Table 1. Mean certificate and measured concentrations ($\mu g g^{-1}$ in dry weight) and the associated relative standard deviation (RSD) in certified reference materials (CRM). Limit of detection (LOD) and limit of quantification (LOQ) for each element and analytical method.

	Analytical		CRM	LOD	LOQ	
Elements	method	Туре	Certificate value (μg g ⁻¹)	Measured value (μg g ⁻¹)	(μg g ⁻¹)	(μg g ⁻¹)
Hg	AAS	DORM-4	0.412 ± 0.036	0.397 ± 0.006	0.004	0.01
Cd	FAAS	DORM-2	0.065 ± 0.007	0.064 ± 0.008	0.002	0.006
Pb	FAAS	DORM-2	0.043 ± 0.008	0.042 ± 0.005	0.002	0.006
As	ICP-MS	ERM®-BB422	12.7 ± 0.7	12.0 ± 0.2	0.003	0.013
*	ICP-MS	ERM®-BB422	1.40 ± 0.40	1.23 ± 0.02	0.01 (0.068)	0.036 (0.25)
Se	ICP-MS	ERM®-BB422	1.33 ± 0.13	1.21 ± 0.02	0.007	0.025
CI	μ-EDXRF	SRM 1571	700	600 ± 100	100	-
K	μ-EDXRF	SRM 1571	14700 ± 300	13500 ± 1300	20	-
Са	μ-EDXRF	SRM 1571	20900 ± 300	19500 ± 2000	30	-
	FDVDF	DORM-4	3.6 ± 0.3	4.0 ± 0.8	_	
Mn	μ-EDXRF	SRM 1571	91 ± 4	88 ± 4	5	-
	FDVDF	DORM-4	142 ± 10	150 ±15	_	
Fe	μ-EDXRF	SRM 1571	300 ± 20	298 ± 10	5	-
	FDVDF	DORM-4	2.3 ± 0.2	2.4 ± 0.8	4	
Cu	μ-EDXRF	SRM 1571	12 ± 1	13 ± 1	1	-
	FDVDF	DORM-4	27 ± 2	28 ± 3		
Zn	μ-EDXRF	SRM 1571	25 ± 3	24 ± 2	1	-
Br	μ-EDXRF	SRM 1571	10	11 ± 1	1	-

^{*}lodine values for fish matrix and in parentheses for feed matrix

AAS (Atomic absorption spectroscopy); FAAS (Flame atomic absorption spectrometry); ICP-MS (Inductively coupled plasma mass spectrometer); DORM-4 (Fish protein); DORM-2 (Dogfish muscle); ERM®-BB422 (Fish muscle); SRM 1571 (Orchard leaf).

Table 2. Growth performance of gilthead seabream and common carp from the different treatments (average ± standard deviation).

	CTR	B1	B2	В3
Gilthead seabream				
IBW¹ (g)	371 ± 15	379 ± 2	376 ± 13	370 ± 3
FBW ² (g)	626 ± 5 ^b	623 ± 7^{b}	623 ± 3^{b}	589 ± 5^{a}
TG ³ (%)	69 ± 5	64 ± 2	66 ± 6	59 ± 2
FCR ⁴	1.87 ± 0.16a	1.83 ± 0.04^{a}	1.90 ± 0.20^{a}	2.38 ± 0.35^{b}
SGR ⁵ (%/d)	6.22 ± 0.08	6.22 ± 0.01	6.22 ± 0.06	6.25 ± 0.03
Common carp				
IBW¹ (g)	301 ± 29	295 ± 15	295 ± 15	292 ± 20
FBW ² (g)	1085 ± 16a	1193 ± 76 ^b	1189 ± 50 ^b	1218 ± 36 ^b
TG ³ (%)	263 ± 35	306 ± 38	304 ± 12	319 ± 40
FCR ⁴	1.52 ± 0.12	1.45 ± 0.11	1.45 ± 0.09	1.39 ± 0.11
SGR ⁵ (%/d)	1.29 ± 0.10	1.40 ± 0.10	1.40 ± 0.03	1.43 ± 0.10

Different letters (a-d) indicates significant differences between treatments (CTR – control; B1 – biofortification blend 1; B2 - biofortification blend 2; B3 - biofortification blend 3) for each species.

¹ Initial mean body weight

² Final mean body weight

³ Total growth: (wet weight gain/IBW) x 100.

⁴ Feed conversion ratio: dry feed intake/wet weight gain.

⁵ Specific growth rate:(Ln FBW- Ln IBW) × 100 / feeding days.

Table 3. Se:Hg molar ratio and selenium health benefit value (HBV_{Se}) in gilthead seabream and common carp fillets from the different treatments (average \pm standard deviation).

	Se:Hg	HBV _{Se}
Gilthead seabream		
CTR	4.37 ± 0.26^{a}	2.18 ± 0.02^a
B1	6.73 ± 0.42^{b}	2.89 ± 0.09^{b}
B2	$8.19 \pm 0.40^{\circ}$	$3.39 \pm 0.10^{\circ}$
В3	11.11 ± 0.83d	4.48 ± 0.18^{d}
Common carp		
CTR	13.85 ± 1.46 ^b	1.18 ± 0.06
B1	9.08 ± 0.63^{a}	1.51 ± 0.04
B2	8.55 ± 0.18a	1.70 ± 0.10
B3	9.52 ± 0.74^{a}	1.65 ± 0.13

Different letters (a-d) indicates significant differences between treatments (CTR – control; B1 – biofortification blend 1; B2 - biofortification blend 2; B3 - biofortification blend 3) for each species.

Barbosa et al. (2020). Enriched feeds with iodine and selenium from natural and sustainable sources to modulate farmed gilthead seabream (*Sparus aurata*) and common carp (*Cyprinus carpio*) fillets elemental nutritional value. Food and Chemical Toxicology, Volume 140, June 2020, 111330.

https://doi.org/10.1016/j.fct.2020.111330

Table 4. Target elements percentage of the health-based guidance values (HBGVs) set by EFSA, considering the consumption of a portion of 150 g of fish fillet.

	[1		Se ¹		Fe ¹		Cu ¹			K 1			CI ¹					
	Adults	Children	Pregnant	Adults	Children	Pregnant	Adults	Children	Pregnant	Adults	Children	Pregnant	Adults	Children	Pregnant	Adults	Children	Pregnant
Gilthead seabream																		
CTR	7	7	5	39	120 (30)	32	31	118 (2)	37	19	29	20	53	156 ⁵	47	21	26	21
B1	7	8	5	50	155 (39)	41	53	202 (4)	63	27	41	29	75	2185	65	23	28	23
B2	8	9	6	58	181 (45)	48	41	155 (3)	48	0	0	0	67	195 ⁵	58	17	21	17
В3	9	10	7	76	238 (59)	63	128 (10)	483 (10)	150 (10)	0	0	0	75	2185	65	26	31	26
Common carp																		
CTR	2	2	1	20	62	16	65	246 (5)	76	75	114 (16)	80	39	113 ⁵	34	4	5	4
B1	18	20	13	26	81	21	91	345 (7)	107 (7)	21	32	23	33	96	29	4	5	4
B2	21	23	16	29	91	24	92	348 (7)	108 (7)	17	25	18	39	115 ⁵	34	5	6	5
B3	19	21	14	28	88	23	97	368 (7)	114 (7)	22	33	23	39	113 ⁵	34	4	5	4

	Ca ²		Zn ²			Hg³			Cd ³			Pb ⁴			
	Adults	Children	Pregnant	Adults	Children	Pregnant	Adults	Children	Pregnant	Adults	Children	Pregnant	Adults	Children	Pregnant
Gilthead seabream															
CTF	R 14	18	14	2	3	2	6	20	6	1	5	1	30	106 (22)	31
В	1 7	9	7	4	4	3	5	17	5	1	3	1	32	114 (24)	33
B	2 4	5	4	2	3	2	5	16	5	1	4	1	31	112 (23)	33
B	3 2	3	2	2	2	2	4	16	5	2	6	2	23	82	24
Common carp															
CTF	R 25	32	25	28	32	20	1	3	1	1	3	1	35	125 (26)	36
В	1 8	10	8	33	38	24	2	7	2	1	3	1	22	77	23
B	2 19	24	19	33	38	24	2	8	2	1	3	1	26	92	27
В:	3 8	10	8	33	38	24	2	7	2	1	4	1	26	95	28

¹Percentages were calculated according to the adequate intakes (Al) as well as the tolerable upper intake level (UL; in parenthesis) set by EFSA (2014b, 2015c, 2015, 2015c, 2016, 2019). ² Percentages were calculated according to the adequate requirement (AR) set by EFSA (2015d, 2014e); ³ Percentages were calculated according to the tolerable weekly intake (TWI) set by EFSA (2012a, 2011); ⁴ Percentages were calculated according to the benchmark dose lower limit (BMDL₀₁) as well as the margin of exposure (MOE; in parenthesis) set by EFSA (2010). Data was calculated using adults (> 18 years), children (1-3 years) and pregnant/lactating women's (18-35 years) mean body weights in Europe (body weight: 70, 13 and 67 kg, respectively; EFSA, 2012b). CTR – Control treatment; B1 – treatment B1; B2 - treatment B2; B3 - treatment B3. ⁵No tolerable upper intake level (UL) has been set for potassium by EFSA due to insufficient data (EFSA, 2016a).

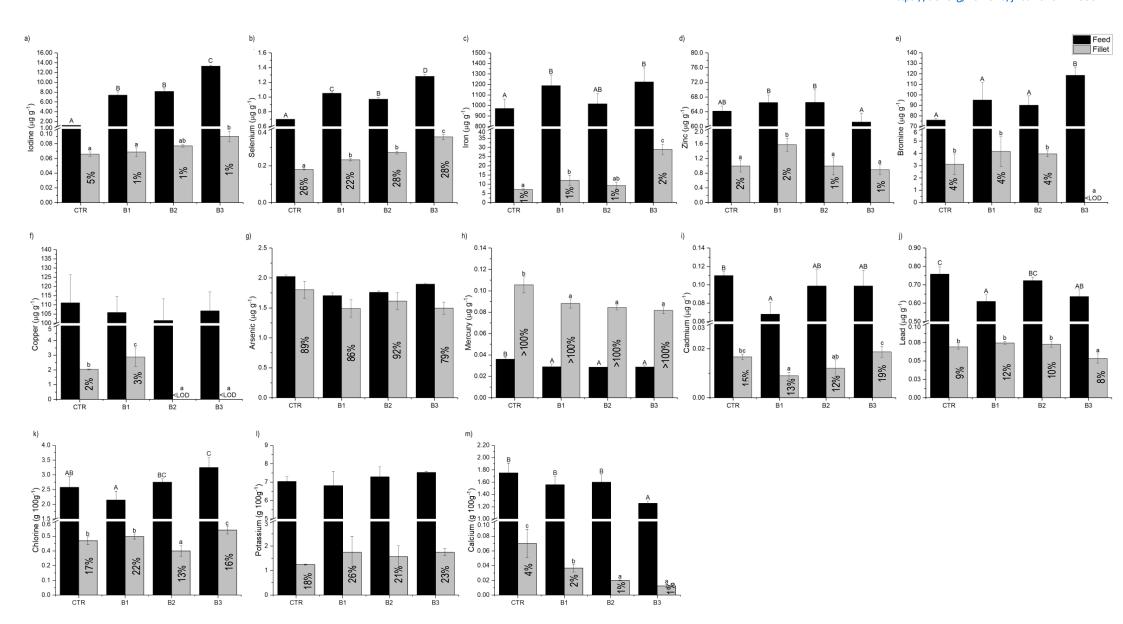


Figure 2. Levels of trace elements (a - Iodine, b - Selenium, c - Iron, d - Zinc, e - Bromide, f - Copper; in μ g g⁻¹), toxic elements (g - Arsenic, h - Mercury, i - Cadmium, j - lead; in μ g g⁻¹) and macro elements (k - Chlorine, I - Potassium, m - Calcium; , in g 100g⁻¹) in gilthead seabream diets and fillets (average \pm SD, in wet weight); and percentages of element deposition in fish fillet from each diet . Different capital letters (A- D) represents significant differences (ρ < 0.05) in elements concentration between diets (CTR- control, B1 - biofortified B2, B3 - biofortified B3), whereas small letters (a- d) represents significant differences (ρ < 0.05) between fillets (CTR, B1, B2, B3).

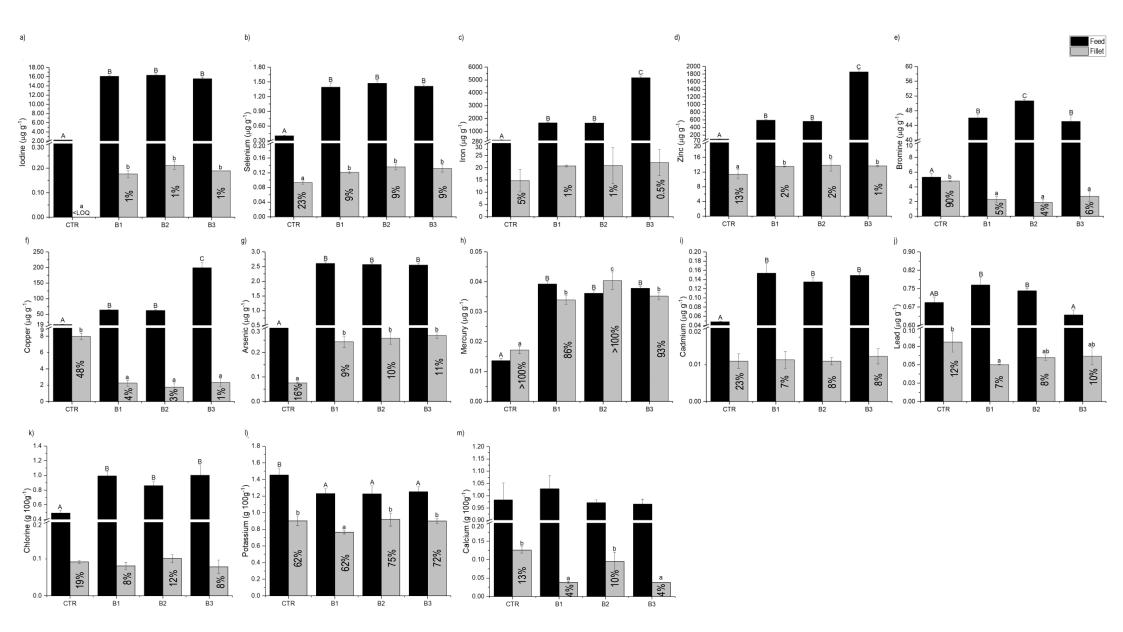


Figure 3. Levels of trace elements (a - Iodine, b - Selenium, c - Iron, d - Zinc, e - Bromide, f - Copper; in μ g g-1), toxic elements (g - Arsenic, h - Mercury, i - Cadmium, j - Lead; in μ g g-1) and macro elements (k - Chlorine, I - Potassium, m - Calcium; , in g 100g-1) in common carp diets and fillets (average \pm SD, in wet weight); and percentages of element deposition in fish fillet from each diet. Different capital letters (A-D) represents significant differences (ρ < 0.05) in elements concentration between feed (CTR- control, B1 - biofortified B2, B3 - biofortified B3), whereas small letters (a-d) represents significant differences (ρ < 0.05) between fillets (CTR, B1, B2, B3).

Table S3. Gilthead seabream (*S. aurata*) and common carp (*C. carpio*) initial (Baseline) and final (in each treatment: CTR, B1, B2, B3) total length (cm) and weight (g)

Species	Treatment	n	Total length (cm)	Total weight (g)	Moisture (%)
Gilthead seabream	Baseline	15	31 ± 2 (28 - 34)	491 ± 68 (380 – 584)	69 ± 3.9
	CTR	15	$33 \pm 1 (31 - 36)$	$578 \pm 70 (483 - 692)$	69 ± 0.6
	B1	15	$32 \pm 1 (30 - 35)$	$531 \pm 74 (427 - 664)$	68 ± 0.5
	B2	15	$33 \pm 2 (30 - 35)$	$574 \pm 70 (460 - 677)$	69 ± 1.1
	В3	15	33 ± 2 (30 - 36)	$578 \pm 62 (463 - 666)$	69 ± 0.9
Common carp	Baseline	15	$29 \pm 3(26 - 37)$	333 ± 44 (250 – 400)	78 ± 0.3
	CTR	15	$40 \pm 2 (37 - 43)$	1236 ± 108 (1027 – 1443)	78 ± 1.0
	B1	15	$41 \pm 1 (40 - 42)$	1226 ± 106 (1095 – 1397)	78 ± 0.3
	B2	15	$40 \pm 2 (37 - 42)$	1217 ± 105 (1045 – 1440)	77 ± 1.3
	В3	15	$41 \pm 2 (37 - 43)$	1338 ± 112 (1133 – 1493)	78 ± 0.7

Treatment, baseline (initial) and at the end of the feeding trial (final) in control diet (CTR) and three different fortified diets (B1 - biofortified B1, B2 - biofortified B2, B3 - biofortified B3); n, number of specimens analysed; total length (cm) and total weight (g) – mean \pm SD (range minimum and maximum).

Barbosa et al. (2020). Enriched feeds with iodine and selenium from natural and sustainable sources to modulate farmed gilthead seabream (*Sparus aurata*) and common carp (*Cyprinus carpio*) fillets elemental nutritional value. Food and Chemical Toxicology, Volume 140, June 2020, 111330.

https://doi.org/10.1016/j.fct.2020.111330

Table S5. Gilthead seabream (S. aurata) and common carp (C. carpio) fillets initial (Baseline) and final (CTR) elemental composition.

	I (mg g ⁻¹)	Se (mg g ⁻¹)	Fe (mg g ⁻¹)	Zn (mg g ⁻¹)	Br (mg g ⁻¹)	Cu (mg g ⁻¹)	As (mg g ⁻¹)	Hg (mg g ⁻¹)	Cd (mg g ⁻¹)	Pb (mg g ⁻¹)	Cl (g 100g ⁻¹)	K (g 100g ⁻¹)	Ca (g 100g ⁻¹)
Gilthead seabream													
Baseline	0.06 ± 0.004	0.18 ± 0.01	7.4 ± 1.6	0.9 ± 0.1	3.3 ± 0.2	2.4 ± 0.04	1.8 ± 0.06	0.1 ± 0.006	0.01 ± 0.002	0.06 ± 0.001	0.2 ± 0.01^{a}	1.7 ± 0.3	0.07 ± 0.004
CTR	0.07 ± 0.003	0.18 ± 0.002	7.1 ± 0.5	1.0 ± 0.1	3.1 ± 0.4	2.0 ± 0.02	1.8 ± 0.1	0.1 ± 0.008	0.02 ± 0.001	0.07 ± 0.003	0.4 ± 0.03^{b}	1.2 ± 0.02	0.07 ± 0.02
Common carp													
Baseline	0.01 ± 0.001	0.07 ± 0.002^a	10 ± 1.5	9 ± 0.4^{a}	1.1 ± 0.3^{a}	1.3 ± 0.1^{a}	0.03 ± 0.002^a	< LOQ ^a	0.01 ± 0.002	0.08 ± 0.01	0.09 ± 0.03	0.8 ± 0.01	0.04 ± 0.0005^a
CTR	0.02 ± 0.001	0.09 ± 0.005^{b}	15 ± 1.6	11 ± 1.2 ^b	4.8 ± 0.1^{b}	8 ± 0.4^{b}	0.08 ± 0.004^{b}	0.02 ± 0.001^{b}	0.01 ± 0.002	0.08 ± 0.02	0.09 ± 0.004	0.9 ± 0.06	0.13 ± 0.01^{b}

Different letters (a, b) represents significant differences (p < 0.05) between fish fillets from baseline (initial) and in the final of the experimental feeding trial with control (CTR) diet. Values are average \pm standard deviation in wet weight.