment: we
have invited others in the generative music community to
join us in making autonomous software agents that work
together to make original music; to date, seven developers
have contributed to over five dozen musebots, written in
MaxMSP, Java, PD, Extempore, and Max for Live.

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A larger and more long-term goal for the project has
been a sharing of ideas, as well as code. There has been a
lot of research in MuMe systems, and the results are im-
pressive. But a lot of the creative work is in idiosyncratic,
ad hoc standalone systems, and their results can be opaque.
It is difficult for artistic researchers to share their ideas or
their code, or work out ways that their systems might be
incorporated into other’s creative workflows. Musebots, by
contrast, are small modular units that are designed to be
shared and studied by others. By making collaboration
central, the musebot project forces us to be transparent in
how our systems work [Eigenfeldt et al. 2015].

The initial deployment of musebots was within an elec-
tronic dance music (EDM) aesthetic, primarily because it is
fully or predominantly electronic in its production, and the
installations, described below, have maintained this aes-
thetic. However, the author has used musebots in other
MuMe creative research, including as generators for robot-
ic instruments in performance and installations (Ma-
chineSongs), as part of a generative music-sound-video
system (Seasons), and as an exploration of Moment-form
(Moments).

Description
Each musebot agent corresponds roughly to a single “in-
strumental part” in a piece of music, such as a bassline, a
drumbeat, or synth part; however, the agents should be
smart, in that they should be able to react to their environ-
ment, and communicate their current states. The musebot
protocol is, at its heart, a method of communicating states
and intentions, sending networked messages established
through a collaborative document via OSC [Wright 1997].
A Conductor serves as a running time generator, as well as
a hub through which all messages pass. The Conductor
also launches individual musebots via curated ensembles.
The protocol is more fully described elsewhere [Bown et
al. 2015; Eigenfeldt et al. 2015]. Currently, there are over
sixty musebots in the repository: over half of which have

MUME 2016 - The Fourth International Workshop on Musical Metacreation, ISBN #978-0-86491-397-5

been created by the author; the remainder by his graduate
students and other developers.

Creative Use
Although the author has used multi-agents in a variety of
contexts [Eigenfeldt 2007, Eigenfeldt 2010; Eigenfeldt and
Pasquier 2011], their use was always idiosyncratic to the
composition. What has proven to be particularly appealing
to the author has been the flexibility of musebots, as well
as their open-endedness. Musebots designed for a particu-
lar work can be easily adapted to other contexts by altering
the type of messages communicated.

Musebot Chill-out Sessions
The premiere of musebots occurred in July 2015 as an in-
stallation at the International Conference on Computational
Creativity (ICCC) in Park City, and was followed in Au-
gust 2015 at the International Symposium of Electronic Art
(ISEA) in Vancouver. It was presented at the Generative
Art Conference in Venice in December 2015, and will be
installed at the New Interfaces for Digital Expression
(NIME) conference in Brisbane in July 2016. The first
musebot ensembles are more fully described elsewhere
[Eigenfeldt et al. 2015], along with issues and questions
raised.

The Chill-out Sessions – so named due to an initial de-
sire to provide musebots as an alternative listening space to
the dance rhythms of Algoraves – have consisted of fifty
curated ensembles of available musebots. Each ensemble
consists of musebots providing the typical instrumental
parts within EDM: beats, bass, harmony, and various synth
parts, as well as a tempo and duration. Some ensembles are
more ambient – slower tempi with musebots that produce
less aggressive beats and more continuous sustained syn-
thesiser textures – while others are combinations of only
beat-generating musebots.

When an ensemble is loaded, each musebot, which must
be a standalone application, is successively launched and
immediately begins sending a heartbeat. The Conductor
compares the cumulative heartbeats with the ensemble list:
if they match, the Conductor initiates its timecode messag-
es; if not (for example, if a musebot fails to launch), the
Conductor quits all musebots, and loads the next ensemble.
All musebots can begin playing as soon as the timecode is
received; certain musebots may depend upon external mes-
sages – for example, a current harmony (called notepool)
produced by harmony-generating musebots – and wait for
specific messages; other musebots may generate an overall
form for themselves, and not begin playing until their form
dictates they should do so.

One aspect of the musebot specification suggests that
musebots include an info.txt file that lists messages it

transmits and to which it responds; the goal being that
messages may develop dependent upon musical require-
ments. One such message that the author uses is density:
the relative number of onsets currently playing. Several
beat-generating musebots have dynamic density levels, and
when combined with other musebots that react to the den-
sity message, produce music that seems intentional.

In addition to hand-curated ensembles, a curation algo-
rithm was coded. This algorithm is based purely upon
musebot type; for example, it avoids pairing multiple bass-
generating musebots. We foresee that this algorithm could
become much more powerful by using information found
in the info.txt file once developers explore a greater variety
of messages.

Durations of generated compositions for each ensemble
have been limited to five minutes; some ensembles that
make use of a delayed musebot launch feature have en-
joyed a longer duration. Example video of Musebot Chill-
out sessions can be found here: http://tinyurl.com/h5b453g

MachineSongs - Live Performance
Although musebots were originally designed for machine-
to-machine interaction, live human control is certainly pos-
sible. A particular performance of the author required a
live guitarist to interact with a Metacreative system that
controlled three musical robots; incorporating musebots
was a logical choice for intelligent control. Musebots, ac-
cording to the musebot specification, should produce their
own sound so as to allow for their use on any system; how-
ever, since MachineSongs would only be performed under
the composer’s control, the musebot output was sent as
MIDI information to the robotic instruments. Existing
musebots were reconfigured, with beat-generating muse-
bots controlling a percussion robot, and melodic and bass
musebots controlling a marimba robot and a Disklavier.

Instead of relying upon ensembles to launch musebots
autonomously via the Conductor, the author initiated the
musebots individually in response to the live guitarist. Fur-
thermore, a musebot controller – an extension to the Con-
ductor – was created that controlled musebot dynamics (by
sending volume messages) as well as unique valance
(complexity) and arousal (density) messages. All musebots
used were modified to respond to these two messages.

A recording of MachineSongs, as performed at ISEA
2015, can be found here: https://youtu.be/0GzUV8afZiE

MachineSongs - Installation
The musebots designed for the live MachineSongs perfor-
mance were combined with the original Conductor and its
ensembles, and performed as an ongoing installation for
one month. The work’s program notes are as follows:
“MachineSongs uses a Disklavier, the ModulatroN, a 35-
mallet marimba-playing robot, and the Notomoton, an 18-

armed percussion-playing robot, both designed and built by
Ajay Kapur’s team at CalArts, all under the control of au-
tonomous musebots. Using a machine analysis of a wide
selection of music – including Mozart, Miles Davis, Pat
Metheny, and 1940’s swing music – the software generates
a short composition using what it has learned from the cor-
pus, in terms of melody, harmony, and rhythm. However,
the unusual orchestration and performance results in a
somewhat tongue-in-cheek realisation.”

An example recording of the MachineSongs installation
can be found here: https://youtu.be/DtMqeorhEgA

Seasons - A Multimedia Video and Sound Genera-
tive System
The author is a member of a collaborative team in which
generative music, sound, and video systems are combined
to produce an audio-visual experience that models and de-
picts our natural environment across the span of a year:
Seasons. The video sequencing engine selects several re-
lated videos based upon hand-coded metatags, and this
information is sent to the soundscape and music systems.
The original music generation system by the author was
replaced with musebots, due to their flexibility and poten-
tial to adapt to information received from the video engine.
Each new season triggers a new musebot ensemble, allow-
ing for a wide variety of music generation. Furthermore,
since musebots had been developed to react to valence and
arousal, these parameters were used within the entire sys-
tem to supplement the metatags sent by the video sequenc-
er, resulting in a better affective relationship between video
and music [Eigenfeldt et al. 2015b].

Example video from Seasons is available here:
https://vimeo.com/136361163

Moments - An Exploration of Moment-form
An open problem in musical metacreation is the generation
of musical form [Eigenfeldt 2014]. The author believes
that musebots are one potential avenue in which to pursue
the generation of such high-level musical structures, as
proposed in a recent paper with like-minded creative re-
searchers [Eigenfeldt et al. 2016]. While that paper out-
lines many of the complexities of generating form, it re-
minded the author of Stockhausen’s innovative contribu-
tion of Moment-form [Stockhausen 1963]: music based
upon stasis, rather than motion and goals, in which Mo-
ments are offset by discontinuities between successive mu-
sical features. This prompted the author to create a series
of musebots that generate much more consistent gestures
than usual, coordinated by a parameterBot that provides a
hierarchical means of controlling disparate features, such
as voice density, activity level, complexity, and consisten-
cy, to name a few. Given a Moment’s conditions, as re-
quested by the parmeterBot, individual musebots compare

their own potential to the current constraints, and decide
whether to participate. Moments continues to be developed:
a version will be premiered at NIME 2016.

Conclusions and Future Work
Musebots have proven to be a flexible method for MuMe
creation in a variety of situations, as demonstrated in their
first year presented in this paper; however, their deploy-
ment as adaptive musical agents still needs to be pursued
further and in greater depth. Because the author has been
the main developer of musebots to date, their potential be-
yond the requirements of the author has been limited.
 Several important interactions did occur between devel-
opers in the first year, including involvement in a ProcJam
(see https://bencarey.itch.io/musebots-for-procjam-2015),
which resulted in the formulation of a new intention mes-
sage. It is hoped that more MuMe creators will adopt their
use, and more such interactions will occur, resulting in true
collaborative creation, a sharing of code, and more im-
portantly, musical ideas within MuMe.

References
Bown, O., Carey, B., Eigenfeldt, A. 2015. Manifesto for a Muse-
bot Ensemble: A platform for live interactive performance be-
tween multiple autonomous musical agents. In Proceedings of the
International Symposium of Electronic Art, Vancouver.
Eigenfeldt, A. 2007. Emergent rhythms through multi-agency in
Max/MSP. In Computer Music Modeling and Retrieval. Sense of
Sounds. Springer Berlin Heidelberg.
Eigenfeldt, A. 2010. Coming together: Composition by negotia-
tion. In Proceedings of the ACM International Conference on
Multimedia, Florence.
Eigenfeldt, A. 2014. Generating Structure – Towards Large-scale
Formal Generation. In Proceedings of the International Confer-
ence on Musical Metacreation, Raleigh.
Eigenfeldt, A., and Pasquier, P. 2011. Negotiated Content: Gen-
erative Soundscape Composition by Autonomous Musical Agents
in Coming Together: Freesound. In Proceedings of the Interna-
tional Conference on Computational Creativity (ICCC), Mexico
City.
Eigenfeldt, A., Bown, O., and Carey, B. 2015a. Collaborative
Composition with Creative Systems: Reflections on the First
Musebot Ensemble. In Proceedings of the ICCC, Park City.
Eigenfeldt, A., Bizzocchi, J., Thorogood, M., and Bizzocchi, J.
2015b. Applying Valence and Arousal Values to a Unified Video,
Music, and Sound Generative Multimedia Work. In Generative
Art Conference, Venice.
Eigenfeldt, A., Bown, O., Brown, A., Gifford, T. 2016. Flexible
Generation of Musical Form: Beyond Mere Generation. In Pro-
ceedings of the ICCC, Paris.
Stockhausen, K. 1963. Momentform. In Texte zur Musik 1.
Wright, M. 1997. Open Sound Control-A New Protocol for Com-
municating with Sound Synthesizers. In Proceedings of the Inter-
national Computer Music Conference, Thessaloniki.

