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Preface

Measurement uncertainty evaluation is at the heart of science and industry as a cross-cutting dis-
cipline, impacting on all areas of measurement. Consistent evaluation and use of measurement
uncertainty is vital to the implementation of trade agreements, legislation, directives and regu-
lations. The Joint Committee on Guides in Metrology (JCGM) provides authoritative guidance
documents to address the needs of the measurement community. The evaluation and expression
of measurement uncertainty are essential for the interpretation of measurement data. Even if
not explicitly expressed, knowledge about the dispersion of measurement results is important to
distinguish between effects from the measurement procedure and effects from other causes.

This suite of examples illustrates the use of the methods described in the Guide to the expres-
sion of Uncertainty in Measurement (GUM), and several other methods that have not yet been
included in this suite of documents. The examples address issues such as the choice of the mecha-
nism for propagating measurement uncertainty from the input quantities to the output quantities,
the evaluation of standard uncertainty, modelling, reporting, and conformity assessment.

This suite of examples illustrates good practice in evaluating measurement uncertainty in a
variety of fields including calibration, testing, comparison and conformity, and relate to sectors
that include environment, energy, quality of life, industry and society. Where useful, reference is
made to software that supports the reproduction and implementation of the examples in practice.

As many practitioners benefit more quickly from worked examples than from guidance doc-
uments, the provided set of carefully selected comprehensive examples facilitates the take up
of uncertainty principles as well as improving the state of the art in measurement uncertainty
evaluation in the respective disciplines.

The examples are provided “as is”, without any warranty. All examples have been peer-
reviewed and assessed for internal consistency and compliance with guidance in the GUM.
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Disclaimer

This suite of examples has been developed as a joint effort by experts in the field of measurement.
Greatest care has been exercised in the selection and development of the examples. The consor-
tium developing this compendium uses its best efforts to deliver a high quality compendium
illustrating best practice in evaluating measurement uncertainty as described in the Guide to the
expression of uncertainty in measurement. Neither the consortium, its members, nor Euramet
makes any warranty with regard to the material provided, however. The examples are provided
“as is”. No liability is assumed for any use that is made of the Compendium.

Software, equipment and other resources identified in the examples are not necessarily the
best available for the purpose. The project consortium feels however that these resources are
adequate for the context in which they have been used.

Any mention of commercial products is for information only; it does not imply a recommen-
dation or endorsement by the authors, nor by Euramet or its members.

Feedback

The consortium seeks actively feedback on this Compendium from readers. Any feedback can
be sent to the editors Adriaan van der Veen (avdveen@vsl.nl) and/or Maurice Cox
(maurice.cox@npl.co.uk).
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Chapter 1

Introduction
A.M.H. van der Veen, M.G. Cox

The evaluation of measurement uncertainty is an essential part of the experimenter’s task to
obtain for the quantity of interest, the measurand, a value and a stated uncertainty. The JCGM
published a suite of documents covering various aspects of measurement uncertainty evaluation,
expression and use [51–56]. In many areas, measurement results are used to assess compliance
with regulatory limits. To understand the risks associated with decision taking, and to apply
this knowledge in conformity assessment, it is essential that the stated uncertainty is taken into
account [55].

Many laboratories implement ISO/IEC 17025 [33] to underpin their competence. Produc-
ers of (certified) reference materials implement in many cases both ISO/IEC 17025 and ISO
17034 [27] for the same purpose. In proficiency testing, the requirements for demonstrating
competence are laid down in ISO/IEC 17043 [15]. These standards have in common, among
others, that measurement uncertainty shall be evaluated and as appropriate be expressed. Issu-
ing CRMs (certified reference materials) with property values without uncertainty is not permit-
ted according to ISO 17034, as it would for the user be impossible to make a proper assessment
of the quality of its result when using the CRM for quality control, nor would it be possible to
propagate it when using the CRM in calibration [25].

In this document, the examples illustrate various aspects of uncertainty evaluation and the use
of uncertainty statements in conformity assessment. These aspects include, but are not limited
to

– choice of the mechanism for propagating measurement uncertainty,

– reporting measurement results and measurement uncertainty,

– conformity assessment, and

– evaluating covariances between input quantities.

Most examples cover multiple aspects. The index aids the reader to locate such aspects in the
examples.

The first part of this compendium is devoted to generic aspects, which are presented in the
form of tutorials that aim at helping the reader to get started with the various methods and
examples presented in this compendium. They do not replace the guidance provided in the
GUM suite of documents, but rather supplement the general guidance given there. The use of
Bayes’ rule is not (yet) contained in the GUM, yet it is recognised as one of the ways to evaluate
measurement uncertainty, consistent with the spirit of the GUM, and the best mechanism to
combine prior knowledge about one or more model parameters with data.

1



Chapter 1. Introduction 2

The use of software is essential for anyone performing uncertainty calculations. Most pro-
fessionals rely on “off the shelf” spreadsheet software or laboratory information management
system (LIMS) to perform the bulk of the relevant calculations. Such software systems have
largely not been designed for the calculations necessary to evaluate, propagate and express mea-
surement uncertainty. Some examples can nonetheless be implemented readily in this general
purpose software, whereas others describe the use of other software. Some of the tutorials de-
scribe the use of R [149], which is an open source software package for statistical computing and
data visualisation. Other examples describe the use of MATLAB or other commercial software.
In all cases, these choices have been made for illustration only. If an example describes how to
perform the calculation in one software package, it does not imply that it could not have been
done in another. The same holds for the selection of libraries and other resources.
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Chapter 2

Using the Monte Carlo method
A.M.H. van der Veen, M.G. Cox

2.1 Preamble

One of the complicating factors in the evaluation and propagation of measurement uncertainty
is the competence in mathematics and statistics required to perform the calculations. Neverthe-
less, standards such as ISO/IEC 17025 [33], ISO 15189 [20] and ISO 17034 [27] that specify
requirements for laboratories to enable them to demonstrate they operate competently, and are
able to generate valid results, require that measurement uncertainty is evaluated and reported.
The well-known law of propagation of uncertainty (LPU) from the Guide to the expression of
uncertainty in measurement (GUM) [51] requires the calculation of the partial derivatives of the
measurement model with respect to each of the input variables.

In this tutorial, we (re)introduce the Monte Carlo method of GUM Supplement 1 (GUM-
S1) [52], which takes the same measurement model and the probability density functions as-
signed to the input variables to obtain (an approximation to) the output probability density func-
tion. We show, based on some well-known examples illustrating the evaluation of measurement
uncertainty, how this method can be implemented for a single measurand and how key summary
output, such as the estimate (measured value), the associated standard uncertainty, the expanded
uncertainty, and a coverage interval for a specified coverage probability, can be obtained. The
Monte Carlo method of GUM-S1 [52] is a versatile method for propagating measurement uncer-
tainty using a measurement model. It performs generally well for any measurement model, as it
does not – unlike the law of propagation of uncertainty – depend on a linearisation of the model.

The use of probability density functions is well covered in the GUM [51] and further elabo-
rated in GUM-S1 [52]. In this tutorial, the emphasis is on setting up an uncertainty evaluation
using the Monte Carlo method for a measurement model with one output quantity (a “univari-
ate” measurement model). GUM Supplement 2 (GUM-S2) [54] provides an extension of the
Monte Carlo method to measurement models with two or more output quantities (“multivariate”
measurement models) as well as giving a generalisation of LPU to the multivariate case.

The vast majority of the uncertainty evaluations in calibration and testing laboratories are
performed using the LPU [51]. This mechanism takes the estimates (values) and associated
standard uncertainties of the input quantities as input to obtain an estimate for the output quan-
tity and the associated standard uncertainty. The measurement model is used to compute (1)
the value of the output quantity and (2) the sensitivity coefficients, i.e., the first partial deriva-
tives of the output quantity with respect to each of the input quantities. The second part of the
calculation involving the partial derivatives is perceived as being cumbersome and requires skills
that are often beyond the capabilities of laboratory staff and researchers. The computation of
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the sensitivity coefficients can also be performed numerically [59, 145]. One of the advantages
of the Monte Carlo method is that no sensitivity coefficients are required. All that is needed is
a measurement model, which can be in the form of a computer algorithm, and a specification
of the probability distributions for the input quantities. These probability distributions (normal,
rectangular, etc.) are typically already specified in uncertainty budgets when the LPU is used.

In this tutorial, we show how the Monte Carlo method of GUM-S1 can be implemented in
R [149]. This environment is open source software and specifically developed for statistical
and scientific computing. Most of the calculations in laboratories, science and elsewhere are still
performed using mainstream spreadsheet software. An example of using the Monte Carlo method
of GUM-S1 with MS Excel is given in the Eurachem/CITAC Guide on measurement uncertainty
[18]. It is anticipated that this tutorial will also be useful for those readers who would like to get
started using other software tools or other languages.

2.2 Monte Carlo method

The heart of the Monte Carlo method of GUM-S1 can be summarised as follows [52, clause 7].
Given a measurement model of the form

Y = f (X1, . . . , XN )

and probability density functions assigned to each of the input quantities X1, . . . , XN , generate M
sets of input quantities X1,r , . . . , XN ,r (r = 1, . . . , M) and use the measurement model to compute
the corresponding value for Yr . M , the number of sets of input quantities should be chosen to
be sufficiently large so that a representative sample of the probability density function of the
output quantity Y is obtained. The approach here applies to independent input quantities and a
scalar output quantity Y . For its extension to dependent input quantities, see GUM-S1 [52], and
a multivariate output quantity, see GUM-S2 [54].

GUM-S1 [52, clause 6.4] describes the selection of appropriate probability density functions
for the input quantities, thereby supplementing the guidance given in the GUM [51, clause 4.3].
GUM-S1 also provides guidance on the generation of pseudo-random numbers. Pseudo-random
numbers rather than random numbers are generated by contemporary software since the lat-
ter are almost impossible to obtain. However, comprehensive statistical tests indicate that the
pseudo-random numbers generated cannot be distinguished in behaviour from truly random
numbers.

Considerable confidence has been gained by the authors over many years concerning the
performance of the Monte Carlo method of uncertainty evaluation from a practical viewpoint.
For measurement models that are linear in the input quantities, for which the law of propagation
of uncertainty produces exact results, agreement with results from the Monte Carlo method to the
numerical accuracy expected has always been obtained. Thus, weight is added to the above point:
there is evidence that the effects of working with pseudo-random numbers and truly random
numbers are identical.

If needed, the performance of a random number generator can be verified [103, 148]. For
the purpose of this tutorial, it is assumed that the built-in random number generator in R is fit
for purpose.

A refinement of the Monte Carlo method concerns selecting the number of trials automatically
so as to to achieve a degree of assurance in the numerical accuracy of the results obtained. An
adaptive Monte Carlo procedure for this purpose involves carrying out an increasing number
of Monte Carlo trials until the various results of interest have stabilised in a statistical sense.
Details are provided in [52, clause 7.9] and since then an improved method has been developed
and published [177].
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In many software environments, random number generators for most common probability
density functions are already available; if not, they can be readily developed using random num-
bers from a rectangular distribution [52, annex C]. (The rectangular distribution is also known
as the uniform distribution.) Should even a random number generator for the rectangular dis-
tribution not be available in the software environment, then the one described in GUM-S1 can
be implemented as a basis for generating random numbers. The default random number gener-
ator in R is the Mersenne Twister [123], which is also implemented in many other programming
environments, including MATLAB and MicroSoft Excel (since version 2010, see [127]). Based
on this random number generator, there are generators available for a number of probability
distributions [149].

The output of applying the Monte Carlo method is an array (vector) Y1, . . . , YM characterising
the probability density function of the output quantity. This sample is however not the form in
which a measurement result is typically communicated (reported). From the output Y1, . . . , YM ,
the following can be computed:

– the measured value, usually taken as the arithmetic mean of Y1, . . . , YM

– the standard uncertainty, usually computed as the standard deviation of Y1, . . . , YM

– a coverage interval containing the value of the output quantity with a stated probability,
obtained as outlined below

– the expanded uncertainty

– the coverage factor

The last two items apply when the coverage interval can be reasonably approximated by a sym-
metric probability density function.

The most general way of representing a coverage interval is by specifying its upper and lower
limits. This representation is always appropriate whether the output distribution is symmetric
or not. In many instances however, the output probability density function is (approximately)
symmetric, and then the expanded uncertainty can be computed as the half-width of the coverage
interval. The coverage factor can be computed from the expanded uncertainty U(y) and the
standard uncertainty u(y), i.e., k = U(y)/u(y). The symmetry of the output probability density
function can be verified by examining a histogram of Y1, . . . , YM , or obtaining a kernel density
plot, a smooth approximation to the probability density function.

2.3 Software environment

R is an open source language and environment for statistical computing and graphics. It is a
GNU project, similar to the S language and environment, which was developed at Bell Labora-
tories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be
considered as a different implementation of S [149]. It is available for Windows, MacOS and a
variety of UNIX platforms (including FreeBSD and Linux) [150].

Users of Windows, MacOS, and a number of Linux distributions may also wish to download
and install RStudio [155], which provides an integrated development environment, in which code
can be written, the values of variables can be monitored, and separate windows for the console
and graphics output are available. The R code provided in this primer has been developed in
RStudio (version 1.2.1335, build 1379 (f1ac3452)).
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2.4 Generating random numbers

In R, it is straightforward to generate a sample of random numbers from most common probability
density functions. For example, the following code generates a sample of a normal distribution
with mean µ= 10.0 and standard deviation σ = 0.2 and a sample size M = 10 000:

M = 10000
mu = 10.0
sigma = 0.2

set.seed(2926)
X1 = rnorm(M,mu,sigma)

The function to be called to generate an array (vector) of random numbers with the normal
distribution and mean mu and standard deviation sigma is called rnorm. The line set.seed(2926)
is useful for debugging purposes, as it ensures that the random number generator starts at the
same point every time. Any other value for the seed would also ensure the exact reproduction of
the series of numbers obtained from the random number generator. If that is not required, the
line can be omitted. In this tutorial, the seed is set, so that the reader can exactly reproduce the
output. The output is collected in a variable named X1. It is an array with 10000 elements.

The following code snippet shows the mean and standard deviation of the 10 000 generated
numbers, using R’s built in functions mean and sd respectively.

mean(X1)

## [1] 10.00131

sd(X1)

## [1] 0.2006594

Using R’s functions plot and density, the kernel density of variable X1 can be plotted (see
figure 2.1). The code to generate the figure is as follows:

plot(density(X1),xlab = "X1",ylab = "density",main = "")

where density calculates the kernel density from the array X1 and plot generates the figure.
The plotted density resembles that of a normal distribution. The larger the number of samples
drawn from the random number generator, the closer the resemblance with the normal distribu-
tion will be.

From the first code fragment in this section, it is readily seen that R has a function for gener-
ating random numbers with a normal distribution. It also has functions for generating random
numbers with a rectangular distribution (runif), the t distribution (rt), exponential distri-
bution (rexp) and gamma distribution (rgamma). There exists a package (extension) called
“trapezoid” [99] implementing among others the trapezoidal distribution, a package called “mvt-
norm” [93] implementing the multivariate normal distribution (useful when some of the input
quantities are dependent [52]), and a package called “triangle” [63] implementing the triangular
distribution. So, apart from the curvilinear trapezoidal distribution and the arc sine distribution,
random numbers for all probability density functions mentioned in GUM-S1 [52, table 1] are
available in R.

The arc sine distribution can be implemented as follows in R. According to GUM-S1 [52,
clause 6.4.6.1], a U-shaped random variable X on the interval [a, b] can be obtained through

X =
a+ b

2
+

b− a
2

sinΦ
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Figure 2.1: Density plot of the random variable X1 having a normal distribution with mean 10.0
and standard deviation 0.2

whereΦ is a random variable with a rectangular distribution on [0,2π]. In R, a function rarcsin
that provides such a random variable, and a call to that function, can be coded as follows:

rarcsin <- function(n,a,b) {
X = (a+b)/2 + (b-a)/2 * sin(runif(n,0,2*pi))
return(X)

}

X2 = rarcsin(M,-1.0,1.0)

The argument n determines the number of random numbers returned; a and b denote the
lower and upper limits respectively of the interval over which the arcsine distribution has a non-
zero density. If n > 1, the function returns an array; if n = 1 it returns a single number. This
behaviour mimics the behaviour of the other functions implemented in R to generate random
numbers.

The last line in the code snippet creates an array X2 of M elements (M = 10 000 in this in-
stance) of a random variable having an arcsine distribution over the interval [−1,1]. A histogram
(obtained through the R function hist) is shown in figure 2.2.

2.5 Simple additive model: calculation of the molar mass of phenol

In this example, the molar mass of phenol (molecular formula C6H5OH) is computed. The ex-
ample shows how an output quantity with an uncertainty is obtained from input quantities with
uncertainty. There is no experiment involved. The example is pivotal for many calculations
involving reference data, such as atomic weights, molar masses and enthalpies of formation.

The molar mass is computed from the atomic masses and the coefficients appearing the molec-
ular formula, which for the elements involved are 6 for carbon, 6 (5+1) for hydrogen and 1 for
oxygen. The current relative atomic masses are used as published by IUPAC (International Union

Examples of evaluating measurement uncertainty First edition (M27)



Chapter 2. Using the Monte Carlo method 8

X2

fr
eq

ue
nc

y

−1.0 −0.5 0.0 0.5 1.0

0
50

0
10

00
15

00

Figure 2.2: Histogram of the random variable X2 containing M = 10 000 samples
having an arcsine distribution between -1 and 1

of Pure and Applied Chemistry) [126]. The relative atomic masses that apply to “normal materi-
als” are called standard atomic weights [69,126]. Their interpretation is described in an IUPAC
technical report [147].

The molar mass of phenol (chemical formula C6H5OH) is computed as

Mr(C6H5OH) = 6Ar(C) + 6Ar(H) + Ar(O)

The Monte Carlo method is implemented in R using M = 100 000 trials. The R code that
performs the evaluation reads as

M = 100000
C = runif(M, 12.0096, 12.0116)
H = runif(M, 1.00784, 1.00811)
O = runif(M, 15.99903, 15.99977)
MW = 6*C + 6*H + O
MW.val = mean(MW)
MW.unc = sd(MW)
MW.Unc = (quantile(MW,probs = 0.975) -

quantile(MW,probs = 0.025))/2.0

The first line declares a variable M that holds the number of trials to be carried out by the
Monte Carlo method. Then, for each of the elements, M samples are drawn using the rectangular
distribution (using R’s function runif) and the lower and upper limits provided by the standard
atomic weights of IUPAC [126]. These arrays have respectively the names C, H and O for the
atomic masses of carbon, hydrogen and oxygen. The molar mass is then computed in the line
defining MW. R is very efficient with vectors (arrays) and matrices (tables) [57]. The value of
the molar mass (MW.val) is computed by taking the average of MW, the standard uncertainty by
taking the standard deviation of MW and the expanded uncertainty by taking the half-width of
the 95 % coverage interval. The latter is obtained by calculating the 0.025 and 0.975 quantiles
(which provides a probabilistically-symmetric coverage interval).
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Figure 2.3: Output probability density function of the molar mass of phenol and superimposed
a normal distribution with the same mean and standard deviation

The code to plot the output probability density function of the molar mass (MW) and to su-
perimpose a normal distribution with the same mean and standard deviation is given below:

x = seq(from = MW.val-4*MW.unc,to=MW.val+4*MW.unc,by=8*MW.unc/100)
hx = dnorm(x,MW.val,MW.unc)
{

plot(density(MW),xlab = "Molar mass (g/mol)",
ylab = "Density (mol/g)",main="",
xlim=c(min(x),max(x)),ylim=c(0,max(hx)))

lines(x,hx,lwd=2,lty=2,col="red")
}

The first two lines compute the relevant part of the normal distribution around the mean ±
4 standard deviations. The subsequent lines plot the output probability density function and the
normal distribution respectively.

The figure is shown as figure 2.3. It is obvious that the normal distribution is not an appro-
priate approximation of the probability density function of the output quantity, which is much
narrower than the normal distribution. The molar mass is 94.1108 gmol−1 with standard un-
certainty 0.0035 g mol−1. The expanded uncertainty is 0.0059 g mol−1. The coverage factor is
1.67.

2.6 Mass example from EA 4/02

In most instances, the Monte Carlo method is implemented using a measurement model (or
measurement equation). In this section, the mass calibration example of EA 4/02 [82] is taken
and the implementation of the Monte Carlo method is described. The evaluation using the Monte
Carlo method rests on the same assumptions for the input quantities as in that example. The
example is developed in such a way that for any measurement model having one output quantity
the same steps can be followed. The measurement model is coded in the form of a function,
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which promotes writing tidy code. It also allows iterative calculations to be readily implemented
when the measurement model is defined implicitly [54]. This example describes the calibration
of a 10 kg weight by comparison with a standard 10 kg weight. The weighings are performed
using the substitution method. This method is implemented in such a way that three mutually
independent observations for the mass difference between the two weights are obtained.

The measurement model is given by [82, S2]:

mX = mS+ δmD + δm+ δmC + δB, (2.1)

where the symbols have the following meaning
mX conventional mass of the weight being calibrated,
mS conventional mass of the standard,
δmD drift of the value of the standard since its last calibration,
δm observed difference in mass between the unknown mass and the standard,
δmC correction for eccentricity and magnetic effects,
δB correction for air buoyancy.

For using the Monte Carlo method, probability density functions are assigned to each of the five
input quantities [52]. These probability density functions are described in the original example
[82].

The conventional mass of the standard mS is modelled using the normal distribution with
mean 10 000.005 g and standard deviation 0.0225 g. The standard deviation (standard uncer-
tainty) is calculated from the expanded uncertainty and the coverage factor provided on the
calibration certificate. This interpretation is also described in GUM-S1 [52, 6.4.7]. The drift of
the mass of the standard weight δmD is modelled using a rectangular distribution, centred at 0 g
and with a half-width of 0.015 g. The corrections for eccentricity and magnetic effects, and that
for air buoyancy are both modelled using a rectangular distribution with midpoint 0.000 g and
half-width 0.010 g.

The mass difference δm between the two weights computed from the indications of the bal-
ance is calculated as the mean of n = 3 independent observations. EA 4/02 explains that the
associated standard uncertainty is computed from a pooled standard deviation 0.025 g, obtained
from a previous mass comparison, divided by

p
n.

In the implementation of the Monte Carlo method, the three observations are simulated us-
ing normal distributions with means of the observed values (i.e., 0.010 g, 0.030 g and 0.020 g
respectively) and a standard deviation of 0.025 g for each. The mass difference is formed by
calculating the arithmetic average of the three simulated observations.

The measurement model (equation (2.1)) can be coded in R as follows:

# measurement function
mass.x <- function(m.std,dm.d,diff,dm.c,dm.B) {

m.std + dm.d + diff + dm.c + dm.B
}

where m.std denotes the conventional mass of the standard weight, dm.d the drift correction
of the conventional mass of the standard weight, diff the mass difference obtained from the
substitution weighing, dm.c the correction due to eccentricity and magnetic effects, and dm.B
the correction due to air buoyancy. The function is called mass.x and returns the value of the
output quantity mX.

Most programming languages implement a “for” loop, which enables executing a block of
code a defined number of times. Anyone familiar with this “for” loop in computer programming
would now use this kind of loop to code the recipe given in GUM-S1 clause 7.2.2 [52]. An
implementation of the Monte Carlo method with a fixed value for the number of samples M
would then read as follows:
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# implementation of the procedure of GUM-S1 with fixed M
prob = 0.95
M = 10000 * ceiling(1.0/(1.0-prob)) # GUM-S1 7.2.2
m.x = numeric(M)
m.data = numeric(3)
for (i in 1:M) {

m.std = rnorm(1,10000.005,0.0225)
dm.d = runif(1,-0.015,+0.015)
dm.c = runif(1,-0.010,+0.010)
dm.B = runif(1,-0.010,+0.010)
m.data[1] = rnorm(1,0.01,0.025)
m.data[2] = rnorm(1,0.03,0.025)
m.data[3] = rnorm(1,0.02,0.025)
m.diff = mean(m.data)
m.x[i] = mass.x(m.std,dm.d,m.diff,dm.c,dm.B)

}

On the first line, the probability level of the coverage interval (prob) is defined to be 0.95.
In accordance with the guidance in clause 7.2.2 of GUM-S1 [52], M is calculated using the built-
in function ceiling which returns the smallest integer not less than its argument. With prob
= 0.95 the net effect of calling ceiling is that the floating point number is converted to an
integer, as the result of 1/(1-prob) is 20, hence the minimum number of Monte Carlo trials
is M = 10000 · 20 = 200000. Then an array (vector) m.x is declared that will hold the values
calculated for the mass of the weight being calibrated. The vector m.data is a temporary storage
for simulating the mass differences between the standard weight and the weight being calibrated.
In the for loop, at each iteration a sample is drawn of the input quantities mS (m.std), δmD
(dm.d), δmC (dm.c), and δB (dm.B). The mass difference from comparing the two weights
(m.diff) is simulated by drawing from a normal distribution with different means, but the same
standard deviations, the three readings and taking the average. The measured value of the output
quantity mX (m.x) is finally obtained by calling the measurement model with as arguments the
input quantities.

Running the above code provides the following output for the mean, standard deviation (stan-
dard uncertainty) and the coverage interval of mX:

print(mean(m.x),digits = 9)

## [1] 10000.025

print(sd(m.x),digits = 2)

## [1] 0.029

quantile(m.x,probs = c(0.025,0.975))

## 2.5% 97.5%
## 9999.968 10000.082

where the argument probs holds the probabilities corresponding to the lower and upper ends
of the probabilistically symmetric 95 % coverage interval.

This way of coding an implementation of the Monte Carlo method would work in a large
number of computer languages, including Python, MATLAB, Fortran, C, C++ and Pascal. While
the above code in R does what is intended, the same task can be performed with greater effec-
tiveness in R, exploiting the fact that R is very efficient in working with vectors and matrices [57].
Computational efficiency is especially important with more complex models and larger numbers
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of Monte Carlo trials, as it can greatly reduce the required computing time. The following code
implements the same simulation, using vectors and matrices where possible:

# implementation of the procedure of GUM-S1 with fixed M
prob = 0.95
M = 10000 * ceiling(1.0/(1.0-prob)) # GUM-S1 7.2.2
m.std = rnorm(M,10000.005,0.0225)
dm.d = runif(M,-0.015,+0.015)
dm.c = runif(M,-0.010,+0.010)
dm.B = runif(M,-0.010,+0.010)
m.data = matrix(rep(c(0.01,0.03,0.02),M), nrow = M, byrow = TRUE)
m.data = m.data + matrix(rnorm(3*M,0,0.025),nrow = M,byrow = TRUE)
m.diff = apply(m.data,1,mean)
m.x = mass.x(m.std,dm.d,m.diff,dm.c,dm.B)

Now the variables m.std, dm.d, dm.c, and dm.B are vectors holding all M values for the
input quantities. The data from comparing the weights is summarised in a matrix called m.data
of M rows and 3 columns. The matrix is constructed by adding the means (0.01, 0.03, and 0.02)
to the simulated data which have been generated using the normal distribution with mean 0 and
standard deviation 0.025. The mass differences are computed by calculating the row means and
storing these in m.diff using the R function apply. Note also that the measurement model can
be called with vectors rather than scalars as arguments (last line of the code); in this case also
m.x is a vector of length M .

The second code runs in less than half the time of the first implementation. For this simple
example, the difference is a matter of a few seconds, but for more complex models the difference
in speed will be of more practical significance. Especially the steps that are repeated often should
be carefully thought about. Another issue is memory use. The second implementation consumes
appreciably more memory (for it holds all generated values for the input quantities) than the
first (which only holds the last value for each of the input quantities).

The second code provides the following output for the mean, standard deviation (standard
uncertainty) and the coverage interval of mX:

print(mean(m.x),digits = 9)

## [1] 10000.0249

print(sd(m.x),digits = 2)

## [1] 0.029

quantile(m.x,probs = c(0.025,0.975))

## 2.5% 97.5%
## 9999.967 10000.082

The output probability density function is shown in figure 2.4. The form of the probability
density function resembles that of a normal distribution with mean 10 000.025 g and standard
deviation 0.029 g. The following code computes the expanded uncertainty by taking the half-
width of the 95 % coverage interval and the coverage factor by dividing the expanded uncertainty
by the standard uncertainty:

m.x.Unc = (quantile(m.x,probs = 0.975) - quantile(m.x,probs = 0.025))/2.0
m.x.k = m.x.Unc/sd(m.x)
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Figure 2.4: Probability density function of the output quantity m.x

The expanded uncertainty is 0.057 g and the coverage factor is 1.96. This coverage factor
is that of a 95 % coverage interval of the normal distribution. The coverage factor differs from
that used in EA 4/02 which uses k = 2 for obtaining (at least) 95 % coverage probability. The
difference is readily explained, as the dominating uncertainty contributions are modelled using
the normal distribution, and the sum of two normal distributions is also normally distributed (see
also the measurement model, equation (2.1)). That the output quantity has an (approximately)
normal distribution is reflected in the coverage factor obtained from the Monte Carlo method.

Now all results are obtained that commonly appear on a calibration certificate (as well as in
many test reports), as described in ISO/IEC 17025 [33]:

– the measured value (= value of the output quantity)

– the expanded uncertainty

– the coverage factor

In this case, one might also be willing to state that the output probability density function is
a normal distribution. Whereas in this case such a statement can be made, in most cases the
output probability density function cannot directly be approximated by a well-known analytic
probability density function. Comparison of the three results listed above with those from the LPU
would imply that for comparable data LPU would be fit for purpose in a subsequent uncertainty
evaluation. In a subsequent uncertainty evaluation, with mX as one of the input quantities, the
above information suffices to apply the law of propagation of uncertainty, say [51].

2.7 Law of propagation of uncertainty

The law of propagation of uncertainty (LPU) is the most widely used mechanism for propagating
uncertainty. Whereas with the Monte Carlo method the lack of computing and programming
skills can form a bottleneck, with the LPU it is often the calculation of the sensitivity coeffi-
cients, i.e., the partial derivatives of the output quantity with respect to the input quantities,
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that provides a difficulty. Most guidance documents, such as the GUM [51], GUM-S2 [54] and
EA 4/02 [82] direct their readers to analytic differentiation of the measurement model to obtain
the expressions for calculating the sensitivity coefficients. Whilst this guidance is fully appro-
priate, it is not always practicable, for many people have lost their skills in differentiation. The
fact that there are tables with derivatives of common functions (such as [164, 178]) is barely
mentioned in such documents. Numerical approximation of the sensitivity coefficients [59,145]
is a very good alternative, provided that it is done properly. In this section, we show how to use
numerical differentiation and the law of propagation of uncertainty to perform the uncertainty
evaluation of the mass example of EA 4/02 [82].

The R package numDeriv provides the function grad (from gradient) that returns from a
function a generally good approximation, using Richardson extrapolation [61], of the partial
derivatives of the input variables. The function returns a vector holding the values of these
partial derivatives. The function passed to grad should have only one argument, namely a vector
holding all input variables. Hence, the measurement model needs to be reformulated as follows:

# measurement function
mass2.x <- function(x) {

m.std = x[1]; dm.d = x[2];
diff = x[3]; dm.c = x[4]; dm.B = x[5]
m.std + dm.d + diff + dm.c + dm.B

}

where x denotes the vector with input variables. For clarity and convenience, in the function body
of mass2.x the same symbols have been used as in mass.x shown previously. The convenience
extends to easier debugging the code as necessary. The penultimate line calculates the result of
the function as the sum of the five input variables, just as in the case of the Monte Carlo method.

The uncertainty evaluation itself can be coded as follows:

require(numDeriv)
m.std = 10000.005; dm.d = 0.0; diff = mean(c(0.01,0.03,0.02))
dm.c = 0.0; dm.B = 0.0;
sens = grad(func=mass2.x,x=c(m.std,dm.d,diff,dm.c,dm.B))
m.std.u = 0.0225
dm.d.u = 0.015/sqrt(3); dm.c.u = 0.010/sqrt(3)
diff.u = 0.025/sqrt(3); dm.B.u = 0.010/sqrt(3)
m.x = mass2.x(c(m.std,dm.d,diff,dm.c,dm.B))
m.x.unc = sqrt(sum(sens^2*c(m.std.u,dm.d.u,diff.u,dm.c.u,dm.B.u)^2))

The first line loads the package numDeriv (which needs to be installed in RStudio. The next
two lines define the values of the input quantities. The vector sens on the fourth line holds
the sensitivity coefficients returned by calling grad. The subsequent three lines calculate the
standard uncertainties associated with the five input quantities. The penultimate line calculates
the estimate of the output quantity m.x and the last line its associated standard uncertainty
m.x.unc. Again, this last line shows the flexibility of R working with vectors.

The mass of the calibrated weight is 10 000.025 g with standard uncertainty 0.029 g. Using a
coverage factor k = 2, the expanded uncertainty becomes 0.059 g. These results reproduce those
in example S.2 of EA 4/02 to the number of decimal digits given.

The values of the sensitivity coefficients are

## [1] 1 1 1 1 1

and are identical to those given in EA 4/02 [82]. The code is also valid for measurement models
with non-trivial sensitivity coefficients [145].
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The approach described also works with correlated input variables. In that case, the calcula-
tion of the standard uncertainty associated with mX is performed as follows:

D = diag(c(m.std.u,dm.d.u,diff.u,dm.c.u,dm.B.u))
CM = D %*% D
tmp = t(sens) %*% CM %*% sens
m.x.unc = sqrt(tmp[1,1])

The first two lines form the covariance matrix, diagonal in this case, associated with the
five input quantities. (These are only needed to create the covariance matrix; if there were
correlations between the five input variables, the code for creating it would have to be adapted
accordingly.) The actual implementation of the LPU for correlated input variables is given in
the last two lines of the previous code. By vector/matrix multiplication (see also the law of
propagation of uncertainty in GUM-S2 [54]) a covariance matrix of dimension 1× 1 associated
with the output quantity is returned (tmp). The last line takes the square root of the only element
in this matrix (holding the variance of mX) to obtain the standard uncertainty associated with
mX. This standard uncertainty is 0.029 g.
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Chapter 3

Bayesian inference in R and RStan

A.M.H. van der Veen

3.1 Preamble

In this tutorial, we revisit the well-known example of an uncertainty evaluation of the calibration
of a 10 kg weight, published in the guidance document EA 4/02 from European co-operation for
Accreditation (EA) to illustrate how a Bayesian evaluation of measurement uncertainty can be set
up using R [149] and rstan [161], including the use of Markov Chain Monte Carlo (MCMC). The
example shows how type A and type B methods of evaluating standard uncertainty are coded,
how the calculations are performed and how from the posterior of the measurand the value,
standard uncertainty, coverage interval and coverage factor can be determined.

3.2 Introduction

The mass example in EA 4/02 [82]was introduced in chapter 2 and this Bayesian inference builds
forth on the example as already described. The Bayesian evaluation using MCMC highlights that
the type B evaluation of standard uncertainty in such a Bayesian setting is very similar to the
same evaluation using the Monte Carlo method of GUM Supplement 1 (GUM-S1) [52]. The
greatest difference is usually in those uncertainty components that are evaluated using type A
methods. There is no technical reason for using MCMC in this instance, for the same result
(measured value and expanded uncertainty) can be obtained by much simpler means (i.e., the
law of propagation of uncertainty [51] or the Monte Carlo method of GUM Supplement 1 (GUM-
S1) [52]. For this reason, it is an excellent case for assessing whether an implementation of
the MCMC provides valid results. In this revisit of the mass example, the type A evaluation of
standard uncertainty [51, 82] of the mass differences is fairly straightforward, as the original
example assumes a known standard deviation. This known standard deviation can be viewed as
a kind of “prior knowledge” , which justifies a Bayesian treatment (the treatment in EA 4/02 is
in this respect Bayesian, for it utilises the information about the repeatability standard deviation
of the weighings.

The calculations in this tutorial have been performed using R, an environment for statisti-
cal computation [149], and the package rstan [64] that enables writing Bayesian models in a
straightforward manner. This environment and the use of RStan for Bayesian inference have
been introduced previously [170,174].

From the posterior probability density function obtained through a Bayesian inference, as
has been and will be shown, all essential information can be retrieved, including the measured
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value, its associated standard uncertainty, and a 95 % coverage interval, just as in the case of the
Monte Carlo method of GUM-S1 [52]. It is worth noting that the posterior is not necessarily sym-
metric, so that obtaining an expanded uncertainty can turn out to be impossible. The expanded
uncertainty is the half-width of a symmetric coverage interval [51,82] and obviously only makes
sense if that interval is (approximately) symmetric.

3.3 Bayesian evaluation of the mass example of EA 4/02

The re-evaluation of the mass example from EA 4/02 is performed by mimicking the assumptions
made in EA 4/02 [82] as closely as possible. The example describes for all type B evaluations
the probability density functions used (rectangular and normal distributions). For the repeated
observations of the mass difference, the normal distribution is used with a known standard devia-
tion, which is consistent with the original evaluation as presented in EA 4/02. The measurement
model is given in equation (2.1). For Bayesian inference, probability density functions need to
be assigned to each of the five input quantities. This aspect of the evaluation is similar to the use
of the Monte Carlo method of GUM-S1 [52] (see also chapter 2.

The conventional mass of the standard is modelled using a normal distribution with mean
5 mg (the deviation from the nominal value of 10 kg) and standard deviation 22.5 mg. The sub-
traction of the nominal value is necessary to obtain stable output in the Markov Chain Monte
Carlo (MCMC) calculation; it does not in any way change the outcome of the inference, apart
from that we have redefined the measurand to be the departure from the nominal mass, rather
than the mass of the 10 kg weight itself. The measurement model could be written as

∆mX = ∆mS+ δdD + δm+ δmC + δB (3.1)

where ∆mX denotes the departure from its nominal mass for the weight being calibrated, and
∆mS the departure from its nominal mass for the standard weight. The fact that the outcome of
the MCMC calculation is sensitive to the choice of variables (‘parametrisation’) in the model has
been discussed previously already [170, 174]. This sensitivity is one of the hurdles to be taken
when performing iterative calculations (as MCMC is [92]).

In Stan code, the model of the mass calibration reads as

data {
int<lower=1> N;
vector[N] diffs;

}
parameters{

real m_s;
real<lower=-15,upper=15> dm_d;
real diff;
real<lower=-10,upper=10> dm_c;
real<lower=-10,upper=10> dm_B;

}
model {

m_s ~ normal(5,22.5);
diff ~ normal(0,500.0); // weak prior
diffs ~ normal(diff,25.0);

}
generated quantities{

real m_x;
m_x = m_s + dm_d + diff + dm_c + dm_B;

}
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In the data block, a vector of length N is declared called diffs which holds the recorded
mass differences from comparing the masses of the standard and the weight being calibrated.
The input quantities evaluated using type B methods for evaluating standard uncertainty [51]
are declared as model parameters in the parameters block. By default, Stan assigns these
variables a rectangular distribution over their domain of validity [64]. If no constraints on the
variable are specified, the domain is (−∞,+∞) and thus the assigned prior is improper (i.e. not
integrating to one over its domain [92]) . This default can be overridden by specifying another
prior in the model block.

The first variable not having assigned a rectangular distribution, m_s, denotes ∆ms the de-
parture of its nominal mass of the standard weight (see equation (3.1)). In the model block, it
is assigned a normal distribution with mean 5 mg and standard deviation 22.5 mg. In Bayesian
models, this way of coding a probability distribution would be the same as assigning a prior to
the parameter m_s . It is not combined with data, so the probability distribution of this param-
eter does not change as part of the Bayesian inference. Hence, it is sometimes argued that the
way in which the GUM [51] deals with type B evaluations of standard uncertainty is ‘weakly
Bayesian’ [50] by nature. The ‘weakly’ aspect lies in the fact that only an informative prior is
assigned , and that it is not combined with (new) measurement data, as no data are generated
for this parameter during the measurement. The same applies to the other model parameters in
equation (3.1) evaluated using type B methods.

The corrections for drift (dm_d), eccentricity and magnetic effects (dm_c), and buoyancy
(dm_B) are all declared with upper and lower limits (±15mg for drift, and ±10 mg for the other
two). As Stan assigns these a rectangular distribution taking into account the limits, there is
no need to assign these three variables explicitly a rectangular distribution in the model block.
Actually, there are computational advantages to write the model as shown; these advantages are
well covered in the description of the Stan language [64,161].

The mass difference between the weight being calibrated and the standard weight is called
diff in the model. It is assigned a weakly informative prior in the form of a normal distribution
(that is implied by the example as well) with zero mean and a large standard deviation. This prior
does not do more than saying that we expect, before observing the data, that the mass difference
between the two weights will be close to zero, given a large standard deviation (500 mg in this
case, much larger than any of the uncertainties considered). If the OIML class of a weight is
known, the maximum departure from the nominal mass can be presumed to be known, unless
the weight is out-of-specification. The specification of the OIML class can be used to elicit a
value for the standard deviation of the prior. In the last line of the model block, the data (held in
diffs) is used to update the probability distribution of diff, given a fixed standard deviation of
25 mg. The latter is also given in the example in EA 4/02 [82]. This is the only part of the model
where Bayes’ rule is applied, and also the only part that differs in nature from the evaluation in
the original example, where a frequentist method is used (just as for other type A methods in the
GUM [51,174]).

The measurement model finally appears in the generated quantities block. The mass
(difference from the nominal mass) of the weight being calibrated is declared as m_x and its
value is calculated as described in equation (3.1). Note that only m_x needs to be specified using
the measurement model. When evaluating the model, Stan will compute a value for m_x during
each cycle of the MCMC , thus providing a sample of its posterior.

When running the MCMC, a number of iterations are necessary to enable the sampler to con-
figure itself. This is called the “warmup phase”. Furthermore, several series of samples (“chains”)
are generated, as one of the criteria for convergence is that the ratio of the between- and within-
chain variances is close to one [92]. More details have been given elsewhere [170,174]. Running
the model with 21000 iterations and a warmup of 1000 iterations, using 4 chains yields the fol-
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lowing output:

## Inference for Stan model: 091dba697d92e3c49746850cfc395085.
## 4 chains, each with iter=21000; warmup=1000; thin=1;
## post-warmup draws per chain=20000, total post-warmup draws=80000.
##
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## m_s 4.93 0.07 22.43 -39.20 49.10 94501 1
## dm_d 0.03 0.03 8.66 -14.25 14.26 99537 1
## diff 20.01 0.05 14.42 -8.29 48.20 93814 1
## dm_c -0.01 0.02 5.77 -9.49 9.48 104833 1
## dm_B -0.02 0.02 5.77 -9.51 9.49 120707 1
## m_x 24.95 0.09 29.19 -32.23 82.20 97247 1
## lp__ 2.24 0.01 1.77 -2.16 4.59 31166 1
##
## Samples were drawn using NUTS(diag_e) at Fri Mar 29 19:17:03 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

In the output, the first column lists the parameters. lp__ denotes the log of the joint posterior.
The second column, labelled ‘mean’ provides the estimates of the parameters. The next column
gives the standard error of the mean due to the MCMC calculation. The standard error generally
decreases as the number of iterations increases. It should be small enough to produce sufficiently
accurate results. A simple (yet not always sufficient way) is to repeat the calculation and to see
how well the results agree. In the column ‘sd’, the standard deviation (= standard uncertainty)
of the parameters is given. The following two columns contain the lower and upper limits of
the probabilistically-symmetric 95 % coverage interval. n_eff provides a crude estimate of the
effective number of samples [92]. The final column, labelled Rhat, gives the ratio of the between-
chain and within-chain variance. For convergence, it should be close to one [92,174].

A more thorough way of looking at the results of the MCMC calculation is to inspect the
traceplots of the parameters. These show the parameter values for each chain and each iteration
in the calculation. There is in this example only one variable that warrants looking at its traceplot
(diff), which is shown in figure 3.1.

The traceplot shows good convergence: the parameter values fluctuate around a mean value
and there are no meaningful differences between the chains.

The value of the correction due to eccentricity and magnetic effects (dm_c) is 0.0 mg with
standard uncertainty 5.8 mg. Both values are very close to the values obtained using the rect-
angular distribution: 0.0 mg and 10mg/

p
3 ≈ 5.8mg, respectively. The same can be said about

the correction due to air buoyancy (dm_B), which has the value 0 mg with standard uncertainty
5.8 mg; the values that are obtained using the rectangular distribution directly are the same as
for the correction due to eccentricity and magnetic effects. For the third correction, that due to
drift (dm_d) the expected standard deviation is 15mg/

p
3 ≈ 8.7 mg, and the mean is zero [82];

the results obtained from the MCMC are 8.7 mg and 0 mg respectively.
The mass difference of the standard (∆ms) is evaluated as 4.9 mg with standard uncertainty

22 mg; the ones given in the original example are 5 mg and 22.5 mg respectively. The calculated
mass difference is evaluated as 20 mg with standard uncertainty 14 mg; the ones given in the
original example are 20 mg and 14.4 mg respectively. In both cases, the agreement is excellent.

The mass difference between the weights is returned as m_x; its value is 24.9 mg and its
standard uncertainty is 29 mg. We can see that the value and standard deviation are very close
to the ones given in the original example (25 mg and 29.3 mg respectively [82]).

The final hurdle in this example is the reproduction of the expanded uncertainty, which is
stated to be 59 mg [82]. The MCMC calculation provides for all parameters the 95 % coverage
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Figure 3.1: Trace plot of the model parameter diff

intervals (see the output discussed previously). Before attempting to compute the expanded
uncertainty as the half-width of an approximately symmetric coverage interval, the shape of the
posterior of ∆mx should be assessed for symmetry. This posterior is shown in figure 3.2.

From figure 3.2, it can be seen that the posterior of ∆mx is fairly symmetric . One way to
compute the expanded uncertainty would be to compute the difference between the mean (=
measured value) and the lower end of the 95 % coverage interval and the difference between the
upper end of the said interval and the mean, and to use whichever is the greater. The R code to
perform the calculation takes the form

Lower = quantile(fitout$m_x,probs = 0.025)
Upper = quantile(fitout$m_x,probs = 0.975)
m_x = mean(fitout$m_x)
U.val = max(Upper-m_x,m_x-Lower)
U.k = U.val/sd(fitout$m_x)

where the variable fitout holds the extracted samples of the MCMC calculation. The ex-
panded uncertainty thus obtained is 57 mg and the coverage factor is 1.96. The latter is obtained
by dividing the expanded uncertainty by the standard uncertainty. This coverage factor is con-
sistent with that for the normal distribution, which should not come as a surprise, as the two
dominating uncertainty contribution have the normal distribution (the mass of the standard and
the mass difference between the two weights) [82]. Alternatively, the expanded uncertainty
could also be computed as the half-width of the 95 % coverage interval.

The reprocessing of this example in a computational environment for Bayesian inference
highlights that

1. type B evaluations of standard uncertainty can be viewed as assigning only a prior distribu-
tion to the parameter concerned; as there is no ‘fresh’ data, the distribution is not updated
using Bayes’ rule;

2. the normal distribution naturally arises under the assumption that the standard deviation
is known (if the latter were assumed to be completely unknown, the t distribution arises
[71,92,174]);
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Figure 3.2: Posterior of mass difference of the weight being calibrated from its nominal mass

3. the propagation of distributions is performed in a similar fashion as in the Monte Carlo
method of GUM-S1 (but the Monte Carlo methods are different! [52,92]).

A concern for those favouring classical statistical methods could be the weakly informative
prior assigned to the variable diff. There are different ways to assess the influence of assigning
this prior. One of the ways would be to replace it by a reference prior, which in this case would
be a rectangular distribution over the interval (−∞,+∞) [92]. The corresponding model is
obtained by removing the weakly informative prior from the model block and takes the form

data {
int<lower=1> N;
vector[N] diffs;

}
parameters{

real m_s;
real<lower=-15,upper=15> dm_d;
real diff;
real<lower=-10,upper=10> dm_c;
real<lower=-10,upper=10> dm_B;

}
model {

m_s ~ normal(5,22.5);
diffs ~ normal(diff,25.0);

}
generated quantities{

real m_x;
m_x = m_s + dm_d + diff + dm_c + dm_B;

}

Fitting the amended model with the same number of chains and chain lengths yields
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## Inference for Stan model: d370744d73ed5069a780210ed9d07c6e.
## 4 chains, each with iter=21000; warmup=1000; thin=1;
## post-warmup draws per chain=20000, total post-warmup draws=80000.
##
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## m_s 5.04 0.08 22.54 -39.23 49.06 84178 1
## dm_d -0.01 0.03 8.65 -14.26 14.25 88047 1
## diff 20.09 0.05 14.39 -8.23 48.36 85716 1
## dm_c -0.03 0.02 5.78 -9.51 9.51 102528 1
## dm_B -0.01 0.02 5.75 -9.49 9.49 99109 1
## m_x 25.09 0.10 29.30 -32.43 82.70 86586 1
## lp__ 2.24 0.01 1.77 -2.08 4.60 31782 1
##
## Samples were drawn using NUTS(diag_e) at Fri Mar 29 19:17:19 2019.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

Comparing the results of the MCMC with those obtained previously shows that they are very
close, which underlines the ‘weakly-informative’ behaviour of the assigned prior to diff in the
original model. Another way to assess the influence of the assigned prior would be to choose
other values for the standard deviation (now 500 mg). A larger standard deviation would cause a
reduction in the influence of the prior (it becomes less informative); a smaller standard deviation
would cause it to become more influential [170,174]. It is left to the reader to confirm that the
chosen prior indeed behaves as a weakly-informative prior.

Finally, it is worth noting that for ∆mx , the departure of its nominal mass of the weight being
calibrated, no prior is assigned. Its probability distribution is obtained in a calculation from the
other parameters using the measurement model (3.1). This part of the model behaves in the
same way as it would do when using the Monte Carlo method of GUM-S1 [51].
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Example E1

Straight-line calibration in
errors-in-variables models
S. Martens, K. Klauenberg, C. Elster

E1.1 Summary

In calibration practice, regression problems often include uncertainties in both the dependent
and independent variables, which are also called errors-in-variables models. The parameters of
such regression models can be estimated with the help of weighted total least squares methods.
The uncertainty for these regression parameters can be determined by the GUM approaches of
propagating uncertainties [51, 54] or propagating distributions [52, 54]. Alternatively Bayesian
inference can be applied.

Comparing these three approaches for straight-line calibration in errors-in-variables models
resulted in the examples

– “Calibration of a sonic nozzle as an example for quantifying all uncertainties involved in
straight-line regression” (see E11),

– “Quantifying uncertainty when comparing measurement methods – Haemoglobin concen-
tration as an example of correlation in straight-line regression” (see E13), and

– “Calibration of a torque measuring system – GUM uncertainty evaluation for least-squares
versus Bayesian inference” (see E14).
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Example E2

Bayesian approach applied to the mass
calibration example in JCGM 101:2008
S. Demeyer, N. Fischer, M.G. Cox, A.M.H. van der Veen, J.A. Sousa, O. Pellegrino, A. Bošn-
jaković, V. Karahodžić, C. Elster

E2.1 Summary

This example describes the calibration of a conventional mass of a weight W against a reference
weight R with a nominal mass of 100 g. The example builds on that given in JCGM 101:2008.
This time a Bayesian evaluation of the measurement is performed. A Bayesian approach differs
from the Monte Carlo method (MCM) of JCGM 101:2008 and the law of propagation of un-
certainty (LPU) in JCGM 100:2008 in that it combines prior knowledge about the measurand
with the data obtained during calibration. From the joint posterior probability density function
which is obtained from this combination, a value and a coverage interval for the measurand are
obtained.

E2.2 Introduction of the application

A Bayesian approach to the mass calibration example consists in updating a prior state of knowl-
edge on the measurand by the means of new information obtained during calibration.

In JCGM 101:2008 [52], the available information is a best estimate and its associated un-
certainty. A comparison of results between law of propagation of uncertainty (LPU), Monte Carlo
method (MCM) and the Bayesian approach is given in this document. We show that the three
methods give similar results when the Bayesian approach is conducted under a non-informative
prior distribution. We also show the effect of various prior parameter values for Gaussian prior
distributions.

The data and sources of this example are available electronically [77].

E2.3 Specification of the measurand

As described in JCGM 101:2008 [52], the application concerns the calibration of a weight W of
mass density ρW against a reference weight R of mass density ρR having nominally the same
mass mnom, using a balance operating in air of mass density ρa. Let δmR be the mass of a small
weight of density ρR added to R to balance it with W.

27



Example E2. Bayesian approach applied to the mass calibration example in JCGM 101:2008 28

It is usual to work in terms of conventional masses. The conventional mass mW,c of W is the
mass of a (hypothetical) weight of density ρ0 = 8× 103 kg m−3 that balances W in air at density
ρa0
= 1.2kg m−3.
The measurandδm= mW,c−mnom is the deviation of mW,c from the nominal mass mnom = 100 g.

E2.4 Measurement model

According to JCGM 101:2008 [52], in terms of conventional masses mW,c, mR,c and δmR,c, an
approximation adequate for most purposes is

mW,c = (mR,c +δmR,c)
�

1+ (ρa −ρa0
)
�

1
ρW
−

1
ρR

��

. (E2.1)

The measurement model used in the mass calibration example of [52] is

δm= (mR,c +δmR,c)
�

1+ (ρa −ρa0
)
�

1
ρW
−

1
ρR

��

−mnom. (E2.2)

E2.5 Input quantities of the measurement model

Table E2.1 summarizes the input quantities mR,c, δmR,c, ρa, ρW and ρR, and the PDFs assigned
from [52]. In the table, a Gaussian distribution N(µ,σ2) is described in terms of expectation µ
and standard deviation σ, and a rectangular distribution R(a, b) with endpoints a and b (a < b)
in terms of expectation (a+ b)/2 and semi-width (b− a)/2.

Table E2.1: The input quantities and PDFs assigned to them for the mass calibration model
(E2.2), from JCGM 101:2008 [52].

Quantity Distribution
Parameters

Expectation Standard Expectation Semi-width
µ deviation σ (a+ b)/2 (b− a)/2

mR,c N(µ,σ2) 100 000.000 mg 0.050 mg
δmR,c N(µ,σ2) 1.234 mg 0.020 mg
ρa R(a,b) 1.20 kg m−3 0.10 kgm−3

ρW R(a,b) 8× 103 kgm−3 1× 103 kg m−3

ρR R(a,b) 8.00× 103 kgm−3 0.05× 103 kg m−3

Note that the input quantity δmR,c is usually associated with fresh calibration results but that
in the JCGM 101:2008 [52] treatment of mass calibration, a Type B uncertainty evaluation of
δmR,c is performed resulting in a Gaussian distribution δmR,c ∼ N(d, u2(d)) where d is a best
estimate with associated uncertainty u(d).

E2.6 Uncertainty propagation

E2.6.1 Bayesian analysis: generalities

To set up a Bayesian framework [92], [60], a statistical model is needed for which we choose to
revise notation, as in [84], so that random variables are now represented by Greek letters. In
this document, we consider statistical models of the form

D|η,θ ∼ N
�

[η− G(θ )]/C(θ ), u2(d)
�

(E2.3)
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in which the observed data d is modelled as a realization of a random variable D having a Gaus-
sian distribution with mean [η− G(θ )]/C(θ ) and variance u2(d), C(θ ) 6= 0 and G(θ ) are smooth
functions. The measurand is denoted by η and θ is a vector of further parameters.

The statistical model (E2.3) is equivalent to the measurement model (E2.2)

η= G(θ ) + C(θ )ζ (E2.4)

with

ζ= δmR,c, (E2.5)

θ =
�

ρa,ρW,ρR, mR,c

�

, (E2.6)

C(θ ) = 1+ (ρa −ρa0
)
�

1
ρW
−

1
ρR

�

, (E2.7)

G(θ ) = C(θ )mR,c −mnom. (E2.8)

The measurement result (accounting for uncertainty in θ ) is represented by the marginal
posterior probability distribution π(η|d), resulting from the (potentially) high-dimensional inte-
gration

π(η|d) =
∫

θ

π(η,θ |d)dθ , (E2.9)

where π(η,θ |d) is the joint posterior distribution of (η,θ ).
In this document, point estimates are derived from equation (E2.9) for comparison with LPU

and MCM. We introduce the following quantities bη = E(η|d) =
∫

ηπ(η|d)dη to denote the
posterior mean of the measurement result and u2(bη) = V (η|d) =

∫

(η− bη)2π(η|d)dη to denote
the posterior variance of the measurement result. Coverage intervals are computed as shortest
intervals as described in [52], similar to highest posterior density (HPD) intervals in Bayesian
statistics.

E2.6.2 Prior distributions

In the Bayesian paradigm, a prior state of knowledge is described by a prior distribution π(η).
For instance, a way to express the prior belief that the measurand is close to a specified value
η0 is to use a prior Gaussian distribution π(η) ∼ N(η0,σ2

0) where the standard deviation σ0
controls the degree of belief in η0. For instance, if |η0| is much larger than σ0, a small value of
the relative uncertainty σ0/η0 gives an informative prior distribution whereas a large value of
this ratio leads to a poorly informative prior. Another way of modelling poor prior information is
to use the so-called non informative prior π(η)∝ 1. Alternative prior distributions can be used
(uniform, truncated, etc.) to model particular features of the measurand (bounds, non negativity,
etc.).

E2.6.3 Posterior distributions

Bayes’ formula gives the expression of the posterior distribution π(η,θ |d) as a function of the
likelihood l(d|η,θ ) and the prior distribution π(η,θ ):

π(η,θ |d) =
l(d|η,θ )π(η,θ )

m(d)
, (E2.10)
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where m(d) =
∫

l(d|η,θ )π(η,θ )dη is the marginal distribution of d, π(η,θ ) = π(η)π(θ ) and
π(θ ) is the probability distribution of the input quantities contained in θ .

Equivalently, (E2.10) can be translated into the proportionality relation as follows

π(η,θ |d)∝ l(d|η,θ )π(η,θ ). (E2.11)

Letting s = u(d), the likelihood is

l(d|η,θ )∝
1

([C(θ )]2 s2)
1
2

exp

�

−
(η−m(θ ))2

2 [C(θ )]2 s2

�

, (E2.12)

where m(θ ) = C(θ )d + G(θ ).
Under the non-informative prior distribution π(η)∝ 1, Bayes’ formula gives

π(η,θ |d)∼ N
�

m(θ ), [C(θ )]2 s2
�

π(θ ). (E2.13)

Under the Gaussian prior distribution, π(η)∼ N(η0,σ2
0), the Bayes’s formula gives

π(η,θ |d)∼ N
�

mp(θ ),σ
2
p(θ )

�

π(θ ), (E2.14)

where the posterior mean and variance of η are, respectively,

mp(θ ) = σ
2
p(θ )

�

η0

σ2
0

+
m(θ )

[C(θ )]2s2

�

, σ2
p(θ ) =

�

1

σ2
0

+
1

[C(θ )]2s2

�−1

.

The posterior mean is a weighted mean between the prior η0 and the best estimate m and
the inverse posterior variance, also called precision, is the sum of the prior precision, 1/σ2

0, and
the precision from the best estimate, 1/{[C(θ )]2s2}.

The integration according to (E2.9) is performed with a Monte Carlo method. The total
number of Monte Carlo trials is decomposed as follows: nMC draws according to π(θ ) and npost
draws from the Gaussian distributions (E2.13) or (E2.14) giving a total of nMC×npost simulations.

E2.7 Reporting the result

E2.7.1 Bayesian analysis of the mass calibration example in JCGM 101:2008

Results obtained with LPU, MCM and the Bayesian approach with non-informative prior (Bayes-
NI) are displayed in Table E2.2 (LPU1 and LPU2 denote respectively the first and second order
Taylor approximations) and plotted in Figure E2.1. The comparison shows a good agreement
between methods1.

Table E2.2: Comparison of results obtained with LPU1, LPU2, MCM and Bayes-NI, the Bayesian
analysis conducted with non informative prior distribution. Results from LPU1, LPU2, MCM are
taken from [52].

Method bδm u(bδm) Shortest 95 %
/mg /mg coverage interval CI/mg

LPU1 1.234 0 0.053 9 [1.128 5, 1.339 5]
LPU2 1.234 0 0.075 0 [1.087 0, 1.381 0]
MCM 1.234 0 0.075 4 [1.083 4, 1.382 5]

Bayes-NI 1.234 0 0.075 5 [1.084 5, 1.383 0]

1For the so-called non informative prior, [84] showed that Bayesian marginal posterior uncertainty coincides with
the MCM uncertainty estimate when the model is linear.
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Figure E2.1: Distributions of δm obtained under Gaussian approximation with LPU2, MCM and
Bayes-NI from the values in Table E2.2.

Results obtained with a Gaussian prior distribution are displayed in Table E2.3 and plotted
in Figure E2.2. It can be observed that, when the prior standard deviation σ0 increases, the
weight of the prior distribution decreases and the resulting posterior distribution tends to the
non informative case.

Table E2.3: Comparison of results obtained with the Bayesian analysis under Gaussian prior
distributions.

η0 σ0
bδm u(bδm) Shortest 95 %

/mg /mg /mg /mg coverage interval CI/mg

1.134 0.020 1.184 0 0.039 0 [1.106 9, 1.261 3]
1.134 0.01 1.153 9 0.017 1 [1.127 2, 1.152 5]
1.134 0.040 1.214 0 0.061 0 [1.093 6, 1.334 5]

In this section, all the results obtained with the Bayesian approach involve 2 × 107 Monte
Carlo trials (nMC = 20000, npost = 1000).

E2.8 Conclusion

This document shows the main features of a Bayesian approach of uncertainty evaluation applied
to the mass calibration example in JCGM 101:2008 [52]. The measurement result is represented
by the marginal posterior distribution of the measurand which accounts for both uncertainty
sources and prior information on the measurand, and is comparable in nature with the PDFs
provided by MCM [52] and by the Gaussian distribution from LPU [51].

In general, the Bayesian approach provides a flexible tool for statistical modelling and achieves
added value through prior information, at some computational price. In many circumstances, re-
duced uncertainties are obtained.

This example illustrates the well known property that, if a non-informative prior distribution
is chosen, the Bayesian posterior distribution is essentially the same distribution from which the
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Figure E2.2: Posterior distributions of δm obtained under Gaussian prior distributions from the
values in Table E2.3.

MCM determines a sample for linear measurement models, see for instance [84] and [159] for
the mass calibration problem.

This example shows that prior distributions can be chosen to allow a simplified Bayesian
uncertainty analysis using a Monte Carlo method instead of a Markov Chain Monte Carlo method
[66], usually used to sample from high-dimensional integrals, as in [159] and [146], which can be
helpful for any practitioner already familiar with MCM willing to perform a Bayesian uncertainty
analysis.
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Example E3

Evaluation of measurement uncertainty
in SBI – Single Burning Item reaction to
fire test
L.L. Martins, A.S. Ribeiro, M.G. Cox, J.A. Sousa, D. Loureiro, M.C. Almeida, M.A. Silva,
R. Brito, A.C. Soares

E3.1 Summary

This example illustrates the application of the Monte Carlo Method (MCM) in measurement
uncertainty propagation related to the Single Burning Item (SBI) test, within the European nor-
mative framework of reaction to fire tests for building products, namely, the EN 13823:2010+A1
[17]. The use of the MCM is justified by the multivariate, non-linear and complex nature of the
functional relations between a large number of input, intermediate and output quantities, thus
providing a numerical approach to the validation of the GUM Uncertainty Framework (GUF) [51]
described in [26].

E3.2 Introduction of the application

The objective of the SBI standard test [17] is to measure a set of quantities which determine the
evaluation and classification of a construction material (excluding floorings), aiming to charac-
terise its contribution to the deflagration and propagation of fires in buildings, when exposed to
adverse thermal conditions by means of a combustion item.

In this test, the specimen retrieved from the tested material is composed of two plates verti-
cally positioned with a 90 deg angle between both plates, being exposed to a main burner located
in the lower region of the plate’s junction. The specimen’s performance is evaluated for a period
of 20 minutes, based on the indirect measurement of quantities related to heat release and smoke
production. Complementary observations are also performed regarding lateral flame propaga-
tion and the production of drops or particles from the combustion process.

E3.3 Specification of the measurand(s)

Two main measurands are defined in the SBI test: the heat release rate (HRR) , which corre-
sponds to the thermal power released in a given time instant (expressed in kW) and, in a similar
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way, the smoke production rate (SPR), both being related to the combustion of the specimen
(expressed in m2 s−1). Due to the applied test method [17], the definitions of these quantities
are related to different time periods of the SBI test, namely:

HRR(t) =







0, t ≤ 300s
max [0,HRRtotal(t)−HRRburner] , 300s< t ≤ 312s

HRRtotal(t)−HRRburner, 312s< t
(E3.1)

where HRRtotal(t) is the total thermal power released by the specimen and the main burner in the
time instant t, while HRRburner is the average thermal power released only by the main burner;
and

SPR(t) =







0, t ≤ 300s
max [0, SPRtotal(t)− SPRburner] , 300s< t ≤ 312s

SPRtotal(t)− SPRburner, 312s< t
(E3.2)

where SPRtotal(t) is the total smoke production rate of the specimen and the main burner in the
time instant t, while SPRburner is the average smoke production rate related only to the main
burner.

In both cases, the initial stage of the SBI test time period (between 210 s and 270 s) is used
to determine the quantities HRRburner and SPRburner, based on average values obtained when
combustion occurs only in an auxiliary burner (identical to the main burner) installed in the
experimental apparatus.

The heat release rate is a key intermediate quantity in the determination of two main output
quantities of the SBI test – THR, the total heat release (usually expressed in MJ) from the speci-
men in a certain time exposure to the main burner flames (namely, in the first 600 s), and FIGRA,
the fire growth rate (expressed in W s−1), and defined as the maximum value of the quotient of
heat release rate from the specimen and the time of its occurrence using a THR threshold (such
as 0.2 MJ or 0.4 MJ).

In a similar way, the smoke production rate is also a significant intermediate quantity in the
SBI test since it contributes for the determination of two other main output quantities – TSP,
the total smoke production (in m2) from the specimen in a certain time exposure to the main
burner flames (namely, in the first 600 s), and SMOGRA, the smoke growth rate (expressed in
m2 s−2), which is defined as the maximum value of the quotient of smoke production rate from
the specimen and the time of its occurrence.

This example only addresses the measurement uncertainty evaluation of the quantities heat
release rate and smoke production rate, since the posterior uncertainty propagation from these
intermediate key quantities to the output quantities of the SBI test (total heat release, fire growth
rate, total smoke production and smoke growth rate) is straightforward and characterised by
simple linear mathematical models. Both the heat release rate and the smoke production rate
quantities are indirectly measured, in a given time instant, based on a large number of input
quantities and mathematical models, as described in the following sections.

E3.4 Measurement model

The heat release rate measurement model is derived from the studies performed by [137] in
the oxygen consumption calorimetry research field. The measurement principle states that the
amount of heat released per unit of consumed oxygen volume, E′, during a combustion process
(in MJ m−3) is considered constant regardless of the combustion material, which can be expressed
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by

HRR= E′ · x0
O2
·ϕ · qVs′

(E3.3)

where x0
O2

is the oxygen molar fraction in the ambient, ϕ is the oxygen depletion factor and qVS

is the volumetric flow of air in the ambient (expressed in m3 s−1).
The amount of heat released per unit of consumed oxygen volume quantity can be determined

by the product between the oxygen density, ρO2
, (in kg m−3) and the heat release per unit of

consumed oxygen mass, E (in MJ kg−1), i.e.,

E′ = ρO2
· E (E3.4)

The amount fraction oxygen in the ambient is given by

x0
O2
= x initial

O2
·
�

1− xo
H2O

�

(E3.5)

x initial
O2

being the amount fraction oxygen measured in the initial stage of the SBI test (in the

time period between 30 s and 90 s), with a gas analyser1, and x0
H2O, the amount fraction water

in the ambient, which can be determined by the following model (derived from the Clausius-
Clapeyron equation for water vapour saturation pressure and based on conventional values for
the gas constant and the heat vaporisation of water)

x0
H2O =

rh
100 · patm

exp
�

23.2−
3816

Tinitial − 46

�

(E3.6)

where rh is the relative humidity in moist air (as a percentage), Tinitial is the initial air temperature
inside the exhaust duct (in K) and patm is the atmospheric pressure (in Pa). The oxygen depletion
factor ϕ is calculated by

ϕ =
x initial

O2
(1− xCO2

)− xO2
(1− x initial

CO2
)

x initial
O2

(1− xO2
− xCO2

)
(E3.7)

where x initial
O2

and x initial
CO2

are, respectively, the amount fractions of oxygen and carbon dioxide
measured in the initial stage of the SBI test with the gas analyser, while x02 and xCO2

are respec-
tively, the molar fractions of oxygen and carbon dioxide measured with the same equipment in
a given time instant after the initial stage.

The volumetric flow rate of air in the ambient is indirectly measured based on the expression

qVS
=

qVc

1+ (α− 1) ·ϕ
(E3.8)

in which qVc
is the volumetric flow rate of the gases in the exhaust duct (in m3 s−1) and α rep-

resents the expansion factor. This last quantity reflects the fact that, in a combustion chemical
reaction, the amount of substance related to combustion products is not identical to the amount
of substance related to the oxygen consumed in the reaction process, i.e.

α= 1+ x0
O2
(β − 1) (E3.9)

1This equipment receives a gas sample from a normalised exhaust duct in which all water vapour and water soluble
gases are eliminated before measurement.
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where x0
O2

is obtained from expression (E3.5) and β is the ratio between the amount of substance
of combustion products and of consumed oxygen. A combustion reaction involving reactants
such as hydrocarbons (CaHbOcNdXe) and oxygen (O2) originates products such as carbon diox-
ide (CO2) , water (H2O) , hydrates (HX), carbon monoxide (CO) and nitrogen (N2) , the overall
chemical reaction formula being given by

CaHbOcNdXe+
�

a−
g
2
+

b− e
4
−

c
2

�

O2→ (a−c)CO2+
b− e

2
H2O+eHX+ gCO+

d
2

N2 (E3.10)

where particular constants a to g apply in any specific instance. Therefore, based on expres-
sion (E3.10) and by definition, the β ratio is given by

β =
4a+ 2b+ 2e+ 2d

4a+ b− e− 2c − 2g
(E3.11)

Depending on the type of hydrocarbon subjected to combustion, several estimates are known
for the β ratio usually values between one and two2. The volumetric flow rate of the gases in
the exhaust duct is obtained by the expression

qVc
=

kt

kp
·

√

√

√
2∆p
ρT0

·
T0

T
· A (E3.12)

where ∆p is the differential pressure measured in a bidirectional pressure sensor located inside
the exhaust duct (in Pa ); ρT0

is the moist air density3 for a reference temperature, T0, equal to
298.15 K; T is the gas temperature in the exhaust duct (in K); A is the area (in m2) of the exhaust
duct circular cross-section; kp is the differential pressure correction factor; and kt is the global
correction factor.

Since the exhaust duct as a circular cross-section, its area corresponds to

A=
π

4
· d2 (E3.13)

where d is the exhaust duct diameter (in m). For the quantification of the moist air density
(considering the reference temperature T0 in K ), the following expression [104] is used:

ρT0
=

0.34848 · pAtm − 0.009024rhexp [0.0612 · (T0 − 273.15)]
Tn

(E3.14)

The differential pressure correction factor is considered in expression (E3.12) due to the use
of a bidirectional sensor [124] instead of a conventional Pitot tube (vulnerable to solid particles
in the flow). This quantity is defined by

kp =

r

∆p
ρTamb

vc
(E3.15)

where vc is the linear flow velocity in the centre of the exhaust duct cross-section (in m s−1) and
ρTamb

is the moist air density [104] for ambient temperature, Tamb (in K) given by

ρTamb
=

0.34848patm − 0.009024rh exp [0.0612 (Tamb − 273.15)]
Tamb

(E3.16)

2Examples of β ratio estimates for the combustion of: carbon (C, β = 1); ethylene (C2H4, β = 1.3); propene
(C3H6, β = 1.3); butane (C4H10, β = 1.4); heptane (C7H16, β = 1.4); propane (C3H8, β = 1.4); ethane (C2H6, β =
1.4); methane (CH4, β = 1.5); hydrogen (H2, β = 2).

3Since the density of the gas mixture inside the exhaust duct is unknown, this quantity is assumed to be close to
the moist air density (expressed in kgm−3).
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The global correction factor, kt, corresponds to the average of three individual corrections,
kt,v kt propane, kt heptane related to the periodic testing of the SBI experimental apparatus aiming,
respectively, at the determination of the non-uniformity of the flow velocity in the exhaust duct
and the comparison between experimental and theoretical heat release rate values, concerning
the combustion of known pure substances such as propane and heptane. In the case of the kt,v
correction, its quantification is supported by

kt,v =

∑5
i=1 vi

5 · vc
(E3.17)

considering the average4 flow velocities measured in the i radius of the exhaust duct, vi , and in
its centre, vc, all these quantities being expressed in m s−1.

The kt propane correction is expressed by the ratio between the theoretical and the exper-
imental heat release rate values of the propane combustion (in kW) respectively, HRRtheoretical

i

and HRRexperimental
i , i.e.

kt,propane = k′t ·

∑

i HRRtheoretical
i

∑

i HRRexperimental
i

(E3.18)

considering the several testing steps indexed by i of this normalised test [17], where k′t is the
global correction used in the experimental determination of the heat release rate5. The theoret-
ical heat release rate at the i the step is given by

HRRtheoretical
i = qmi

|∆hl
c|propane′ (E3.19)

where qmi
is the propane mass flow in the i th testing step (expressed in kg s−1), and

�

�∆hl
c

�

�

propane

is the low enthalpy of propane combustion per unit of mass (in kJ kg−1). It should be noted
that, in the calculation of HRR experimental

i by expression (E3.3), the heat released per unit of
consumed oxygen volume adopts a specific estimate and measurement uncertainty known for
propane, instead of the value mentioned in [26] and used for construction materials in the SBI
test. Regarding the ktheptane correction, this quantity is obtained from the expression

kt heptane = k′t ·
|∆hl

c|heptane ·mheptane

THR
(E3.20)

where k′t is the global correction used in the experimental determination of the total heat re-
lease 6 THR, (in MJ) during the heptane combustion test,

�

�∆hl
c

�

�

heptane is the low enthalpy of

heptane combustion per unit of mass (in kJ kg−1) and mheptane is heptane mass used as burn-
ing combustible (in kg ). As in the case of propane combustion, the estimate and measurement
uncertainty of the heat released per unit of consumed oxygen volume adopts known values for
heptane, when using expression (E3.3).

The smoke production rate, SPR, is defined in a similar way to the heat release rate quantity.
However, its measurement is based on the light attenuation phenomenon resulting from the
presence of smoke in an optical path. In this case, the measurement model corresponds to

SPR=
qVc

L
·

T
T0
· ln
�

1
τ

�

(E3.21)

4The measurement sample is composed of four velocity measurements in each of five normalised distances from
the exhaust duct centre, in addition to four velocity measurements at the centre.

5This quantity is also included in HRRexperimental
i ; therefore, it can be removed from expression (E3.18).
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where qVc
is the volumetric flow rate of gases in the exhaust duct (in m3 s−1), obtained from

expression (E3.12); L is the optical path length (in m); the factor T/T0 is a correction for the
temperature difference between the gases in the exhaust duct, T, (in K) and the reference temper-
ature, T0, equal to 298.15K; and τ is transmittance, defined as the ratio between the luminous
intensity measured in a given time instant and in the initial testing stage, I and I0, respectively. In
the SBI test, the luminous intensity that reaches the photo detector installed in the exhaust duct,
is considered proportional to the electrical tension between its terminals so that the transmittance
quantity is determined by electrical tension measurements.

In order to improve the comprehension of the functional relations related to the presented
measurement models, figure E3.1 shows a schematic representation of the heat release rate cal-
culation process, while figure E3.2 refers to the smoke production rate. Particular attention is
given to the global correction factor and to its calculation process, schematically represented in
figure E3.3.

E3.5 Uncertainty propagation

The measurement uncertainty evaluation shown in this example is composed of two main stages:
(i) the formulation stage, in which all the input quantities of the mathematical models involved
in the measurements are identified and characterised, through the assignment of a probability
density function (PDF) which better represents the dispersion of values related to its measure-
ment; (ii) the calculation stage, from which the measurement uncertainty of the quantities of
interest (heat release rate and smoke production rate) is obtained, based on the propagation of
the measurement uncertainties of the input quantities through the above described mathematical
models.

In the presented case, the MCM was used in the calculation stage [52, 54], justified by the
multivariate, non-linear and complex nature of the functional relations between a large number
of input, intermediate and output quantities. For this purpose, the Mersenne Twister pseudo-
random number generator [123] was used to obtain numerical sequences with a typical dimen-
sion (number of trials) of 106, in order to give a good assurance in obtaining convergent solutions.
In addition, validated computational tools for converting and sorting the generated numerical
sequences were also used.

In the SBI test, the heat release rate quantity is measured in different test stages, firstly
in the preliminary periodic combustion of propane and heptane and, afterwards, during the
combustion of the tested specimen. The only significant difference is related to the heat release
per unit of consumed oxygen mass quantity, which assumes different estimates and measurement
uncertainties in each test case (propane, heptane or specimen combustion).

Table E3.1 shows the adopted probabilistic formulation of the input quantities required for
the determination of the total heat release rate related to the combustion of a certain specimen,
which already includes (in the global correction factor) the measurement uncertainty of the heat
release rate measured in the propane and heptane combustions.
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Table E3.1: Probabilistic formulation of the input quantities related to the heat release rate mea-
surement

Quantity Symbol PDF Estimate Standard
uncertainty

Relative humidity rh Gaussian 60.1 % 1.1 %
Atmospheric pressure patm Gaussian 101.4 kPa 0.2 kPa
Initial air temperature inside the
exhaust duct

Tinitial Gaussian 288.3 K 0.1 K

Oxygen density ρO2
Gaussian 1.308 kgm−3 0.003 kgm−3

Heat released per unit of con-
sumed oxygen mass

E Gaussian 13.1 MJ kg−1 0.3 MJ kg−1

Initial amount fraction of oxygen x initial
O2

Gaussian 0.2095 0.000 04
Amount fraction of oxygen xO2

Gaussian 0.206 7 0.000 2
Initial amount fraction of carbon
dioxide

x initial
CO2

Gaussian 0.000 3 0.000 005

Amount fraction of carbon dioxide xCO2
Gaussian 0.001 8 0.000 02

Exhaust duct diameter d Gaussian 0.315 m 0.001 m
Exhaust gas temperature T Gaussian 313.8 K 0.4 K
Ambient temperature Tamb Gaussian 288.6 K 0.7 K
Differential pressure ∆p Gaussian 68.6 Pa 2.1 Pa
Linear flow velocity in the centre of
the exhaust duct cross-section

vc Gaussian 9.6 ms−1 0.7 ms−1

Ratio between the amount of sub-
stance of combustion products and
of consumed oxygen

β Uniform 1.5 0.3

Global correction factor kt Gaussian 0.77 0.02

Regarding the smoke production quantity, table E3.2 presents the adopted probabilistic for-
mulation of the input quantities which supported the MCM simulations.

Table E3.2: Probabilistic formulation of the input quantities of the smoke production rate

Quantity Symbol PDF Estimate Standard
uncertainty

Relative humidity rh Gaussian 60.1 % 1.1 %
Atmospheric pressure patm Gaussian 101.4 kPa 0.2 kPa
Ambient temperature Tamb Gaussian 288.6 K 0.9 K
Exhaust duct diameter d Gaussian 0.315 m 0.001 m
Optical path length L Gaussian 0.315 m 0.001 m
Transmittance τ Gaussian 0.974 0.005
Exhaust gas temperature T Gaussian 313.8 K 0.4 K
Differential pressure ∆p Gaussian 68.6 Pa 2.1 Pa
Linear flow velocity in the centre of
the exhaust duct cross-section

vc Gaussian 9.6 ms−1 0.7 ms−1

Global correction factor kt Gaussian 0.77 0.02
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Table E3.3: MCM simulation results for intermediate quantities in the calculation of the heat
release rate

Quantity Symbol PDF Estimate Standard
uncertainty

Water vapour amount fraction x0
H2O Gaussian 0.0146 0.0004

Moist air density for ambient tem-
perature

ρTamb
Gaussian 1.180 kgm−3 0.005 kgm−3

Differential pressure correction
factor

kp Gaussian 1.15 0.09

Expansion factor α Gaussian 1.1 0.05
Volumetric flow rate of gases in the
exhaust duct

qVc
Gaussian 0.55 m3 s−1 0.04 m3 s−1

Heat released per unit of con-
sumed oxygen volume

E′ Gaussian 17.1 MJ m−3 0.4 MJ m−3

Ambient oxygen molar fraction x0
O2

Gaussian 0.2074 0.000 05
Oxygen depletion factor ϕ Gaussian 0.015 0.001
Ambient volumetric flow rate qVs

Gaussian 0.55 m3 s−1 0.04 m3 s−1

Figure E3.4: Output PDF of the heat release rate quantity
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Figure E3.5: Output PDF of the smoke production rate quantity

Table E3.4: MCM simulation results for the heat release rate

Quantity Symbol PDF Estimate Standard
uncertainty

Required
accuracy

Simulation
accuracy

Heat release rate HRR Gaussian 30 kW 3 kW 0.5 kW 0.1 kW

Table E3.5: MCM simulation results for intermediate quantities in the calculation of the smoke
release rate

Quantity Symbol PDF Estimate Standard
uncertainty

Moist air density for ambient tem-
perature

ρTamb
Gaussian 1.220 kgm−3 0.005 kgm−3

Differential pressure correction
factor

kp Gaussian 1.11 0.09

Volumetric flow rate of gases in the
exhaust duct

qVc
Gaussian 0.55 m3 s−1 0.04 m3 s−1

Table E3.6: MCM simulation results for the smoke production rate (0.05 m2 s−1 level)

Quantity Symbol PDF Estimate Standard
uncertainty

Required
accuracy

Simulation
accuracy

Smoke production
rate

SPR Gaussian 0.05 m2 s−1 0.02 m2 s−1 0.005 m2 s−1 0.0005 m2 s−1
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E3.6 Reporting the result

The measurement uncertainties of the input quantities shown in table E3.1 were propagated by
the MCM to the intermediate quantities (results shown in table E3.3) and, posteriorly, to the
total heat release rate quantity (see table E3.4 for an example of a 30 kW thermal power level).
Figure E3.4 shows the output PDF obtained for the heat release rate quantity.

Additional simulations were performed for higher thermal power levels (up to 250 kW),
showing similar results. The obtained relative standard uncertainty varies between 8 % and 9 %.

The obtained results for the smoke production quantity are shown in table E3.5 (intermediate
quantities) and table E3.6 (output quantity). Figure E3.5 shows the PDF obtained by the MCM
for the smoke production rate.

Additional simulations were performed for higher smoke levels (up to 6.8 m2 s−1), showing
similar results. The obtained relative standard uncertainty varies between 9 % and 12 %.

E3.7 Interpretation of results

As seen in figures E3.4 and E3.5, the output PDF of both the heat release and smoke production
quantities have a geometrical shape close to a Gaussian PDF, which was expected since all the
input quantities (with the exception of the ratio between the amount of substance of combustion
products and of consumed oxygen, see table E3.1) were taken as Gaussian. In terms of validation
of results, tables E3.4 and E3.6 show that the number of performed simulations allowed achieving
a computational accuracy quite lower than the required accuracy needed to perform the SBI test.
In this particular example, the major advantage of using the MCM, when compared with the
GUM approach, relies on its greater simplicity and accuracy when dealing with a large number
of input quantities.
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Example E4

Statistical reassessment of calibration
and measurement capabilities based on
key comparison results
K. Shirono, M.G. Cox

E4.1 Summary

This example illustrates the minimal adjustment of CMC (calibration and measurement capabil-
ity) uncertainty claims so they are supported by the results of a key comparison (KC). According
to the CIPM Mutual Recognition Arrangement (MRA) [68, clause T.7], CMC uncertainties are
normally expressed at a 95 % level of confidence. CMC uncertainties are the expanded mea-
surement uncertainties available to customers under normal conditions of measurement. When
laboratories’ CMC claims are unsupported by the relevant KC, modified values must be assigned
to their declared CMC uncertainties.

In the vast majority of cases when CMCs apply to a continuous interval of values such as mass
fraction or wavelength, KCs are carried out for selected discrete values of the quantity concerned.
Since the comparison at each discrete value strictly only supports the CMC uncertainty at that
value, it is not immediately apparent how to modify the CMC uncertainties. Under realistic
assumptions, we apply a method that is applicable in such an instance and for which the reported
CMC uncertainties are amplified so that they are underpinned by the results of the KC. The
amplification factors depend on the laboratories’ degrees of equivalence (DoEs) for these discrete
values, adjusted to achieve consistency with the key comparison reference values (KCRVs).

The method is based on the patterns in the individual behaviour of the DoEs of the participat-
ing laboratories for the discrete values, implying the presence of correlation associated with the
DoE values. It applies when the weighted mean of some or all of the measured values reported
by the participating laboratories in the KC is used to obtain the KCRV.

Full details of the example are provided in [158].

E4.2 Introduction of the application

CMCs must be consistent with results derived from KCs [68, clause T.7], a requirement interpreted
in the sense that a CMC uncertainty claimed by a participating laboratory must be no smaller than
the expanded uncertainty associated with the corresponding laboratory’s reported value in the
KC. The extent of agreement of that reported value to the reference value in the KC is assessed
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by a DoE calculated in accordance with the MRA [68, clause T.2]. Such an interpretation is
straightforward when there exists a ‘one-to-one’ relationship between the KC and the CMC claim,
that is, when the KC and the CMC relate to the same measurand [73]. In such a case, it is
straightforward to obtain an appropriate uncertainty that should be reported in the KC for the
performance evaluated by the DoE to be satisfactory [73].

This example relates to the commonest class of CMC claims in which laboratories provide
uncertainty for a measurand that depends continuously on a quantity (parameter) having an
interval of values, termed here the ‘measurement interval’. This parameter could, for example,
be frequency, wavelength or mass concentration.

The corresponding KC provides DoEs for each participating laboratory for each of a discrete
set of values of the parameter within the measurement interval. An analysis based on the one-
to-one relationship could be applied separately for each of these discrete parameter values. A
consequence of doing so is that any structure present in the data across these parameter values
is not taken into consideration: the analysis of these discrete cases are independent exercises.
Generally there would be a different expansion factor for the CMC uncertainties corresponding to
each discrete value, particularly in cases when the same measuring system is used for each such
case, perhaps due only to random variation. The provision of a single expansion factor for each
NMI based on the completed and published KC results would be helpful for the reassessment of
the CMC uncertainties.

Importantly, KC results for these discrete values almost invariably display some degree of
correlation that cannot be taken into consideration by an analysis for the one-to-one relationship.
The existence of correlation is often evidenced by patterns in the individual behaviour of the
DoEs for each participating laboratory across the discrete values of the parameter within the
measurement interval. An instance is given in [158] relating to a KC of free-field hydrophone
calibrations in the frequency interval 1 kHz to 500 kHz [153]. Such correlations relate to the
biases often associated with individual participating laboratories’ measured values.

An approach for CMC uncertainty reassessment involving the estimation of correlations is
exemplified by providing a single multiplicative expansion factor for the CMC uncertainties for
each laboratory. The method described applies Bayesian principles under the assumption that the
observed pattern in each laboratory’s DoE value components can largely be explained by a single
correlation coefficient, specific to that laboratory. Since no specific physical adjustments are
assumed, the approach is generally applicable to a wide range of practices in metrology. As part
of the approach, for each laboratory a single common expansion factor for CMC uncertainties is
estimated that applies across the measurement interval. Since some estimated expansion factors
may prove to be unity, the corresponding laboratories can be regarded as already having CMC
uncertainties that are consistent with the relevant KC. Thus, the approach is discriminatory: only
some laboratories are required to adjust their CMC uncertainties depending on their DoEs.

E4.3 Specification of the measurand(s)

Suppose there are N laboratories participating in the KC, each providing a measured value at
p stipulated values of a parameter in the measurement interval. The measurand is a vector
measurand consisting of adjusted CMC uncertainties UCMC,adj

i ( j), i = 1, . . . , N , j = 1, . . . , p.

There are intermediate measurands, especially the CMC uncertainty expansion factors, in an
according multi-stage measurement model as described in section E4.4.
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E4.4 Measurement model

The measurement model is multi-staged1 [56] comprising various steps in the analysis of existing
KC data and corresponding CMC data. The measurement model uses the following data.

Each laboratory participating in the KC reports a measured value and an associated standard
uncertainty for each prescribed parameter value within the measurement interval. Specifically,
for each laboratory i, i = 1, . . . , N , the value x i( j), j = 1, . . . , p, and the associated standard
uncertainty u(x i( j)) are provided. The corresponding (unadjusted) CMC uncertainties are also
provided. It is assumed that for each j the KCRV xref( j) relating to the jth measurand is given as
the weighted mean2 (WM) of all or some of the reported values x i( j), j = 1, . . . , p [72]. Thus,
the according DoEs (di( j), U(di( j))), i = 1, . . . , N , j = 1, . . . , p, defined as follows are available.

E4.4.1 Degrees of equivalence

The DoE value component for laboratory i and parameter j is

di( j) = x i( j)− xref( j), i = 1, . . . , N , (E4.1)

and the corresponding uncertainty component is

U(di( j)) = kiu(di( j)) =

�

ki[u2(x i( j))− u2(xref( j))]1/2, i ∈ Iref,
ki[u2(x i( j)) + u2(xref( j))]1/2, otherwise,

(E4.2)

where Iref denotes the set of values of i for which x i( j) and u(x i( j)) are used in the computation of
xref( j) and u2(xref( j)) is the variance (squared standard uncertainty) associated with xref( j) [72].
Under the assumption of normality, the coverage factors for the DoE uncertainties are taken as
ki = 1.96.

If the DoE for any participating laboratory has an En score3 that is in magnitude greater than
unity, that laboratory’s performance is unsatisfactory and the according CMC uncertainty may
have to be re-assessed.

Exclusive statistics di,ex( j) rather than di( j) [130,163], where di,ex( j) = x i− xex( j) and xex( j)
is the exclusive weighted mean, as given in [158], are used to describe the DoEs because of
algebraic advantages over conventional statistics. The associated standard uncertainty u(xex( j))
is provided.

E4.4.2 Assumptions

The following assumptions are made:

1. An individual common expansion factor specific to each laboratory applies for the uncer-
tainty over its measurement interval. The expansion factors for the uncertainties reported
in a KC and the CMC uncertainties are considered identical.

1In many stepwise processes in metrology, quantities from intermediate measurements are naturally used in a
subsequent measurement. Each stage in the process can be described by a measurement model with input quantities
and output quantities. This set of measurement models constitutes a multi-stage measurement model and can be used
as such.

2It is assumed that no information on correlation was employed in the computation of the WMs. Otherwise, the
treatment here would require modification.

3As a measure of the performance of laboratory i, a normalized error ratio or ‘En score’

E(i)n =
di

U(di)
=

di

kiu(di)
(E4.3)

is used: If |E(i)n | ≤ 1, laboratory i’s performance is regarded as ‘satisfactory’; otherwise it is ‘unsatisfactory’ [15].
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2. The measurement errors in the reported values x i(1), . . . , x i(p) from laboratory i can be
regarded as being drawn from a multivariate normal distribution whose covariance matrix
depends on a single correlation coefficient associated with those values.

E4.4.3 Steps in the multi-stage model

1. Establish a statistical model for the DoEs for the participating laboratories. The statistical
model contains the following parameters to be estimated from the KC data for i = 1, . . . , N :

• Expansion factor Li for laboratory i.

• Correlation coefficient ρi for laboratory i: see section E4.4.4.

• Technical parameter λi related to the standard deviations Si in section E4.4.4.

Although the ρi are not primary measurands, they are of interest in understanding the
extent of the correlations involved for the individual laboratories.

2. Solve the statistical model for expansion factors Li for the participating laboratories.

3. Apply the expansion factors to the existing CMC uncertainties to provide adjusted CMC
uncertainties that are supported by the KC.

E4.4.4 Statistical model

Let the vector di,ex = [di,ex(1), . . . , di,ex(p)]> denote the value components of the exclusive DoEs
for laboratory i for the p discrete values of the parameter. The probability distribution used to
describe the vector quantity for which di,ex is a realization is assumed to be multivariate normal:

di,ex ∼ N(0,˚i), (E4.4)

where 0 is the column vector having p zero elements and ˚i is a covariance matrix of dimension
p× p. Consider the decomposition

˚i = SiPiSi ,

where Si is the diagonal matrix whose jth diagonal element is a standard deviation σi( j) equal
to the square root of the jth diagonal element of ˚i and Pi is a correlation matrix [54]. Neither
Si nor Pi is typically available from the KC and must be estimated from reported results.

Define

ri( j) = u2(xex( j))/u
2(x i( j)), ri,min =min

j
ri( j).

Then, for the matrix Si , σ
2
i ( j) is approximately given by

σ2
i ( j) = λi[u

2(x i( j)) + u2(xex( j))]≈ (1+ ri,min)λiu
2(x i( j)). (E4.5)

The expression in the right side of (E4.5) is obtained through applying the relationship

τi + [ri( j)− ri,min]≈ τi , τi = (1+ ri,min)λi . (E4.6)

Although we cannot say that expression (E4.6) is always a reasonable approximation, we can
confirm the extent of its validity after estimating the parameters specified in section E4.4.3. More
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details are given in [158], where τi is employed as a parameter to be estimated rather than λi .
No essential change happens because of the transformation from τi to λi .

The correlation matrix Pi used in [158] has the form

Pi = Pi(ρi) = (1−ρi)I +ρi11>,

where I is the identity matrix of dimension p× p and 1 is the column vector containing p ones.
Pi is thus a matrix with ones on the main diagonal and ρi elsewhere. The parameters ρi and λi
are obtained using Bayesian estimation. A uniform distribution over [0, 1] is used as the prior
for ρi since the correlation between DoEs is expected to be non-negative, and a Jeffreys’ prior is
used for λi:

p(ρi)∝
�

1, 0≤ ρi ≤ 1,
0, otherwise

, p(λi)∝
�

λi
−1, λi ≥ 1,

0, otherwise.
(E4.7)

E4.4.5 Data

The data used in this example is for KC CCL.K-2 [114] relating to gauge block measurements.
Four gauge blocks with nominal lengths 175 mm, 500 mm, 500 mm and 900 mm were circulated
to 12 participating laboratories. Because the data from a particular laboratory were “. . . known
to contain errors and is not representative of their standard measurement technique, its data was
withdrawn from the comparison" [114]. The reported deviations of the remaining 11 laboratory
values from the nominal lengths of the gauge blocks and their associated standard uncertainties
are summarized in table E4.1 and figure E4.1. The reference values and their associated standard
uncertainties are also given in table E4.1.

Table E4.1: Reported values x i( j) and associated standard uncertainties ui( j) with reference values
xref( j) and associated standard uncertainties u(xref( j)). Numbers in square brackets were not used in
the determination of reference values in accordance with reference [114]

Nominal length
175 mm 500 mm 500 mm 900 mm

i x i(1) ui(1) x i(2) ui(2) x i(3) ui(3) x i(4) ui(4)
/nm /nm /nm /nm /nm /nm /nm /nm

1 140 28 916 33 814 33 2033 42
2 122 13 915 16 807 15 1983 21
3 161 30 962 38 861 38 2057 52
4 142 16 908 23 781 23 2075 60
5 150 20 930 20 830 20 2020 35
6 125 27 881 67 786 66 2004 118
7 148 19 938 39 858 39 2070 68
8 194 19 1007 60 912 60 2160 136
9 154 23 885 50 818 50 1982 87

10 180 110 980 150 870 150 2010 250
11 [312] [21] 952 56 868 56 2165 100

xref(1) u(xref(1)) xref(2) u(xref(2)) xref(3) u(xref(3)) xref(4) u(xref(4))
/nm /nm /nm /nm /nm /nm /nm /nm

145 7 923 9 818 9 2016 14
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Figure E4.1: CCL.K-2 gauge block data for four nominal lengths and weighted means as KCRVs (broken
horizontal lines). Vertical bars depict coverage intervals with coverage factor ki = 1.96

E4.5 Uncertainty analysis

Bayesian estimation with modestly informative priors for the quantities to be estimated was used
to obtain a single factor for each laboratory to expand (only when necessary) its CMC uncertain-
ties. Bayesian modelling allows unknown correlations between reported values to be taken into
consideration by estimating them and to include constraints by using priors. The maximum a
posteriori (MAP) estimator was used because of several advantages [158]:

(a) An expansion factor given by MAP estimation is close to that obtained by the conventional
method when p = 1 (only one stipulated value in the measurement interval),

(b) MAP estimation suggests that no expansion of the CMC uncertainty is required for a labo-
ratory whose performance is satisfactory in the KC, and

(c) The MAP estimator has an analytic solution (given in [158]).

E4.6 Reporting the result

Defining Li as the MAP estimator of λi , the variance of dex( j) is estimated as [1+ ri( j)]Liu
2(x i).

Since the variance is supposed to be [Ki + ri( j)]u2(x i) using the expansion factor K1/2
i for the

standard uncertainty u(x i( j)), the following relation holds between Li and Ki:

(Ki + ri,min)u
2(x i) = (1+ ri,min)Liu

2(x i)

when relation (E4.6) holds. Thus,

K1/2
i = [Li(1+ ri,min)− ri,min]

1/2
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is the expansion factor for the CMC standard uncertainty in this study.
Table E4.2 shows the values of the expansion factors K1/2

i and the MAP estimates ρMAP
i of

ρi . The symbol “–" indicates that the computed values are not recommended to be used in the
reassessment because relationship (E4.6) does not hold in these results. In [158], we gave the
criterion Ki/ri,max > 4 to check the appropriateness of relationship (E4.6).

Table E4.2: Estimated expansion factors K1/2
i and MAP estimates ρMAP

i of ρi

Laboratory i K1/2
i ρMAP

i

1 1.0 0.90
2 – –
3 1.0 0.92
4 1.0 0.00
5 – –
6 1.0 0.91
7 1.0 0.83
8 1.3 0.67
9 1.0 0.72

10 1.0 0.96
11 3.3 0.19

E4.7 Interpretation of results

For seven of the 11 laboratories (1, 3, 6, 7, 8, 9, 10), the estimated correlation coefficient was
appreciable (between 0.67 and 0.96), implying the presence of systematic effects or biases in the
measured values provided by those laboratories.4

Laboratory 4. The deviations from the reference values are nearly zero for two cases [d4(1) and
d4(2)], and considerably negative and positive respectively for the other two cases [d4(3)
and d4(4)]. The fact that no systematic effect can be seen in these deviations implies that
the correlations are small, and ρMAP

4 is actually zero to two decimal places.

Laboratory 8. For the conventional method, the minimum permissible expansion factors are
1.4, 1.0, 1.0 and 1.0 for the four measurands, suggesting that for that laboratory only the
CMC uncertainty for the shortest gauge block requires expansion. However, if a common
expansion factor for the CMC uncertainty throughout the measurement interval is required,
the conventional method cannot suggest an appropriate value.

Laboratory 10. The correlation for laboratory 10, whose deviations are nearly zero for all four
cases, is estimated to be very large (ρMAP

10 = 0.96). Because the small deviations suggest
small random effects, the large uncertainties must depend on their systematic effects. Thus,
the large correlation is theoretically reasonable.

Laboratory 11. Laboratory 11 reported a value for the shortest gauge block that was far from
the KCRV, which is a likely cause for the resulting expansion factor of 3.3 for that laboratory.
According to the final report on this KC [114], the laboratory found a problematic issue with
its measuring system (see section E4.4.5). For that laboratory, whilst all the deviations are

4Since the model (E4.4) expresses the variation between the reported values, no bias is shown directly.
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positive, the magnitudes are largely different. Consequently, the correlation is estimated
to be not so large (ρMAP

11 = 0.19).

We conclude from these results and those for other KCs and CMC claims that the method
exemplified here might also be useful in checking the validity of the measuring system over an
interval of the parameter. We also believe that these results show the rationale of the MAP es-
timator to provide values for the expansion factors, and support the validity of the proposed
method. Further, the results indicate that the correlation existing among each laboratory’s mea-
sured values can be estimated.
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Example E5

Measurement uncertainty when using
quantities that change at a linear rate
— use of quartz He reference leaks to
calibrate an unknown leak
J. Greenwood, M.G. Cox

E5.1 Summary

There are numerous practical situations in which, a quantity of interest changes linearly with
respect to another quantity. The mass flow rate from a reference leak as a function of time is an
example of such a quantity. It is described here in terms of the depletion of helium from quartz
membrane reference leaks.

However, the main purpose of the work is to demonstrate what is a generally applicable
process for modelling the quantity and establishing the uncertainty associated with measured
values of the quantity, including those situations where there is covariance within the data.

The intention when presenting this example is to include many of the intervening steps that,
in published examples, might normally be omitted in providing the final result. Although this
may make the treatment rather protracted for those who already have sufficient understanding
of the subject, it is hoped that this approach will be useful to those readers wishing to gain
understanding by following the evaluation in smaller steps. In addition, the cases are presented
in terms of matrices and vectors (as in GUM Supplement 2 [54]), and in the perhaps more familiar
notation of subscripted summations (as in the GUM [51]). The matrix notation can be ignored
with no loss of completeness in the examples.

E5.2 Introduction of the application

E5.2.1 General

Leak detectors are commonly used instruments for identifying and quantifying the rate of gaseous
material leaving (or entering) an otherwise sealed system. They are routinely used in non-
destructive testing and as analytical tools in the vacuum industry.

At the heart of many such instruments is a detector that is selectively sensitive to a gas of
interest. These detectors can be based upon a variety of principles ranging from solid state
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chemical sensors to particle counters. One of the most commonly found types of leak detector is
the helium mass spectrometer leak detector (MSLD).

Gas reference leaks, such as the quartz membrane He reference leak, are often found within
mass spectrometer leak detectors where they are used to perform an ‘internal’ calibration of the
gain of the system.

Quartz membrane leaks usually consist of a sealed reservoir containing the gas; the reser-
voir has an outlet connection that incorporates the membrane through which helium is able to
permeate at a rate that depends on temperature. To ensure a steady depletion rate the leak is
stored under stable conditions whilst not in use and is left ‘open’ (that is, not sealed) to maintain
a stable gradient of He across the membrane. An example of such reference leaks is depicted in
figure E5.1.

Figure E5.1: Reference leaks externally
mounted on a leak detector (photograph
courtesy of Vaseco Ltd.)

The leaks can be calibrated using gas flow
meters of the type usually found in national
metrology institutes. This would be normal
practice for calibration of the ‘master’ refer-
ence leaks belonging to a calibration labora-
tory.

Alternatively, an ‘unknown’ leak can be
calibrated by using two such reference leaks,
which are chosen to ‘bracket’ the unknown
leak (see Case 3 — section E5.8). Typically,
the two reference leaks would be used to es-
tablish a linear calibration function for a mea-
suring instrument over the intervening range.
This would be normal practice for a calibra-
tion laboratory measuring ‘unknown’ leaks on
behalf of its customers and is the subject of the
scenarios presented here.

Both types of calibration are described in
ISO 20486 [30], which in addition recom-
mends that uncertainty in calibrated leak rate
should be evaluated according to GUM [51]
principles, but does not provide details of the
evaluation process. A more general descrip-
tion of leaks and leak detectors can be found
in [70] and the references therein.

E5.2.2 Scenarios

This example provides several scenarios that demonstrate the evaluation and use of values of a
quantity that change at a linear rate. The scenarios are presented in terms of the depletion of a
reference quantity over time, specifically, the depletion of He for a quartz membrane reference
leak.

In all cases leak rate is the dependent variable. The independent variable is time or instrument
response and measured values of both (time and response) have negligible uncertainty. Values
of leak rate do have associated uncertainty and in some cases are correlated.

This example supports the related example EMUE A1.1.1; however the scenarios are intended
to have general applicability for analogous measurements.

Case 1 sets out a basic situation in which there is no correlation. It is treated using the method
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described in the ISO Technical Specification (ISO/TS 28037) concerned with the determination
and use of straight-line calibration functions [16, clause 6].

Case 2 has correlations present. It is addressed by following the process described in the
GUM [51, annex F.1.2] and in GUM Supplement 2 [54] to calculate covariance. The covariance
is then taken into account in the evaluation of the fitting parameters using the method described
in ISO/TS 28037 [16, clause 9].

Case 3 considers a situation where there are two independent reference leaks (each individ-
ually corresponding to leaks described in Case 1). These are used together to calibrate a leak
measuring instrument, a mass spectrometer leak detector that is subsequently used to calibrate an
‘unknown’ leak. This scenario demonstrates how correlation arises between the values assigned
to each leak when both leaks are in use together.

Case 3 goes on to provide a demonstration of the treatment of correlation in the use of these
leaks. In practice this correlation is usually neglected. This example will demonstrate how it can
be appropriately incorporated in a GUM law of propagation of uncertainty (LPU) type evaluation.

E5.3 Specification of the measurands

In all three cases, the measurand of primary interest is the leak (flow) rate Q of helium when
the leak is operating at reference temperature T0. There are also other measurands of interest at
intermediate stages within each scenario — these are the coefficients a and b of various straight-
line calibration functions for two reference leaks L1 and L2 and for the MSLD.

E5.4 Measurement model

The measurement model embodied in the following scenarios consists (in the first part) of steps
to establish estimates for the measurands a and b, the coefficients of a straight-line fit through
the given calibration data, and subsequently (in the second part) use of these coefficients and
other data to calculate a value for the measurand Q corresponding to leak rate at a defined
reference temperature. An underpinning concept, employed throughout, is that of a straight-line
calibration function as defined and elaborated in ISO/TS 28037 [16]. Case 1 uses clause 6, and
Case 2 uses clause 9 of that Technical Specification. Case 3 makes use of both clauses.

E5.5 Uncertainty propagation

There is uncertainty associated with each leak rate value and, in cases 2 and 3, there is correlation
between these quantities. The independent quantities are either time or detector response; it is
assumed that there is negligible uncertainty in their associated values during fitting. (If this
is not the case then the treatment of clause 7 in ISO/TS 28037 [16] applies in the absence of
correlations; otherwise the more general treatment of clause 10 becomes necessary.)

Measurement uncertainty evaluation follows the standard LPU approach outlined in ISO/TS
28037 [16], the GUM [51] and GUM Supplement 2 [54]. In particular, it follows the guidance
on treatment of correlations elaborated in GUM Annex F.1.2 and in GUM Supplement 2 clause
6.2.
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E5.6 Case 1: No correlation within the data

Consider a reference leak L1. When not in use the leak is stored under fixed and stable conditions,
which are sufficient to maintain a linear depletion rate over the course of time. It is periodically
calibrated and it is assumed that there is no correlation within the calibration data. The calibrated
results for reference leak L1 are given in figure E5.2 and table E5.1.

Figure E5.2: Calibration results for a reference leak L1. Data points represent the reference value
with error bars corresponding to ±1 standard uncertainty

Table E5.1: Calibrated results for reference leak L1

t/d Q/pmol s−1 u(Q)/pmol s−1

857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094

The reference value Q corresponding to time t and temperature T0 is to be established by
forward evaluation using a straight-line calibration function for the reference leak:

Q = a1 + b1 t, (E5.1)

where (a1, b1) are the coefficients of the function.

Since there is no covariance in the data, a model corresponding to clause 6 of ISO/TS 28037
[16] is assumed to apply. The associated evaluation can be readily implemented in a spreadsheet.
It should be noted that, if in addition there had been uncertainty in the time (independent vari-
able) data but still no correlations, the approach in clause 7 of [16] could instead be followed.
This approach is also relatively straightforward to implement in a spreadsheet calculation.
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The results are found to be:

a1 = 10.185 pmol s−1,

b1 = −7.678× 10−4 pmol s−1,

u(a1) = 0.119 pmol s−1,

u(b1) = 3.506× 10−5 pmol s−1 d−1,

u(a1, b1) = −3.785× 10−6 pmol2s−2d−1.

The computed value Q has associated uncertainty u(Q) given by clause 11 of ISO/TS 28037
which is concerned with the use of the calibration function:

u2(Q) = C>Q VQCQ,

where CQ is an array containing the sensitivity coefficients, and VQ is the corresponding covari-
ance matrix:

CQ =













∂Q
∂ a1

∂Q
∂ b1

∂Q
∂ t













=













1

t

b1













, VQ =













u2(a1) u(a1, b1) 0

u(a1, b1) u2(b1) 0

0 0 u2(t)













,

which is equivalent to

u2(Q) = u2(a1) + 2tu(a1, b1) + t2u2(b1) + b2
1u2(t),

where u2(t) is the variance associated with the time of use t.
The expression for u2(Q) is the same as that found by applying GUM equation (13) to equa-

tion (E5.1).
Suppose that the leak is to be used at t = 5000 d and u(t) = 1 d. Applying forward evaluation

using the above parameter values, the result for the computed value of the reference leak is

Q = 6.346pmol s−1, u(Q) = 0.084pmol s−1.

E5.7 Case 2: Correlation between leak rate data

Suppose there is a degree of correlation between each of the calibration results for reference leak
L1.

E5.7.1 Measurement model

In this situation (following example in Annex D of [16]) the leak rate data Q j can be modelled
in terms of the observed rate Qo j and a common systematic effect, represented by es:

Q j =Qo j + es, (E5.2)

where j = 1, . . . , m for m measurement data points.
All known corrections are assumed to have been made; therefore, the best estimate of es (its

expectation) is zero, with a standard uncertainty u(es). In this scenario, as will shortly be seen,
a value of u(es) is determined from available knowledge of the systematic effects contributing to
a calibration correction.
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The observed values Qo j have uncertainties u(Qo j) that are established in the normal GUM-
LPU manner for all effects other than es.

Suppose that the estimate Qo j is based upon an observed value to which a calibration correc-
tion c j has been applied, where c j has standard uncertainty u(c j). Suppose also that the calibra-
tion process is itself subject to certain effects that are essentially random in nature contributing
a standard uncertainty u(r j) to the overall standard uncertainty; and to other poorly understood
systematic effects that will be the same each time a calibration is performed, contributing a stan-
dard uncertainty u(s) to the overall uncertainty. The calibration standard uncertainty u(c j) is
therefore given by

u2(c j) = u2(r j) + u2(s).

Suppose further (for sake of realistic demonstration) that besides calibration effects there are two
other, independent effects influencing the measurement of Qo j with corresponding uncertainties,
u(e1 j) and u(e2 j). These might for example be the uncertainty associated with correction of a
known bias and the uncertainty associated with finite resolution of observed indications.

In this scenario we therefore have

u2(Qo j) = u2(e1 j) + u2(e2 j) + u2(r j),

u2(es) = u2(s),

which when combined give the result

u2(Q j) = u2(Qo j) + u2(es),

= u2(e1 j) + u2(e2 j) + u2(r j) + u2(s). (E5.3)

To illustrate this scenario, consider the calibration results in table E5.2.

Table E5.2: Uncertainty contributions for reference leak L1

t/d Q j/pmol s−1 u(Qo j)/pmol s−1 u(es)/pmol s−1

857 9.525 0.090 0.055
2571 8.250 0.087 0.055
3792 7.192 0.087 0.055
4689 6.623 0.076 0.055

As in Case 1, the reference value Q corresponding to a time t and temperature T0 is to be
established by forward evaluation using a straight-line calibration function for the reference leak:

Q = a+ bt, (E5.4)

where (a, b) are the coefficients of the function.
Since the quantity es is common to all leak rate measurements, there will be correlation be-

tween the quantities Q j; so a measurement model corresponding to clause 9 of ISO/TS 28037:2010
[16] is adopted to establish values for the coefficients.

Firstly though, a covariance matrix VQ is needed that describes the correlations within the
Q data. This is established by following the process described, for example, in annex F.1.2.3 of
the GUM and in GUM Supplement 2, clause 6.2. This process involves defining functions f j of
quantities x i such that

Q j = f j(x i),
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with i = 1, . . . , N and j = 1, . . . , m; thus

Q1 = f1(x i) = f1(Qo1,Qo2,Qo3,Qo4, es) =Qo1 + es,

Q2 = f2(x i) = f2(Qo1,Qo2,Qo3,Qo4, es) =Qo2 + es,

Q3 = f3(x i) = f3(Qo1,Qo2,Qo3,Qo4, es) =Qo3 + es,

Q4 = f4(x i) = f4(Qo1,Qo2,Qo3,Qo4, es) =Qo4 + es,

that is, the functions f j are defined in terms of all quantities x i that influence all Q j , even though
some of the quantities only have an effect in one or other functions.

In terms of matrices (as used in GUM Supplement 2, clause 6.2)

Y = Q = f (X),

where

Y = Q =




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




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
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
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.

The covariance matrix VQ is given by

VQ = Cx Vx C>x =















u2(Q1) u(Q1,Q2) u(Q1,Q3) u(Q1,Q4)
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u(Q4,Q1) u(Q4,Q2) u(Q4,Q3) u2(Q4)
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











,

where

Cx =











∂ f1
∂ x1

· · · ∂ f1
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and

Vx =


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.
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Alternatively, the components of the covariance matrix can be evaluated in terms of sub-
scripted summations. Thus, the variance, u2(Q j) for Q j can be calculated using GUM equation
(F.1) [that is, GUM equation (10)]:

u2(Q j) =
N
∑

i=1

�

∂ f j

∂ x i

�2

u2(x i),

and the covariance terms u(Q j ,Qk 6= j) can be calculated using GUM (F.2):

u(Q j ,Qk 6= j) =
N
∑

i=1

∂ f j

∂ x i

∂ fk

∂ x i
u2(x i).

Note that in cases where any of the terms u(x i , xk 6=i) 6= 0, that is, off-diagonal terms are not equal
to zero, then GUM formulæ (F.1) and (F.2) can no longer be used and, noting that u(Q j ,Q j) =
u2(Q j), all terms of the covariance matrix VQ are instead given by

u(Q j ,Qk) =
N
∑

i=1

N
∑

`=1

∂ f j

∂ x i

∂ fk

∂ x`
u(x i , x`). (E5.5)

Whichever approach is used, matrix or subscripted summations, the result is that

u2(Q1) = u2(Qo1) + u2(es),

u2(Q2) = u2(Qo2) + u2(es),

u2(Q3) = u2(Qo3) + u2(es),

u2(Q4) = u2(Qo4) + u2(es).

and

u(Q j ,Qk 6= j) = u2(es).

E5.7.2 Model fitting

In matrix form, the data for fitting by method ISO/TS 28037 clause 9, expressed in terms of the
quantities used therein, correspond to

x = t =







t1
t2
t3
t4






, y = Q =







Q1
Q2
Q3
Q4






, Vy =







u2(Q1) u(Q1,Q2) u(Q1,Q3) u(Q1,Q4)
u(Q2,Q1) u2(Q2) u(Q2,Q3) u(Q2,Q4)
u(Q3,Q1) u(Q3,Q2) u2(Q3) u(Q3,Q4)
u(Q4,Q1) u(Q4,Q2) u(Q4,Q3) u2(Q4)






.

In this example we have

x =







857
2571
3792
4689






d, y =







9.525
8.250
7.192
6.623






pmol s−1,

Vy =







0.0111 0.0030 0.0030 0.0030
0.0106 0.0030 0.0030

0.0106 0.0030
sym. 0.0088






(pmol/s)2.
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In practice, the correlation matrix may be of more intuitive interest than the covariance matrix
(and has the advantage of being dimensionless). This is defined in terms of the covariance matrix
and component uncertainties by

R(y j , yk) =
u(y j , yk)

u(y j) u(yk)
;

hence

Ry =







1 0.279 0.279 0.306
1 0.286 0.313

1 0.313
sym. 1






. (E5.6)

The results of the fitting are

a = 10.184 pmol s−1,

b = −7.671× 10−4 pmol s−1 d−1,

u(a) = 0.115 pmol s−1,

u(b) = 2.939× 10−5 pmol s−1 d−1,

u(a, b) = −2.708× 10−6 pmol2 s−2 d−1.

ISO/TS 28037 [16] provides algorithms to perform the necessary calculations to evaluate
a, b, u(a), u(b) and u(a, b). Unfortunately, they are not generally amenable to implementation
using spreadsheet cell formulae and some other means of solving, such as a mathematical soft-
ware package or user-written code, is required. For example, ISO/TS 20837 Annex F describes
software and source code that is provided free by NPL.

The standard uncertainty u(Q) for a forward evaluation using equation (E5.4) is evaluated
by a standard GUM-LPU approach. This can be expressed in matrix format as in ISO/TS 28037,
clause 11.2:

u2(Q) = C>Q VQCQ,

where CQ is an array containing the sensitivity coefficients, and VQ is the corresponding covari-
ance matrix:

CQ =


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, VQ =
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

u2(a) u(a, b) 0

u(a, b) u2(b) 0

0 0 u2(t)









,

which equates to

u2(Q) = u2(a) + t2u2(b) + b2u2(t) + 2tu(a, b).

This is the same expression that is found by applying GUM equation (13).
For example, a forward evaluation using equation (E5.4) at say t = 5000d with u(t) = 1 d

gives Q = 6.349 pmol s−1 and standard uncertainty u(Q) = 0.088pmol s−1.
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If there was no correlation in the data . . .

The corresponding results of fitting can be evaluated for the situation where there is no correlation
in the data, that is, the effect characterised by u(s) is in this case not common to each flow
calibration measurement. The data model is now described by:

Q j =Qo j , (E5.7)

u2(Q j) = u2(Qo j) = u2(e1 j) + u2(e2 j) + u2(c j), (E5.8)

which corresponds to the data model in Case 1. For the data in table E5.3, the process described
in clause 6 of [16] can be used to calculate the fitting results in this case, giving the following:

a = 10.185 pmol s−1 = a1,

b = −7.678× 10−4 pmol s−1 d−1 = b1,

u(a) = 0.119 pmol s−1 = u(a1),

u(b) = 3.506× 10−5 pmol s−1 d−1 = u(b1),

u(a, b) = −3.785× 10−6 pmol2s−2d−1 = u(a1, b1), (E5.9)

for which a forward evaluation at t = 5000 d with u(t) = 1 d gives the estimate Q = 6.346 pmol s−1

and standard uncertainty u(Q) = 0.084 pmol s−1.

Table E5.3: Calibration results for reference leak L1

t/d Q j/pmol s−1 u(Q j)/pmol s−1

857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094

The difference between the results in the two different scenarios (correlation and no corre-
lation) is not large in this particular example; however, the extent of the difference is entirely
dependent upon the data.

Further data for a second leak

For later reference (in Case 3 — section E5.8), consider a second leak L2 for which the data in
table E5.4 is available, where the data model for L2 is as described above for L1 in equations
(E5.2) and (E5.3).

Table E5.4: Data for reference leak L2

t/d Q j/pmol s−1 u(Qo j)/pmol s−1 u(es)/pmol s−1

100 4.391 0.046 0.055
474 4.293 0.045 0.055
856 4.190 0.044 0.055

2568 3.724 0.041 0.055
3791 3.531 0.040 0.055
4692 3.402 0.037 0.055
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The results of the fitting for leak L2 are

a = 4.376 pmol s−1,

b = −2.183× 10−4 pmol s−1 d−1,

u(a) = 0.062 pmol s−1,

u(b) = 9.706× 10−6 pmol s−1 d−1,

u(a, b) = −2.208× 10−7 pmol2s−2d−1,

with

Ry =















1 0.594 0.599 0.615 0.620 0.636
1 0.604 0.621 0.626 0.642

1 0.626 0.632 0.648
1 0.648 0.665

1 0.671
sym. 1















. (E5.10)

Correlation in this case is considerably higher than previously as seen by comparing the off-
diagonal terms in the correlation matrix with those in the matrix (E5.6). Such a statement could
not easily be made by examining covariance matrices.

Forward evaluation using equation (E5.4), again at t = 5000 d with u(t) = 1d gives the
estimate Q = 3.284pmol s−1 and standard uncertainty u(Q) = 0.063pmol s−1.

The corresponding results of fitting a straight line can again be evaluated for the situation
where there is no correlation, as detailed in equations (E5.7) and (E5.8). In this case the data is
given in table E5.5.

Table E5.5: Calibration results for reference leak L2

t/d Q j/pmol s−1 u(Q j)/pmol s−1

100 4.391 0.072
474 4.293 0.071
856 4.190 0.070

2568 3.724 0.069
3791 3.531 0.068
4692 3.402 0.066

The process described in clause 6 of [16] can again be used to calculate the fitting results in
this case, giving

a2 = 4.380 pmol s−1,

b2 = −2.200× 10−4 pmol s−1 d−1,

u(a2) = 0.045 pmol s−1,

u(b2) = 1.620× 10−5 pmol s−1 d−1,

u(a2, b2) = −5.713× 10−7 pmol2s−2d−1. (E5.11)

A forward evaluation at t = 5000 d with u(t) = 1d gives the estimate Q = 3.280 pmol s−1 and
standard uncertainty u(Q) = 0.054pmol s−1.
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E5.8 Case 3: Use of two reference leaks to calibrate a third unknown
leak

In this scenario, the two reference leaks L1 and L2 are used to calibrate a leak detector at points
bracketing the value of an uncalibrated leak Lx. The previously determined calibration functions
for the reference leaks are used to establish reference values at the time of use. Each leak rate is
then calculated for its prevailing temperature and the corresponding MSLD response is observed.
A linear fit is then performed to this stimulus-response data to calibrate the MSLD. Finally, taking
the MSLD response from the ‘unknown’ leak, the corresponding leakage rate is evaluated and
expressed in terms of a defined reference temperature.

E5.8.1 Specification of the measurands

In this scenario the principal measurand is the reference value Qx for the ‘unknown’ leak Lx.
During the evaluation process it is necessary to evaluate intervening measurands aM and bM, the
coefficients of the MSLD calibration function.

E5.8.2 Measurement model

Reference values

The reference values Q1 and Q2 corresponding to a time t and temperature T0 are established
by forward evaluation using the straight-line calibration functions for each reference leak:

Q1 = a1 + b1 t, Q2 = a2 + b2 t. (E5.12)

Measured values

In use at temperatures T1 and T2 respectively, the two reference leaks L1 and L2 produce helium
at rates q1 and q2 given by:

q1 =Q1[1+α(∆T1 + δT )] = (a1 + b1 t)[1+α(∆T1 + δT )],

q2 =Q2[1+α(∆T2 + δT )] = (a2 + b2 t)[1+α(∆T2 + δT )], (E5.13)

where

α is the temperature coefficient for the depletion rate in the region of reference tempera-
ture T0, assumed to be the same for both reference leaks,

∆T1 = T1 − T0,

∆T2 = T2 − T0,

T1 is the temperature assigned to leak L1, for example, measured temperature of its leak
housing or coupling,

T2 is the temperature assigned to leak L2, for example, measured temperature of its leak
housing or coupling,

T0 is the reference temperature for the leaks,
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δT is the (unknown) temperature measurement error, corresponding to the difference between
the assigned temperature and the actual temperature of the quartz membrane (which con-
trols the rate of helium permeation). The best estimate (expectation) of δT is zero but the
uncertainty is finite. This is an example of a poorly known systematic effect, as described
in GUM Supplement 3 [56, clause 10.4].

MSLD Calibration

The MSLD responses corresponding to q1 and q2 are p1 and p2, respectively, and it is assumed here
that the associated standard uncertainties u(p1), u(p2) are negligible. The calibration function
for the MSLD established from the data (p1, q1) and (p2, q2) and the associated covariance is

q = aM + bMp, (E5.14)

where p is the MSLD response and q is the corresponding leak rate.

Calibration of unknown leak

The leak rate qx corresponding to MSLD response px for a leak Lx operating at temperature Tx
can now be evaluated and the value Qx can be established that is referenced to a temperature
T0; thus

qx = aM + bMpx (E5.15)

and

Qx =
qx

[1+αx(∆Tx + δT )]
, (E5.16)

where

αx is the temperature coefficient for the depletion rate in the region of the reference temper-
ature,

∆Tx = Tx − T0

Tx is the temperature assigned to leak Lx, for example, measured temperature of its leak hous-
ing or coupling,

T0 is the reference temperature for the leaks, assumed to be the same for all three leaks,

δT is the (unknown) temperature error, also assumed to be the same for all three leaks.

E5.8.3 Uncertainty Propagation

Reference values

Correlation within the data for the reference leaks could appear in various forms that are, for rea-
sons of space, not considered here but are nevertheless treatable using the methods in ISO/TS 28037
[16]. The most likely two such scenarios are, firstly, the common effect described in Case 2 is
present for both leaks and for all values (as might arise when the leaks are calibrated using the
same method with the equipment having the same traceability for all reported results); or, sec-
ondly, there is a ‘pair-wise’ common effect between corresponding values for the two leaks, but
little or no correlation within the data for each leak (as might arise if the leaks are both calibrated
at the same time but the method, equipment and traceability are not fixed as in the first case).
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In our example scenario we shall assume that the correlations within and between the data
for each reference leak are not significant and the results evaluated in Case 2, equations (E5.9)
and (E5.11), will be used.

Measured values

Since the quantities t, α and δT are common to both leak rate expressions [equations (E5.13)],
there will be correlation between the estimates q1 and q2 of those quantities.

A covariance evaluation is needed that represents the correlations in the data. This can be
established by following the process described in matrix form in clause 6.2 of GUM Supplement
2 [54] and in subscripted summation form in GUM Annex F.1.2.3.

The process begins by defining two functions f1 and f2 from equations (E5.13) such that

q1 = f1(x i) = f1(a1, b1, a2, b2, t,α,∆T1,∆T2,δT ) = (a1 + b1 t)[1+α(∆T1 + δT )],

q2 = f2(x i) = f2(a1, b1, a2, b2, t,α,∆T1,∆T2,δT ) = (a2 + b2 t)[1+α(∆T2 + δT )],

that is, f1 and f2 are defined in terms of all quantities x i that influence both q1 and q2, even
though some of the quantities only have an effect in one or other function.

In the terminology of GUM Supplement 2 [54] clause 6.2, the quantities are

X = (a1 b1 a2 b2 t α ∆T1 ∆T2 δT )>,

Y = (q1 q2)
>.

The covariance matrix Vy is given by

Vy = Cx Vx C>x =





u2(q1) u(q1, q2)

u(q2, q2) u2(q2)



,

where, in this example, N = 9, m= 2 and we have

C>x =

























































∂ f1
∂ a1

∂ f2
∂ a1

∂ f1
∂ b1

∂ f2
∂ b1

∂ f1
∂ a2

∂ f2
∂ a2

∂ f1
∂ b2

∂ f2
∂ b2

∂ f1
∂ t

∂ f2
∂ t

∂ f1
∂ α

∂ f2
∂ α

∂ f1
∂∆T1

∂ f2
∂∆T1

∂ f1
∂∆T2

∂ f2
∂∆T2

∂ f1
∂ δT

∂ f2
∂ δT

























































=

























































1+α(∆T1 + δT ) 0

t [1+α(∆T1 + δT )] 0

0 1+α(∆T2 + δT )

0 t [1+α(∆T2 + δT )]

b1 [1+α(∆T1 + δT )] b2 [1+α(∆T2 + δT )]

(a1 + b1 t)(∆T1 + δT ) (a2 + b2 t)(∆T2 + δT )

α (a1 + b1 t) 0

0 α (a2 + b2 t)

α (a1 + b1 t) α (a2 + b2 t)

























































Examples of evaluating measurement uncertainty First edition (M27)



Example E5. Measurement uncertainty when using quantities that change at a linear rate —
use of quartz He reference leaks to calibrate an unknown leak 69

and

Vx =

























































u2(a1) u(a1, b1) 0 0 0 0 0 0 0

u(a1, b1) u2(b1) 0 0 0 0 0 0 0

0 0 u2(a2) u(a2, b2) 0 0 0 0 0

0 0 u(a2, b2) u2(b2) 0 0 0 0 0

0 0 0 0 u2(t) 0 0 0 0

0 0 0 0 0 u2(α) 0 0 0

0 0 0 0 0 0 u2(∆T1) 0 0

0 0 0 0 0 0 0 u2(∆T2) 0

0 0 0 0 0 0 0 0 u2(δT )

























































.

Alternatively, the covariance matrix can be calculated in terms of subscripted summations in
line with annex F.1.2 of the GUM [51], albeit using equation (E5.5) rather than GUM equations
(F.1) and (F.2) as several of the quantities are correlated (namely a1 with b1 and a2 with b2.

This gives (remembering that the expectation of δT is zero),

u2(q1) = u(q1, q1)

= (1+α∆T1)
2u2(a1) + t2(1+α∆T1)

2u2(b1) + b2
1(1+α∆T1)

2u2(t)

+∆T1
2(a1 + b1 t)2u2(α) +α2(a1 + b1 t)2u2(∆T1) +α

2(a1 + b1 t)2u2(δT )

+ 2t(1+α∆T1)
2u(a1, b1),

u2(q2) = u(q2, q2)

= (1+α∆T2)
2u2(a2) + t2(1+α∆T2)

2u2(b2) + b2
2(1+α∆T2)

2u2(t)

+∆T2
2(a2 + b2 t)2u2(α) +α2(a2 + b2 t)2u2(∆T2) +α

2(a2 + b2 t)2u2(δT )

+ 2t(1+α∆T2)
2u(a2, b2)

and

u(q1, q2) = u(q2, q1)

= b1 b2(1+α∆T1)(1+α∆T2)u
2(t)

+ (a1 + b1 t)(a2 + b2 t)∆T1∆T2u2(α)

+α2(a1 + b1 t)(a2 + b2 t)u2(δT ).

MSLD Calibration

In matrix form, the data for fitting by method ISO/TS 28037, clause 9 (expressed in terms of the
variables used in [16]) correspond to

x = p =

�

p1
p2

�

, y = q =

�

q1
q2

�

, Vy = Vq1,q2
=

�

u2(q1) u(q1, q2)
u(q1, q2) u2(q2)

�

.
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Solving the model establishes estimates for the coefficients aM and bM [for equation (E5.14)]
and the elements of the covariance matrix

Va,b =

�

u2(aM) u(aM, bM)
u(aM, bM) u2(bM)

�

.

Note on calculations

Note that in general the calculations in ISO/TS 28037 clause 9, Steps 1 and 2 cannot easily be
implemented within a spreadsheet and some means of performing matrix algebra is required;
however, the solution when fitting to just two data points can be written out in a relatively short
form that is amenable to spreadsheet evaluation.

Step 1: described in clause 9.2.2 of ISO/TS 28037 requires factorisation of the covariance
matrix. For a matrix V such as Vq1,q2

established in Case 3 above, this involves calculating the
components of a lower left matrix L such that

V =

�

v1 v2
v2 v3

�

= LL>

and

L=

�

l1 0
l2 l3

�

,

which is satisfied when

l1 =
p

v1,

l2 =
v2p
v1

,

l3 =

√

√

√

v3 −
v2

2

v1
.

Step 2: described in clause 9.2.2 of ISO/TS 28037 requires solving several systems of equations
to establish values for variables identified as f , g and h. For the 2-point systems described above
the values are found to be:

f1 =
1
l1

,

f2 =
1− (l2/l1)

l3
,

g1 =
p1

l1
,

g2 =
p2 − p1 (l2/l1)

l3
,

h1 =
q1

l1
,

h2 =
q2 − q1 (l2/l1)

l3
.
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Calibration of unknown leak

Forward evaluation, to establish a value for an unknown leak rate qx and its associated standard
uncertainty u(qx) from an observed MSLD response px and associated standard uncertainty u(px),
uses equation (E5.15):

qx = aM + bMpx,

and again follows the process described in clause 11 of ISO/TS 28037 [16], giving in matrix form

u2(qx) = C>x VxCx,

where Cx is an array containing the sensitivity coefficients and Vx is the corresponding covariance
matrix

Cx =









∂ qx
∂ aM

∂ qx
∂ bM

∂ qx
∂ px









=









1

px

bM









, Vx =









u2(aM) u(aM, bM) 0

u(aM, bM) u2(bM) 0

0 0 u2(px)









,

which is equivalent to

u2(qx) = u2(aM) + 2pxu(aM, bM) + p2
xu2(bM) + b2

Mu2(px),

as is found by applying GUM equation (13) to equation (E5.15)

Calculation of reference value

The reference value Qx calculated using (E5.16), namely,

Qx =
qx

[1+αx(∆Tx + δT )]
,

has an associated uncertainty u(Qx) given in matrix form by

u2(Qx) = C>Qx
VQx

CQx
,

where

CQx
=





















Cqx

Cαx

C∆Tx

CδT





















=





















Qx
qx

,

−Q2
x

qx
(∆Tx + δT ),

−Q2
x

qx
α,

−Q2
x

qx
α,





















; VQx
=





















u2(qx) 0 0 0

0 u2(αx) 0 0

0 0 u2(∆Tx) 0

0 0 0 u2(δT )





















,

which is equivalent to

u2(Qx) = C2
qx

u2(qx) + C2
αx

u2(α) + C2
∆Tx

u2(∆Tx) + C2
δT u2(δT ),

as is found by applying GUM equation (13) to equation (E5.16)
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E5.8.4 Numerical illustration

To illustrate, consider a calibration that is performed using the two reference leaks for which
calibration data is available as depicted in figure E5.3 and tables E5.6 and E5.7.

Figure E5.3: Calibration data for the two reference leaks. Data points represent the reference
value with error bars corresponding to ±1 standard uncertainty

Table E5.6: Calibrated reference values for reference leak L1

t/d Q j/pmol s−1 u(Q j)/pmol s−1

857 9.525 0.105
2571 8.250 0.103
3792 7.192 0.103
4689 6.623 0.094

Table E5.7: Calibrated reference values for reference leak L2

t/d Q j/pmol s−1 u(Q j)/pmol s−1

100 4.391 0.072
474 4.293 0.071
856 4.190 0.070

2568 3.724 0.069
3791 3.531 0.068
4692 3.402 0.066
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Reference values

Since there is no covariance in the data, a straight line can be fitted for each set of data following
the approach detailed in clause 6 of ISO/TS 28037 [16]. The results of these operations are

a1 = 10.185 pmol s−1,

b1 = −7.678× 10−4 pmol s−1,

u(a1) = 0.119 pmol s−1,

u(b1) = 3.506× 10−5 pmol s−1 d−1,

u(a1, b1) = −3.785× 10−6 pmol2s−2d−1

and

a2 = 4.380pmol s−1,

b2 = −2.200× 10−4 pmol s−1,

u(a2) = 0.045pmol s−1,

u(b2) = 1.620× 10−5 pmol s−1 d−1,

u(a2, b2) = −5.713× 10−7 pmol2s−2d−1.

Note that values for the reference leaks do not need to be enumerated in this example; how-
ever, for completeness the values found by applying forward evaluation using the above param-
eters and the process described in clause 11 of ISO/TS 28037 for equations (E5.12) above are
found to be:

Q1 = 6.346pmol s−1, u(Q1) = 0.084pmol s−1,

Q2 = 3.280pmol s−1, u(Q2) = 0.054pmol s−1

when t = 5000 d and u(t) = 1d.

Measured values

Suppose that the leak is to be used at t = 5000d, u(t) = 1 d and the calibration conditions are
as in table E5.8 for which it is calculated [equation (E5.13)] that

q1 = 6.735 pmol s−1, q2 = 3.473pmol s−1.

Table E5.8: Conditions during use of reference leaks L1 and L2

Quantity Value Standard uncertainty
∆T1 2.11 K 0.52 K
∆T2 2.03 K 0.53 K
α 0.029 K−1 0.005 K−1

The covariance matrix for the data is then

Vy = Vq1,q2
=

�

u2(q1) u(q1, q2)
u(q1, q2) u2(q2)

�

=

�

0.030 0.0066
0.0066 0.009

�

(pmol/s)2.

Hence, the correlation matrix is

Rq1,q2
=

�

1 0.398
0.398 1

�

.
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MSLD Calibration

Suppose that the MSLD indications (in display units, du) corresponding to q1 and q2 are observed:

p1 = 149.2du, p2 = 52.1du.

The parameter values in the measurement equation (E5.14) are then found to be

aM = 1.722pmol s−1,

bM = 0.034pmol/s/du,

u(aM) = 0.139pmol s−1,

u(bM) = 0.0017pmol/s/du,

u(aM, bM) = −1.701× 10−4 pmol2/s2/du.

Calibration of unknown leak

Suppose now that when an unknown reference leak Lx is connected to the MSLD the response
is 120du. Forward evaluation using the MSLD calibration function then estimates a leak rate of
qx = 5.754 pmol s−1 and an associated standard uncertainty of u(qx) = 0.135pmol s−1.

Calculation of reference value

Finally, a value for the unknown leak rate can be established that is referenced to a temperature
T0. Suppose that the calibration conditions are those in table E5.9.

Table E5.9: Conditions during measurement of Qx

Quantity Value Standard uncertainty

∆Tx 2.01 K 0.55 K
αx 0.030 K−1 0.005 K−1

The reference value Qx at time t is therefore calculated to be

Qx = 5.427 pmol s−1; u(Qx) = 0.158 pmol s−1.

E5.9 Reporting the result

The estimate of the measurand Q and the associated standard uncertainty are directly reported
in the conventional manner according to the GUM [51] including the less common additional
reporting of covariance where required.

In practice two situations might arise. In the one case the evaluation of a leak rate may be
a multi-step process, in which case the intermediate measurands a and b will be reported and
taken as explicit inputs to the next stage of the evaluation process (perhaps by a different party).
In the other case a and b may not be explicitly evaluated at all; instead they may be directly
incorporated into the evaluation process which reports a result for the measurand Q.

In the scenarios presented here, for the sake of completeness, the first case is taken to apply.
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E5.10 Interpretation of results

Case 2 demonstrates that when correlation is present the correlation matrix gives greater insight
as an indicator than the covariance matrix. Correlation in this case is considerably greater for L2
than for L1 as seen by comparing the off-diagonal terms in the correlation matrix (E5.10) with
those in the matrix (E5.6). Such a statement could not easily be made by examining covariance
matrices.

The overall significance of correlation is dependent on the specific data and it cannot easily
be evaluated without a measurement model and a proper analysis.

The data for L2 show signs of curvature, visually evident in figure E5.3, even though a chi-
squared test for linearity is passed (a straight line just about passes through all error bars). A
higher order function such as a quadratic [39] would likely result in lower and more random
residuals. A similar approach to that described here could be applied, but this is beyond the
scope of the present work.
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Example E6

Factoring effects such as calibration
corrections and drift into uncertainty
evaluations
J. Greenwood, M.G. Cox, N. Fischer

E6.1 Summary

This activity comprises two examples that demonstrate potential danger in the practice of factor-
ing effects such as calibration corrections and drift into uncertainty evaluations as rectangular
distributions, and presents ways of handling these effects that is consistent with the GUM suite
of documents. These examples illustrate that, in spite of the availability of appropriate guidance,
significant known bias as a result of effects such as calibration corrections, drift or consumption,
hysteresis and non-linearity is often not properly handled. This abuse could bias conformity
decisions and thereby place either the consumer or supplier at an unfair disadvantage.

E6.2 Introduction of the application

Poor practice in the evaluation of measurement uncertainty can influence decisions on which it
depends. Still, known corrections are often not applied to observed values when computing a
measurement result and instead the uncertainty is enlarged in an attempt to compensate. This
poor practice inflates coverage intervals and could bias conformity decisions and therefore place
either the consumer or supplier at a disadvantage. The consequences of such poor practice are
demonstrated in several examples.

E6.3 Specification of the measurand(s)

Denote an output quantity by Z and an input quantity by Y representing an indicated value. The
measurand generically is

Zuncor = Y (E6.1)

for an uncorrected model as in section E6.4. For a corrected model it is

Zcor = Y + X , (E6.2)

where X is the quantity regarded as a correction.

77



Example E6. Factoring effects such as calibration corrections and drift into uncertainty
evaluations 78

E6.4 Measurement model

A ‘best estimate’ of Y is the arithmetic mean

y =
1
n

n
∑

i=1

yi , i = 1, . . . , n, (E6.3)

where the yi are unbiased observations made independently under repeatability conditions of
measurement.

A ‘best estimate’ of Zuncor is then

zuncor = y. (E6.4)

A value x of a correction quantity X is often incorporated to account for a systematic effect:

zcor = y + x . (E6.5)

x is the correction for a known bias or systematic error in the measuring system. A further term
can be included in model (E6.4) or (E6.5) relating to the resolution of the measuring instrument.
Its inclusion is straightforward and is treated by Lira and Wöger [116]. We do not consider that
term here.

The ‘known systematic error’ can arise from a variety of sources including calibration, effects
due to temperature deviation, drift, hysteresis, consumption of material and ‘wear’, and effects
due to method or operator bias.

E6.5 Uncertainty propagation

Knowledge concerning Y is in terms of a set of repeated observations made under repeatability
conditions (section E6.4). The arithmetic mean y of the observations is taken in (E6.3) as an
estimate of Y . The associated standard uncertainty u(y) is given by [51, clause 4.2]

u2(y) =
1

n(n− 1)

n
∑

i=1

(yi − y)2.

Knowledge concerning the systematic error is that a value x and an associated standard uncer-
tainty u(x) are available. The use of this knowledge in practice depends on whether a correction
is or is not to be made to y .

In expressions (E6.4) and (E6.5), y can be considered as a realized value of a random variable
with that variable typically modelled by the normal distribution N(y, u2(y)), which is strictly valid
only for large n. In cases where n is small, the t-distribution should be used [51, annex G.3].

E6.5.1 Case 1: Good practice

Good practice, as assumed by JCGM guidance, dictates that a correction is made for a known
systematic error. This is the situation represented in expression (E6.5), in which x is a realized
value of a random variable. That variable is often modelled by a rectangular distribution with
mean x and standard deviation u(x).

The standard uncertainty u(zcor) associated with the corrected value zcor in expression (E6.5)
is given by

u2(zcor) = u2(y) + u2(x). (E6.6)

Examples of evaluating measurement uncertainty First edition (M27)



Example E6. Factoring effects such as calibration corrections and drift into uncertainty
evaluations 79

There is a correspondence between the right-hand sides of expressions (E6.5) and (E6.6) in that
the terms in the former are the means of the corresponding random variables and the terms in
the latter are the according variances of these random variables. That is, expression (E6.6) can
be regarded as giving the squared standard uncertainty associated with the corrected measured
value zcor in (E6.5). Said another way, expression (E6.5) is a realisation of measurement model
(E6.2) and expression (E6.6) gives the squared standard uncertainties corresponding to the terms
in the model.

For purposes of conformance assessment, we can regard the corrected value zcor as modelled
by a probability distribution with mean zcor and standard deviation u(zcor). When n is large and x
has a normal distribution, the distribution relating to zcor can be taken as normal: N(zcor, u2(zcor)).
If that is not the case, a Monte Carlo method [52] can be used to obtain its probability distribution
given probability distributions for Y (for example, Student’s t) and X (for example, rectangular).

E6.5.2 Case 2: Poor practice

Common practice [97,116,117,142,165] often involves making no correction and increasing the
uncertainty associated with the value of the measurand. On this basis the reported uncorrected
value would be

zuncor = y (E6.7)

A variety of approaches have been adopted for evaluating the associated uncertainty [117]. For
the purposes of demonstration let us suppose that the associated ‘standard uncertainty’ u(zuncor)
is given by one of the commonly used approaches, for which it is assumed that

u2(zuncor) = u2(y) + u2(x) + x2/3. (E6.8)

The term x2/3 is included in the uncertainty evaluation as a consequence of modelling the sys-
tematic effect as a rectangular distribution with mean of zero and half-width equal to the mag-
nitude of x . Other assumptions would give rise to generally somewhat different contributions.

‘Standard uncertainty’ is given in quotation marks since, as stated in [102], it is not a standard
uncertainty as defined in the GUM [51]. There is no one-to-one correspondence between the
terms in expressions (E6.7) and (E6.8) as in the expressions for the corrected value (E6.5) and
the associated variance (squared standard uncertainty) (E6.6). It does not possess the properties
of internal consistency, transferability and universality: see the GUM [51, clause 0.4] and the
strong comments in [102].

The use of expression (E6.8) to obtain a ‘standard uncertainty’ for an uncorrected value con-
stitutes poor practice.

It is not proper to attach a probability distribution to zuncor. However, poor practice might
assume the normal distribution N(zuncor, u2(zuncor)).

Not correcting for a systematic effect can be serious. Molinar et al. [132] report in the context
of methods for evaluation of uncertainty increase due to chemical impurities:

‘If no correction is applied, an additional type B uncertainty component u ≈ 0.2mK
if a rectangular probability distribution is assumed. The additional component is
nearly one order of magnitude larger than the other uncertainty components of the
fixed-point realization.’

Further, Westgard et al. [179] state in the context of laboratory medicine:

‘To characterize analytical quality of a laboratory test, common practice is to estimate
Total Analytical Error (TAE) which includes both imprecision and trueness (bias).
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The metrologic approach is to determine measurement uncertainty, which assumes
bias can be eliminated, corrected, or ignored. Resolving the differences in these
concepts and approaches is currently a global issue [. . . ]

Elimination or correction of [. . . ] biases is not always possible, even with calibration
based on comparative patient results; therefore, bias must still be measured and
monitored and should not be ignored or assumed to be accommodated by long-term
estimates of measurement uncertainty.’

E6.6 Reporting the result

E6.6.1 Impact on tests against specification or tolerance limits

General

Conformance probability [55, definition 3.3.7] is the probability p that the measurand Z lies in
a tolerance interval [a, b], with a < b, that is

p = Pr(a ≤ Z ≤ b) =

∫ b

a
g(η)dη,

where g is the probability density function for Z [55, clause 7.4]. An interval such as [a, b] is
called a coverage interval for Z and p is the associated coverage probability. Guidance on con-
structing a coverage interval with a desired coverage probability given the probability distribution
for Z is contained in JCGM 101:2008 [52].

Using the recommended practice in section E6.5.1, when g is normal, resulting from Y and
X being normal, the integral can straightforwardly be computed. Otherwise, a Monte Carlo
calculation [52] can be used to establish an approximation to g since a false assumption of
normality might lead to an invalid indication of conformance probability.

Conformity decisions based on poor and good practice

The consequences of the poor practice regarding corrections in subsection E6.5.2 can be demon-
strated by example. Suppose the primary length of a product is tested using an appropriate
measuring instrument and there is an upper tolerance limit TU = 100cm on the length. Suppose
the known correction and its associated standard uncertainty are

x = 0.20 cm, u(x) = 0.05cm.

A measured length value and its associated standard uncertainty are

y = 99.75 cm, u(y) = 0.15 cm.

Both x and y have Gaussian distributions.
Using expressions (E6.5) and (E6.6), the corrected value and associated standard uncertainty

are

zcor = y + x = 99.95 cm, u(zcor) = [u
2(y) + u2(x)]1/2 = 0.16 cm.

The conformance probability is the area to the left of TU = 100 cm under the normal curve having
mean zcor and standard deviation u(zcor). That probability is 0.62.
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On the other hand, working with uncorrected values, expressions (E6.7) and (E6.8) give

zuncor = y = 99.75 cm, u(zuncor) = [u
2(y) + u2(x) + x2/3]1/2 = 0.20 cm.

The conformance probability is now the area to the left of TU = 100 cm under the normal curve
having these values as mean and standard deviation. That probability is 0.90, implying that a
significantly greater proportion of non-conforming items might be accepted.

Figure E6.1 depicts these two situations.

Figure E6.1: Using a corrected value, the conformance probability (0.62) is the shaded area in
the left figure, whereas using the uncorrected value, the conformance probability (0.90) is the
shaded area in the right figure; the latter (poor-practice) approach allows a greater proportion
of non-conforming items to be accepted

Figure E6.2 shows the conformance probability for a range of values y .
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Figure E6.2: Conformance probability for a range of measured values y with corrected and
uncorrected bias in the example described in section E6.6.1

E6.7 Treatment of drift

In many practical situations it is difficult to model drift with any degree of confidence – in most
cases it is probably one of the least reliable influence quantities.

In general terms calibration drift usually corresponds to a change in a calibration value over
the course of time. This variation might occur in a predictable or not so predictable fashion
depending upon the underlying source of the variation.

In situations where a calibration function is established from data consisting of reference
values and corresponding observed values (as elaborated in [16] and [38]). The drift could be
modelled in terms of a time dependent relationship for the fitted coefficients, perhaps resulting
in a linear function

Z(t) = a(t) + b(t)Y, (E6.9)

in which a and b are time-dependent parameters whose value is influenced by historical calibra-
tion data as well as the most recent data.

This procedure is generally not straightforward and is unlikely to be widely adopted. In these
circumstances some other approach is usually adopted, such as analysis of any trend in estimated
values of the parameters.

However, in many situations such a calibration function that directly relates an observation
to an estimate of the measurand is not established. Instead the available calibration data is used
to estimate an additive (or multiplicative) correction, as for example

Z = Y + C . (E6.10)

In use, the measurand is estimated by

z(t) = y + c(t),
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where the estimate for the calibration correction c(t) at time of use t is based upon calibration
data

ci = c(t i) = zi − yi ,

and where zi = z(t i) and yi = y(t i) are calibration values corresponding to a reference value
and observation obtained at time t i

These approaches usually seem intuitively more reasonable to laboratory practitioners, but
in practice problems remain due to the generally small amount of information available (say 3
or 4 successive annual observations) and the question of how much weight to give to historical
data.

Where there is enough data to perform a fit to a trend in the ci , such a fit and use of an ex-
trapolated calibration value c(t) based upon a functional fit to historical data seems appropriate.
This approach is demonstrated in Models 1 and 4 below.

In other situations there is insufficient data to draw any strong conclusions about how ci
varies over time. Consequently, the most recent calibration correction cn is often taken to be the
best estimate of C . In other words, an estimate

c(t) = cn + d(t), (E6.11)

is made, in which d(t) is a poorly understood bias effect with an assumed mean value of zero.
This is the approach demonstrated in Models 2, 3, and 5 below. (Arguably the mean calibration
value could be chosen rather than cn; however, there is usually a preference to give more weight
to the most recent value.)

The question that remains is how to evaluate the uncertainty associated with equation (E6.11).
If the expectation of the drift is genuinely zero (rather than this simply being a convenient as-
sumption) then assigning a distribution centred on zero is quite reasonable. Some guidance [96]
suggests that in this case the data should be considered as a Type A contribution (see Model
5 below). In practice, however, the available data is often used to identify limit values for a
rectangular distribution with expectation value zero and limits ±ad .

Common estimates for ad are

ad =max(|di|),

where di is the difference between successive values ci and ci−1 (see Model 2 below). Occa-
sionally the estimate is more sophisticated, for example (Model 3 below), the larger value when
comparing the average |d̄| of the absolute differences |di|, and the most recent value dn, that is

ad =max(|d̄|, |dn|).

E6.7.1 Example of treatment of drift

The issue is demonstrated in the following example in which the conformance probability pc is
calculated using GUM-consistent measurement models (E6.10) with various approaches taken
for evaluating drift.

In this example suppose that a test is defined with an upper tolerance TU = 10 for the mea-
surand Z .

Suppose that the available calibration data consists of four equally spaced results ci corre-
sponding to times t i for i = 1, . . . , n = 4 as shown in Table E6.1. Let u(ci) = 0.15 and the
evaluation be conducted for some later time t > tn, say t = 42.
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Table E6.1: Annual calibration correction data ci and difference di = ci − ci−1

i t i ci di

1 0 0.3
2 12 0.3 0.00
3 24 −0.15 −0.45
4 36 0.1 0.25

The conformance probability pc is calculated for a range of measured values y using different
drift models as described below. Figure E6.3 summarises the results. These drift models are some
that are used in practice. Note that many other variations on these models are possible and are
also encountered.

Model M1:
A straight-line fit to the data is performed to establish c(t) at the time of use; hence c(t) = a0+a1 t,
where a0 and a1 are the coefficients of the fitted function and u(ct) is the uncertainty associated
with c(t), all of which can be established using ISO/TS 28037 [16]; hence

z(t) = y + c(t),

u2(z) = u2(y) + u2(ct).

Model M2:
The most recent calibration result cn is used. There is a genuine belief (perhaps due to some
metrological knowledge or experience) that the expectation of drift is zero despite the recent
albeit sparse evidence to the contrary. The drift is therefore assumed to have mean value of zero.
Its associated standard uncertainty is evaluated as the standard deviation of a rectangular distri-
bution with semi-width corresponding to the maximum absolute difference between successive
calibration results; hence

z(t) = y + cn + 0,

u2(z) = u2(y) + u2(cn) + ad
2/3,

ad =max(|di|).

Model M3:
The most recent calibration result cn is used. Again, there is a genuine belief that the expectation
of drift is zero despite the recent evidence to the contrary. The drift is therefore assumed to have
mean value of zero. In order to give more weight to the most recent data, its associated standard
uncertainty is evaluated as the standard deviation of a rectangular distribution with semi-width
corresponding to the larger of a) the most recent absolute difference, and b) the mean of all
absolute differences between successive calibration results.

z(t) = y + cn + 0,

u2(z) = u2 + u2(cn) + ad
2/3,

ad =max(|dn|, d̄),

d̄ =
1
n

n
∑

i=2

|di|.

Model M4:
A straight-line fit c(t) = a0 + a1 t to the data is performed to establish c(t) at the time of use.
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The coefficients a0 and a1 of the fitted function are established using ordinary least squares (for
example, using the Excel SLOPE and INTERCEPT functions). The standard uncertainty associated
with c(t) is evaluated as the standard deviation of a rectangular distribution with semi-width
corresponding to the maximum fitting residual; hence

z(t) = y + c(t),

u2(z) = u2(y) + u2(ct),

u2(ct) = u2(cn) + r2
max/3,

rmax =max(|ci − (a0 + a1 t)|).

Model M5:
There is a genuine belief that the expectation of drift is zero despite the recent evidence to the
contrary. The drift is therefore assumed to have mean value of zero. Its standard uncertainty
u(d) is taken as the standard deviation of the set of available data for di . It is assumed to be
characteristic of quantity with a t-distribution centred at zero having standard deviation equal
to u(d). The best estimate of the appropriate correction at the time of use is assumed to be the
most recent value, cn. (Arguably the mean value should be chosen; however, there is usually a
preference to weight towards the most recent value.)

z(t) = y + cn + 0,

u2(z) = u2(y) + u2(cn) + u2(d),

νeff = (n− 1)
u4(z)
u4(d)

.

The conformance probability is evaluated on the basis that z has a t-distribution with νeff effective
degrees of freedom (evaluated using the Welch-Satterthwaite formula [51]).

Figure E6.3: conformance probability for a range of observed values y , evaluated at t = 42 using
the various models, M1 to M5 and the data in Table E6.1

Examples of evaluating measurement uncertainty First edition (M27)



Example E6. Factoring effects such as calibration corrections and drift into uncertainty
evaluations 86

The conformance probability pc has been calculated for a range of measured values y with
the different drift models described above. The conformance probabilities are depicted in Figure
E6.3 in which it is evident that the choice of drift model can have a significant impact upon the
measurement uncertainty and upon any subsequent decisions.

All of these models, when based upon little data, make more or less arbitrary choices for
u(c) and u(d). For this reason any significant assumptions should be clearly stated with the
results and the choice of model should be justified, either by additional measurements, or with
supporting information based upon metrological experience and expertise. For example, where
a linear model seems appropriate M1 might seem justified, whereas M2 is more conservative and
may be preferable if the risk of false acceptance is a key concern and no additional information
about the drift is available.

E6.8 Interpretation of results

As an alternative to correction, a number of methods have been proposed or adopted that in-
crease the expanded uncertainty to take account of bias. In [133], ‘all sensible combinations’ of
correcting or enlarging uncertainty for bias, whether considered significant or not, were modelled
by a Latin hypercube simulation of 1.25× 105 ‘iterations’ for a range of bias values. The fraction
of results for which the value and the associated expanded uncertainty contained the true value
of a simulated test measurand was used to assess the various methods. The strategy of estimating
the bias and always correcting is consistently the best throughout the range of biases.

Laboratories are routinely faced with the question of whether they need to correct for biases
(such as temperature effects, calibration corrections or drift) with the associated investment of
time and effort in maintaining such a process. The attraction of a simple approach whereby
such biases are factored into an uncertainty budget makes this a commonly adopted approach
in which there is usually no appreciation of the potential problems that are created for others
further along the measurement chain, as demonstrated in section E6.6.1 and in section E6.7.1.

Unfortunately, however (as explained in section E6.5.2), there is no way to state the uncer-
tainty associated with an uncorrected value that is consistent with the GUM [51].

On the basis of the explanation in section E6.5.2 and supported by these simulations it is
strongly recommended that whenever possible a corrected value and the associated uncertainty
is reported as in section E6.5.1.

Otherwise, when an uncorrected value and an uncertainty are reported, it should be stated
that the result is inconsistent with the GUM in that a measurement model has not been used but
the result follows the advice of a publication that is cited. Reference [117] usefully categorises
several approaches.

The consequent impact on conformity decisions must also be considered. In some cases the
effect on conformance probabilities would be considerable, as seen in section E6.6.1 and in sec-
tion E6.7.1.

Even when a model is consistent with the GUM, the choice of how to treat drift can have
significant impact on conformance intervals and upon decisions, as discussed in the previous
section. It is strongly recommended that the practitioner gives sufficient details in the report on
how drift has been handled.
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Conformity assessment of an influenza
medication as a multicomponent
material
F. Pennecchi, M.G. Cox, P.M. Harris, A.M.H. van der Veen and S.L.R. Ellison

E7.1 Summary

The main goal of the present study is to show how to calculate risks of false decisions in the
conformity assessment of a multicomponent material, taking into account both the measurement
uncertainties and the covariances for the measured content values of the components. As a case
study, a particular influenza medication (NyQuil tablets) is here considered.

E7.2 Introduction of the application

Medicinal products are typical examples of multicomponent materials, since they are made of
several active compounds and excipients. Conformity assessment has to be performed in the
content of each of its components. However, even when conformity assessment is successful for
all the components individually and relevant consumer’s and producer’s risks are acceptable, the
total probability of a false decision (total risk) on the conformity of the material as a whole might
still be significant.

A IUPAC Project [110] was dedicated to the modelling of total risks of false decisions due
to measurement uncertainty for multicomponent materials or objects. The mathematical frame-
work was developed as a generalization of that suggested in [55] for conformity assessment of
a single item. For this reason, the notation used here is consistent with the notation in [55]
and [112], the latter being a relevant paper in which the reader can find more details on this
case study.

E7.3 Specification of the measurands

This case study concerns test results for NyQuil tablets [2], a cold medication containing four
active components:

• acetaminophen (APAP), as a pain reliever and fever reducer;

• dextromethorphan hydrobromide (DEX), as a cough suppressant;
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• doxylamine succinate (DOX), as an antihistamine and hypnotic;

• phenylephrine hydrochloride (PE), as a nasal decongestant.

The measurands are the content values ci , i = 1, . . . , 4, of the components of the tested medication
tablets. Corresponding measured values (test results) cim, obtained according to the test method
described in [112], undergo conformity assessment. Quantities are masses of the components in
a tablet expressed as a fraction (%) of the corresponding labelled amount li . Labelled amounts
are l1 = 325 mg for APAP, l2 = 10 mg for DEX, l3 = 6.25 mg for DOX, and l4 = 5 mg for PE,
respectively, per tablet (a tablet mass is 775 mg on average).

E7.4 Measurement uncertainty and correlations

A full uncertainty budget for the test results of the components’ content is available in [112].
Relative measurement uncertainty is evaluated as 2.8 % of cim.

A total of 105 lots of the medication produced and released at the same factory during a
year are tested in the same laboratory belonging to the factory. Linear correlation among the
test results for different components is estimated by the Pearson’s correlation coefficients ri j [51,
sec. C.3.6], i < j. Only APAP test results are not significantly correlated with the other component
contents’, whereas test results for the low-dose active components – DEX, DOX and PE – show
to be significantly correlated (at a 99 % level of confidence) [112]. Correlation coefficients are
reported in table E7.1.

Table E7.1: Correlation coefficients between components’ content values

Component Index APAP DEX DOX PE
i/ j 1 2 3 4

APAP 1 1 0.107 0.125 0.177
DEX 2 1 0.311 0.404
DOX 3 1 0.539
PE 4 1

E7.5 Specification or tolerance limits

The lower and upper tolerance limits, TLi and TUi , for the product release are 95.0 % and 105.0 %
of the labelled amount li for each active component, i = 1, . . . , 4. The tolerance limits derive from
regulatory authorities controlling the quality of marketed medicinal products.

E7.6 Decision rule and conformity assessment

In the present case study, the “simple acceptance”, or “shared risk”, rule is considered as the
decision rule for conformity assessment [55, sec. 8.2.1], i.e., acceptance limits of test results
coincide with tolerance limits (ALi = TLi and AUi = TUi).

The producer of the medication is the pharmaceutical company producing the drug, whereas
the consumer is any individual who may take that medication. In the present example, only the
calculation of consumer’s risks is shown, but the counterpart models for the producer’s risks are
easily obtainable as well.
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E7.6.1 Bayesian framework

In the framework of the IUPAC project [110], evaluation of total risks of false decision for mul-
ticomponent materials is based on a multivariate version of the evaluation of specific and global
risks for a single characteristic of an item, as defined in [55, sec. 9.3.2 and 9.5.2]. The underly-
ing Bayesian approach requires defining a multivariate prior probability density function (PDF)
g0(c) for “true” values of the components’ content, where c = [c1, . . . , c4], and a multivariate
likelihood function h(cm |c ) for the corresponding test results, where cm = [c1m, . . . , c4m].

As discussed in [112], a multivariate normal distribution is used for modelling both the prior
knowledge and the likelihood function. The former multivariate normal PDF, g0(c), has vec-
tor mean m = [m1, . . . , m4], where mi is the ith experimental sample mean, calculated from the
available production data (see table E7.2), and covariance matrix Sc made by terms Sci j

= ri j si s j ,
where ri j are the correlation coefficients in table E7.1 and si is the ith experimental standard de-
viation (see table E7.2). For each fixed vector value c, the multivariate normal PDF modelling
the likelihood function h(cm |c ) has vector mean c and covariance matrix Scm made by terms
Scmi j

= ri j ui u j , where ui = 0.028 cim, % of labelled amount, is the ith associated standard un-

certainty1. The same correlation coefficients are used for both the prior PDF and the likelihood
function since it is supposed that no further correlation effect is attributable to the analytical
measurement process: just the correlation between “true” values, maybe due to technological
conditions in the production of the medication, is effective and induces, consequently, a correla-
tion between the corresponding test results.

Table E7.2: Experimental mean and standard deviation of the components’ content values of 105
lots of the medication

Component Index Mean Standard deviation
i mi , % of labelled amount si , % of labelled amount

APAP 1 99.18 1.37
DEX 2 97.70 1.02
DOX 3 99.33 1.05
PE 4 98.94 1.22

E7.6.2 Total specific risk

For a vector of test results cm of a specific multicomponent item, when all the cim are measured
within their own acceptance interval and hence the material is accepted as conforming, the total
specific consumer’s risk R∗tot is defined as the probability of at least one of the “true” ci values of the
components’ content being outside its tolerance interval. Therefore, it is calculated as one minus
the probability that all the “true” values ci are inside their tolerance interval. Such a probability is
provided by the posterior probability density function integrated over the multivariate tolerance
domain [TL1, TU1]×[TL2, TU2]×[TL3, TU3]×[TL4, TU4]. The integral can be obtained by calculation
of the corresponding cumulative distribution function at the desired limits.

In the current study, since both prior g0(c) and likelihood function h(cm |c ) are modelled by
multivariate normal PDFs, also the joint posterior function for the “true” components’ content
values results in a multivariate normal PDF with covariance matrix Spost and vector of posterior

1Standard deviations si are smaller than measurement uncertainties ui , since each released lot has passed several
quality tests (any out-of-specification test result preventing the lot release), whereas 2.8 % is a target relative standard
uncertainty (hence, the actual measurement standard uncertainty may be smaller).
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means cpost respectively equal to [92, eq. 3.13]:

Spost =
�

S−1
c + nrepS−1

cm

�−1
(E7.1)

cpost = Spost

�

S−1
c m + nrepS−1

cm c̄m

�

, (E7.2)

where m is the vector of the prior mean values, c̄m is the vector of the arithmetic means of
replicated measurement/test results and nrep is the number of such replicates (in this study, since
each component is measured once, nrep = 1 and c̄m = [c1m, . . . , c4m]).

Considering, for example, the special case in which all the test results cim are exactly equal to
the corresponding prior mean values mi , the total specific consumer’s risk is R∗tot = 0.0029. When
cim = TLi for each i, hence R∗tot = 0.0117; when cim = TUi , R∗tot = 0.0002. Details of the calcu-
lation can be found in the code file A121_Medicine_total_specific_risk.r, where the “pmvnorm”2

function from the R package “mvtnorm” is used for the calculation of the posterior cumulative
distribution.

E7.6.3 Total global risk

The total global consumer’s risk Rtot is defined as the probability that test results cim of all the
components’ contents of an item, drawn at random from the item population, are in their re-
spective acceptance intervals and at least one of the corresponding “true” values ci is outside its
tolerance interval. Such probability is the integral of the joint multivariate PDF of “true” and
test results, which is given by the product g0(c) h(cm |c ). It can be calculated by a Monte Carlo
(MC) simulation in which, for each vector c randomly drawn from g0(c), a correspoding vector
cm is drawn from h(cm |c ). Hence, the total risk is approximated by the frequency of cases in
which, within randomly generated vectors [cm, c], all the cim values are within their respective
acceptance intervals but at least one ci value is outside its tolerance interval.

In the present study, for a number N = 107 of MC simulations, such risk value is equal
to Rtot = 0.0018, being numerically stable up to the fourth decimal digit. Details of the cal-
culation are in the code file A121_Medicine_total_global_risk.r. The obtained result is slightly
different from that reported in [112] (Rtot = 0.0019), which was obtained by a composition of
several probability terms, arranged according to the law of total probability, each calculated by
the “adaptIntegrate” function of the R package “cubature”.

E7.7 Interpretation of results

The above-reported values of total specific risk are for illustrative purposes. Value R∗tot = 0.0029
means that, whenever test results coincided with prior mean values, for instance, there would be
a probability of 0.29 % of selling a nonconforming product, in the sense that at least one of the
“true” values of the components’ content would be actually out-of-specification. The dependence
of total specific risk on the test result of a particular component at a time (while the other cim
values are fixed and equal to the prior mean values) is depicted in [112], showing that the risk
behaviour is not easily predictable.

The obtained total global risk Rtot = 0.0018 indicates that, out of 10000 tablets chosen at ran-
dom from the whole medication production, 18 of them might be assessed as conforming without
actually being (i.e., presenting conforming test results for all the four component contents, while
actually having at least an out-of-specification “true” value).

2The absolute error of the reported values, provided as an output of the function, is about 10−5 for R∗tot = 0.0029
and for R∗tot = 0.0117, and 10−6 for R∗tot = 0.0002.
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Conformity assessment of mass
concentration of total suspended
particulate matter in air
F. Pennecchi, F. Rolle, A. Allard, S.L.R Ellison

E8.1 Summary

The main goal of the present study is to show how to calculate risks of false decisions in the
conformity assessment of test results, according to the framework of [55], in the case in which a
normal distribution is not a valid assumption for modelling prior information on the measurand.
As a case study, test results of mass concentration of Total Suspended Particulate Matter (TSPM)
in ambient air are considered.

E8.2 Introduction of the application

A total of 496 test results of mass concentration of TSPM in ambient air, collected in 2009 in the
proximity of three stone quarries located in Israel, were obtained according to the Environmen-
tal Protection Agency (EPA) method IO-2.1 [5]. Such results were compared with the national
(Israeli) regulation limit for air quality to study the occurrence of Out-Of-Specification (OOS)
test results, as detailed in [109] and in [111].

In the present example, the focus is on the calculation of global and specific risks of false
decision in the conformity assessment of such kind of test results. The risk of underestimating
the pollutant concentration is the consumer’s/inhabitants’ risk and that of overestimating is the
producer’s risk. Calculation of such risks is as important for the Regulator (the Ministry of En-
vironmental Protection) protecting the inhabitants’ quality of life in the area surrounding the
quarries, as for the Manufacturers’ Association acting in the interests of the stone producers in
the country.

Risk values of false decisions on conformity of the TSPM concentration are here calculated
for each quarry separately. Nonetheless, total risks of false decisions concerning the environmen-
tal compartment as a whole can also be calculated, hence characterizing the conformity of the
TSPM concentration in the overall region encompassing the three quarries. Such total risks were
modelled on the basis of the law of total probability in [141], but are out of the scope of the
present example.
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E8.3 Specification of the measurand

For characterization of TSPM, the EPA method IO-2.1 [5] indicates the use of a high-volume
sampler for collection of particles with aerodynamic diameters of 100µm or less. A large volume
V of air, in the range 1600 m3 to 2400 m3, was typically sampled at an average rate and the mass
m of the matter in the sampled air volume, collected on the sampler filter, was measured as the
difference between the results of weighing the filter before and after sampling. The measurand is
the average value of the TSPM mass concentration over the sampling period: c = m/V (mgm−3).
In this study, TSPM from the i-th quarry, i = 1,2, 3, is considered as the i-th pollutant.

E8.4 Test results and associated measurement uncertainty

Three quarries were monitored by the Israeli National Physics Laboratory (INPL) at four points in
the compass approximately 1 km to 3 km from each quarry, four to five times per month. A total
of 496 test results were collected (220 relevant to quarry 1, 176 to quarry 2 and 100 to quarry
3), each test lasting 24 h. In [109] it was demonstrated, by means of the analysis of variance
(ANOVA), that the monthly variation was not a significant factor in the data variability, whereas
TSPM mass concentration seemed significantly influenced by the factor ‘quarry’. Thus, it was
concluded that the anthropogenic contributions to TSPM mass concentration due to the activity
of the quarries were dominant and the test results for each quarry had to be studied separately.

Measured TSPM concentration values cm are reported (in mgm−3) within Q1data.txt, Q2data
and Q3data.txt files for quarry 1, 2 and 3, respectively (available in the repository [88]), and
depicted in figure E8.1.

Figure E8.1: Histograms of the measured TSPM mass concentration values for each quarry and
corresponding lognormal probability density functions smoothing the data.

A full uncertainty budget for the considered test results is available in [109], where it was
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shown that the major contribution to the combined measurement uncertainty associated with the
results is that coming from the measurement of the sampled air volume. The combined relative
standard uncertainty associated with a typical test result was evaluated as 7.0 %. No correlation
among test results from different quarries was observed.

E8.5 Tolerance limits

The Israeli national regulations of ambient air quality prescribe an upper tolerance (regula-
tion) limit TU = 0.2mg m−3 for TSPM mass concentration for 24 h sampling. This limit holds
for any location, also close to the quarry. Hence, for each quarry and at any sampling point,
TUi = 0.2 mgm−3, for i = 1,2, 3.

E8.6 Decision rule and conformity assessment

Regulations require direct comparison of measured values cim with TUi . In the present example,
acceptance limits AUi will be made varying in order to show their impact on the risk values of
false decisions. When acceptance limits are taken to coincide with the tolerance limits (that is,
AUi = TUi), a “shared risk” rule is considered as the decision rule for conformity assessment [55,
sec. 8.2.1].

In the present example, the consumers are the inhabitants living in the area surrounding the
quarries, whereas the producers are the owners of the stone quarries.

The global and specific risks of false decisions in conformity assessment are defined in [55,
sec. 3.3] for both the consumer and the producer, and have different interpretations. While a
specific risk is the risk of an incorrect decision made for a particular measurement result, global
risks refer to the probability of an incorrect decision based on a future measurement. Both kinds
of risks rely on a Bayesian framework but require the calculation of different probability objects.
Indeed, the posterior distribution (obtained through Bayes’ theorem) is used for specific risks
while the joint distribution is used for global risks.

E8.6.1 Bayesian framework

In the framework of the JCGM document on the role of measurement uncertainty in conformity
assessment, the evaluation of risks of false decisions on a characteristic of an item is described in
[55, clause 9.3.2 and 9.5.2] for specific and global risks, respectively.

The underlying Bayesian approach requires defining a prior probability density function (PDF)
g0(ci) for the “true” values of TSPM mass concentration. Based on the Kolmogorov–Smirnov cri-
terion of goodness-of-fit, the widely-used null hypothesis of a normal PDF was tested on the
data available for each quarry and had to be rejected [109]. The normal distribution was found
instead to be the best-fitting distribution for the experimental results after their logarithmic trans-
formation. Therefore, for each quarry i, a lognormal distribution was chosen for modelling the
actual values of TSPM mass concentration ci:

g0(ci) =
1

ciσi
p

2π
exp

�

−
(ln(ci)−µi)2

2σ2
i

�

, (E8.1)

whose distributional parameters are reported (on the logarithmic scale) in table E8.1. They
were taken respectively as the mean and the standard deviation of the log-transformed data.
The corresponding lognormal prior PDFs are the curves approximating the histograms in figure
E8.1.
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Table E8.1: Location and scale parameters of the prior PDF for each quarry.

Quarry Location parameter Scale parameter
i µi (adimensional) σi (adimensional)

1 −2.325 0.434
2 −2.031 0.279
3 −2.337 0.402

The distribution of the measurement results cim at an actual concentration ci was modelled by
a normal distribution with expectation equal to ci and standard deviation equal to the standard
measurement uncertainty ui = 0.07cim [109]. The corresponding likelihood for each quarry is
hence a normal PDF:

h(cim|ci) =
1

ui
p

2π
exp

�

−
(cim − ci)2

2u2
i

�

. (E8.2)

When both the prior PDF and the likelihood are normal distributions, the posterior PDF [55,
Eq. (1)] is also normal [55, Sec. 7.2.1]1. In such a case, the evaluation of specific and global
risks is straightforward, as detailed in [55] . In the present example, instead, the prior PDF is
lognormal, for each quarry, hence requiring some numerical approximation of the consumer’s
and producer’s risks.

E8.6.2 Global risks

For each quarry, and for any considered (upper) acceptance limit AU, global risks for the consumer
and the producer were calculated as a numerical approximation of the (double) integral of the
product of the prior PDF (E8.1) and the likelihood (E8.2), according to [55, equations (19) and
(20)]. In the considered case, since all the involved PDFs were defined on the positive axis only,
the lower integration limits (both TL and UL) were taken as zero. Details of the calculation are in
the code file A123_Global_risk_TSPM.r (available in the repository [88]), where the R-function
dlnorm was used for evaluating the density of the considered lognormal distributions, whose
logarithms have the mean and the standard deviation, reported in table E8.1 for each quarry,
of the data distributions on the log scale (note that the log-transformed data have a normal
distribution by the definition of the lognormal distribution). The integration of the joint PDF was
performed by means of the R function integrate.

The obtained consumer’s (red line) and producer’s (blue line) global risks are displayed in
figure E8.2, for AU values varying in the interval [TU − 0.05, TU + 0.05] mgm−3. Considering,
for example, the special case in which AU = TU, consumer’s and producer’s global risks were
respectively 0.58 % and 0.74% for quarry 1, 1.04 % and 1.52% for quarry 2, and 0.46 % and
0.62 % for quarry 3. Focusing on quarry 1, for example, one could be interested in finding the
maximum acceptable AU in order to have a desired small consumer’s risk, let us say 0.01 %: it
turns out that such an acceptance limit should not exceed 0.17 mgm−3. However, in this case,
the global producer’s risk would increase from 0.74% to about 5%. The other way round, AU
should be at least equal to 0.23 mgm−3 in order to assure a producer’s risk smaller than 0.01%,
again. In this case, the global consumer’s risk would increase from 0.58 % to about 2%.

1If the prior information is meagre and the likelihood function is characterised by a normal distribution, then the
posterior PDF is approximately normal [55, Sec. 7.2.2].
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Figure E8.2: Consumer’s (red line) and producer’s (blue line) global risks versus acceptance limit
values.

E8.6.3 Specific risks

For each quarry i, and just for the special case AU = TU, specific risks for the consumer and the
producer were calculated according to the framework of [55, Sec. 9.3.2]. For a specific value
cim < AU (that is, the measured TSPM mass concentration is assessed as conforming to the
regulation limit), the consumer’s specific risk is the integral of the posterior PDF h(ci|cim) on the
region [TU,∞], that is on the region of true values which would not be actually conforming. For
a specific value cim > AU (that is, the test result is not conforming to the regulation limit), the
producer’s specific risk is the integral of the posterior PDF on the region [0, TU], the region of
actually conforming true values. In both cases, the posterior PDF h(ci|cim) [55, equation A.11]
was needed, but in the considered case it does not have a closed form because the prior PDF is
lognormal.

Details of the calculation are in the code file A123_Specific_risk_TSPM.r (available in the
repository [88]), where, for each cim value, the posterior PDF was evaluated as the exponential
of the log-posterior PDF, the latter being implemented as the sum of the log-prior PDF, evaluated
in ci , and the corresponding log-likelihood function at cim (i.e., the logarithm of a normal PDF,
with mean ci and standard deviation equal to 0.07 cim, evaluated at cim). The integral of the
posterior PDF was calculated by means of the R function integrate.

The obtained consumer’s and producer’s specific risks are displayed in Figure E8.3 (when
AU = TU) for quarry 1 – blue line, quarry 2 – green line and quarry 3 – red line. They are
plotted versus values cim varying in the interval [0.15, TU]mg m−3 and [TU, 0.25]mg m−3 for the
consumer and the producer, respectively.

These results have been validated against those from CASoft [44], which relies on simulation
using a Metropolis-Hastings algorithm to estimate the posterior distribution used to calculate the
specific risks. The results agreed within the small random variation expected for Monte Carlo
estimates of small probabilities.
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Figure E8.3: Consumer’s and producer’s specific risks versus test results, for quarry 1 (blue line),
2 (green line) and 3 (red line).

E8.7 Interpretation of results

Studies on global risks, such as that conducted in section E8.6.2, can allow the involved par-
ties (consumers and producers) to agree on an acceptance limit (balancing the safeguarding of
the inhabitants’ health and the economical interests of the quarries’ owners, in the considered
example).

The approach in section E8.6.3 provides risks of false decision for a specific test result and for
a particular acceptance limit (AU = TU, in the considered case). From a practical point of view,
no action will be undertaken when a measurement result is under the acceptance limit, that is
when it is conforming with the requirements. However, when a test result exceeds the limit, it
will be declared as non conforming and some corrective action will be required. In this case, the
producer has at hand a tool for assessing the extent of his/her responsibility for such failure and
possibly elaborate an appropriate reaction. As an example, for a non-conforming test result c1m
= 0.225 mgm−3, the specific producer’s risk for quarry 1 is about 12 %, meaning that there is a
non-negligible 12 % probability of such a test result to correspond to an actually conforming true
value c1.
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Uncertainty evaluation for the
quantification of low masses of
benzo[a]pyrene
F. Pennecchi, F. Rolle, M. Sega, S.L.R. Ellison, A.M.H van der Veen

E9.1 Summary

The aim of the present example is to show the uncertainty evaluation for the quantification of low
masses of benzo[a]pyrene (BaP), which is an important Polycyclic Aromatic Hydrocarbon (PAH)
for ambient air monitoring. Comparison between the results obtained according to the GUM
uncertainty framework [51] and the Monte Carlo method for the propagation of distributions
[52,54], applied to both real and simulated data sets, are shown and discussed.

E9.2 Introduction of the application

The quantification of low masses of PAHs is an important issue as they are ubiquitous toxic con-
taminants which can be present in all the environmental compartments even at trace levels. The
evaluation of the uncertainty associated with the quantification of such micro pollutants plays an
important role for the reliability of their measurements. Among PAHs, BaP is classified as carcino-
genic agent and is listed in the current European legislation [86] as marker of the carcinogenic
risk for the whole class of PAHs in ambient air.

The present example aims at comparing the results obtained by application of the Law of
Propagation of Uncertainty (LPU) [51] and the Monte Carlo method (MCM) for propagation of
distributions [52] to real data sets derived from the quantification of a low mass of BaP spiked
on filters commonly used for airborne particulate matter sampling. The comparison is performed
also on simulated data corresponding to a BaP mass at trace level.

The description of the analytical method to quantify BaP in ambient air can be found in [154],
whereas details on the uncertainty evaluation process, not explicitly reported in the present ex-
ample, can be found in [157].

E9.3 Specification of the measurand

A glass fiber filter (Pall & Whatman) having diameter of 47 mm, a type of filter commonly used
for the sampling of airborne particulate matter, was spiked with the Certified Reference Material
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(CRM) NIST SRM 2260a, containing 36 PAHs in an organic solution. The spiked filter was ex-
tracted by Soxhlet, following the extraction procedure described in [154]. The same filter was
subsequently extracted a second time thus obtaining a diluted sample. BaP masses in the two
extracts were quantified by means of a gas chromatograph coupled with a mass spectrometer
(GC-MS) Focus DSQ II (Thermo Fisher Scientific).

The measurand of interest in the present example is the mass of BaP contained in a nominal
volume of 1µL of the second extract. Moreover, in order to consider very low mass values of BaP,
a numerical simulation was carried out by decreasing the chromatographic areas corresponding
to the BaP in the sample of the second extraction by a common constant term, hence reaching
a (simulated) measurand value close to the minimum mass of BaP detectable with the method
described in [154], i.e., 2.5 · 10−3 ng.

E9.4 Measurement model

Quantification of the mass of BaP contained in 1µL of the second extract was performed ac-
cording to the Internal Standard method prescribed by [13]. An aliquot of the NIST SRM 2270,
containing perdeuterated benzo[a]pyrene (BaP-d12), was added to the solution in order to obtain
a concentration of BaP-d12 equal to 0.2455µg ml−1, to be used as the internal standard. Then,
an aliquot of 1µL of the solution was injected three times in the GC-MS. The ratio of peak areas
corresponding to the internal standard and those corresponding to the analyte was used to de-
termine the mass mE of BaP present in the injected volume of the extracted sample, according to
the following model:

mE =
�

f AE mISE

�

/
�

AISE

�

, (E9.1)

where f is the GC-MS calibration factor, AE is the mean area (a.u.) of the chromatographic
peak corresponding to BaP in the extract, and mISE and AISE are the mass (ng) and the mean
chromatographic area (a.u.) for the internal standard in the extract (ISE).

Calibration factor f was obtained as the arithmetic mean of three calibration factors corre-
sponding to three reference solutions at different BaP concentrations. Details on the calibration
procedure are reported in [157]. In the evaluation of the uncertainty associated with f (char-
acterized by 9 degrees of freedom), covariance terms between the three factors were taken into
account: they were due to the same mass of the internal standard used in the calibration model
for each of the factors and to the same CRM used for preparing the three necessary reference
solutions. For the same reason, f and mISE, as input quantities of measurement model (E9.1),
were correlated because of the use of the same internal standard both in the calibration and in
the analysis process.

The value and uncertainty associated with the mass of the internal standard mISE were derived
from its calibration certificate (the uncertainty was considered as having a very high number of
degrees of freedom, so that it did not give contribution to the effective degrees of freedom for
the uncertainty of the measurand estimate).

AE and AISE were evaluated as the arithmetic means of three repetitions of the area measure-
ment of the relevant chromatographic peaks. Their uncertainty was calculated as the standard
deviation of such mean [51, Sec. 4.2.3] (hence, having two degrees of freedom). A strong lin-
ear relationship was observed between the areas of the BaP and those of the ISE in the same
run, hence a corresponding covariance term for the two mean areas was calculated according
to [51, Sec. 5.2.3].

Estimates, uncertainties u(x) and covariances u(x , y) of the input quantities in model (E9.1)
are reported in Table (E9.1), together with other parameters relevant to the uncertainty eval-
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uation performed by MCM. The corresponding estimate for the measurand is mE = 0.014 ng.

Table E9.1: Estimate, uncertainty, covariance and distributional parameters of the input quanti-
ties in model (E9.1).

Parameter Value
f 0.616
u( f ) 0.017
mISE 0.2455 ng
u(mISE) 0.0036 ng
u( f , mISE) −3.3 · 10−5 ng
AE 85114 a.u.
u(AE) 9564.35 a.u.
AISE 917545.67 a.u.
u(AISE) 44492.21 a.u.
u(AE, AISE) −203 436959.5 (a.u.)2

S11 548861 202 (a.u.)2

S12 = S21 −1 220621 757 (a.u.)2

S22 11877 338582 (a.u.)2

Note that, in order to simulate a smaller value of BaP mass, the experimental results obtained
for the sample of the second extraction were re-used as they were, but the areas corresponding
to the BaP were all decreased by a common constant term equal to 67 000 a.u.. Therefore, all
the values in Table (E9.1) are still valid for the simulated case1, except for the AE value which
becomes equal to 18114 a u.. The corresponding estimate for the (simulated) measurand is
mE = 0.003 ng.

E9.5 Uncertainty propagation

For calculating the uncertainty associated with the estimates of the measurands (i.e. mE = 0.014
ng and mE = 0.003 ng, respectively), both the LPU [51] and the MCM for the propagation of prob-
ability distributions [52, 54] were applied and compared. Details of the calculation (expressed
to at least six significant figures to avoid rounding errors) are available in the data elaboration
file “A212_BaP_example.r”.

E9.5.1 GUM uncertainty framework

Applying the LPU to model (E9.1), taking into account the uncertainty and covariance contribu-
tions of the input quantities reported in Table (E9.1), the resulting uncertainty u(mE)was 0.0020
ng and 0.0017 ng for the experimental and the simulated case, respectively. Table (E9.2) reports
the uncertainty budget for the mass mE = 0.014 ng of BaP of the sample obtained with the sec-
ond extraction (the first two columns repeat part of the information already available in Table
(E9.1)). Effective degrees of freedom νeff were calculated, according to the Welch-Satterthwaite
formula [51, eqn. G2.b] applied to the input uncertainties and the corresponding degrees of
freedom discussed in Sec. E9.4. They were equal to 3.07 and 2.05, giving coverage factors k

1The uncertainty assumed for the simulated arithmetic mean of the peak areas is probably larger than that expected
for a material actually close to the detection limit.
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Table E9.2: Uncertainty budget for the mass of BaP (in 1 µL) of the sample obtained with the
second extraction: associated combined uncertainty was u(mE) = 0.002 ng.

Component u(x i)
∂mE
∂ x i

�

∂mE
∂ x i

u(x i)
�2

u( f ) 1.7 · 10−2 2.3 · 10−2 ng 1.4 · 10−7 ng2

u(mISE) 3.6 · 10−3 ng 5.7 · 10−1 4.3 · 10−8 ng2

u(AE) 9.6 · 103 a.u. 1.6 · 10−7 ng (a.u.)−1 2.5 · 10−6 ng2

u(AISE) 4.4 · 104 a.u. −1.5 · 10−8 ng (a.u.)−1 4.6 · 10−7 ng2

u(x i , x j)
∂mE
∂ x i

∂mE
∂ x j

2 ∂mE
∂ x i

∂mE
∂ x j

u(x i , x j)

u( f , mISE) −3.3 · 10−5 ng 1.3 · 10−3 ng −8.5 · 10−8 ng2

u(AE, AISE) −2.0 · 108 (a.u.)2 −2.5 · 10−15 ng2 (a.u.)−2 1.0 · 10−6 ng2

u2(mE) 4.1 · 10−6 ng2

of 3.1 and 4.2 for the real and the simulated case, respectively. Coverage factors of a Student
t-distribution with an integer number ν of degrees of freedom are given in [51, Table G.2], oth-
erwise, i.e. for a non-integer ν, they can be recovered by means of common statistical software.
For obtaining a 95 % coverage interval for the distribution, the 97.5th percentile of the distribu-
tion is used for calculating the expanded uncertainty according to [51, eqn. G.1d]. In the present
case, the expanded uncertainties U = k u(mE) at a 95 % coverage probability were equal to 0.006
ng and 0.007 ng for the real and the simulated case, respectively. Results of application of the
LPU to both the experimental and the simulated case are summarized in Table (E9.3). Note that
the expanded uncertainty at the lower level is larger than that at the higher level because of
the larger coverage factor multiplying the corresponding standard uncertainty. Indeed, even if
neither the number of measurement repetitions nor the uncertainties involved in the application
of the Welch-Satterthwaite formula change from one model to the other, the different values of
the sensitivity coefficients lead to different effective degrees of freedom in the two cases.

Table E9.3: Estimate of the measurand, with associated standard and expanded uncertainty, for
the experimental and the simulated case.

mE u(mE) U(mE)
(ng) (ng) (ng)

Experimental case 0.014 0.0020 0.006
Simulated case 0.003 0.0017 0.007

E9.5.2 Monte Carlo method

The MCM for propagation of probability distributions of the input quantities was applied in order
to obtain an approximated distribution for the measurand, i.e. the mass of BaP in the extract and
in the simulated case. For this purpose, suitable probability distributions were assigned to the
input quantities of model (E9.1), according to the criteria prescribed in [52,54].

Since the available information on f and mISE were their best estimates and their associated
covariance matrix, a bivariate Gaussian distribution was assigned to these quantities [52, Sec.
6.4.8]. Hence, the bivariate normal distribution had a (vector) expectation equal to [ f , mISE] and
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a covariance matrix Σ equal to

Σ=

�

u2( f ) u( f , mISE)
u( f , mISE) u2(mISE)

�

,

whose components are available in Table (E9.1).
Since the two (N = 2) quantities AE and AISE were considered as following a bivariate normal

distribution and, for each quantity, (n = 3) repeated measurements were available, a scaled and
shifted bivariate t-distribution with one degree of freedom (ν = n− N) was assigned to them,
according to [54, Sec. 5.3.2]. Hence, the bivariate t-distribution had a (vector) expectation
equal to [AE, AISE] and the scale matrix S/n with S defined by:

S=
1
ν

� ∑3
i=1(AEi

− AE)2
∑3

i=1(AEi
− AE)(AISEi

− AISE)
∑3

i=1(AEi
− AE)(AISEi

− AISE)
∑3

i=1(AISEi
− AISE)2

�

,

whose components Si j are available in Table (E9.1), for i, j = 1,2. Note that for ν= 1, the mean
value and the covariance matrix of the t-distribution are not defined, anyway a coverage (hyper)
interval for the distribution can always be determined [54, Section 5.5.2, Note 1].

The numerical simulation of the input probability distributions and their propagation through
measurement model (E9.1) were implemented in R environment [149] by applying R func-
tions “rmvnorm” and “rmvt” available in the “mvtnorm” package [93]. For each input quantity,
M = 107 values were drawn. Since only positive values of measurand are feasible, the joint
input probability density functions were numerically truncated at zero by disregarding negative
values drawn during the MCM simulation [52, Sec. 9.4.2.1.1, Note], thus obtaining a number
of corresponding simulated BaP mass values smaller than M . The number of MCM replicates
retained, however, was about 9 ·106 and 7 ·106 for the real and the simulated case, respectively,
hence still providing a reliable numerical approximation for the measurand distribution.

From the MCM distribution distribution, the shortest 95 % coverage interval was obtained,
for both real and simulated data, and reported in Table (E9.4).

E9.6 Reporting the result

Figs. (E9.1) and (E9.2) show the approximate numerical representation of the pdf for the BaP
mass corresponding to the second extraction and to the simulated case, respectively, indicating
the 95 % coverage intervals for the measurand mE produced according to the MCM and to the
GUM uncertainty framework. The relevant interval limits are also reported in Table (E9.4).

Table E9.4: Measurand estimate, 95 % coverage interval according to the GUM uncertainty
framework and the MCM for propagation of distributions. (ng)

mE GUM 95 % C.I. MCM 95 % C.I.
Second extraction 0.014 [0.008, 0.020] [8.3 · 10−7, 0.032]
Simulated very low extraction 0.003 [-0.004, 0.010] [5.9 · 10−10, 0.020]

In the present example, the MCM simulations involved an input bivariate distribution with 1
degree of freedom, leading to an output pdf with an extreme right tail. The standard deviations
of the MC output distribution were unreliable (6.8 ng and 5.8 ng for the experimental and the
simulated case, respectively) and, because of the truncation effect, the corresponding sample
means were heavily biased (0.028 ng and 0.017 ng, respectively). Hence, this is a case in which
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neither the MCM mean nor the standard deviation are reliable, but just the coverage interval at
a desired coverage level should be reported. Incidentally, both the MC medians (0.014 ng and
0.004 ng, respectively) resulted very close to the measurand estimates in Table (E9.4), proving
themselves as robust and sensible estimates for the measurand.

Figure E9.1: Numerical representation of the pdf associated with the mass of BaP in the nominal
volume of 1µL of the sample obtained with the second extraction (mE = 0.014 ng). Circle and
triangle symbols indicate the limits of the 95 % coverage interval obtained according to the GUM
uncertainty framework and by MCM, respectively. Symbol x indicates the minimum detectable
mass of the analytical method.
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Figure E9.2: Numerical representation of the pdf associated with a simulated very small mass
value of BaP (mE = 0.003 ng). Circle and triangle symbols indicate the limits of the 95 % cov-
erage interval obtained according to the GUM uncertainty framework and by MCM, respectively.
Symbol x indicates the minimum detectable mass of the analytical method.

E9.7 Interpretation of results

When applying MCM, the measurand estimate and the associated uncertainty are usually taken
as the mean and the standard deviation of the simulated output results, according to [52, eqs. 16
and 17]. Nonetheless, NOTE 2 in [52, Sec. 6] states that in some special circumstances, such as
when one of the input quantities has been assigned a PDF based on the t-distribution with fewer
than three degrees of freedom, the expectation and standard deviation of the output quantity
might not exist and the above-cited equations (16) and (17) might not then provide meaningful
results. A coverage interval for the measurand can, however, be formed, since the simulated
output distribution is meaningful. This is exactly the situation of the present example, for which,
in fact, plausible estimates and corresponding standard uncertainties are those obtained within
the GUM uncertainty framework, as reported in Table E9.3, whereas feasible coverage intervals
are those provided by MCM, as discussed in the following.

From both Figs. (E9.1) and (E9.2), it is evident that the two approaches give quite different
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results in terms of coverage intervals. Although the assumed output distribution in the GUM
uncertainty framework is a Student t-distribution with few degrees of freedom, hence leading to
a large coverage factor for the calculation of the corresponding expanded uncertainty, the MCM
coverage interval is about 2.5 and 1.5 times larger than that obtained in the GUM uncertainty
framework, respectively. Moreover, it is asymmetric with respect to the measurand estimate
because of the left censoring of simulated results. Due to the very few degrees of freedom of the
input bivariate Student t-distribution of the mean areas and due to the fact that both the bivariate
Student t and the Gaussian input distributions were feasibly truncated at zero, the MCM output
distribution has in fact a very long right tail, resulting in a net positive bias of the mean value
and a considerable inflation of the standard deviation. This is a clear example of those situations
in which the conditions required by the Central Limit Theorem are not met, since the pdf for the
output quantity is not a Gaussian distribution nor a scaled and shifted t-distribution.

Moreover, at the lower simulated mass value (Fig. 2), the GUM uncertainty framework would
lead to a coverage interval stretching into a region of negative unfeasible values. MCM sim-
ulation, instead, can provide a realistic asymmetric interval. It is worth mentioning that the
EURACHEM/CITAC guidelines on uncertainty evaluation for analytical measurements [18] rec-
ommend truncating the expanded uncertainty interval at zero whenever a negative lower limit
is found for a positive-defined quantity.

Summarizing, this example is a clear case in which blind adherence either to the approach
in the GUM [51] or to the MCM in [52, 54] would be dangerous. Careful considerations on
estimates, standard uncertainties and coverage intervals are always needed, according to the
specific problem under study.
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Example E10

Calibration of an analyser for NOx
using gas mixtures prepared with mass
flow controllers
F. Pennecchi, F. Rolle, M. Sega, P.G. Spazzini, I. de Krom, A.M.H. van der Veen

E10.1 Summary

The present example shows the uncertainty evaluation of the calibration of a chemiluminescence
analyser for nitrogen oxides (NOx) using a multi-point calibration as described in ISO 6143 [6]
with dynamically prepared calibration gas mixtures obtained by dynamic dilution of standard
gas mixtures performed by means of calibrated mass flow controllers (MFCs) [37].

This example addresses the need for a more advanced treatment of correlations arising in
such measurements, especially those caused by the use of the same equipment for calibration
gas mixture preparation and the use of one calibration gas mixture from which the dilutions are
made.

E10.2 Introduction of the application

The European Directive on ambient air quality [87] prescribes the monitoring of NOx by means
of chemiluminescence as the reference method [19], which requires the use of proper calibration
gas mixtures for instrument calibration. To prepare such mixtures, dynamic dilution is a primary
method considered as a valid alternative to the static gravimetric method: it allows preparing
ready-to-use gas mixtures at low amount fractions by diluting a standard mixture (parent mix-
ture) with a proper diluent gas, thus avoiding stability problems related to diluted mixtures of
reactive gases in high-pressure cylinders.

The work consists in the following steps:

1. Use of two calibrated MFCs to dilute a static calibration gas mixture with a diluent gas
to obtain reference gas mixtures having the analyte amount fraction in the range of inter-
est (for environmental monitoring applications). The uncertainty associated with and the
covariance between the flow values generated by the MFCs are evaluated by taking into
account the calibration and the repeatability contributions.

2. Employing the classic model equation of the dynamic dilution, the uncertainty associated
with and the covariance between the amount fractions of the analyte in the different mix-
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tures are evaluated by taking into account contributions arising from i) the flow of the par-
ent mixture and that of the dilution gas, ii) the amount fraction of the analyte in the parent
mixture and iii) the (possible) impurities of the analyte in the diluent gas. Detailed calcula-
tion of the relevant results are shown in the Excel spreadsheet A213_data_elaboration.xls.

3. Use of the obtained NOx reference mixtures for calibration of a chemiluminescence anal-
yser in the desired range of amount fractions. Weighted Total Least-Squares (WTLS)
regression is applied, taking into account uncertainties associated with and covariances
among the values of both the dependent and independent variables.

In the following sections, each step will be addressed in detail.

E10.3 Specification of the measurand

E10.3.1 Use of two calibrated MFCs

In the present example, two MFCs from MKS with full scale range (FSR) of 500 cm3 min−1 and
2000 cm3 min−1 were employed, after calibration, for the parent mixture and the diluent gas,
respectively. The calibration of the MFCs was performed against the INRIM Microgas station, the
Italian primary flow standard for low flow rates. The MFCs were characterised in terms of their
calibration coefficient C = qV R/qV N, where qV R is the (reference) volume flow rate at standard
conditions (often expressed in “standard cubic centimetres per minute” (SCCM)) supplied by the
MFC under calibration as it is read by the Microgas, whereas qV N is the set (nominal) volume flow
rate of the MFC. For the MFC with FSR 500 cm3 min−1 the following model was found appropriate

C1 = α1/qV N + β1 + γ1 qV N +δ1 qV
2
N , (E10.1)

whereas for the MFC with FSR 2000 cm3 min−1, the appropriate model was

C2 = α2/qV N + β2/
p

qV N + γ2 +δ2
p

qV N + ε2 qV N , (E10.2)

where Ci , for i = 1, 2, indicates the calibration coefficient of MFC1 and MFC2, respectively.
Guidance on this kind of model selection is given in ISO/TS 28038 [38].

Weighted Least-Squares regression was employed for fitting eqs. (E10.1) and (E10.2) to
experimental data, considering qV N as not uncertain (being the flow rate set at the MFC), whereas
C was affected by several uncertainty contributions: that due to the measurement repeatability
(evaluated by the standard deviation of the repeated measurements of C) and that associated
with the reference Microgas (accounting for the uncertainty in the involved measurements of
temperature, pressure and volume). The curve parameter estimates are reported in table E10.1,
whereas associated (squared) uncertainties and covariances are shown in covariance matrices
(E10.3) and (E10.4), respectively.

VC1
=







9.2× 10−4 −1.84× 10−5 9.5× 10−8 −1.3× 10−10

−1.84× 10−5 4.4× 10−7 −2.4× 10−9 3.4× 10−12

9.5× 10−8 −2.4× 10−9 1.4× 10−10 −2.1× 10−14

−1.3× 10−10 3.4× 10−12 −2.1× 10−14 3.3× 10−17






(E10.3)

VC2
=











18.60 −4.0 3.0× 10−1 −9.3× 10−3 9.9× 10−5

−4.0 8.9× 10−1 −6.7× 10−2 2.1× 10−3 −2.2× 10−5

3.0× 10−1 −6.7× 10−2 5.1× 10−3 −1.6× 10−4 1.7× 10−6

−9.3× 10−3 2.1× 10−3 −1.6× 10−4 4.9× 10−6 −5.3× 10−8

9.9× 10−5 −2.2× 10−5 1.7× 10−6 −5.3× 10−8 5.8× 10−10











(E10.4)
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Table E10.1: Calibration curve parameter estimates for the two MFCs according to eqs. (E10.1)
and (E10.2) (measurement units are such that each parameter times its unit is adimensional).

Parameter MFC1 MFC2

α −2.493 −39.967
β 1.021 5.306
γ −1.590× 10−4 6.104× 10−1

δ 1.975× 10−7 1.195× 10−2

ε −1.249× 10−4

As an example, the calibration curve for the MFC1 with FSR of 500 cm3 min−1 is shown in fig-
ure E10.1 (all volumes here and in the following are referred to temperature and pressure stan-
dard conditions, i.e. 0 °C and 1013.25 mbar).

Figure E10.1: Calibration curve of the MFC1 with FSR of 500 cm3 min−1

The calibration coefficient, obtained after calibration of the MFCs, is used as correction factor
for the volume flow rate set at the MFCs to obtain the volume flow rate actually provided.

E10.3.2 Dynamic dilution

In the present example, the preparation of reference gas mixtures of nitrogen dioxide (NO2) in
synthetic air (NO2/SA) by dynamic dilution is addressed. The measurand is the amount fraction
of NO2 in the prepared calibration gas mixture. This mixture is obtained by mixing the flow of
a parent mixture, containing a known amount fraction of NO2 supplied by MFC1, with a flow of
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the dilution gas (SA), a high pure gas containing just impurities (possibly also NO2), supplied by
MFC2. The method is described in ISO 6145-7 [37].

E10.3.3 Calibration of a chemiluminescence analyser

A Thermo Fisher Scientific 42i chemiluminescence analyser is calibrated for NO2/SA, in the range
700 nmolmol−1-1300 nmolmol−1. To this aim, a parent mixture with an amount fraction of NO2
of 10.252µmolmol−1 in SA is diluted with SA (grade 4.7) in order to dynamically prepare three
calibration gas mixtures with different amount fractions of NO2. At each amount fraction level,
three repeated readings from the analyser are collected: their mean and the corresponding stan-
dard deviation are taken as the estimate provided by the analyzer and the associated uncertainty,
respectively. WTLS regression is performed [6] to fit a straight line to the calibration data points.
The measurand is the set of the parameters of the instrument analysis function. The analysis
function relates the amount fraction to the instrument response and can be used to calculate the
amount fraction, given an instrument response.

E10.4 Measurement model

E10.4.1 Use of two calibrated MFCs

After the MFCs are calibrated, the flow qV i they provide at a nominal flow qV iN is given by the
following model:

qV i = qV iN Ci , (E10.5)

where Ci is the calibration coefficient calculated according to eq. (E10.1) or (E10.2).

E10.4.2 Dynamic dilution

In the presented case of a binary mixture, the dynamic dilution involves two MFCs (MFC1 and
MFC2) which regulate two different gas flows, i.e. MFC1 is used for the parent mixture and
MFC2 for the diluent gas. The amount fraction xa of the analyte gas in the mixture prepared by
dynamic dilution is calculated according to the following model equation:

xa =
x1qV 1a + x2qV 2a

qV 1a + qV 2a
, (E10.6)

where x1 is the amount fraction (nmolmol−1) of the analyte in the parent mixture, x2 is the
amount fraction (nmol mol−1) of the analyte potentially present in the diluent gas (impurity),
qV 1a is the flow (cm3 min−1) of the parent mixture supplied by MFC1, qV 2a is the flow (cm3 min−1)
of the diluent gas supplied by MFC21. Assuming that the analyte is not present in the diluent gas
and that this is certified with zero uncertainty (as in the present case study), equation (E10.6)
can be simplified into the following:

xa =
x1qV 1a

qV 1a + qV 2a
. (E10.7)

Three different mixtures having amount fractions xa, xb and xc, respectively, are generated.

1Equation (E10.6) applies if the compressibility factors of the parent gases are equal. This condition is usually met
if (1) the matrix of the parent gases is the same and (2) the amount fraction of the other components is low, say below
10µmolmol−1. The latter limit depends, among other, on the target measurement uncertainty.

Examples of evaluating measurement uncertainty First edition (M27)



Example E10. Calibration of an analyser for NOx using gas mixtures prepared with mass flow
controllers 109

E10.4.3 Calibration of a chemiluminescence analyser

As the analysis curve of the instrument, a straight line

y = A+ Bw (E10.8)

is fitted to the data, which are the three different amount fractions xa, xb, xc (the y values in
equation (E10.8)), and the sample mean of three repeated measurement at each amount fraction
level (w values). An analysis function (reference amount fractions on the ordinate axis and means
of the repeated readings on the abscissa axis), rather than a calibration curve, is determined,
since it allows to easily employ the calibration output when the analyser is subsequently used in
field: for each new reading, the instrument analysis curve provides a straightforward estimate
of the amount fraction of an unknown sample under analysis, with an associated uncertainty. In
order to fit the analysis curve, a WTLS regression was performed by means of the CCC software
[140], taking into account the covariance matrices associated with both w and y values. The
main advantage of the WTLS algorithm is indeed the possibility to deal with regression problems
involving uncertain and correlated variables.

In the present case, the y values are characterised by a covariance matrix whose terms are
later defined by eqs. (E10.14) and (E10.16), whereas the covariance matrix associated with the
w values is diagonal (instrumental readings at different NO2 amount fractions are not correlated)
with elements equal to the (square of the) standard deviation of the means of the three repeated
readings obtained at each amount fraction.

E10.5 Uncertainty propagation

E10.5.1 Use of two calibrated MFCs

Using to the law of propagation of uncertainty (LPU) from [51], the uncertainty associated with
a flow qV i (E10.5) produced by the i-th calibrated MFC is given by

u(qV i) = qV iN u(Ci). (E10.9)

Uncertainty u(Ci) can be expressed as the sum in quadrature of a systematic contribution, u(Ci)cal,
due to the MCF calibration (and calculated by applying the LPU to eq. (E10.1) or (E10.2),
respectively, taking into account uncertainties of and covariances between the curve parameters),
and a repeatability contribution, u(Ci)rep, of the MFC when it is used (in the specific case, the
repeatability experienced in the dynamic dilution was similar to that typically encountered within
the calibration process at approximately the same flow values). Therefore,

u(Ci) =
q

u2(Ci)cal + u2(Ci)rep . (E10.10)

Concerning covariances, covariance term u(qV 1a, qV 2a) between flow rates provided by two
MFCs at the same nominal value qV Na is considered negligible, in this context, since the MFCs,
even if calibrated against the same reference standard, are different instruments, calibrated in
different moments, by means of different calibration functions. On the other hand, covariance
terms u(qV 1a, qV 1b) and u(qV 2a, qV 2b) between flows generated by the same MFC at two different
nominal values qV Na and qV Nb are not negligible since flow estimates by the same MFC are recov-
ered by the application of the very same calibration curve. By considering expression (E10.5),
one has

u(qV ia, qV ib) = u(qV iNaCia, qV iNbCib) = qV iNa qV iNb u(Cia, Cib) , (E10.11)
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where, when i = 1, for example, and hence applying eq. (E10.1),

u(C1a, C1b) = u(α1/qV 1Na+β1+γ1 qV 1Na+δ1 qV
2
1Na, α1/qV 1Nb+β1+γ1 qV 1Nb+δ1 qV

2
1Nb).

(E10.12)

Employing the covariance property for linear combinations of variables, eq. (E10.12) becomes

u(C1a, C1b) = 1/(qV 1NaqV 1Nb)u
2(α1)+1/qV 1Na u(α1,β1)+. . .+(qV 1NaqV 1Nb)

2 u2(δ1). (E10.13)

Therefore, uncertainties associated with and covariances between parameters of calibration curve
(E10.1) influence the covariance between two different flows produced by the same MFC1. Anal-
ogous expressions are derived for MFC2 as well.

E10.5.2 Dynamic dilution

Using the LPU, the (squared) uncertainty associated with the amount fraction xa of the analyte
(E10.7) is given by

u2(xa) =
�

∂ xa

∂ x1

�2

u2(x1) +

�

∂ xa

∂ qV 1a

�2

u2(qV 1a) +

�

∂ xa

∂ qV 2a

�2

u2(qV 2a) , (E10.14)

where u(x1) is provided by the certificate of the reference parent mixture, while u(qV 1a) and
u(qV 2a) are calculated according to expression (E10.9). Note that u(qV 1a, qV 2a) = 0. Analogous
expressions hold for xb and xc as well.

Covariances between two different amount fractions xa and xb are calculated as:

u(xa, xb) = u

�

x1qV 1a

qV 1a + qV 2a
,

x1qV 1b

qV 1b + qV 2b

�

≈

≈
∂ xa

∂ x1

∂ xb

∂ x1
u(x1, x1) +

∂ xa

∂ x1

∂ xb

∂ qV 1b
u(x1, qV 1b) +

+
∂ xa

∂ x1

∂ xb

∂ qV 2b
u(x1, qV 2b) + . . .+

∂ xa

∂ qV 2a

∂ xb

∂ qV 2b
u(qV 2a, qV 2b). (E10.15)

Recalling that u(qV 1a, qV 2b) = u(qV 2a, qV 1b) = 0, and considering that there is no covariance
between x1 and any of MFC flow values, eq. (E10.15) reduces to:

u(xa, xb) ≈
qV 1aqV 1b

(qV 1a + qV 2a)(qV 1b + qV 2b)
u2(x1) +

+
x2

1qV 2aqV 2b

(qV 1a + qV 2a)2(qV 1b + qV 2b)2
u(qV 1a, qV 1b) +

+
x2

1qV 1aqV 1b

(qV 1a + qV 2a)2(qV 1b + qV 2b)2
u(qV 2a, qV 2b) , (E10.16)

where u(qV ia, qV ib) are calculated according to eq. (E10.11). Analogous expressions hold for
u(xa, xc) and u(xb, xc), as well.

E10.5.3 Calibration of a chemiluminescence analyser

Estimate of coefficients A and B of analysis curve (E10.8) and the associated covariance matrix
are the main output of the applied WTLS software. Details on such estimates and covariance
matrix are available in the User Manual of the CCC software [140].
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E10.6 Reporting the result

Nominal and measured flow values of MFC1 and MFC2 are reported in table (E10.2) together
with associated uncertainties. These are calculated by eqs. (E10.9) and (E10.10), where contri-
bution u(Ci)rep is equal to 0.013% and 0.037 % of the measured flow qV i value for MFC1 and
MFC2, respectively.

Table E10.2: Nominal and measured flow values of MFC1 and MFC2 with associated uncertain-
ties (cm3 min−1).

qV 1N qV 2N qV 1 u(qV 1) qV 2 u(qV 2)
a 84 1116 82.243 0.017 1108.49 0.54
b 115 1085 113.088 0.023 1077.17 0.53
c 152 1048 149.677 0.028 1039.78 0.57

Covariance terms between measured flow values of the same MFC are calculated according
to eqs. (E10.11) and (E10.12) (and corresponding ones for amount fraction values b and c, and
for MFC2), and reported in table (E10.3).

Table E10.3: Covariance terms between measured flow values of the same MFC (MFC1 and
MFC2) at different fraction levels a, b and c ((cm3 min−1)2).

MFC u(qV a, qV b) u(qV a, qV c) u(qV b, qV c)
1 2.31 · 10−4 2.54 · 10−4 3.58 · 10−4

2 1.26 · 10−1 1.22 · 10−1 1.20 · 10−1

The parent mixture of NO2 has an amount fraction x1 = 10.252µmol mol−1, with associated
uncertainty u(x1) = 0.016µmol mol−1 .

Applying eq. (E10.7), and corresponding ones for amount fractions b and c, the three refer-
ence amount fractions are obtained as reported in table (E10.4).

Table E10.4: amount fractions of the three calibration mixtures obtained by dynamic dilution
and associated uncertainties.

amount fraction x (nmol mol−1) u(x) (nmol mol−1)
a 708.1 6.3
b 974.1 6.1
c 1290.1 6.4

Relevant squared uncertainties and covariances (in nmol2 mol−1), reported in the covariance
matrix (E10.17), are calculated according to eqs. (E10.14) and (E10.16), exploiting uncertainty
and covariance values associated with qV i reported in tables (E10.2) and (E10.3).

Vxa,b,c
=





39.5 1.7 2.2
1.7 37.0 3.0
2.2 3.0 41.2



 . (E10.17)

Each calibration mixture is analyzed three times: the sample mean and the associated uncer-
tainty values are reported in table (E10.5). A straight line is fitted to the data by means of WTLS
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Table E10.5: Sample mean of repeated readings and associated uncertainties.

Mean Reading (a.u.) u(Mean Reading) (a.u.)
146.6 0.75
213.7 0.67
285.0 1.53

regression. Parameter estimates of model (E10.8) are A= 88.94 nmol mol−1 and B = 4.19 nmol
mol−1 a.u.−1, respectively, and the associated covariance matrix VA,B is (E10.18).

VA,B =

�

2.85 · 102 -1.30
-1.30 6.36 · 10−3

�

. (E10.18)

Validation of the obtained analysis curve is then performed by analysing a known gas mixture
with the calibrated instrument and comparing its output with this value: the validation is passed
if the two values are consistent within their expanded uncertainties. In the present case, an
independent gas mixture of NO2 at the amount fraction of 975.5 nmol mol−1 (with uncertainty
equal to 1.5 nmol mol−1) is used, obtained by dynamic dilution starting from a gas mixture of
NO2 at amount fraction of 5.113µmol mol−1 in SA diluted with SA 4.7. Applying model (E10.8)
to the mean of three repeated readings of the instrument (w= 213.33 a.u. and u(w) = 0.11 a.u.)
corresponding to the independent gas mixture, the estimate y = 982.0 nmol mol−1 is obtained
with associated uncertainty u(y) = 4.7 nmol mol−1. Such uncertainty is obtained by application
of the LPU to model (E10.8) propagating uncertainty u(w) and terms of the covariance matrix
(E10.18) through the model, that is applying the following equation:

u2(y) = u2(A) + u2(B)w2 + u2(w)B2 + 2 u(A, B)w . (E10.19)

The validation result is reported in fig. (E10.2).

E10.7 Interpretation of results

Covariances in matrix (E10.17) between amount fractions of the three calibration mixtures are
mainly due to the term proportional to u(x1) (first term of eq. (E10.16)), the uncertainty of
the amount fraction of the common parent mixture used for obtaining all the calibration mix-
tures. Such contribution is of practically the same order of magnitude of the resulting covariance
term, whereas contributions relevant to u(qV a, qV b), u(qV a, qV c) and u(qV b, qV c) in table (E10.3)
(second and third terms of eq. (E10.16)) are smaller by one or two orders of magnitude.

If covariances between the three amount fractions were ignored in the calibration of the
chemiluminescence analyser, i.e., if a diagonal version of matrix (E10.17) were used in the WTLS
regression, slightly different estimates of A and B for the analysis curve (E10.8) would be ob-
tained, with a different associated covariance matrix. The corresponding results of the validation
process would be y = 982.0nmol mol−1 and u(y) = 4.5 nmolmol−1, showing an undervaluation
of the uncertainty up to 3.4 %.
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Figure E10.2: Validation of the analysis curve for the quantification of NO2 in SA. Estimate of a
gas mixture of 975.5 nmol mol−1 of NO2/SA as provided by the calibrated instrument (Estimated
value) in comparison with the actual value of the mixture as reported in its calibration certificate
(Reference value).
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Example E11

Calibration of a sonic nozzle as an
example for quantifying all
uncertainties involved in straight-line
regression
S. Martens, K. Klauenberg, B. Mickan, C. Yardin, N. Fischer, C. Elster

E11.1 Summary

When calibrating a sonic nozzle, it is recommended to estimate the straight-line relationship be-
tween the discharge coefficient of the nozzle and the square root of the inverse Reynolds number
for a gas. The slope and intercept of this relation characterise the nozzle, and reliable estimates
and uncertainties for this multivariate measurand are mandatory for its use as transfer or working
standard.

This example emphasises the importance of accounting for correlation for a reliable uncer-
tainty evaluation. The use of common reference standards and instruments causes correlation
among and between the discharge coefficient and the Reynolds number, and impacts significantly
on the uncertainty of the characteristic parameters of the nozzle. To show this, a measurement
model based on the weighted total least-squares (WTLS) method is applied and its input quan-
tities are fully characterised. In particular, we demonstrate in detail how to jointly evaluate the
correlation, uncertainties and estimates for the input quantities of least-squares methods apply-
ing the Monte Carlo method. As a result, sonic nozzles can be characterised in line with the Guide
to the expression of uncertainty in measurement (GUM).

E11.2 Introduction of the application

Sonic nozzles are widely used to determine gas flow rates with high precision and excellent repro-
ducibility. Technically called Critical Flow Venturi Nozzles, they are internationally recognised
as a calibration standard for gas flow meters and other flow measurement devices, which in turn
facilitate traceable measurements e.g. in gas and oil pipelines, in chemical, pharmaceutical and
food industries as well as for fuel dispensers, water, heat and gas meters at home. Sonic nozzles
are also employed in dilution systems for the preparation of calibration gas mixtures [31], for
flow limiting and overspeed protection of gas flow meters, to name a few.
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Figure E11.1: Estimates and uncertainties for the discharge coefficient Yn as a function of the
inverse square root of Reynolds number Xn (both dimensionless) for measurements n= 1, . . . , 30.
The data are available online in repository [120]. Superimposed are the estimated straight-line
relationship (solid lines) and the associated 95 % coverage bands (dashed lines) obtained by
WTLS (blue) and by WTLS without correlation (yellow).

For toroidal sonic nozzles, the standard ISO 9300 [12] specifies the following relation be-
tween the discharge coefficient Y and the Reynolds number Re

Y = β0 +
β1p
Re

, (E11.1)

see Appendix E11.A for some background information. The two parameters β0 and β1 charac-
terise a specific nozzle (depending on its inner contour curvature and surface structure [94,95]).
The use of the nozzle as transfer standard depends on the reliability of the estimates and uncer-
tainties of these parameters.

In this example, a toroidal sonic nozzle shall be characterized based on N = 30 pairs of dis-
charge coefficients Yn and inverse square root of Reynolds numbers Xn = Re−0.5

n , n= 1, . . . , N . Es-
timates and uncertainties for these quantities, as measured at PTB and displayed in figure E11.1,
rely on common input quantities which cause correlation (cf. clause 5.2.4 in [51]). Such corre-
lations among and between the quantities Xn and Yn along with their uncertainties need to be
evaluated and accounted for, to reliably quantify the characteristic slope β1 and intercept β0 of
the straight-line relation (E11.1).
The aim of this example is to derive reliable estimates and uncertainties for the characteristic
values of a sonic nozzle following the GUM. As illustrated in figure E11.2, we will proceed in two
stages:

1. Estimates, uncertainties, and correlations for all quantities Xn, Yn are evaluated. For this
purpose, probability distributions for all input quantities are propagated through a first,
joint measurement model with the help of the Monte Carlo method.
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input quantities intermediate 
measurands

final 
measurands

stage 1 stage 2

model (3) model (5)

Figure E11.2: Illustration of the two consecutive measurement models and their input quantities.

2. Estimates and uncertainties for the measurands β0 and β1 are evaluated from a second mea-
surement model. The latter is based on the weighted total least-squares (WTLS) method
which accounts for all uncertainties and correlations derived in stage 1.

E11.3 Specification of the measurands

Let X denote the inverse square root of the Reynolds number, and Y the discharge coefficient.
According to equation (E11.1) and equivalently standard [12], Y depends linearly on X ,

Y = β0 + β1X . (E11.2)

The measurands are the intercept parameter β0 and slope parameter β1 of this straight-line
model.

The quantities X = (X1, . . . , XN )> and Y = (Y1, . . . , YN )> influence the measurands and in
turn are influenced by further input quantities. For stage 1 of this example, (X , Y ) will itself be
a measurand – a 2N -dimensional, intermediate one. The full covariance matrix U as well as the
estimates (x , y) for this intermediate measurand shall be evaluated and in turn used to evaluate
estimates and uncertainties for the final measurands β0 and β1. The covariance matrix U contains
on its diagonal the squared standard uncertainties associated with the estimates, and on its off-
diagonal positions, the covariances associated with pairs of these estimates, see [54, clause 3.20].
Thus, uncertainties and correlations can be derived directly from U .

E11.4 Measurement models

The uncertainty evaluation in this example consists of two consecutive measurement models,
see figure E11.2. Section E11.4.1 first describes the measurement model for the intermediate
measurand (X , Y ) and characterises its input quantities. Section E11.4.2 describes the subsequent
measurement model for the final measurands β0 and β1. Equivalently, both models could be
viewed as a single, multi-stage model.
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Table E11.1: Characterization of the input quantities in measurement model (E11.3). The esti-
mate and Type B evaluated, relative standard uncertainty as well as the assigned distribution is
given for each input quantity.

Input Quantity Distribution Estimate Unit Type B relative stand. References
uncertainty ×10−3

D throat diameter Gaussian 1.2067× 10−3 m 0.4165 Cal. Cert.1

M dynamic viscosity Gaussian 1.82 × 10−5 kg m−1 s−2 5 [113]
Qn mass flow rate Gaussian – kg s−1 0.55 [1]
Ψ∗n critical mass flow Gaussian – kg m−2 s−1 0.25 [12, clause 8.3]

[108,168]

E11.4.1 Intermediate measurands X and Y (stage 1)

Referring to appendix E11.A, the inverse square root of the Reynolds number X = (X1, . . . , XN )>

and the discharge coefficient Y = (Y1, . . . , YN )> are modelled as follows

Xn =

√

√πM D
4Qn

, Yn =
4Qn

πD2Ψ∗n
with n= 1, . . . , N , (E11.3)

and denoting Q = (Q1, . . . ,QN )> and Ψ∗ = (Ψ∗1, . . . ,Ψ∗N )
>. Equations (E11.3) define the joint,

2N -variate measurement model for the intermediate measurand (X , Y ). The throat diameter of
the nozzle D, the dynamic viscosity of the gas M , and the n-th real mass flow rate Qn influence
the quantity Xn. The same diameter D, the same flow rate Qn, and the n-th critical mass flow
density Ψ∗n impact on the quantity Yn. (See also figure E11.2.) The intermediate measurands X
and Y are correlated due to the common quantities Q and D. The common quantities M and D
cause additional correlation among the X and among the Y , respectively.

Let us characterise these input quantities for the considered example. The estimates and
uncertainties for the throat diameter D and the dynamic viscosity of the gas M are displayed
in table E11.1. A Gaussian distribution is assigned to each of these two input quantities. The
quantities Qn andΨ∗n, n= 1, . . . , N , are derived from measurements which were calibrated against
references. The estimates and Type A evaluated uncertainty contributions uA(.) are obtained from
repeated measurements and are provided online in the repository [120]. The Type B uncertainty
contributions, say uB(.), are given in table E11.1. The Type A and Type B evaluated uncertainties
are added quadratically

q

u2
A(.) + u2

B(.) for each quantity Qn and Ψ∗n, and a Gaussian distribution
is assigned to each. In addition, we assume independence between the Type B contributions
to the components of the quantities Q and Ψ (which could be revised using [12, clause 9] and
[108] if necessary). For general guidance, how to assign distributions to input quantities (also
multivariate ones), see Supplements 1 and 2 to the GUM [52,54].

Having specified all input quantities, the assigned distributions can be propagated through
model (E11.3) with the help of the Monte Carlo method to arrive at a joint 2N -dimensional
distribution of the intermediate measurand (X , Y ), see section E11.5.1 and Supplement 2 to the
GUM [54]. Estimates (x , y) and the full covariance matrix U can then be derived from the Monte
Carlo samples of this distribution.

1The dimensions of the inner geometry are measured by an accredited laboratory using a coordinate measuring
machine (CMM). The uncertainty is calculated based on the method of “virtual CMM” [166].
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E11.4.2 Weighted total least-squares method (stage 2)

The measurement model for the straight-line regression (E11.2) can be constructed from the ap-
propriate least-squares method. The frequently applied ordinary and the weighted least-squares
method may be inappropriate here, because they assume the measured values x to be exact.
Weighted Total Least-Squares (WTLS) takes into account uncertainties associated with the esti-
mates x and y for the intermediate measurands X and Y as well as their associated covariances.
WTLS is recommended by multiple standards [16,38] and applied here.

The WTLS method is based on minimizing the generalized sum of squares

S =

�

x − eξ
y − (eβ0 + eβ1

eξ)

�>

U −1

�

x − eξ
y − (eβ0 + eβ1

eξ)

�

, (E11.4)

with respect to eβ0, eβ1 and the unknown, “true” values of x called eξ. Here, the vector x contains
the elements x = (x1, . . . , xN )> and the vectors y and eξ are likewise defined. The minimizer
of (E11.4) defines the solution (bβ0, bβ1, bξ>) of the WTLS method.

The measurement model is then defined by replacing the estimates x and y in the minimiza-
tion of S by the underlying quantities X = (X1, . . . , XN )> and Y = (Y1, . . . , YN )>, respectively.
That is,

(β0,β1,ξ>)> = arg min
eβ0,eβ1,eξ

�

X − eξ
Y − (eβ0 + eβ1

eξ)

�>

U −1

�

X − eξ
Y − (eβ0 + eβ1

eξ)

�

, (E11.5)

where only (β0,β1) define the final measurand in this example.

E11.5 Estimation and uncertainty evaluation

Following the GUM [51, 54], estimates bβ0 and bβ1 of the final measurands are obtained by eval-
uating measurement model (E11.5) at the estimates x and y of the intermediate measurand
(X , Y ). The uncertainties associated with (bβ0, bβ1) result from propagating the covariance matrix
U associated with these intermediate estimates through the same model, which will be detailed
in section E11.5.2. Before, section E11.5.1 describes how to arrive at the intermediate estimates
x and y , and the full covariance matrix U following the GUM [54].

E11.5.1 Intermediate measurands X and Y (stage 1)

The probability distributions of the input quantities M , D,Q andΨ∗, as assigned in section E11.4.1,
shall be propagated through model (E11.3) to evaluate estimates, uncertainties and correla-
tions for the intermediate measurand (X , Y ). Application of the multivariate law of propaga-
tion of uncertainty [54, clause 6] is lengthy due to the full correlation structure resulting from
model (E11.3), and it may not be adequate due to non-linearities in model (E11.3). Instead, the
Monte Carlo method [54, clause 7] is applied to approximate the 2N -dimensional distribution
for (X , Y ) numerically and summary information is obtained subsequently.

In particular, R repeated samples are drawn from the 2N +2 independent Gaussian distribu-
tions of the input quantities M , D,Q and Ψ∗. Model (E11.3) is applied to each of these samples,
generating R samples of the intermediate measurand (X , Y ) – each sample representing a random
realisation from the 2N -dimensional distribution. If these output samples form a matrix of di-
mension 2N×R, an estimate (x , y) is obtained by averaging over its columns, and the covariance
matrix U is obtained by calculating the covariance between all rows (cf. [54, clause 7.6]).
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Figure E11.3: Upper triangle of the correlation matrices associated with x (left panel) and with y
(right panel), obtained from model (E11.3) and by the Monte Carlo method, cf. sections E11.4.1
and E11.5.1. To increase the visibility of strongly correlated values, values with a perfect corre-
lation of 1 are marked in grey.

This summary information for (X , Y ) is available online in repository [120]. The estimates
and uncertainties are displayed in figure E11.1 and the correlation matrices for X as well as
for Y are displayed in figure E11.3. One observes that the correlation coefficients associated
with pairs of estimates xn and xm, n 6= m, are close to one. This is due to the fact that xn and
xm are affected by a common, dominating source of uncertainty; in fact, the covariance element
u(xn, xm) and the uncertainty u(xn) are governed by the squared relative uncertainties associated
with the estimate of M (cf. table E11.1). The correlation coefficients associated with pairs of
estimates yn and ym are mostly about 2/3 (see right panel in figure E11.3). Only the correlation
associated with the components n= 23 and n= 24 of Y is smaller, because the contributing Type
A uncertainties associated with Qn and Ψ∗n are larger. Consequently, the combined uncertainties
u(y23) and u(y24) are larger than for the other components of Y , while the covariance element
u(yn, ym) remains unaffected. The correlation between X and Y is much smaller (in the range
between −0.067 and −0.045) and not displayed here.

Let us note, that model (E11.3) theoretically involves a division by 0 and a square root of
negative numbers for normally distributed input quantities M , D,Qn and Ψ∗n. Practically, this does
not cause problems here because the uncertainty of the input quantities is much smaller than the
estimate (less than 0.5 %). Formally, truncated Normal distributions could be assigned to each
input quantity instead.

The above Monte Carlo procedure was implemented in R Markdown [43] code, which is also
available online in repository [120]. We chose to implement R= 108 Monte Carlo trials providing
a relative numerical accuracy of smaller than 10−7 for the estimates (x , y), but as high as 5 ·10−3

for the covariances U (especially for the covariance between X and Y). Nevertheless, the results
of the final measurand (β0,β1) vary little when repeating the Monte Carlo procedure (no more
than 10−3 times the associated standard uncertainty).

E11.5.2 Weighted total least-squares method (stage 2)

The measurement model (E11.5) based on the WTLS method is implicit, multivariate, non-linear
and usually no closed form is available for its solution. An iterative scheme for deriving estimates
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Table E11.2: Results obtained by weighted total least-squares (WTLS), by weighted least-squares
(WLS), and by WTLS regression without correlation (WTLS w/o correlation). Listed are the
estimates for slope and intercept, their associated uncertainties and covariance.

Method bβ0 u(bβ0) bβ1 u(bβ1) cov(bβ0,bβ1)

WTLS 0.99663 0.000961 −3.5267 0.04827 −2.53× 10−5

WLS 0.99664 0.000966 −3.5275 0.04855 −2.58× 10−5

WTLS w/o correlation 0.996 66 0.000842 −3.5295 0.08223 −6.75× 10−5

bβi with i = 0, 1 and their associated uncertainties u
�

bβi

�

is described in clause 10 of the standard
[16] and implemented in the R Markdown code in [120]. This simple scheme also provides
correlations between β0 and β1. The iterative algorithm requires the covariance matrix U to be
symmetric and positive definite, which is fulfilled by construction. For numerically semidefinite
matrices the Cholesky decomposition of U could be replaced by a modified version [156], or
other decomposition methods.

Assuming a Gaussian distribution2 for the measurand, a 95 % coverage interval for each mea-
surand βi is given by

�

bβi − 1.96 u
�

bβi

�

, bβi + 1.96 u
�

bβi

��

. (E11.6)

A two-dimensional, joint 95 % coverage region can be calculated following [54, clause 6.5.2].

E11.6 Reporting the result

Table E11.2 contains the estimates cβ0 and cβ1 for the final measurands and their associated stan-
dard uncertainties. These results are obtained following the GUM by applying measurement
model (E11.5) for the weighted total least-squares method to the estimates x , y and their asso-
ciated covariance matrix U; which in turn are obtained by applying measurement model (E11.3)
using the Monte Carlo method.

For comparison, measurement model (E11.5) is applied ignoring any correlation (WTLS w/o
correlation) by assuming a diagonal covariance matrix U (see also [16, clause 8]). In addition,
measurement model (E11.5) is applied omitting the uncertainty and correlation in the quantity
X , as well as the correlation between X and Y . That is, a simple weighted least-squares (WLS) fit
is applied accounting only for the uncertainty and correlation in quantity Y (see also [16, clause
9]). Figure E11.4 shows the estimates bβ0 and bβ1 (markers), their joint 95 % coverage region
(ellipses), and the associated 95 % coverage interval for these three least-squares methods.

Nearly identical results have been obtained by applying the Monte Carlo method [54] to mea-
surement model (E11.5) and the algorithm in Ref. [16, clause 10]. The non-linearity of (E11.5)
or a non-Normality behind (E11.6) could cause differences, however, this was not observed.

We stress that ordinary and weighted least-squares (OLS and WLS) regression using standard
software often involves the estimation of a multiple for the variance of the input quantity Y .
Such a procedure is rarely adequate in metrology and estimating variance components of input
quantities cannot be formulated as a measurement model. Thus it is not covered by the current
GUM. It would usually cause significantly different uncertainties for the regression parameters,
which would be only a fifth in this example. A measurement model for OLS regression, which

2Cf. clause 6.3.3 in [51] and section 10.2.3 in [16] for the approximate validity of this Normality assumption.
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enables the user to propagate the uncertainties of the input quantities in the sense of the GUM,
is presented and discussed in a related example [119].
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Figure E11.4: Displayed are the estimates bβ0 and bβ1 (markers), their joint 95 % coverage region
(ellipses), and the associated 95 % coverage intervals (horizontal and vertical lines) for the least-
squares methods listed in table E11.2.

Before interpreting the results of a regression, the data as well as the assumptions contributing
to the analysis should be assessed critically. For instance, the graphical analysis of the weighted
residuals did not indicate a violation of the straight-line assumption (E11.2), see figure E11.5.
Also a more flexible, polynomial model Y = β0+β1X+β2X 2 does not improve the fit significantly.

The sonic nozzle used in this example was repeatedly calibrated for many years. For five
measurement series the estimates bβ0 and bβ1 and their associated 95 % coverage intervals are
displayed in figure E11.6. All five, temporally separate, measurement series display consistent
straight-line relationships. Similar equivalence statements are relevant when approving, or dis-
approving, calibration and measurement capabilities in interlaboratory comparisons and require
reliable uncertainties complying with the GUM.

E11.7 Discussion and conclusion

Ignoring correlation in the calibration of the sonic nozzle under consideration causes only minor
differences in the estimates of its characteristic parameters β0 and β1 (compare WTLS and WTLS
w/o correlation in table E11.2 and figure E11.4). However, ignoring any correlation impacts
markedly on the uncertainty of these parameters. The standard uncertainty for the intercept
u(bβ0) is understated by about 12 %, while the standard uncertainty for the slope u(bβ1) is over-
stated by almost 70 %. In addition, the covariance between β0 and β1 increases by a factor of
roughly 2.5 if correlations are omitted. As a consequence, the 95 % coverage band around the

3In contrast to the other measurements, this series has been measured with pressurized air. The associated Type B
relative standard uncertainty for Qn is 0.75× 10−3.
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Figure E11.5: Displayed are the residuals

�

�

x − bξ
�>

,
�

y − bβ0 − bβ1
bξ
�>�

weighted by the Choleski

decomposed covariance matrix U . No systematic behaviour indicates a violation of the straight-
line relation (E11.2).

estimated straight line has a different shape and is much broader over the range of the data when
correlation is accounted for; see figure E11.1.

Ignoring the uncertainty and correlation in the quantity X yields almost identical results in
this example (compare WTLS and WLS in table E11.2 and figure E11.4). The reason is twofold:
First, the correlation between X and Y is small, and implicitly ignoring it in the simpler weighted
least-squares method is inconsequential. Second, also the squared standard uncertainties and co-
variances in X relative to the variance of all measurements x1, . . . , xn are two magnitudes smaller
than in Y (relative to the variance of y1, . . . , yn). For this example, it may thus be sufficient to
consider only the uncertainty and correlation in Y . While this is not known in advance here, it
might be for future calibrations of this nozzle.

Reliable calibration results thus require accounting for correlation. For calibrating a sonic
nozzle, we demonstrated how these correlations can be evaluated and accounted for. We provide
reliable estimates and uncertainties for the characteristic parameters of the nozzle and contribute
to its use as a transfer standard.
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E11.A Background information on sonic nozzles

Sonic nozzles (also called Critical Flow Venturi Nozzles) consist of a smooth rounded inlet section
converging to the throat area Athroat = 0.25πD2 (the area of minimum size with throat diameter
D) and then diverging along a pressure recovery section. Construction details are described
e.g. in the standard ISO 9300 [12]. Here, we follow the notation of the GUM (cf. Note 1–3
in [51, clause 4.1]) and denote all quantities which are used in the main part of this example by
capital letter symbols.
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Figure E11.6: Displayed are the estimates bβ0 and bβ1 (dots) and their 95 % coverage intervals
obtained by the WTLS method (E11.5) for each of five, temporally separate, measurement series.
These were measured (1) at 06/21/2010 with N = 3, (2) at 06/28/2012 with N = 6, (3) at
10/08/20123 with N = 9, (4) at 07/15/2018 with N = 30, and (5) at 02/21/2019 with N = 3.

The gas flow through the nozzle is driven by the pressure difference between the upstream
stagnation pressure p0 and the downstream pressure pd. If the ratio pd/p0 is below a certain
critical limit, the maximum flow velocity, which is achieved at the throat, is identical to the local
speed of sound of the gas. This velocity cannot be exceeded, even if the pressure ratio pd/p0 is
further decreased.

The theoretical, ideal mass flow rate Q(ideal) through the nozzle equals the product of the
throat area Athroat and the so-called critical mass flow densityΨ∗, i.e., Q(ideal) = AthroatΨ

∗. Thereby,
Ψ∗(T0, p0, gas) is purely a function of the stagnation pressure p0, the stagnation temperature T0
upstream of the nozzle, and the gas composition. For many gases, this functionality is well
known [108,168].

Because the gas velocity is zero at the wall of the nozzle due to non-slipping conditions, there
exists a boundary layer of thickness δ1 between the core flow and the wall; the gas velocity (and
with this the mass flow density) is decreasing from sonic speed down to zero within this layer.
Hence, the overall average of the mass flow density Q in the throat is in reality smaller than the
theoretical one. The correction is expressed by the discharge coefficient Y = Q/Q(ideal) (in the
flow community, the discharge coefficient is usually denoted by cD). The discharge coefficient is
connected with the displacement thickness δ1 of the boundary layer at the throat via [134, p.
250] [129]

Y = β0

�

1− 2
δ1

D

�2

. (E11.7)

From the Navier-Stokes equation it can be derived that δ1 is inversely proportional to the square
root of Reynolds number Re (i.e. δ1∝ Re−0.5) as long as the flow in the boundary layer is lami-
nar. The Reynolds number is a dimensionless flow number, which is given by Re =Q D/(Athroat M)
with M being the dynamic viscosity of the gas. Ignoring the term proportional to (δ1/D)2

in (E11.7), one obtains the functional relationship between the discharge coefficient Y and the
Reynolds number Re provided by the standard ISO 9300 [12], namely,

Y = β0 + β1Re−0.5. (E11.8)
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In [12], two nozzle types, the cylindrical and the toroidal one, are defined with tight requirements
to keep to specifications. Thereby, equation (E11.8) is valid for both types as long as the flow in
the boundary layer is laminar.

Sonic nozzles have a great advantage over sub-sonic flowmeters such as Venturi tubes or
orifice plates. In a sonic nozzle, any downstream pressure disturbances cannot move upstream
past the throat of the nozzle because the throat velocity is higher (speed of sound of the gas) and
in the opposite direction. Therefore, they cannot affect the speed or density of the flow through
the nozzle. This is in contrast to Venturi’s or orifice plates, where any change in downstream
pressure will affect the differential pressure across the flowmeter, which in turn, affects the flow.
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Example E12

Bayesian evaluation of a
between-bottle homogeneity study in
the production of reference materials
A.M.H. van der Veen, S.L.R. Ellison

E12.1 Summary

This example shows how a Bayesian hierarchical model can be used to determine the between-
bottle standard deviation of the amount fraction of a component in a set of synthetic natural
gas mixtures. The gas mixture are used in a proficiency test. The model takes as input an
n × k table with amount fractions of a selected component, where n denotes the number of
gas mixtures and k the number of replicates per mixture. It computes the mean µ, between-
group standard deviation τ and within-group standard deviation σ. The model assumes that
the amount fractions are, conditionally on the model parameters, normally distributed and uses
weakly informative prior probability density functions for the three parameters. The elicitation of
the parameters is based on experience in previous proficiency tests. The model is demonstrated
for two datasets, one for ethane and a second for nitrogen; in the former case, classical one-way
analysis of variance can be used well, but in the latter the classical analysis does not provide a
solution. The example also illustrates how such a model can be set up using R and Stan.

E12.2 Introduction of the application

An essential element in the production of certified reference materials and proficiency test ma-
terials in batch form is the evaluation of the between-bottle homogeneity [169]. This form of
(in)homogeneity accounts for the (small) differences in the property of interest between the
bottles (or more generally, items [32]) and including it in the uncertainty budget of the prop-
erty value ensures that the value and associated uncertainty are valid for each bottle in the batch,
rather than for the batch as a whole [169,173]. The evaluation of between-bottle homogeneity is
both a requirement in reference material production [27] as well as in proficiency testing [15,23].

Traditionally, classical analysis of variance (ANOVA) is used [23,32] for this purpose, which
is more fully described elsewhere [169]. The parameter of prime interest is the between-group
standard deviation, which in this specific case is called the between-bottle standard deviation
[169, 170]. Whereas classical ANOVA works well if the between-bottle homogeneity effect is
of similar magnitude as the measurement repeatability or greater, difficulties arise when the
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between-bottle homogeneity effect is (substantially) smaller than the repeatability effect [170].
Such situations should be avoided [32,169] but that is not always possible [170].

In this example, a dataset is used that suffers from poor repeatability which justifies the use
of a Bayesian hierarchical model. This model is, apart from the use of prior probability density
functions for the parameters, very similar to the traditional one-way ANOVA model widely used in
the evaluation of homogeneity studies [169]. The background of the model is briefly summarised
here; a more elaborate treatise is available elsewhere [170,174]. A similar model is also available
in the NIST Consensus Builder [105,106].

E12.3 Specification of the measurand(s)

The measurand in this example is the between-bottle standard deviation (τ) of the amount frac-
tion of a component in a batch of gas mixtures.

E12.4 Measurement model

The statistical model relating the observed amount fractions yi j for mixture i and replicate j to
the mean amount fraction µ, the error in the amount fraction in mixture i, Bi and the random
measurement error εi j takes the form [169]

yi j = µ+ Bi + εi j (E12.1)

The objective of the evaluation is to determine τ2 = var(Bi) and σ2 = var(εi j). If no pooling is
used, then σ2

i = var(εi j), i.e., a standard deviation is computed for each mixture. In a between-
bottle homogeneity study, it would usually make sense to make the assumption that all standard
deviations σ are equal in principle, so to use pooling [170]. The Bayesian treatise presented here
is using pooling of the within-group standard deviations.

In this example, a Bayesian model is used, which implies that a joint prior probability density
function should be chosen for the model parameters. In the case that the parameters are assumed
to be mutually independent, then this joint prior probability density function can be replaced
by the product of three probability density functions, one for each of the parameters. These
probability density functions are specified as follows

µ∼ N(µ0,σ2
target) (E12.2)

τ∼ Cauchy(0,τ0) (E12.3)

σ ∼ Cauchy(0,σ0) (E12.4)

The prior probability density function (hereafter prior) forµ is a normal distribution with meanµ0
(elicited from the specification of the composition of the gas mixtures) and a standard deviation
that reflects how close the amount fraction for the component of interest of the batch is expected
to be to the specified value. The manufacturer specifies that the actual amount fraction will not
differ more than 5 % from the specified amount fraction. This specification is interpreted as a
95 % coverage interval, and hence a relative standard deviation of 2.5 % is used. This standard
deviation is sufficiently large to ensure that the posterior probability density function (hereafter
posterior) will be dominated by the data [170,174].

The prior for the between-bottle standard deviation τ is chosen to be the Cauchy distribution
with location parameter 0 and scale parameter τ0. The latter is obtained from the specification
for the production of the batch gas mixtures, which is usually larger than the value expected for
τ. By using this approach, it is ensured that the scale parameter not smaller than the anticipated
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standard deviation [91]. The Cauchy distribution concentrates most of the density between 0
and the scale parameter. Due to the restriction put on τ (and σ), the lower end of the prior
is 0, as a standard deviation cannot be negative. A similar approach is used for the prior of σ.
The scale parameter σ0 is set to be equal to the repeatability standard deviations of the amount
fractions in this type of mixtures, as observed in previous measurements.

The likelihood is, as stated previously, conditionally on the parameters, a normal distribution
[174]

yi j|µ,τ,σ ∼ N(µ,τ2 +σ2) (E12.5)

The likelihood of ȳi|θi ,σi can be described as [92]

ȳi|θi ∼ N(θi ,σ
2/k)

where θi denotes the group mean and ȳi the mean of the yi j , averaged over the replicates. The
marginal distributions of the group means ȳi , averaged over the θi are independent normal

ȳi|µ,τ∼ N(µ,τ2 +σ2/k)

E12.5 Data evaluation

The model as described in the previous sections is used with Bayes’ rule. From the weakly in-
formative priors for µ, τ, and σ (equations (E12.2)-(E12.4)), using the data and the likelihood,
a joint posterior for the model parameters is obtained. From this posterior, the value for τ, the
between-bottle standard deviation, is calculated.

E12.6 Implementation

In Stan code, the model of the between-bottle homogeneity study with pooling of the within-
group standard deviations reads as

data {
int<lower=1> N;
int<lower=1> K;
matrix[N,K] y;
int<lower=1> n[N];
real mu0;
real tau0;
real sig0;

}
transformed data {

matrix[N,K] y_;
real scale;
scale = mean(y);
y_ = y / scale;

}
parameters {

real mu_;
real<lower=0> tau_;
real<lower=0> sig_;
vector[N] eta;

}
transformed parameters {

vector[N] theta_;
theta_ = mu_ + tau_*eta;

}
model {
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tau_ ~ cauchy(0,tau0/scale);
sig_ ~ cauchy(0,sig0/scale);
mu_ ~ normal(mu0/scale,0.025*mu0/scale);
eta ~ normal(0, 1);
for (i in 1:N) {

y_[i,] ~ normal(theta_[i], sig_);
}

}
generated quantities { // computation of unscaled parameters

real mu;
real<lower=0> tau;
real<lower=0> sig;
vector[N] theta;
mu = mu_ * scale;
tau = tau_ * scale;
sig = sig_ * scale;
theta = theta_ * scale;

}

The model consists of the following blocks

1. data, declaring the data used by the model

2. transformed data, used here to rescale the data by dividing the observed amount frac-
tions by their mean

3. parameters, declaring the model parameters and any auxiliary parameters needed for
running the calculations

4. transformed parameters, declaring the scaled group means

5. model, specifying the Bayesian model in terms of the priors and the likelihood

6. generated quantities, declaring and computing the unscaled model parameters

In the data block, the variables are declared needed for transferring the data. In this block,
the number of gas mixtures (“bottles”) N (n) and the (maximum) number of replicates K (k)
are declared, following by the table with amount fractions y. mu0, tau0 and sigma0 are the
(hyper)parameters of the priors assigned to µ, τ, and σ respectively.

The next block, transformed data, performs a rescaling on the data in y. The transforma-
tion consists of calculating the mean of all observed amount fractions and to use this to rescale the
data (variable scale). The rescaled variables is y_. This transformation could also have been
performed in R before transferring the data to the Bayesian model. Including it in the model
enables for the user of the model to transfer the original data, and as we will see the model also
returns the unscaled model parameters (see the generated quantities block. The last line
in the transformed data performs the rescaling of the data and is written in vectorised form,
as this is the fastest way to perform the rescaling [64,161].

In the parameters block, the (rescaled) parameters mu_, tau_ and sigma_ are declared,
as well as an auxiliary variable called eta, which is used for an efficient implementation of
the hierarchical model. Sampling eta and then using it is more efficient than directly trying
to obtain the group means [92]. These group means are declared in the block transformed
parameters.

The data for ethane are shown in table E12.1. Using traditional analysis of variance, for the
dataset of ethane, the between-bottle homogeneity standard deviation is 3.19µmol mol−1 and
the (pooled) repeatability standard deviation is 10.88µmol mol−1 [170].

Experience from previous between-bottle homogeneity studies for ethane in natural gas has
indicated that the repeatability standard deviation for the amount fraction ethane is 0.10 % and
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Table E12.1: Amount-of-substance fraction of ethane (%) of the 10 mixtures

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5

D520472 3.496632 3.498528 3.495981 3.497959 3.495900
H95396 3.499540 3.496899 3.498857 3.497719 3.498985
VSL190663 3.499200 3.497277 3.496565 3.496385 3.499073
D520467 3.498073 3.496472 3.496522 3.496959 3.497474
D520834 3.499093 3.496120 3.496482 3.498150 3.497656
D520361 3.497502 3.498803 3.498913 3.499660 3.499122
D520270 3.497358 3.498859 3.497683 3.497349 3.498252
D520446 3.498206 3.497208 3.499195 3.498182 3.497208
VSL190485 3.498724 3.497021 3.496768 3.498014 3.495973
VSL190977 3.499762 3.498026 3.498264 3.495620 3.499327

the specification for the between-bottle homogeneity is 0.4 %. The latter is interpreted as an
expanded uncertainty with coverage factor k = 2, thus τ0 = µ0 · 0.2 %. Running the model with
25 000 iterations and a warmup of 5000 iterations, using 4 chains [170, 174] on the dataset of
ethane yields the following output:

## Inference for Stan model: 3c7d78ea6604265a562e4008c783360f.
## 4 chains, each with iter=25000; warmup=5000; thin=1;
## post-warmup draws per chain=20000, total post-warmup draws=80000.
##
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## mu 3.49779 0 0.00022 3.49736 3.49823 60910 0.99997
## tau 0.00039 0 0.00026 0.00002 0.00099 25435 1.00010
## sig 0.00112 0 0.00012 0.00090 0.00139 52679 1.00002
## theta[1] 3.49751 0 0.00037 3.49668 3.49813 51074 1.00005
## theta[2] 3.49801 0 0.00035 3.49740 3.49880 58512 1.00002
## theta[3] 3.49776 0 0.00032 3.49710 3.49840 89856 1.00000
## theta[4] 3.49755 0 0.00036 3.49674 3.49816 54818 1.00004
## theta[5] 3.49769 0 0.00033 3.49699 3.49830 81013 1.00003
## theta[6] 3.49815 0 0.00040 3.49749 3.49905 42563 1.00003
## theta[7] 3.49783 0 0.00032 3.49719 3.49850 93936 0.99996
## theta[8] 3.49786 0 0.00032 3.49725 3.49855 85007 0.99999
## theta[9] 3.49762 0 0.00034 3.49686 3.49822 67517 0.99998
## theta[10] 3.49793 0 0.00033 3.49733 3.49867 74363 1.00001
##
## Samples were drawn using NUTS(diag_e) at Thu Aug 13 09:31:33 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

The posterior probability density functions for µ, τ, and σ computed from the dataset of
ethane are shown in figure E12.1. From the output of the MCMC, also the shortest coverage
intervals can be computed. The following code, requiring the packages coda and HDIntervals
performs the calculation:

fit.mcmc = As.mcmc.list(fit)
ethane.hpdi = hdi(fit.mcmc,credMass = 0.95)

The first line converts the output from Stan into the appropriate form [143]. Then the
function hdi is used to compute the highest posterior density intervals [128]. The lower (L)
and upper (H) limits of the 95 % highest posterior density intervals are shown in table E12.2.
The lower bound on the coverage interval for τ is 1.13× 10−10 cmolmol−1, which is very close
to zero.
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Figure E12.1: Posterior densities for the mean, between-group and within-group standard devi-
ations for ethane

As the uncertainty evaluation in accordance with the GUM [51] and ISO Guide 35 [32] re-
quires only a point estimate, there are several ways to obtain such an estimate from the posterior
probability density function. Candidates include the mean, the mode, and the median. If the
probability density function is symmetric and unimodal, these candidates will all have the same
value.

Given the skewness of the posterior of τ (see figure E12.1), these three options are not
equivalent. The mode is 3.22µmolmol−1, the median is 3.54µmolmol−1, and the mean is
3.89µmol mol−1.

Table E12.2: 95 % highest posterior density intervals for µ, τ and σ for ethane(expressed as
amount fractions, %)

Parameter L H

µ 3.49737 3.49823
τ 0.00000 0.00086
σ 0.00089 0.00137

Table E12.3: Amount-of-substance fraction of nitrogen (%) in the 10 mixtures

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Replicate 5

D520472 0.424577 0.425167 0.425379 0.424522 0.424805
H95396 0.425572 0.425411 0.423638 0.425301 0.424527
VSL190663 0.424152 0.425517 0.425638 0.424207 0.425135
D520467 0.426320 0.424672 0.425211 0.425533 0.425864
D520834 0.424855 0.425079 0.425413 0.424729 0.424725
D520361 0.425104 0.424773 0.426424 0.424266 0.424632
D520270 0.425750 0.424917 0.424779 0.425086 0.425318
D520446 0.425547 0.426483 0.424631 0.425968 0.424620
VSL190485 0.426326 0.424646 0.425205 0.426302 0.425020
VSL190977 0.425968 0.424069 0.425988 0.425489 0.423936

The data for nitrogen are shown in table E12.3. Using traditional analysis of variance for the
dataset of nitrogen, the between-bottle standard deviation is 0.00µmolmol−1 and the (pooled)
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Figure E12.2: Posterior densities for the mean, between-group and within-group standard devi-
ations for nitrogen

repeatability standard deviation is 7.00µmolmol−1 [170]. The zero value for the between-bottle
standard deviation is readily explained by considering that MSbetween = 3.249× 10−7 is smaller
than MSwithin = 4.903× 10−7.

Experience from previous between-bottle homogeneity studies for nitrogen in natural gas has
the repeatability standard deviation for the amount fraction nitrogen is 0.20 % and the specifi-
cation for the between-bottle homogeneity is 0.3 %. The latter is interpreted as an expanded
uncertainty with coverage factor k = 2. Running the model with 25 000 iterations and a warmup
of 5000 iterations, using 4 chains [170,174] on the dataset of nitrogen yields the following out-
put:

## Inference for Stan model: 3c7d78ea6604265a562e4008c783360f.
## 4 chains, each with iter=25000; warmup=5000; thin=1;
## post-warmup draws per chain=20000, total post-warmup draws=80000.
##
## mean se_mean sd 2.5% 97.5% n_eff Rhat
## mu 0.42514 0 0.00011 0.42492 0.42537 77137 1.00002
## tau 0.00014 0 0.00011 0.00001 0.00040 49866 1.00004
## sig 0.00069 0 0.00007 0.00056 0.00085 85493 0.99999
## theta[1] 0.42510 0 0.00017 0.42473 0.42540 81567 1.00000
## theta[2] 0.42510 0 0.00016 0.42474 0.42540 80768 1.00002
## theta[3] 0.42511 0 0.00016 0.42475 0.42541 85237 1.00003
## theta[4] 0.42521 0 0.00017 0.42492 0.42561 78431 0.99997
## theta[5] 0.42511 0 0.00016 0.42476 0.42541 87385 1.00004
## theta[6] 0.42512 0 0.00016 0.42479 0.42543 89116 1.00002
## theta[7] 0.42515 0 0.00016 0.42484 0.42547 90335 1.00002
## theta[8] 0.42520 0 0.00017 0.42490 0.42558 79099 0.99997
## theta[9] 0.42521 0 0.00017 0.42491 0.42560 78602 0.99999
## theta[10] 0.42513 0 0.00016 0.42480 0.42544 90610 0.99999
##
## Samples were drawn using NUTS(diag_e) at Thu Aug 13 09:33:22 2020.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at
## convergence, Rhat=1).

The posterior probability density functions for µ, τ, and σ computed from the dataset of
nitrogen are shown in figure E12.2. Where traditional analysis of variance fails at quantifying
the between-bottle homogeneity effect, the Bayesian counterpart provides a probability density
function for τ, from which the between-bottle standard deviation can be derived. The 95 %
highest posterior density intervals are given in table E12.4. The lower (L) and upper (H) limits
of the 95 % highest posterior density intervals are shown in table E12.4. The lower bound on the
coverage interval for τ is 2.18× 10−9 cmolmol−1.
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Table E12.4: 95 % highest posterior density intervals for µ, τ and σ for nitrogen(expressed as
amount fractions, %)

Parameter L H

µ 0.42493 0.42537
τ 0.00000 0.00034
σ 0.00056 0.00083

Just as in the case of ethane, also for the amount fraction nitrogen there are different options
for the between-bottle standard deviation τ. The mode of the posterior of τ is 0.27µmolmol−1,
the median is 1.12µmol mol−1, and the mean is 1.36µmol mol−1.

E12.7 Reporting the result

The prime result is the value for the between-bottle standard deviation τ. In a previous paper
[170], the mean was chosen as estimate for τ, which is the most cautious option (it leads to the
largest value for this uncertainty contribution). For datasets where the between-bottle variability
is larger, the differences between the three options become smaller. As also discussed in the cited
paper, the width of the posterior makes that several alternatives [83, 169] also fall in the 95 %
coverage interval.

Alternatives to using the mean include the use of the median or mode of the posterior prob-
ability density function for τ, and even τ = 0 could be justified, as the lower ends of the 95 %
highest posterior density intervals are for practical purposes indistinguishable from zero. The
between-bottle homogeneity effect in both datasets is small (that is why they were selected for
this example in the fist place).
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Quantifying uncertainty when
comparing measurement methods –
Haemoglobin concentration as an
example of correlation in straight-line
regression
S. Martens, K. Klauenberg, J. Neukammer, S. Cowen, S.L.R. Ellison, C. Elster

E13.1 Summary

In metrology, often two methods measuring the same quantity are to be judged whether or not
they are in agreement. For measurements across a whole range of values, this can be done by
comparing their straight-line fit to the identity line. Such a comparison is only meaningful, when
uncertainties are available. Furthermore, the estimates of the straight-line fit and their uncertain-
ties are only reliable when all sources of uncertainty have been accounted for. In particular, the
measurements of both methods in a comparison are usually uncertain, and common instruments
or standards cause correlation among or between them.

When fitting a straight-line relation, the weighted total least-squares (WTLS) method ac-
counts for correlation and uncertainties in both variables. This example focuses on WTLS and
defines a measurement model from it to propagate all uncertainties and correlations through to
the estimate of the slope and intercept, and associate uncertainties with them according to the
GUM. Using the example of two high accuracy methods measuring the total haemoglobin con-
centration in blood, i.e. the cyanmethaemoglobin and alkaline haematin method, we indicate
how correlations can be inferred, demonstrate how they can be accounted for and show their
impact on the regression. The results are discussed and recommendations are given.

E13.2 Introduction of the application

The total haemoglobin (Hb) concentration in blood is one of the most frequently measured ana-
lytes in clinical medicine because of its significance for evaluating the state of health of a human.
The medical need for this analyte and the different spectrophotometric methods applied are
summarized in Appendix E13.A. For external quality assurance of routine laboratories, interlab-
oratory comparisons are performed in which the deviation from the reference value may not
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exceed 6 % [41]. To evaluate such round robin tests, ideally reference or “higher order” mea-
surement procedures allowing for standard uncertainties smaller than 0.6 % (an order of mag-
nitude below the allowable deviations) are required. The cyanmethaemoglobin (HiCN) method
is the internationally accepted, spectrophotometric reference method [8, 14, 115] to determine
the total Hb concentration. Critical issues of the HiCN method are the toxicity of the potassium
cyanide involved and that it is not traceable to the International System of Units. An alternative
spectrophotometric procedure for the determination of reference values for this quantity is the
non-cyanide, alkaline haematin (AHD) method. Among other advantages, the AHD method has
the potential as a primary method [9,90] since a primary calibrator exists.

Previous comparisons of the HiCN and the AHD method with high-accuracy procedures [90,
181] demonstrate a good agreement, but are limited to only one blood sample with a Hb con-
centration in the normal range, i.e. a healthy person. Studies based on protocols for routine
diagnostics1 also show a good agreement between both methods (see [45, 131, 136] and refer-
ences therein) and rely, among others, on the regression of a straight-line relationship. However,
these comparisons do not consider the uncertainty of measurements. Estimates of regression
parameters will usually differ when all uncertainties are accounted for. In addition, these com-
parison studies do not provide an uncertainty for the regression estimates. It is thus difficult
to compare the results of these studies and to quantitatively judge the agreement between the
reference and the alternative AHD method.

This example demonstrates how the uncertainties of HiCN and AHD measurements, includ-
ing correlation, can be propagated to give the uncertainty of their straight-line relation. The total
Hb concentrations are used, which PTB measured with both the HiCN and the AHD method for
P = 104 blood samples over the past 10 years. The data cover the whole range from 60 gL−1 to
190 g L−1 relevant in clinical diagnosis and include pathologically low as well as pathologically
high Hb concentrations. These measurements and their associated uncertainties, say xp, u(xp)
and yp, u(yp), are displayed in figure E13.1 and can be found online in repository [121]. Deriva-
tion of the total Hb concentration involves quantities common to both methods and all samples
(cf. Appendix E13.B for background information). Some of these common quantities contribute
significantly to the uncertainty of the Hb concentration [90, 181]. Therefore, it is reasonable to
suspect significant correlation among the HiCN as well as among the AHD method (cf. clause
5.2.4 in [51]).

Also beyond method comparison, uncertainty in all variables of a regression and correlation
among or between them is prevalent in metrology. For example in calibrations, the reference
and the device under test usually both display uncertainty. Additionally, measurements over the
range of use are often performed with the same measuring instrument or physical standard which
often contribute a considerable amount of uncertainty.

This example focusses on a measurement model that is based on the weighted total least-
squares (WTLS) method. The measurement model allows for uncertainty evaluation following
the GUM. The WTLS method accounts for uncertainties in both variables of a regression, as well
as, for correlation among and between them. WTLS is recommended by multiple standards
[16,38] and applied in metrology (e.g. Refs. [89,107,118]).

1In routine applications only one value for the absorbance is measured, while reference procedures include dilution
series, repeat measurements and centrifugation to reduce uncertainties.
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Figure E13.1: Left: Visualization of haemoglobin concentration measurements xp, yp performed
at PTB on P = 104 blood samples by the two methods HiCN and AHD.
Right: Standard uncertainties u(xp) and u(yp) for both methods and all samples. These measure-
ment results are available online in repository [121]. In both panels, the dashed line represents
the identity y = x and the markers are drawn as transparent; thus, overlayed markers appear
darker.

E13.3 Specification of the measurand

Let X denote the total Hb concentrations obtained by HiCN and Y the corresponding quantity
measured by the AHD method. The straight-line relation

Y = β0 + β1X (E13.1)

is assumed to model the relationship between the measured values of both methods, and is
supported by previous studies comparing the HiCN and the AHD method (see [45,131,136] and
references therein). The measurands are the intercept parameter β0 and slope parameter β1 of
the straight-line model (E13.1). If both methods measure the same, uniquely defined quantity,
one usually obtains estimates close to bβ0 = 0 and bβ1 = 1.

The input quantities influencing the measurands are the P pairs (Xp, Yp). Estimates of these
inputs are the Hb concentration measurements of each method, xp and yp. Standard uncertain-
ties u(xp) and u(yp) of these inputs are of the same magnitude (cf. figure E13.1). In addition,
any two inputs Xp, Xq are correlated due to the use of common standards in their measurement,
especially of the same molar extinction coefficient ε and corrections C0, C1 (as detailed in Ap-
pendix E13.B). The covariance matrix Ux shall contain these correlations as well as the standard
uncertainties u(xp). Likewise, the covariance matrix Uy contains the correlations and standard
uncertainties u(yp) for the inputs Yp. (For the definition of a covariance matrix, we refer to clause
3.11 in the supplement 1 to the GUM [52].)

E13.4 Measurement model

The measurement model for straight-line regression can be constructed from the appropriate
least-squares method. The frequently applied ordinary and weighted least-squares method are
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inappropriate here because they assume that the measured values of one method are exact.
Notably, regressing one method over the other will generally result in different estimates than
the other way around; especially, when the uncertainties of both methods are similar and non-
negligible – as for HiCN and AHD. The measurand would thus be ambiguous. Also Deming
regression [78] and Passing-Bablok regression [138], two common methods for method compar-
ison, are not appropriate for this data set. First, the uncertainties u(yp) cannot be expressed as a
common multiple of u(xp) as Deming regression requires (see right panel in figure E13.1); sec-
ond, it is important to take account of applicable uncertainty and covariance information where
possible and Passing-Bablok regression does not use information on uncertainties.

Weighted total least-squares (WTLS) is the method recommended by multiple standards [16,
38]when the uncertainty associated with the measured values xp and yp are both non-negligible.
It also addresses correlation. The WTLS method is based on minimizing the generalized sum of
squares

Q =
�

x − eξ
�>

U −1
x

�

x − eξ
�

+
�

y − (eβ0 + eβ1
eξ)
�>

U −1
y

�

y − (eβ0 + eβ1
eξ)
�

(E13.2)

with respect to eβ0, eβ1 and the unknown, “true” values of x called eξ. Here, the vector x contains
the elements x = (x1, . . . , xP)> and the vectors y and eξ are likewise defined. The minimizer

of (E13.2) defines the solution (bβ0, bβ1,bξ
>
) of the WTLS method.

The measurement model is then defined by replacing the estimates x and y in the minimiza-
tion of Q by the underlying quantities X = (X1, . . . , XP)> and Y = (Y1, . . . , YP)>, respectively.
That is,

(β0,β1,ξ>)> = arg min
eβ0,eβ1,eξ
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(E13.3)

where only (β0,β1) define the measurand.

E13.5 Estimation and uncertainty evaluation

Following the GUM [51,54], estimates bβ0 and bβ1 of the measurands are obtained by evaluating
measurement model (E13.3) at the estimates x and y of the input quantities X and Y . The
uncertainties associated with (bβ0, bβ1) result from propagating the uncertainties in Ux and Uy
associated with the estimates of the input quantities through this measurement model.

Measurement model (E13.3) is implicit, multivariate, non-linear and usually no closed form
is available for its solution. An iterative scheme for deriving estimates and their associated uncer-
tainties is described in clause 10 of the standard [16]. This simple scheme also provides correla-
tions between β0 and β1, and is valid for any covariance matrices Ux and Uy whose eigenvalues
are all positive.

Assuming a Gaussian distribution2, a 95 % coverage interval for each measurand βi with
i = 0,1 is given by

�

bβi − 1.96 u
�

bβi

�

, bβi + 1.96 u
�

bβi

��

.

A two-dimensional, joint 95 % coverage region can be calculated following clause 6.5.2 in [54].
In order to estimate the slope and intercept of a straight-line relation as well as valid un-

certainties and/or coverage intervals, the full covariance matrices Ux ,Uy and possible cross-
correlation between X and Y need to be known. Annex D in [16] describes how these covariances

2Cf. section 10.2.3 in [16] for the approximate validity of this Normality assumption.
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can be calculated for common, simple measurement models. For more involved measurement
models, like for HiCN and AHD measurements, we recommend the Monte Carlo method [54],
where distributions for all input quantities are propagated through a joint measurement model
to arrive at the 2P-dimensional, joint distribution for the outputs X and Y .

The uncertainty in HiCN and in AHD measurements is dominated by a common quantity,
namely the molar extinction coefficient ε (see [90, 181]). We thus suspect that the covariance
matrices Ux and Uy are governed by a common correlation coefficient ρ. That is, we set their
elements Ux ,pq = ρu(xp)u(xq) and Uy,pq = ρu(yp)u(yq) for all p 6= q. The diagonal elements
contain the variances, i.e. Ux ,pp = u2(xp) and Uy,pp = u2(yp). Further details are given in Ap-
pendix E13.C. First Monte Carlo evaluations of the joint uncertainty budget showed that correla-
tion coefficients up to ρ = 0.8 may be realistic. Details on how to jointly evaluate the correlation,
uncertainties and estimates for the input quantities of least-squares methods applying the Monte
Carlo method are illustrated in [120]. The correlation between HiCN and AHD is dominated
by two common quantities, viz., the cuvettes’ absorption length d and the mean molar mass
M(Hb). According to [90], the amount of cross-correlation is much smaller compared to corre-
lation between the estimates xp and xq as well as between the estimates yp and yq. We assume
zero cross-correlation throughout this example. Note that the results reported below are condi-
tional on the plausibility of this correlation structure. The real correlation structure and amount
could be different and is to be inferred from the quite complex measurement model described in
Appendix E13.B.

E13.6 Reporting the result

Let us now apply the measurement model (E13.3) to the estimates and uncertainties presented
in figure E13.1 and to the above covariance structures Ux and Uy . For selected correlation coeffi-
cients ρ, the results are listed in table E13.1. The estimate, associated standard uncertainty and
the covariance for the measurands β0 and β1 are obtained by the algorithm in clause 10 of [16]
and application of the law of propagation of uncertainty [51]. R Markdown [43] code for this
algorithm is available online in repository [121]. Figure E13.2 depicts the estimates bβ0 and bβ1
and the corresponding 95 % coverage interval.

Table E13.1: Results obtained by weighted total least-squares with uncertainty evaluation accord-
ing to the GUM for varying correlation coefficients ρ. Listed are the estimates and uncertainties
for slope and intercept.

Correlation bβ0 u(bβ0) bβ1 u(bβ1) cov(bβ0,bβ1)
a.u. g L−1 gL−1 a.u. a.u. 10−3 a.u.

ρ = 0.0 -0.488 6 0.166 7 0.998 4 0.001 6 -0.24
ρ = 0.6 -0.489 4 0.105 5 0.998 6 0.001 2 -0.10
ρ = 0.8 -0.489 4 0.074 6 0.998 6 0.000 9 -0.05

Nearly identical results have been obtained by applying the Monte Carlo method [54] to the
measurement model (E13.3) and the algorithm in Ref. [16]. The non-linearity of (E13.3) could
cause differences; however, this was not observed. Software is available that implements WTLS
and propagates uncertainties. For example, the CALIBRATION CURVE COMPUTING Software
provided by INRIM [118] also produces the results in table E13.1, although a slightly different
algorithm is implemented (which relies on an implicit set of normal equations).
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Figure E13.2: Displayed are the estimates bβ0 and bβ1 (dots) and their 95 % coverage intervals for
the weighted total least-squares regression results listed in table E13.1.

Before interpreting the results of a regression, the data as well as the assumptions contribut-
ing to the analysis should be assessed critically. For instance, graphically analysing the (weighted)
residuals did not indicate a violation of the straight-line assumption (E13.1), since no system-
atic behaviour of these residuals were observed. A significant outcome of the χ2 test, whose
application is recommended in standard [16], does not necessarily indicate departures from the
linearity assumption. The χ2 test assesses, whether the (weighted) residuals are independently
normally distributed – an assumption which is not required for WTLS estimation and measure-
ment model (E13.3). Any observed test statistics which exceed the 95 % quantile of the χ2-
distribution, are suspected to be due to non-normally distributed residuals rather than a violation
of the straight-line assumption (E13.1). The former does not contradict the assumptions of our
analysis.

E13.7 Discussion and conclusion

This example demonstrates how two measurement methods can be compared to judge whether
both measure the same quantity over a defined measurement range. If the uncertainties of both
methods are non-negligible, ordinary and weighted least-squares methods are inappropriate.
Instead, weighted total least-squares is a suitable method which allows for an uncertainty prop-
agation when embedded in a measurement model in line with the GUM.

Using the example of measuring the total haemoglobin concentration in blood, it is reasoned
that correlation among and possibly between two measurement methods is not unusual, and
likely to be rather frequent in metrology in general. We indicate how these correlations can be
inferred and select a common correlation structure for this example.

The reader observes a small but significant offset between the HiCN and AHD method for
measuring haemoglobin – irrespective of the amount of correlation. The slope of the linear rela-
tion between both methods is compatible with unity for all reasonable values of correlation, but
would be significantly smaller than one for higher correlations ρ ≥ 0.9. For the assumed cor-
relation structure, the estimates of the linear relation vary little with the amount of correlation.
However, their uncertainty changes by the factor

p

1−ρ, i.e. it reduces to two thirds for a cor-
relation coefficient of ρ = 0.6 and to a half for ρ = 0.8, compared to WTLS estimation without
correlation. Also the covariance between bβ0 and bβ1 scales with 1−ρ. In addition, the estimates
change with varying correlation coefficient when fewer observations are available. These rela-

Examples of evaluating measurement uncertainty First edition (M27)



Example E13. Quantifying uncertainty when comparing measurement methods – Haemoglobin
concentration as an example of correlation in straight-line regression 141

tionships are detailed in Appendix E13.C. Other correlation structures, for instance when the
correlation within one method is much larger than within the other method, will also change the
estimates.

Our analyses show that the HiCN method leads to slightly higher Hb concentrations than the
AHD method, if the correlation structure and the amount of correlation are realistic. This has
been observed before ( [182] and references therein) and may be caused by a background due
to bilirubin. However, the differences between the HiCN and the AHD method are sufficiently
small. If the correlation assumptions can be confirmed in future, both methods could be applied
to determine higher order measurement values to evaluate round robin tests for external quality
assurance in laboratory medicine.

We conclude that only stating the uncertainty of a fitted (linear) relation allows for a quanti-
tative comparison of two methods over their measurement range. To derive these uncertainties
reliably and to give valid estimates, it is important to account for correlation among and be-
tween the measurement methods. Otherwise, the conclusions drawn from such a comparison
study could differ and become unreliable.

E13.A Haemoglobin concentration: Importance and determination

The total haemoglobin (Hb) concentration in blood is part of the complete blood count, which is
one of the most frequently measured analytes in clinical medicine. For example, Hb concentra-
tions are needed for screening blood donors to protect their health and to guarantee the quality
of the blood product [65]. Deviations of the Hb concentration from the normal range (137 gL−1

– 162 gL−1 for men and 123 gL−1 – 145 g L−1 for women; c.f. [67, table 4, p. 190]) are observed
for various diseases. Further diagnostics are initiated to identify the origin of such an anomaly.
Iron deficiency could be caused by bleeding in the gastrointestinal tract [85], malaria [180] or
thalassemia, the most common genetic disorder worldwide [167]. In addition, haemoglobin
concentration is relevant to manage iron deficiency in pregnant women [98].

Total haemoglobin concentration is determined by a variety of methods [160], depending on
the specific medical application. In countries where anaemia is widespread, portable instruments
are used to estimate haemoglobin concentration using capillary blood for analysis [75]. Mea-
surements with higher precision and accuracy compared to such point-of-care instruments are
routinely performed in laboratory medicine and require venous blood and chemical conversion
of the different haemoglobin variants to a stable end product, which is subsequently spectropho-
tometrically analysed. Conversion to cyanmethaemoglobin (HiCN), first applied by Drabkin and
Austin [80], has been considered as a gold standard for routine applications [160] and is also
internationally accepted as higher-order method [8, 14, 115] to determine reference measure-
ment values in external quality assurance of medical laboratories [41]. However, because of the
toxicity of the potassium cyanide involved, the HiCN method is not allowed in most countries
and has been replaced by the sodium lauryl sulfate (SLS) procedure [101,135].

Typically, in laboratory medicine accuracies below 6 % shall be reached for Hb concentra-
tion measurements. This value is stated in the guideline of the German Medical Association for
Quality Assurance in Medical Laboratory Examinations [41] and indicates the maximum allow-
able deviation to pass the ring trials mandatory in Germany. To evaluate such external quality
assurance schemes, so-called “higher-order measurement methods” or reference procedures are
required providing results with expanded uncertainties (95 % confidence level) possibly smaller
than 1.5 %. This requirement is specified in DIN 58931 [14, p. 18] and was met in comparison ex-
periments [90,181]. For such higher-order procedures the same reagents may be used to convert
the different Hb variants to a stable end product. Lower uncertainties are achieved by gravimet-
rical preparation of dilution series and centrifugation to suppress the scattering of residual white
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blood cells or agglomerates of membranes of erythrocytes. In addition, high-accuracy absorbance
measurements are required, traceable to a national standard [14]. Although the HiCN method is
frequently used as a reference method for comparison when evaluating new procedures for the
determination of the total Hb concentration, it is presently not traceable to the International Sys-
tem of Units. In particular, material suited as primary calibrator is not available, it is known that
verdoglobin is not converted to HiCN and that background due to bilirubin can cause systematic
deviations towards higher concentrations. It follows that according to the ISO standard 17511 on
metrological traceability [9] the HiCN method can be characterised as an international conven-
tional reference measurement procedure. An alternative spectrophotometric procedure for the
determination of total Hb concentration is the non-cyanide, alkaline haematin (AHD) method.
In contrast to the HiCN procedure, when applying the AHD method verdoglobin is converted to
the end product chlorohaemin and the sensitivity against bilirubin perturbations is much smaller.
In addition, the globin protein is destructed and solutions of the end product, the well-defined
molecule chlorohaemin, might serve as primary calibrator. Hence, the AHD method may have
the potential as a primary method [9,90].

E13.B Details of the measurement methods for haemoglobin con-
centration

The HiCN and the AHD method both rely on the measurement of the spectral absorbance. The
photometrical traceability is established by correcting the measured absorbance values3 ak

i,p using

the linear relationship C0,k+C1,kak
i,p for k ∈ {HiCN,AHD}, blood sample p = 1, . . . , P and dilution

i (cf. [181]). As recommended in DIN 58931:2010 [14], at least four dilutions φi of each blood
sample are prepared and the associated Hb mass fractions wk

i,p are calculated according to

wk
i,p =

�

Ck
0 + Ck

1 ak
i,p

�

M(Hb)

dεkφi
. (E13.4)

Here, d represents the absorption length of the rectangular spectrophotometric cuvette, εk is the
molar decadic absorption coefficient of the reaction product and M(Hb) is the mean molar mass
of one Hb subunit. The estimates and associated uncertainties for the input quantities in (E13.4)
can be found in [181]. The final reported total Hb concentration for each sample and method,
xp and yp, are determined by a weighted average of the Hb mass fractions wk

i,p over the dilutions
i. The associated uncertainties are discussed in detail in Ref. [181].

E13.C Influence of correlation for a common structure

If the covariance matrix for the HiCN method is given by

Ux = (1−ρ)diag(u2
x) +ρux u>x

with ux = (u(x1), . . . , u(xP))>, as described in section E13.5, the inverse of Ux is determined by

U −1
x =

1
1−ρ

�
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1
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1
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−
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3Each absorbance value ak
i,p in turn is based on a series of repeated measurements and its uncertainty is evaluated

following the GUM.
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The inverse U −1
y can be determined by analogy. Then, the generalized sum of squares (E13.2)

simplifies to

Q =
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The factor 1/(1− ρ) is irrelevant for the optimization of Q and thus does not influence the
estimates bβ0 and bβ1. At the same time it influences the uncertainties u(bβi) and the covariance
cov(bβ0,bβ1) when the number of observations P is large, which change approximately by the
factor

p

1−ρ and 1−ρ, respectively, compared to a correlation coefficient of ρ = 0.
For a small number of observations, table E13.2 shows the influence of the correlation coeffi-

cient on the estimates (assuming the same, above correlation structure). In particular, the table
lists for a subset of size P = 20 of the data in figure E13.1 the estimates and uncertainties for bβ0,
bβ1 and for ρ = 0, ρ = 0.8. The reader observes, that compared to no correlation, the estimate
for the slope changes by almost half of the uncertainty (i.e. bβcorr

1 − bβ1 ≈ u(bβ1)/2) and at the same
time the uncertainty reduces considerably.

Table E13.2: Results obtained by weighted total least-squares with uncertainty evaluation accord-
ing to the GUM for a subset of size P = 20 of the data in figure E13.1. Listed are the estimates
and uncertainties for slope and intercept.

Correlation bβ0 u(bβ0) bβ1 u(bβ1)
a.u. g L−1 g L−1 a.u. a.u.

ρ = 0.0 0.153 3 0.458 8 0.994 5 0.004 2
ρ = 0.8 0.176 1 0.206 1 0.996 5 0.002 4
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Example E14

Calibration of a torque measuring
system – GUM uncertainty evaluation
for least-squares versus Bayesian
inference
S. Martens, K. Klauenberg, C. Elster

E14.1 Summary

This example addresses the straight-line calibration of a torque measuring sensor against a refer-
ence system using measurements taken at different torque values. For each torque value, a single
measurement result of the reference system is available, together with results of repeated mea-
surements of sensor that shall be calibrated. The goal is to determine a linear relationship that
relates results of the torque measuring sensor with those of the reference system. The data are
analysed by applying (i) ordinary and weighted least-squares estimation in combination with an
uncertainty evaluation following the GUM and (ii) Bayesian inference. Analytic expressions are
given for the Bayesian uncertainty analysis which simplifies its application. The results obtained
by the different approaches are discussed and recommendations given.

E14.2 Introduction of the application

Straight-line calibration of a torque measuring sensor, which are made of a strain gauges, against
a reference system is addressed. The data are partly taken from example B2 of the guideline
VDI/VDE 2600 part 2 [40]. The goal of the calibration is to determine a functional relationship
between results obtained by the sensor and those of a reference system. Measurements have
been carried out at different values of torque by the considered sensor and the reference system.
For each torque value, a single measurement has been conducted by the reference system and
a number of repeated measurements by the considered sensor. Table E14.1 shows the data,
where repeated measurement results of the sensor have been summarized through their means
and standard deviations, respectively. For further details about the measurements the reader is
referred to [40].

This example provides guidance for the evaluation of uncertainty in the estimation of a cali-
bration curve from data like those in table E14.1. Two approaches are provided: (i) ordinary and
weighted least-squares estimation (see, e.g., ISO 28037 [16]) accompanied with an uncertainty
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i x i Mean yi SD Si ni
N m N m N m

1 0.101 0.095 0 0.005 5 6
2 0.201 0.196 6 0.005 2 6
3 0.305 0.301 6 0.004 1 6
4 0.501 0.498 3 0.004 1 6
5 1.001 1.008 3 0.009 8 6
6 3.000 3.026 6 0.008 2 6
7 4.001 4.046 6 0.012 1 6
8 5.007 5.066 6 0.037 9 3

Table E14.1: Summary statistics for
part1of the measurement data given in
the guideline [40][table B6, p. 43].
The summary statistics include mean
yi = n−1

i

∑ni
j=1 yi j and standard deviations

(SD) Si =
�

(ni − 1)−1
∑ni

j=1(yi j − yi)2
�1/2

of
the ni measurement results yi j of the consid-
ered sensor at the i-th torque level; x i denotes
the corresponding measurement result of the
reference system. These summary statistics are
available online in repository [121].
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Figure E14.1: Visualization of the data. Re-
peated measurements (dots) are indistinguish-
able from the mean values (crosses) in this pre-
sentation. The dashed line represents the iden-
tity y = x .

evaluation based on the GUM [51], and (ii) a statistical approach applying Bayesian inference
(cf., for example, [92]). Explicit expressions are given for the Bayesian uncertainty analysis which
simplifies its application.

E14.3 Specification of the measurand

Let X denote the applied torque, in what follows called stimulus, and Y the corresponding quan-
tity measured by the considered sensor, below denoted as response. The linear relation

Y = βX (E14.1)

is assumed to model the relationship between the measured responses of the considered sensor
and the applied stimulus. Model (E14.1) represents a straight line with zero offset. The latter
has been chosen for physical reasons which is supported by the observed data (cf. figure E14.1).
The measurand is the slope parameter β of the particular straight line model (E14.1). The input
quantities are Y1, . . . , Yp (with p = 8 in our example) which correspond to the measurement
results at the considered torques X1, . . . , Xp. The variability associated with the measurement
results x1, . . . , xp of the reference device are considered as small enough so that they can be
neglected.

1The original analysis includes data points (0,0) which support the assumed relationship (E14.1). To prevent
double counting information, we omit the data point (0, 0) in the our consideration.
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E14.4 Measurement model

The uncertainty evaluations presented in this example are based on two different models. The un-
certainty evaluation following the GUM in connection with ordinary and weighted least-squares
estimation is based on a measurement model in which the measurand is represented as a function
of the input quantities. An estimate of the measurand is then obtained by evaluating this mea-
surement model using the estimates of the input quantities. The uncertainty associated with the
resulting estimate for the measurand results from a propagation of the uncertainties associated
with the estimates of the input quantities through this measurement model.

The Bayesian inference is based on a statistical model for the observed data, and the measur-
and enters as one of the parameters of the statistical model. The Bayesian inference can account
for prior knowledge about the measurand. It results in a probability distribution for the mea-
surand which can be viewed as the final complete result. Mean and standard deviation of that
distribution can be taken as an estimate and standard uncertainty for the measurand. Bayesian
uncertainty analysis can be viewed as being reached through the Bayesian inference, rather than
by a process of propagating input uncertainties through a measurement model in the sense of
the GUM.

E14.4.1 Ordinary and weighted least-squares

Application of weighted least-squares estimation determines an estimate bβ for the measurand by
minimizing

Q =
p
∑

i=1

ni
∑

j=1

Wi

�

yi j − β x i

�2
=

p
∑

i=1

Wi{ni (yi − β x i)
2 + (ni − 1)S2

i } (E14.2)

with respect to β . In (E14.2), yi and Si represent mean and standard deviation of the repeated
measurement results yi j , j = 1, . . . , ni , of the considered sensor at the i-th stimulus x i , and Wi

denote some weights, i = 1, . . . , p. The solution bβ to this minimization problem is given by

bβ =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x i yi . (E14.3)

The measurement model will now be defined as

β =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x iYi , (E14.4)

i.e., by replacing the estimates yi in (E14.3) with corresponding quantities Yi . Note that a mea-
surement model in the sense of the GUM is always a model between quantities. Since the esti-
mates x i of the stimulus are treated as being exact, the actual quantity X i in (E14.4) has already
been replaced with the known values x i in this example. Ordinary least-squares estimation is
obtained by choosing weights Wi = 1, i = 1, . . . , p.

E14.4.2 Statistical model

A statistical model specifies the distribution from which the observed data is taken as a realization.
The subsequent statistical model assumes that all single measurements yi j , j = 1, . . . , ni , i =
1, . . . , p, are realizations of independently and normally distributed random variables Yi j with
means equal β x i and variances σ2

i , i.e.

Yi j|β ,σ2
i ∼ N

�

β x i ,σ
2
i

�

. (E14.5)
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In (E14.5), the x i denote the known stimuli and the σ2
i the unknown variances to be inferred.

The likelihood function is the probability for the observed data viewed as a function of the
unknown parameters. For the statistical model (E14.5) the likelihood function is given by

l(β ,σ2; data)∝
p
∏

i=1

(σ2
i )
−ni/2 exp

�

−
1

2σ2
i

�

(ni − 1)S2
i + ni (yi − β x i)

2�
�

, (E14.6)

where σ2 = (σ2
1, . . . ,σ2

p)
>, yi and Si denote mean and standard deviation of yi j , j = 1, . . . , ni ,

and “data” summarizes the sufficient statistics y1, . . . , yp, S1, . . . , Sp of the data, see table E14.1.

E14.5 Estimation and uncertainty evaluation

E14.5.1 GUM uncertainty propagation

The measurement model in (E14.4) contains input quantities Yi , i = 1, . . . , p. For each of these
input quantities a series of repeated measurement results yi j , j = 1, . . . , ni is available. In follow-
ing the GUM, mean and scaled standard deviation Si/

p
ni are taken as estimate yi and associated

standard uncertainty u(yi) for Yi . The estimates and standard uncertainties for the input quan-
tities are listed in table E14.2.

According to the GUM [51], the estimate bβ for β is taken as value of the measurement model
(E14.4) when inserting the estimates from table E14.2 for the input quantities, i.e.

bβ =

� p
∑

i=1

niWi x
2
i

�−1 p
∑

i=1

niWi x i yi . (E14.7)

The (squared) standard uncertainty is obtained by

u2
�

bβ
�

=
p
∑

i=1

�

∂ β

∂ Yi

�

�

�

�

Yi=yi

�2

u2(yi) =

∑p
i=1 (niWi x i)

2 u2(yi)
�∑p

i=1 niWi x
2
i

�2 .

If the weights are chosen according to niWi = 1/u2(yi), one obtains

u2
�

bβ
�

=

� p
∑

i=1

x2
i

u(yi)2

�−1

, (E14.8)

and for ordinary least-squares estimation with Wi = 1

u2(bβ) =

∑p
i=1 (ni x i)

2 u2(yi)
�∑p

i=1 ni x
2
i

�2 . (E14.9)

Assuming a Gaussian distribution for β , a 95% coverage interval is given by

�

bβ − 1.96u
�

bβ
�

, bβ + 1.96u
�

bβ
��

. (E14.10)
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Table E14.2: For the data in table E14.1 and measurement model (E14.4), the estimate and
standard uncertainty is listed for each input quantity (N m).

Input quantity Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Estimate yi 0.095 0 0.196 6 0.301 6 0.498 3 1.008 3 3.026 6 4.046 6 5.066 6
Standard un-
certainty u(yi) 0.002 2 0.002 1 0.001 7 0.001 7 0.004 0 0.003 3 0.004 9 0.021 9

E14.5.2 Bayesian uncertainty analysis

In a Bayesian inference one combines the prior knowledge about the measurand (and other
unknowns) with the information contained in the data through application of Bayes’ theorem.
The result is the posterior distribution which summarizes the knowledge about the measurand
(and other unknowns in the statistical model (E14.5)) conditional on the observed data. In our
case, the posterior is given through the following probability density function (PDF)

π(β ,σ2|data)∝ π(β ,σ2)l(β ,σ2; data) , (E14.11)

where l(β ,σ2; data) denotes the likelihood function (E14.6) for the assumed statistical model (E14.5),
andπ(β ,σ2) the employed prior for β andσ2 = (σ2

1, . . . ,σ2
p)
>. From the joint posterior (E14.11),

the marginal posterior π(β |data) for the measurand is obtained through marginalization accord-
ing to

π(β |data) =

∫ ∞

0

. . .

∫ ∞

0

π(β ,σ2|data)dσ2
1 . . . dσ2

p . (E14.12)

The marginal posterior (E14.12) is a PDF that can be seen as the complete Bayesian uncertainty
analysis for the measurand. Summary statistics of this PDF may be sufficient in many cases, and
one can consider in line with the GUM the posterior mean,

bβ =

∫ ∞

−∞
π(β |data)βdβ (E14.13)

as the Bayesian estimate, and the posterior standard deviation as the associated standard uncer-
tainty u(β), where

u2(β) =

∫ ∞

−∞
π(β |data)(β − bβ)2dβ . (E14.14)

Note that from a Bayesian point of view the standard uncertainty characterizes the uncertainty
about the quantity β , rather than the uncertainty about its estimate bβ (which is known exactly).
For this reason, the notation u(β) is used in (E14.14) rather than u(bβ). Finally, a 95% credible
interval [β ,β] can be calculated from the posterior (E14.12) which satisfies

∫ β

β

π(β |data)dβ = 0.95 . (E14.15)

Equation (E14.15) does not uniquely determine a credible interval and further conditions need
to be posed, for example that the credible interval is symmetric around the Bayes estimate, prob-
abilistically symmetric, or of shortest length, cf. also [52].
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Informative prior

Below, π(β) denotes a PDF that models the prior knowledge about the measurand β . bσ2
i are

the prior guesses of the variances σ2
i , i = 1, . . . , p, which have to be inferred. Assume that the

reliability of these variance guesses can be expressed in terms of chosen coefficients of variations
ci . In using inverse Gamma distributions to model such prior knowledge, the parameters ai and
bi of the inverse Gamma distributions are then determined through

ai = 2+
1

c2
i

, bi = (ai − 1)bσ2
i , (E14.16)

i.e., the prior knowledge about each σ2
i is modeled by a distribution with mean bσ2

i and variance
c2

i (bσ
2
i )

2. The resulting marginal posterior for the measurand is then obtained as

π(β |data)∝ π(β)
p
∏

i=1

tni−1+2ai

�

β; yi/x i , ((ni − 1)S2
i + 2bi)/(ni x

2
i [ni − 1+ 2ai])

�

, (E14.17)

where π(β) denotes the prior PDF for β , and tν(x; m, s2) stands for the PDF of a scaled and
shifted t-distribution with ν degrees of freedom, i.e.

tν(x; m, s2)∝
�

1+
1
ν

(x −m)2

s2

�− ν+1
2

, (E14.18)

cf. also [52]. The univariate PDF (E14.17) is easily evaluated, and the summary statistics (E14.13)–
(E14.15) can immediately be obtained through standard procedures of numerical quadrature.
Note that for evaluating (E14.17) it is advantageous to calculate the logarithm of π(β |data) first,
and applying the exponential function afterwards.

In this example no true prior knowledge has been available. For the purpose of illustration,
hypothetical prior knowledge in form of a normal distribution for β with mean 1 and standard
deviation 0.1 has been used, accompanied with guesses bσ2

i for the variances that have been
taken as the observed variances S2

i . The reliability of the variance estimates was modelled by a
coefficient of variation equal to unity, ci = 1, i = 1, . . . , p. Note that prior knowledge is informa-
tion available before measurements are preformed. True prior knowledge will and shall not be
deductions of observed data, as in this illustrative case.

Noninformative prior

The case of vague prior knowledge can be modelled by choosing a vague prior for the measurand
π(β) which has large variance, together with parameters ai and bi of the inverse Gamma distri-
butions which approach zero. In this case the inverse Gamma distributions (taken to model prior
knowledge about the variances) are distributions with huge tails and they do not even possess a
finite expectation. The posterior (E14.17) then approaches

π(β |data)∝
p
∏

i=1

tni−1(β; yi/x i , S2
i /(ni x

2
i )) , (E14.19)

which is also formally obtained when using the following non-informative prior [92]

π(β ,σ2)∝
p
∏

i=1

1

σ2
i

(E14.20)

from the start.
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Method bβ u(bβ)
95% coverage /
credible interval

a.u. a.u. a.u.

OLS-GUM 1.010 7 0.001 5 [1.007 7,1.013 6]

WLS-GUM 1.008 5 0.000 8 [1.007 0,1.010 0]

Bayes 1.009 2 0.001 1 [1.007 0,1.011 2]

Bayes-Info 1.009 1 0.000 9 [1.007 3,1.010 8]

Table E14.3: Results obtained by ordinary
least-squares (OLS-GUM) and weighted least-
squares (WLS-GUM) with uncertainty eva-
luation according to the GUM, as well as
results from a Bayesian uncertainty analysis
with (Bayes-Info) and without (Bayes) ac-
counting for vague prior knowledge.
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Figure E14.2: Marginal posterior distribu-
tion π(β |data) for the measurand according
to (E14.19) (solid line) and (E14.17) (dashed
line) using a non-informative or a vague infor-
mative prior, respectively. The symbols in light
gray display the estimate bβ and 95% coverage
interval of the weighted least-squares approach
for comparison.

E14.6 Reporting the result

Table E14.3 contains the estimate, its associated standard uncertainty, and the 95% coverage
interval obtained by application of the GUM to ordinary and weighted least-squares estimation,
together with corresponding results for the Bayesian uncertainty analysis. The credible intervals
determined by the Bayesian uncertainty analysis were taken as probabilistically symmetric inter-
vals. Figure E14.2 shows the PDFs for the measurand obtained by Bayesian uncertainty analyses
in comparison with the results achieved by weighted least-squares estimation with uncertainty
evaluated according to the GUM.

E14.7 Discussion and recommendation

The results obtained by application of the GUM to ordinary and weighted least-squares estimation
are different. This difference is due to the difference of the corresponding measurement mod-
els (E14.4) used. Specifically, weighted least-squares estimation with weights niWi ∝ 1/u2(yi)
leads to a different estimate for the slope and a smaller uncertainty u(bβ) than ordinary least-
squares estimation. In fact, these weights are “optimal” in the sense that they lead to a minimum
uncertainty under all measurement models (E14.4).

On the other hand, ordinary least-squares does not apply “optimal” weights and results in
a larger uncertainty associated with its different estimate for the measurand. Since the corre-
sponding measurement model is linear in the data, the squared standard uncertainty provides
an unbiased estimate of the variance of the ordinary least-squares estimator under hypothetical
repeated sampling from the statistical model (E14.5). From the perspective of the type A evalua-
tion of the GUM, the corresponding uncertainty evaluation can thus be recommended. However,
ordinary least-squares estimation utilizes a measurement model that does not account for the
fact that different observations have different variability. That is, measurements are assigned the
same weight although their variability differs by orders of magnitude.

The weighted least-squares estimate can be also be viewed as a solution to the statistical
model (E14.5) if the variances σ2

i were known. For unknown variances, however, the optimal
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weights
niWi ∝ 1/(σ2

i /ni) are also unknown. The uncertainties u(yi) approximate the optimal weights
σi/
p

ni , but they will generally be different – especially for a small number of repeated measure-
ments. Some of the observations are weighted too high and, more importantly, are also treated
by the GUM uncertainty evaluation as being more accurate than they actually are. Consequently,
the resulting uncertainty associated with the weighted least squares estimate might be too small.
This judgment is to be seen from a frequentist point of view, which corresponds to the view of
the GUM with respect to type A evaluation.

The Bayesian uncertainty analysis is based on the statistical model (E14.5) and does account
for the different variability in the observations. At the same time, it does not use a single estimate
of that variability to be used in a subsequent estimation of the measurand, but rather estimates the
measurand and the variability in the observations simultaneously. Due to the straight-line model,
all observations influence the estimation of all different variabilities in the observations, and
observations with large variability will have less influence in the final result for the measurand.
Furthermore, Bayesian inference allows prior knowledge about the measurand to be taken into
account. For these reasons, we recommend the Bayesian uncertainty analysis for this example.
It should be noted that also methods from classical statistics can be used to analyze the data on
the basis of the statistical model (E14.5) which has not been considered in this example.

Bayesian inference using our hypothetical informative prior yields very similar results to those
using the non-informative prior. The reason is that the data overrule the prior information taken
for the measurand, and that the (hypothetical) prior knowledge about the variances has been
taken only vaguely and in accordance with the observed variances. If either of these two latter
conditions for the prior of the variances is removed, the results of an informative Bayesian infer-
ence might look significantly different because each variance is modelled individually for each
stimulus value and only a small number of repeated measurement results are available. In this
case, the prior about for the variance will be more informative. In other applications it can be
reasonable to assume a common variance, which would reduce the sensitivity with respect to the
prior for the variance significantly. Furthermore, the proceeding provided for the Bayesian infer-
ence would then result in a single t-distribution for the measurand in the non-informative case,
or the product of a single t-distribution and an informative prior for the measurand otherwise.

We emphasise that the statistical model (E14.5) does not directly account for possible er-
rors in the measurement results of the reference system. In fact, the example B2 of the guide-
line VDI/VDE 2600 part 2 [40] reports non-vanishing uncertainties for them. The statistical
model (E14.5) account for such an additional variability to a certain extent, as it includes un-
known, individual variances for the dependent variable, that are simultaneously inferred together
with the parameters of the straight line.
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Example E15

Evaluation of measurement uncertainty
in the calibration of a mobile optical
measurement system
L.L. Martins, A.S. Ribeiro, M.G. Cox, J.A. Sousa, D. Loureiro, M.C. Almeida, M.A. Silva,
R. Brito, A.C. Soares

E15.1 Summary

This example illustrates the evaluation of measurement uncertainty related to the calibration of
a mobile optical measurement system, based on the use of an SI-traceable reference standard
bar measured in specific spatial positions. The measurement system studied (Krypton, model
K610) [10,139] contains three linear CCD (charge-coupled device) cameras, in different spatial
positions and orientations, with overlapping fields of view, permitting the simultaneous obser-
vation of an infrared LED (light emitting diode) located in a region of interest. By applying
triangulation techniques, the measurement system can determine the static and dynamic spatial
position of a set of observed LEDs.

E15.2 Introduction of the application

Mobile optical measurement systems (MOMS) are currently used in different laboratories and
industries, namely, in automotive, motorsport, aerospace, and naval and structural engineering.
In these contexts, MOMS support the static and dynamical dimensional measurement of objects
with complex geometrical shapes, allowing in situ non-contact manual or automatic measure-
ments of their position or motion.

This example is focused in one type of MOMS – the Krypton K610 [10,139] – which comprises
a camera system and control unit, acquisition computer, measurement probe, multiplexer boxes
and infrared LED. The camera system has three linear CCD cameras, in different spatial positions
and orientations with overlapping fields of view, which results in a pyramidal measurement vol-
ume characterised by a depth range between 1.5 m and 6.0 m and a corresponding cross-section
area ranging between (0.90 m × 0.55 m) and (3.6 m × 2.6m). Using triangulation techniques,
the location of an infrared LED can be determined with a measurement accuracy [10] variable
between (60+7 m−1 · L) µm and (130+17 m−1 · L) µm, where L is the distance from the location
to the camera, expressed in metres. The acquisition frequency depends on the number of LEDs
targeted, varying between 1 kHz for one LED and 232 Hz for 15 LED, for example [10,139].
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Regular calibration of this MOMS is advisable, before and after in situ measurements, since it
is vulnerable to effects such as transportation, assembly, installation and temperature variation,
all of which would introduce uncertainty. This metrological operation is supported by the use of
a carbon fibre composite bar, with an SI traceable reference length (close to 1550 mm), placed in
specific spatial positions in front of the camera system, as shown in figure E15.1, which displays
seven spatial distances d1 . . . d7 that are measured.

Figure E15.1: Schematic representation of the MOMS calibration

Using a measurement probe composed of a ruby tip and nine LEDs spatially distributed by
three sets in the same plane, the position of each end-point in the standard bar can be determined
and their relative distance compared with the reference length value. If required for instrumental
accuracy improvement, the performed measurements can support the adjustment of the MOMS
[10].

E15.3 Specification of the measurand(s)

In this example, the measurand is the length reading, l, obtained in the MOMS at a reference tem-
perature of 20 °C. The calibration of the MOMS involves quantifying the difference, d, between
the measurand and the reference value, ls, related to the measurement standard:

d = l − ls (1+αs · θs) (E15.1)

where αs is the coefficient of thermal expansion of the carbon fibre composite bar and θs is its
temperature deviation from the 20 °C reference temperature during calibration. Since the MOMS
performs non-contact dimensional measurements, the length reading is not directly related to any
linear thermal expansion effects.

E15.4 Measurement model

The measurement model can be obtained from expression (E15.1) and is given by

l = d + ls (1+αs · θs) (E15.2)

E15.5 Uncertainty propagation

The application of the law of propagation of uncertainty [3] to expression (E15.2) yields

u2(l) = c2
d · u

2(d) + c2
ls
· u2 (ls) + c2

αs
· u2 (αs) + c2

θs
· u2 (θs) (E15.3)
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with

cd =
∂ l
∂ d
= 1 (E15.4)

cls =
∂ l
∂ ls
= 1+αs · θs (E15.5)

cαs
=
∂ l
∂ αs

= ls · θs (E15.6)

cθs
=
∂ l
∂ θs

= ls ·αs (E15.7)

and thus

u2(l) = u2(d) + (1+αs · θs)
2 · u2 (ls) + l2

s · θ
2
s · u

2 (αs) + l2
s ·α

2
s · u

2 (θs) (E15.8)

A reference standard bar such as that used in the calibration of the MOMS is designed to be
a rigid body characterised by a null coefficient of thermal expansion at room temperature. It is
composed of carbon fibres (related to a reduced negative coefficient of thermal expansion) in a
polymer matrix (with a coefficient of thermal expansion of opposite sign). Therefore, if a null
coefficient of thermal expansion is considered for the reference standard bar, expression (E15.8)
can be simplified:

u2(l) = u2(d) + u2 (ls) + l2
s · θ

2
s · u

2 (αs) (E15.9)

Table E15.1 shows the differences between reading and reference values obtained in one
calibration of the MOMS, being composed of four individual tests where the reference standard
bar was placed in seven spatial positions (transverse, vertical, longitudinal and four diagonals;
see figure E15.1) in the measurement volume, at a nominal observation distance of 3.5 m. Ta-
ble E15.1 also mentions the corresponding average, (d̄i), and experimental standard deviation,
s(di), for each of the seven spatial positions (i = 1,2 . . . 7).

Table E15.1: MOMS calibration results

Test number Differences between readings and reference values (mm)
d1 d2 d3 d4 d5 d6 d7

1 -0.017 -0.007 -0.021 -0.008 0.015 0.028 0.020
2 0.020 0.011 -0.002 -0.044 -0.007 0.031 0.030
3 -0.011 -0.013 -0.008 -0.034 0.020 0.042 0.021
4 0.001 0.011 -0.003 -0.036 -0.032 0.058 0.084

d̄i -0.002 0.001 -0.009 -0.031 -0.001 0.040 0.039
s(di) 0.016 0.012 0.009 0.016 0.024 0.014 0.031

Based on the results shown in table E15.1, correlation coefficients, r(di , d j), were determined
between pairs of spatial positions of the reference standard bar,

r
�

di , d j

�

=
u
�

di , d j

�

s (di) · s
�

d j

� , (E15.10)

where u (di , di) is the covariance, which can be calculated by

u
�

di , d j

�

=
1

n(n− 1)

n
∑

k=1

�

dik − d̄i

� �

d jk − d̄ j

�

(E15.11)
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with n being the number of independent pairs of observations of di and d j , in this case four. The
results obtained are shown in table E15.2. Correlation between differences is present since the
same physical measurement standard (the reference standard bar) is used in their determination,
although in different spatial positions, but having a specific measurement uncertainty related to
its reference value.

Table E15.2: Correlation coefficients between the obtained differences

r(di , d j) d1 d2 d3 d4 d5 d6 d7

d1 1 0.20 0.20 -0.20 -0.14 0.01 0.06
d2 0.20 1 0.16 -0.14 -0.22 0.06 0.17
d3 0.20 0.16 1 -0.25 -0.16 0.10 0.13
d4 -0.20 -0.14 -0.25 1 0.12 -0.10 -0.09
d5 -0.14 -0.22 -0.16 0.12 1 -0.17 -0.23
d6 0.01 0.06 0.10 -0.10 -0.17 1 0.22
d7 0.06 0.17 0.13 -0.09 -0.23 0.22 1

The four tests performed in the calibration of the MOMS contributed to the measurement
samples of differences between reading and reference values, related to the seven adopted spa-
tial positions of the reference standard bar, for which individual average values and experimental
standard deviations were obtained, as shown in table E15.1. In a global perspective, an estimate
of the difference between reading and reference values can be obtained by averaging. The cor-
responding standard uncertainty [51] is given by

u2(d) =
7
∑

i=1

c2
i · u

2 (di) + 2
6
∑

i=1

7
∑

j=i+1

ci · c j · u (di) · u
�

d j

�

· r
�

di , d j

�

(E15.12)

where ci = c j =
1
7 , r

�

di , d j

�

is the correlation coefficient and u2 (di) = s2 (di) (see table E15.2),
allowing to simplify expression (12) to

u2(d) =
1

49





7
∑

i=1

s2 (di) + 2
6
∑

i=1

7
∑

j=i+1

s (di) · s
�

d j

�

· r
�

di , d j

�



 (E15.13)

The use of the values in tables E15.1 and E15.2 in expression (13) results in a standard un-
certainty equal to 0.0065mm The reference standard bar was calibrated in a controlled labo-
ratory environment, using an SI-traceable coordinate measuring machine, which allowed the
determination of the reference length between the two end-points of this measurement stan-
dard: ls = 1550.313 mm. The calibration certificate issued mentioned an expanded measure-
ment uncertainty equal to 0.016mm, corresponding to the product of a standard uncertainty of
0.0079mm and the coverage factor of 2.02 , evaluated using a Student t distribution with 102
degrees of freedom, in order to achieve a coverage probability of 95 %.

The estimate of the coefficient of thermal expansion of the reference standard bar is consid-
ered, as above, to be equal to zero

�

αs = 0.0× 10−6 °C−1
�

. However, it has an associated standard
uncertainty represented by a uniform distribution with a semi-width of 2× 10−6 °C−1, taking into
consideration the dispersion of known values for the two main components (carbon fibre and
polymer matrix) of the composite bar. Therefore, the standard uncertainty [51] corresponds to

u (αs) =
1
p

3
2× 10−6 °C−1 = 1.2× 10−6 °C−1 (E15.14)
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The calibration of the MOMS was performed in a controlled laboratory environment, with a
nominal temperature of 20 °C. Room temperature time records show an average temperature de-
viation of θs = 0.1 °C, and a cyclic variation following an arcsine distribution of temperature with
a semi-amplitude of 0.5 °C. In addition, these temperature measurements in time were performed
by a digital thermo-hygrometer with an instrumental standard uncertainty of 0.2 °C related to a
normal distribution. The combination of these two temperature measurement uncertainties [3]
is given by

u (θs) =
r

�

0.5 °C/
p

2
�2
+ (0.2 °C)2 = 0.41 °C

Table 3 shows a summary of the above mentioned standard uncertainty components of the length
reading performed by the MOMS during calibration.

Table E15.3: Summary of the standard uncertainty components

Standard
uncertainty
component
u (x i)

Source of uncertainty Standard
uncertainty
u (x i)

ci ≡
∂ l
∂ x i

ui(l)≡ |ci | · u (x i) Degrees of
freedom

u(d) Difference between
reading and reference
values

0.0065 mm 1 0.0065mm 6

u (ls) Calibration of the stan-
dard bar

0.0079 mm 1 0.0079mm 102

u (αs) Thermal expansion coef-
ficient of the standard
bar

1.2× 10−6 °C−1155 mm°C 0.0002mm 50

u (θs) Temperature deviation
from reference value

0.41 °C 0 0 ∞

E15.6 Reporting the result

Based on the results shown in table E15.3, the combined standard uncertainty, uc(l), of the length
reading is determined from expression (E15.9), corresponding to 0.010 mm, with 32 effective
degrees of freedom.

Considering an interval having a level of confidence of approximately 95 % in a Student t
distribution, the expansion factor is 2, 04, which results in an expanded measurement uncertainty
of

U95%(l) = k · uc(l) = 2.04 · 0.010mm= 0.021mm

E15.7 Interpretation of results

Table E15.3 shows that the calibration of the reference standard bar is the major contribution to
the output measurement uncertainty, followed closely by the measured difference between read-
ing and reference values. The remaining uncertainty components have a negligible contribution
to the combined measurement uncertainty.

If no correlation effect was considered in the measured difference between reading and refer-
ence values, u(d)would increase to 0.007 mm and U95%(l)would be slightly higher (0.022 mm).
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Therefore, if the correlation between measurements performed in different positions of the ref-
erence standard bar is not considered, the expanded measurement uncertainty of the calibration
is only overestimated by approximately 5 %.

Although the uncertainty components related to the thermal influence on the performed mea-
surements were considered negligible, some significant considerations can be made based on the
established probabilistic formulation and calculation method.

For instance, suppose a steel bar (characterised by a thermal expansion coefficient estimate
of 11.5× 10−6 °C−1, with the same standard uncertainty as mentioned before) were used as the
measurement standard instead of the carbon fibre composite bar (with a null estimate). The
expanded measurement uncertainty would then increase by 19 %.

In a similar way, if the estimate of the temperature deviation from the reference temperature
would increase to 2 °C, keeping the same measurement uncertainty as before, this would be
reflected in a 4.5 % increase of the calibration expanded measurement uncertainty.
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Evaluation of measurement uncertainty
in thermal comfort
J.A. Sousa, A.S. Ribeiro, M.G. Cox, L.L. Martins

E16.1 Summary

The Monte Carlo method for uncertainty evaluation is particularly suitable to handle the com-
plexity of the mathematical model that specifies the relation between the quantities involved in
the evaluation of thermal comfort. The standard ISO 7730:2005 is the main document in this
field and, besides the application and uncertainty evaluation, the limitations of this standard will
also be discussed.

E16.2 Introduction of the application

The example, which is based in part on the paper [151], is concerned with the evaluation of
thermal comfort as defined in the international standard ISO 7730:2005 – the condition of mind
that expresses the degree of satisfaction with the thermal environment [11], which inevitably
differs from person to person and thus entails a probabilistic approach. The main parameter to
be evaluated is a thermal comfort index named predicted mean vote (PMV), which predicts the
average thermal sensation of a large group of persons exposed to the same environment, based
on principles of heat balance and experimental data collected in a controlled climate chamber
under steady-state conditions.

Although the PMV formula is widely recognised and adopted, little has been done to establish
measurement uncertainties associated with its use, bearing in mind that the formula depends on
measured values and tabulated values given to limited numerical accuracy. Knowledge of these
uncertainties is invaluable when values provided by the formula are used in making decisions in
various health and civil engineering situations. Energy efficiency is an example where thermal
perception plays an important role in influencing the thermal performance of buildings, which
in turn has enormous impact on energy consumption worldwide.

This example examines this formula, providing a general mechanism for evaluating the un-
certainties associated with values of the quantities on which the formula depends. Further, con-
sideration is given to the propagation of these uncertainties through the formula to provide the
uncertainty associated with the value obtained for the index. Current international guidance on
uncertainty evaluation is utilised and discussed.

Alternative approaches are discussed, e.g., using raw data from enquiries on thermal comfort,
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to overcoming the limitation of the coarse resolution imposed by the standard ISO 7730 on the
thermal sensation felt by a specific individual. Consideration is given to the possibility of using
a continuous scale, thus introducing comparability of the scale used in a possibly modified ISO
7730 and an enquiries-based scale.

E16.3 Specification of the measurand(s)

The PMV index is given in ISO 7730 by the following mathematical function of eight quantities:

PMV =[0.303 exp(−0.036M) + 0.028]

×
�

M −W − 3.05× 10−3 [5733− 6.99(M −W )−ρa]

− 0.42(M −W − 58.15)− 1.7 · 10−5 (5867−ρa)M − 0.0014 (34− ta)M

−3.96 · 10−8
�

(tcl + 273)4 − (tr + 273)4
�

fcl − (tcl − ta) fclhc (tcl)
	

(E16.1)

where
M metabolic rate in W m−2

W effective mechanical power in W m−2

ρa water-vapour partial pressure in Pa
ta air temperature in °C
fcl clothing surface area factor
tcl clothing surface temperature in °C
tr mean radiant temperature in °C and
hs convective heat transfer coefficient in W m−2 K−1

with the main complication arising from the fact that the quantity tcl is defined implicitly (see
expression (E16.2) below).

The model is clearly non-linear, and depends on (a) fundamental quantities M , W and Icl
obtained from tables (tcl and fcl each depend on Icl, the clothing insulation in m2 K W−1), and
(b) quantities ta, tr, var and RH obtained by measurement (var is the relative air velocity in ms−1

that influences hc, and RH is the relative humidity in % that influences ρa.
The expressions involved are quite complicated as described in the next section.

E16.4 Measurement model

To be able to calculate the PMV index we need to specify the input quantities. The clothing
surface temperature is defined implicitly and in terms of other input quantities:

tcl =35.7− 0.028(M −W )

− Icl

�

3.96 · 10−8
�

(tcl + 273)4 − (tr + 273)4
�

fcl + (tcl − ta) fclhc (tcl)
	 (E16.2)

where the convective heat transfer coefficient is

hc (tcl) =max
�

2.38 |tcl − ta|
1/4 , 12.1

p

var

�

(E16.3)

which is mathematically identical to the expression given in the standard [11], but simpler. We
write hc (tcl) in this equation rather than simply hc to emphasise that it depends on tcl, a param-
eter already existing explicitly in the model. The clothing surface area factor depends on the
clothing insulation:

fcl =

�

1.00+ 1.290Icl, Icl ≤ 0.0775m2 K W−1

1.05+ 0.645Icl, Icl > 0.0775m2 K W−1 (E16.4)

Examples of evaluating measurement uncertainty First edition (M27)



Example E16. Evaluation of measurement uncertainty in thermal comfort 161

In the cases considered in this study ρa or, more precisely, ρw (ta) , the water-vapour partial
pressure, may be obtained from measurements of the relative humidity RH = 100ρa/ρs (ta) ,
using

ρa = RH×ρs (ta)10 Pa (E16.5)

where ρs (ta) is the water-vapour saturation pressure given by the function

ρs (ta) = exp
�

16.6536−
4030.183
ta + 235

�

K Pa (E16.6)

The degree of complexity can be slightly reduced if advantage is taken of the fact that the term

g (tcl) = 3.96 · 10−8
�

(tcl + 273)4 − (tr + 273)4
�

fcl + (tcl − ta) fclhc (tcl) (E16.7)

is common to equations (E16.1) and (E16.2). Again, we indicate g as a function of tcl to em-
phasise that, given values for the other quantities involved, the value of g (tcl) can readily be
obtained knowing tcl. Therefore, equation (E16.2) can be expressed as

tcl = 35.7− 0.028(M −W )− Icl g (tcl) (E16.8)

and equation (E16.1) can be simplified accordingly to

PMV =[0.303 exp(−0.036M) + 0.028]

×
�

M −W − 3.05× 10−3 [5733− 6.99(M −W )−ρa]

− 0.42(M −W − 58.15)− 1.7 · 10−5 (5867−ρa)M − 0.0014 (34− ta)M

− [35.7− 0.028(M −W )− tcl]/Icl}

(E16.9)

Nevertheless, the above expressions remain complicated and working with them using the GUM
approach (LPU - law of propagation of uncertainty) [51] is not only questionable from the point
of view of the assumptions entailed by that approach, but difficult to implement since it requires
the calculation of partial derivatives within an implicit non-trivial formulation.

Concerning the associated uncertainties, the metabolic rate M , the effective power W and
the clothing insulation Icl were defined according to the conditions and tables given in ISO 7730
and therefore their values have no associated uncertainty. The experimental data for the mea-
sured quantities were obtained from calibrated instruments (traceable to national standards with
reported measurement uncertainties). The data were used in a thermal comfort study developed
for a health institution and obtained from three locations: two offices with different indoor en-
vironmental conditions and a customer service room.

For each location the testing procedure included the measurement of the following quantities:
air temperature ta, globe temperature1 tg, relative humidity RH, relative air velocity var, and
mean radiant temperature tr.

In table E16.1, best estimates of the quantities concerned are taken as the average values of 40
observations (obtained every 2 min) for those quantities, and standard uncertainties associated
with those estimates are evaluated. It is assumed that the measuring conditions are stable during
the period of measurement and thus the observations can be regarded as repeated indication
values of the quantities. These standard uncertainties comprise contributions from the averaging
process (Type A evaluation of uncertainty) and from instrument calibration (Type B evaluation),
as discussed above.

1Measured with a globe thermometer as a means of assessing the combined effects of radiation, air temperature
and air velocity on human comfort.
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Table E16.1: Estimates of the input quantities

Location M × 58.2 W Icl × 0.155 ta tg RH var tr
W m−2 W m−2 m2 K W−1 °C °C % ms−1 °C

Office 1 1.2 0 0.7 25.8 26.3 47.4 0.01 26.4
Office 2 1.2 0 1.0 20.9 21.2 68.1 0.02 21.3
Customer service 1.2 0 0.7 24.0 24.3 46.4 0.07 24.6

In table E16.2, sample standard deviations of the experimental data, taken as the standard
uncertainties, are given, which express the repeatability (Type A) contributions obtained from
the experimental data used for the studies. The table also gives the Type B contributions, which
for each quantity is a constant value because the same measuring instrument was used for all
three locations.

Table E16.2: Standard uncertainties associated with the estimates of the measured quantities in
table E16.1

Location ta tg RH var tr
°C °C % ms−1 °C

Office 1 0.04 0.05 0.56 0.03 0.15
Office 2 0.05 0.00 0.28 0.02 0.08
Customer service 0.04 0.03 0.13 0.05 0.05
All 0.1 0.1 0.5 0.05 0.2

All entries in table E16.2 are given to the same number of decimal places. As a result, some
of these entries are reported as zero. It would be necessary to use one or two further decimal
digits to demonstrate that these values are non-zero albeit negligible.

Another important comment refers to the difference between the definitions and use of
standard uncertainty in the GUM and GUM Supplement 1 (GUM S1) [52]. In the former the
sample standard deviation is used as the standard uncertainty whereas in the latter a factor of
[(n− 1)/(n− 3)]1/2 is included to obtain the standard deviation of the state-of-knowledge dis-
tribution assigned to the corresponding input quantity. In this case, for a sample size of n = 40
the effect is small (less than 3 %), not affecting the standard uncertainties in table E16.2 to the
number of decimal digits reported.

E16.5 Uncertainty propagation

E16.5.1 Preamble

Two approaches for the evaluation of uncertainty are considered: the GUM uncertainty frame-
work, based on LPU [51], and the propagation of distributions of GUM-S1, based on the Monte
Carlo method [52].

Both approaches depend on knowledge of the probability density functions (PDFs) for the
input quantities, but whereas the GUM uncertainty framework uses summary information – es-
timates and associated standard uncertainties – obtained from the PDFs, the propagation of dis-
tributions uses the PDFs themselves. The simplification inherent in the GUM approach, however,
imposes limitations on its applicability, which are irrelevant to the GUM-S1 approach, making
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the latter more reliable and which should be used for validation, when the conditions for the use
of the GUM approach are not fully met.

E16.5.2 GUM Uncertainty Framework

The GUM uncertainty framework requires the calculation of sensitivity coefficients ci , the first
partial derivatives of the PMV index measurement function with respect to the quantities on
which the function depends, evaluated at the estimates of those quantities. These derivatives
are determined from expression (E16.8). As for many complicated models, determining the
required partial derivatives algebraically is not always practical and a numerical approach is
recommended [76]. It is a burden not shared by the GUM-S1 approach.

In this model, special attention must be paid to the derivative ∂ (PMV)/∂ tcl given values
for all other input quantities. Equation (E16.8) (with equation (E16.7)) is solved for tcl, and
then PMV is evaluated using equation (E16.9). The partial derivatives of PMV with respect to
the input quantities, required by LPU, are formed in the usual manner apart from the partial
derivative of PMV with respect to tcl. The fact that PMV defined by equation (E16.1) involves
g (tcl), defined by equation (E16.7), and hence the derivative g ′ (tcl) is required. This derivative
is not necessary when using equation (E16.8), is a simplification that poses no problem since
g (tcl) is already used when solving equation (E16.8) numerically for tcl. No further numerical
operations are necessary in evaluating the partial derivative.

Another aspect of this non-trivial model is that there are two instances where estimates of
the input quantities are close to the breakpoints (derivative discontinuities) of the respective
model functions. They relate to the clothing surface area factor fcl (equation (E16.4)) and to the
convective heat transfer coefficient hc (equation (E16.3)).

The first of these model functions (the second is similar) is illustrated in Figure E16.1 , show-
ing fcl as a function of clothing insulation Icl. Equation (E16.4) can be also be expressed as

fcl = 1.1+min [0.645 (Icl − 0.0775) , 1.290 (Icl − 0.0775)]

which displays explicitly the fact that the function is continuous at Icl = 0.0775 m2 K W−1 with
fcl taking the value 1.1. The sensitivity coefficient ∂ fcl/∂ Icl changes from 1.290 to 0.645 at
Icl = 0.0775 m2 K W−1, halving its value.

Figure E16.2 shows the PDF for fcl when Icl is assigned a Gaussian PDF N(0.0775, (0.01)2),
as produced by a Monte Carlo calculation. It is generally far easier to use such a calculation
to provide (or at least approximately) a PDF, even though an analytical solution could also be
obtained using the “change of variables” formula [152], applying the formula separately in both
branches. The PDF obtained agrees to graphical accuracy with that provided by the Monte Carlo
calculation. The PDF in this case is discontinuous, in fact a mixture of two “half-Gaussians”, with
standard deviations in the ratio 2:1.

Even when the measurement model involves derivative discontinuities, as here, the standard
deviation of the measurand ( fcl or subsequently PMV index) is a continuous function of the input
quantities in the model. Figure 3 shows the standard deviation of fcl (equal to the standard uncer-
tainty associated with an estimate of fcl) for Icl ranging from 0.001 m2 W K−1 to 0.200 m2 W K−1.
The smooth but rapid change of the standard deviation from 0.0129 to 0.0065 over this interval
is apparent. Convection plays a predominant role in the thermal comfort perception, as expected.

E16.6 Reporting the result

Table E16.3 shows for the PMV model the input quantities, the PDFs that characterise them, and
their estimates and associated standard uncertainties. Some of the input quantities are experi-
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Figure E16.1: Clothing surface area factor fcl as a function of clothing insulation Icl

Figure E16.2: PDF for fcl as a function of Icl, as produced by a Monte Carlo calculation
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Figure E16.3: Standard deviation of fcl as a function of Icl

mental, while other quantities have tabulated values [11] for which values are regarded as fixed
and exact. Together with the above partial derivatives evaluated at the estimates of the input
quantities, LPU is applied to produce results given in the table. In the case of ta the PDF results
from the combination of data from measurement and instrument calibration.

Table E16.3: GUM uncertainty budget for the PMV model

Quantity PDF Estimate ui ci ciui

M/W m−2 Ref. value 70
W/W m−2 Ref. value 0
ta/°C Combined 22.0 0.1 0.228 0.013
Icl/m

2 K W−1 Ref. value 0.078
tr/°C Gaussian 22.0 negligible
RH/% Rectangular 60.0 0.3 0.0059 0.0017
var/m s−1 Rectangular 0.10 0.03 3.27 0.094
PMV -0.75 u(PMV) = 0.094 U0.95(PMV) = 0.18

A relevant conclusion that can be drawn from table E16.3 is that relative air velocity is a
dominant factor in the perception of thermal comfort (expressed as PMV) in this particular case,
which is a well-known phenomenon. In this model its influence is through quantity hc. The PDF
for hc is very sensitive to relative air velocity and its shape is like that of the output quantity PMV,
which corroborates the finding on the predominant role of relative air velocity in the perception
of thermal comfort. The influence of hc can also be concluded from a sensitivity analysis of the
quantities present in equation (E16.1).

The Monte Carlo calculation was based on the experimental input indicated in tables E16.1
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Figure E16.4: PDF for the PMV index from Monte Carlo calculation

and E16.2. The number of Monte Carlo trials was taken as 105. Thus, samples of 105 drawn from
the PDFs for the input quantities were used to obtain a PDF for the output quantity as described
in GUM-S1 [52].

Figure E16.4 shows the PDF for the PMV index provided by the Monte Carlo (MC) method
for the same location as table E16.3. The striking asymmetry in the PDF is evident, with a very
long right-hand tail. This long tail implies there is non-negligible probability of having a different
(higher) value for the PMV index than would have been obtained by applying the GUM with its
assumption that the measurand is Gaussian.

The advantages of MC over GUM are apparent in this application. The latter only delivers
an estimate (expectation), an associated standard uncertainty (standard deviation) and a cov-
erage interval based on the assumption of normality. MC gives considerable insight, providing
much richer information, through the display of any given shape for the PDF for the measurand,
allowing characteristics such as the tails to be considered.

Results related to the figure are presented in table E16.4 in which “Estimate” is taken as the
expectation of the PDF for the corresponding measurand. We note that this parameter can be
somewhat misleading in the case of an extremely asymmetric PDF although it does indeed for-
mally give the expectation (mean) of the distribution. The mode (point at which the probability
density is greatest) might be more meaningful, but it is recommended that only the expectation
is used for purposes of uncertainty propagation [51].

Table E16.4: Results from the Monte Carlo calculation

Quantity Estimate Standard uncertainty 95 % coverage interval

Lower limit Upper limit Width
PMV 0.23 0.04 0.18 0.34 0.16

A complementary study was carried out to provide a sensitivity analysis for the input param-
eters used to obtain the PMV index. For this purpose, small variations of the input quantities
were introduced successively, keeping all other input quantities fixed at their estimates, to ap-
proximate the partial derivatives near the measurement point. The analysis showed that relative
air velocity has the largest impact. As pointed out before, the convective heat transfer coefficient
also has a significant impact on the perception of thermal comfort, and thus any changes related
to air temperature and air velocity impact appreciably on the perception of thermal comfort.
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The same analysis was applied to those quantities whose values were taken from tables [11].
The partial derivatives and the effect of uncertainty related to these quantities (based on assuming
an error magnitude of at most one half in the last stated decimal place) on PMV index uncertainty
showed non-linear behaviour in the neighbourhood of the estimates of the input quantities, which
is another reason in favour of the application of Monte Carlo. In relation to the relative influence
of uncertainty contributions, the sensitivity analysis, assuming the Gaussian PDF N(1.2, (0.05)2)
for M and the Gaussian PDF N(0.7, (0.05)2) for Icl, enabled it to be concluded that the variation
of M has little influence on PMV, whereas Icl greatly influences it. Care should thus be taken when
selecting these tabular values from Standard ISO 7730 [11], especially those related to clothing
insulation.

An important point to be made relates to the validation of the Monte Carlo implementation,
which was made using five reference test sets taken from Table D1 in Annex D of ISO 7730
[11], to cover various testing conditions. The comparison showed strong agreement between
the reference values and the values provided by GUM-S1.

Comparing the results for the estimate of PMV and its associated standard uncertainty as
provided by the GUM uncertainty framework and Monte Carlo, using two of those reference test
sets, showed a surprising close agreement between both approaches, which is not always the case.
Bearing in mind that the opposite can also occur, it emphasises the need for validation whenever
possible: any difference may affect decision making in conformity assessment in thermal comfort.

This decision making has an immediate application in this standard if thermal environments
are to be classified in various categories, as in Annex A of ISO 7730 [11]. A detailed evaluation
of measurement uncertainty applied to PMV index is required, since this parameter will have a
direct impact on the classification to be attributed to a specific thermal environment, by affecting
the possible values of PMV, with the corresponding consequences on value and suitability of
different building spaces. Detailed information on conformity assessment can be found in JCGM
106 [55].

E16.7 Interpretation of results

Since this project EMUE is being developed within the framework of pre-normative projects, it is
important to evaluate aspects not only of the standard ISO 7730 [11], but also of ISO 7726 [4],
which relates closely to the former standard by specifying the requirements for the accuracy of
the measuring instruments used in ISO 7730.

In terms of ISO 7730, the PMV index is defined on a continuous scale, whereas the inter-
pretation is often translated into a discrete scale, on a 7-point thermal sensation scale (-3/cold,
-2/cool, -1/slightly cool, 0/neutral, +1/slightly warm, +2/warm, +3/hot), values relating to
the subjective thermal perception of a large sample of individuals exposed to the same thermal
conditions.

On one hand, the resolution of this scale is too coarse, leading to an increase in uncertainty
that would be totally artificial. For example, if a value of PMV is halfway between two points on
its seven-point scale ( ≈ 0.5, say), a substantial increase in the uncertainty of a rounded PMV
value over and above the PMV uncertainty based on a continuous scale would occur.

On the other hand, based on experience, few individuals vote for the extreme values of the
discrete scale, the majority concentrating their votes on central values. Thus, the scale should
probably be changed to increase the resolution of the scale on the central part of acceptable ther-
mal condition. However, the treatment of ordinal scales is a branch of science on its own, using
e.g., Rasch models [46], and close collaboration should therefore be pursued with researchers
from the social sciences.
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With respect to ISO 7726, one study has shown [74] that of the two possible requirements
for the measurement instruments, namely “required” and “desirable”, only the latter permits to
obtain the accuracy assumed for the values used in ISO 7730, and therefore these points should
be conveyed to the standardization committee responsible for these documents.

Annex: GUM uncertainty framework and GUM-S1 propagation of dis-
tributions

Explicit Model

In the more common explicit univariate measurement model, a single real output quantity Y
is related to a number of input quantities X = (X1, . . . , XN )

> by a functional relationship f in
the form Y = f (X) as stated in the GUM [11]. The estimate of the output quantity is taken as
y = f (x ) The standard uncertainty u(y) associated with y is evaluated from

u2(y) =
N
∑

i=1

N
∑

j=1

ciu
�

x i , x j

�

c j (E16.10)

where ci is the partial derivative ∂ f /∂ X i evaluated at X = x and is known as the i th sensitivity
coefficient, u (x i) is the standard uncertainty associated with x i , and u

�

x i , x j

�

the covariance
associated with x i and x j

A compact way of writing the sum in expression (10), better suited for scientific software
based on matrix formulation, e.g., MATLAB, is

u2(y) = cTVx c (E16.11)

where Vx is the covariance matrix of dimension N × N containing the covariances u
�

x i , x j

�

Vx =





u (x1, x1) · · · u (x1, xN )
...

. . .
...

u (xN , x1) · · · u (xN , xN )



 (E16.12)

and the (row) vector c> = dc1, . . . , cN ] of dimension 1× N contains the sensitivity coefficients.
Both expressions (E16.10) and (E16.11) are equivalent representations of LPU of the GUM [11].

For independent input quantities, we would obtain the better-known simplified expression
(equivalent to using Vx with its off-diagonal elements replaced by zeros)

u2(y) =
N
∑

i=1

[ciu (x i)]
2 =

N
∑

i=1

u2
i (y), ui(y)≡ |ci|u (x i) (E16.13)

The ui(y) are often used in uncertainty budgets to identify which input quantities, with respect
to their corresponding standard uncertainties, have significant influence on the standard uncer-
tainty u(y) associated with the estimate y of the output quantity.

Implicit Model

For an implicit univariate measurement model, however, a single output quantity Y is related to
real input quantities X in a way that cannot readily or stably be represented by a direct functional
relationship. Instead, a model for the measurement takes the form h(Y, X) = 0, in which Y is
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not expressed directly as a function of X , often requiring a numerical implementation to obtain
a solution [52].

The estimate y of Y is the value of η that solves the equation h(η, x) = 0. This equation is
to be solved numerically with a suitable zero-finding algorithm [46]. The standard uncertainty
u(y) associated with y is evaluated from

u2(y)c2
y = c>x Ux cx (E16.14)

where c>x is the (row) vector of dimension 1 × N of partial derivatives ∂ h/∂ X i , and cy is the
partial derivative ∂ h/∂ Y , with all derivatives evaluated at X = x and Y = y [11].

Conditions for valid application

There are a number of conditions for valid application of the GUM uncertainty framework for
non-linear models. They include [51] that f must be continuously differentiable with respect to
the elements X i of X in the neighbourhood of the estimates x i of the X i , for all derivatives up to the
appropriate order, and that higher-order terms not included in the Taylor series approximation
to f (X) are negligible. The differentiation issue was treated above.

Propagation of distributions

The most general and reliable approach for uncertainty propagation is the propagation of dis-
tributions, where the PDFs for the input quantities are propagated through the measurement
model to provide the PDF for the output quantity. The expectation of this PDF is then used as
the estimate of the measurand and the standard deviation of the PDF is used as the standard
uncertainty associated with that estimate.

A Monte Carlo method is an implementation of the propagation of distributions. It still re-
quires a functional relationship, but it does not suffer from the limitations imposed by the GUM
uncertainty framework, namely the differentiable issues, the compliance with the central limit
theorem, the requirement of symmetrical input PDFs, Gaussian output PDF or the non-existence
of a non-Gaussian dominant source of uncertainty. It should provide valid results, provided
an adequate number of samples is drawn, whenever the applicability of the GUM uncertainty
framework is questionable. It should always be checked that any given target uncertainty has
been attained [152], which is a further feature the GUM uncertainty framework cannot provide.

Once the PDF for the output quantity Y is available, a coverage interval for Y corresponding
to any stipulated coverage probability p can be obtained. Commonly, p is taken as 0.95. Such
a coverage interval contains the value of Y with probability p. A straightforward method for
obtaining a coverage interval from the results of applying a Monte Carlo method is to sort the
values of Y in non-decreasing order and use the percentiles to obtain the required interval. The
shortest 95 % coverage interval includes values with the highest density and can be obtained by
the procedure given in [51].

The GUM uncertainty framework does not provide the PDF for Y , but instead assumes that
Y can be described by a Gaussian PDF N

�

y, u2(y)
�

, namely, with expectation y and standard
deviation u(y) (or a scaled and shifted t-distribution). Specifically, the GUM defines a coverage
interval for Y as y ± Up, where Up is an expanded uncertainty corresponding to coverage prob-
ability p given by Up = kpu(y). The factor kp is known as a coverage factor, which is obtained
from the standard Gaussian PDF or the t-distribution [151].
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Example E17

Preparation of calibration gas mixtures
of NH3 in nitrogen using permeation
M. Čaušević, H. Meuzelaar, A.M.H. van der Veen, M.G. Cox

E17.1 Summary

This example describes the uncertainty evaluation of the preparation of a calibration gas mixtures
of ammonia in nitrogen by using permeation. The measurand is the amount fraction ammonia.

E17.2 Introduction of the application

Permeation [7] is one of several techniques to prepare dynamically calibration gas mixtures [3].
The method is a dynamic-gravimetric method, which implies that mass flow rates are used, to-
gether with information concerning the purity of the materials used [35] and the molar masses
of the components to calculate the composition. One of the mass flow rates originates from the
permeation tube (“permeation rate”), the other from a thermal mass flow controller. In this ex-
ample, we describe the calculation of the composition of the calibration gas mixture expressed
in amount fractions, as used in many high-end applications [172,176].

E17.3 Specification of the measurand(s)

The measurand is the amount fraction ammonia, the most abundant component in the perme-
ation tube. A calibration gas mixture is prepared of this component in high-purity nitrogen.

E17.4 Measurement model

The measurement model consists of the following parts:
1. expression to calculate the amount fraction ammonia,
2. expression to calculate the permeation rate (using regression of the recorded mass loss of

the permation tube as a function of time), including effects of temperature and pressure,
3. expression of the molar masses of the parent gases,
4. expressions for calculating the composition of the parent gases.
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E17.4.1 Principle

The component of interest, which in this case is ammonia (NH3), is permeated from a permeation
tube through a membrane into a flow of the carrier gas [7]. In this instance, it is high-purity
nitrogen (N2; grade 6.0). A permeation tube, containing NH3 of known purity was hooked inside
the temperature and pressure controlled permeation chamber to a magnetic suspension balance,
which continuously performs accurate mass measurements. The permeation chamber is purged
at a known and controlled flow rate by the carrier gas. The flow rate of the carrier gas is controlled
by using thermal mass flow controller [36]. The permeation rate is determined by continuously
measuring the mass of the permeation tube. The permeation rate of the component of interest
through the membrane depends on the properties of the component and the permeability of the
membrane:

– chemical nature and structure of the membrane,
– area and thickness of the membrane,
– temperature and pressure gradient of the calibration component across the membrane.
Generally, different amount fractions are realised by either changing the gas flow of the car-

rier gas or the permeation flow. The latter can be changed by changing the temperature in the
permeation chamber.

The measurement equation to calculate the amount fraction yk of the component of interest
k reads as [7]

yk =

ṁ1
M̄1

x1k

ṁ1
M̄1
+ ṁ2

M̄2

, (E17.1)

where ṁ1 denotes the mass flow rate from the permeation tube and ṁ2 the mass flow rate mea-
sured by the thermal mass flow controller (MFC). M̄1 and M̄2 denote molar masses of the parent
gases respectively, and x1k the amount fraction of the component of interest in parent gas 1
(from the permeation tube). As nominally pure substances are used, x1k ≈ 1, but a purity anal-
ysis according to ISO 19229 [35] is necessary to determine the value for x1k and the associated
standard uncertainty. Furthermore, equation (E17.1) presumes that the component of interest is
not present in the carrier gas, which is for ammonia in nitrogen a reasonable assumption. The
most general form of model is that of ISO 6142-1 [24,34], which can be used if the assumptions
underlying equation (E17.1) are not met.

E17.4.2 Permeation rate

The permeation rate (mass flow rate from the permeation tube) ṁ1 is defined as [7]

ṁ1 = qm1 =
dm1

dt
,

where m1 denotes the mass of the permeation tube and t time. In this instance, a calibrated
magnetic suspension balance is used to monitor the mass loss of the permeation tube.

Temperature fluctuations in the permeation chamber affect the permeation rate of the tube
and the performance of the weighing. Also, pressure fluctuations in the permeation chamber
affect the weighing. These effects are all incorporated in the measurement model.

E17.4.3 Material purity

Material purity affects the molar masses M̄1 and M̄2 of the parent gases in equation (E17.1). The
only restriction in the modelling is that the component of interest does not occur in the carrier
gas. As NH3 is not a common impurity in high-purity N2, this assumption is reasonable.
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In this example, nominally pure ammonia and nitrogen have been used. So, the composition
of the parent gases can be described as follows. The amount fraction of the most abundant
component is calculated as [35]

xs j = 1−
q
∑

i=1
i 6=s

x i j , (E17.2)

where s denotes index of the most abundant component.

E17.4.4 Molar masses

The molar mass of any component can be expressed as [24]

Mi =
Z
∑

z=1

νziAz , (E17.3)

where
– Az denotes the standard atomic weight of the element z,
– vzi coefficient of element z in the molecular formula of component i.

So, for ammonia (NH3), ν1i = 1 for nitrogen and ν2i = 3 for hydrogen. Covariances between
the molar masses of the components arise because of the use of the standard atomic weights of
the elements for all molecules. (So, the molar masses of N2 and NH3 are correlated through the
standard atomic weight of nitrogen.)

The molar mass of parent gas j is calculated as

M̄ j =
q
∑

i=1

x i j Mi , (E17.4)

where x i j denotes the amount fraction of component i in parent gas j.

E17.5 Uncertainty propagation

E17.5.1 General

Throughout this example, the law of propagation of uncertainty in the GUM [51] is mostly used.
For the Bayesian model that takes account of the finite resolution of the balance, Markov Chain
Monte Carlo is used to obtain a sample of the posterior probability density function, from which
an estimate and standard uncertainty are computed.

E17.5.2 Amount fraction of the component of interest

The evaluation of the standard uncertainty associated with yk is performed using the law of prop-
agation of uncertainty. A convenient way to obtain the expressions for the sensitivity coefficient
(first partial derivatives of yk with respect to the input quantities) is to use differentials.

Equation (E17.1) can be written as

yk =
ṅ1 x1k

ṅ1 + ṅ2
,
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where ṅ j = ṁ j/M̄ j . The expressions for the partial derivatives with respect to the input variables
read as

dyk =
ṅ1

ṅ1 + ṅ2
dx1k +

ṅ2 x1k

(ṅ1 + ṅ2)2
dṅ1 −

ṅ1 x1k

(ṅ1 + ṅ2)2
dṅ2,

where

dṅ j =
1

M̄ j
dṁ j −

ṁ j

M̄2
j

dM̄ j .

The expression for calculating the squared standard uncertainty (variance) associated with yk,
taking into consideration the covariances between M̄1 and M̄2 as well as between M̄1 and x1k
takes the form

u2(yk) =
�

∂ yk

∂ x1k

�2

u2(x1k) +
�

∂ yk

∂ ṁ1

�2

u2(ṁ1) +

�

∂ yk

∂ M̄1

�2

u2(M̄1) +
�

∂ yk

∂ ṁ2

�2

u2(ṁ2)

+

�

∂ yk

∂ M̄2

�2

u2(M̄2) + 2
∂ yk

∂ M̄1

∂ yk

∂ M̄2
u(M̄1, M̄2) + 2

∂ yk

∂ x1k

∂ yk

∂ M̄1
u(x1k, M̄1),

where

∂ yk

∂ x1k
=

ṅ1

ṅ1 + ṅ2

∂ yk

∂ ṁ1
=

ṅ2 x1k

(ṅ1 + ṅ2)2
1

M̄1

∂ yk

∂ M̄1
= −

ṅ2 x1k

(ṅ1 + ṅ2)2
ṁ1

M̄2
1

∂ yk

∂ ṁ2
= −

ṅ1 x1k

(ṅ1 + ṅ2)2
1

M̄2

∂ yk

∂ M̄2
=

ṅ1 x1k

(ṅ1 + ṅ2)2
ṁ2

M̄2
2

and, assuming that the amount fraction x1k is calculated by difference (see equation (E17.2)),

u(x1k, M̄1) = −
∑

i 6=k

Miu
2(x1i)

Uncertainty due to temperature variations in the permeation rate

The temperature dependence of the permeation rate follows Arrhenius’ law [48, 49, 125]; thus
the temperature dependence takes the form

ṁ= k0 exp
�

−
EA

RT

�

, (E17.5)

where EA denotes the activation energy and k0 is a constant, dependent on, e.g., the component
and the polymer used for the permeation tube. From this expression, it follows that

∂ ṁ
∂ T
=

k0EA

RT2
exp

�

−
EA

RT

�

. (E17.6)
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Values for k0 and EA can be obtained using the measured permeation rate determined at two
different temperatures. From equation (E17.5), for permeation rates ṁ1 and ṁ2 at temperatures
T1 and T2, it follows that

EA =
R ln

ṁ1

ṁ2

1
T2
−

1
T1

and

k0 = ṁ1exp
�

EA

RT1

�

.

The uncertainty due to temperature variations in the permeation rate according to the standard
[3] requires one more term, which is the standard uncertainty u(T ) associated with the measured
temperature stability of the temperature in the tube enclosure. It can be determined directly
from the measured data by the following equation for the experimental standard deviation of
the observations [51].

The uncertainty due to temperature variations in the permeation rate is then calculated as

∂ ṁ
∂ T
=

k0EA

RT2
exp

�

−
EA

RT

�

u(T ). (E17.7)

At T = 52.45 °C, the permeation rate is −7.4921µgmin−1 with an associated standard uncer-
tainty of 0.0795µgmin−1, determined using ordinary least squares (OLS). The activation energy
is 59.164 kJ mol−1 and the value of k0 = 43.069µg min−1. The value of the sensitivity coeffi-
cient at T = 62.00 °C is 4.81× 10−7

µgmin−1 K−1. The standard uncertainty contribution due to
temperature fluctuations on the permeation rate is 0.0022µgmin−1.

Uncertainty of weighing with the balance

Factors that affect the uncertainty of weighing include resolution of the balance, repeatability, and
the linearity of the balance. Eccentric loading of the balance does not occur, since the weighted
tube is fixed in the same position during the whole measurement. The repeatability of the weigh-
ing affects the readings that are used to calculate the permeation rate, so this effect is duly taken
into account when calculating the uncertainty of the permeation rate. The resolution of the
balance amounts to 1µg and affects the assessment of the linearity of the balance.

Fluctuations of temperature, pressure and convection are believed to be duly reflected in
the dispersion of the weighing data and not evaluated separately. Such an evaluation could,
if necessary, be performed by determining the effect of temperature and pressure on buoyancy.
Temperature and pressure fluctuations give rise to fluctuations in the density of the carrier gas
(N2 in this example). The density can be calculated from a suitable equation of state [144] or a
simplified formula such as given in ISO 6976 [28].

Linearity testing verifies the accuracy of the instrument at intermediate values of weight.
The balance linearity test assesses the ability of the balance to accurately measure the mass of an
added weight. The uncertainty of the balance due to linearity can then be described as deviation
of the straight line between two measured values of the same load. The linearity assessment is
conducted by verifying whether the balance records a mass loss (mimicked by a weight of 100 mg)
is, within the uncertainty correctly recorded by the MSB. The permeation tube is substituted by
a 20 g weight in this approach.
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The balance used for weighing the permeation tube is assessed for linearity as follows. A
20 g weight is suspended in the permeation chamber for a prolonged period of time. The reading
of the balance is recorded in the same fashion as for a permeation tube. After allowing for a
stabilisation period and taking a sufficient number of readings, a weight of 100 mg is added.
Then, again after a stabilisation period, a further sufficient number of readings is taken. The
results of the weighings are shown in figure E17.1.
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Figure E17.1: Results of the weighings performed for a linearity assessment of the balance over
a range of 100 mg

From the data in figure E17.1, it can be seen that there are at least two effects at play, (1) the
repeatability of weighing and (2) the resolution of the balance. To evaluate the linearity of the
balance, the recorded mean difference of the two weighings is compared with the conventional
mass of the 100 mg weight. The mass difference as recorded by the balance is defined as

d = µ2 −µ1, (E17.8)

where µi denotes the mean reading of the balance. From both weighings, 700 observations are
available, which have been used. A naive evaluation would use the type A evaluation method
of either the GUM [51], based on the normal distribution, or that in Supplement 1 of the GUM
(GUM-S1) [52], based on the t distribution. Neither of these two methods is capable of address-
ing duly the two effects (finite resolution and repeatability), as in the recorded readings these
effects are inseparable. Hence, the use of a Bayesian that addresses both effects and is fitted to
the data is to be preferred.

The Bayesian evaluation used is based on the manual of the R [149] package RStan [162].
In this manual, a Bayesian model is given for evaluating the standard deviation of the mean of a
series of observations. The likelihood is formulated as follows

zi ∼ N(µ,σ2)

with unknown mean µ and unknown varianceσ2. The zi denote raw (not rounded) observations.
The joint prior on the parameters is non-informative and takes the form of a Jeffreys’ prior [92]

p(µ,σ2)∝ σ−2.

The raw observations are distributed as

zi ∼ R(yi , r),
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1 data {
2 in t<lower=1> N1;
3 vec to r [N1] y1 ;
4 in t<lower=1> N2;
5 vec to r [N2] y2 ;
6 }
7 parameters {
8 r e a l mu1;
9 r e a l mu2;

10 rea l<lower=0> sigma_sq1 ;
11 rea l<lower=0> sigma_sq2 ;
12 vector<lower==0.5, upper=0.5>[N1] y_err1 ;
13 vector<lower==0.5, upper=0.5>[N2] y_err2 ;
14 }
15 transformed parameters {
16 rea l<lower=0> sigma1 ;
17 rea l<lower=0> sigma2 ;
18 vec to r [N1] z1 ;
19 vec to r [N2] z2 ;
20 sigma1 = s q r t ( sigma_sq1 ) ;
21 sigma2 = s q r t ( sigma_sq2 ) ;
22 z1 = y1 + y_err1 ;
23 z2 = y2 + y_err2 ;
24 }
25 model
26 {
27 t a r g e t += =2 ∗ log ( sigma1 ) ;
28 z1 ~ normal (mu1, sigma1 ) ;
29 t a r g e t += =2 ∗ log ( sigma2 ) ;
30 z2 ~ normal (mu2, sigma2 ) ;
31 }
32 generated q u a n t i t i e s {
33 r e a l d i f f ;
34 d i f f = mu1=mu2;
35 }

Listing E17.1: Model for computing the difference between two series of observations, with flat
priors on µ and lnσ2 and modelling the effect of finite resolution

where R denotes the rectangular distribution with mean yi and semi-width r = 0.5µg (the res-
olution of the balance). Save for using zi instead of yi , this model is well covered in the litera-
ture [92,100] and also revisited in the framework of evaluating measurement uncertainty [174].
The complete Bayesian model computes the difference d using equation (E17.8). The model as
outlined for µ and σ2 is used for both weighing sequences parameters respectively (µ1,σ2

1) and
(µ2,σ2

2). The full model has been coded as shown in listing E17.1.
Fitting the data shown in figure E17.1 yields the following results (all values are in µg):

Inference for Stan model: Model3.
4 chains, each with iter=10000; warmup=5000; thin=1;
post-warmup draws per chain=5000, total post-warmup draws=20000.

mean se_mean sd 2.5% 97.5% n_eff Rhat
mu1 100151.305 0.001 0.217 100150.880 100151.737 41351 1
sigma1 5.674 0.001 0.153 5.385 5.981 38617 1
mu2 2.268 0.001 0.201 1.871 2.662 39273 1
sigma2 5.242 0.001 0.140 4.978 5.522 39697 1
diff 100149.036 0.001 0.298 100148.454 100149.628 40528 1
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Samples were drawn using NUTS(diag_e) at Wed Jan 29 12:51:54 2020.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
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Figure E17.2: Trace plot of the four model parameters in the Bayesian model used to fit the
weighing data

Four chains have been used with 10 000 iterations, of which the first 5000 have been used as
warm-up of the sampler. The definitions and interpretation of the parameters R̂ and the effective
chain length neff in the Markov Chain Monte Carlo method have been discussed elsewhere [174]
and are not repeated here. From the values of these parameters, it can be concluded that the
fit of the model is satisfactory. This is confirmed by the trace plot of the four parameters (fig-
ure E17.2). The calculated mass difference is 100149.036µg with an associated standard uncer-
tainty 0.298µg. The mass of the 100 mg weight is 100.181 mg with associated standard uncer-
tainty 0.005 mg (true mass). The relative deviation is 0.03 %, which is negligible in view of the
uncertainty on the permeation rate. Hence, neither a correction is made, nor the uncertainty is
incorporated in the calculations.

Uncertainty of the mass flow controller used for measuring flow rate of the dilution gas

The mass flow of the carrier gas is measured with a thermal mass flow controller. The mass flow of
the dilution gas is constant and amounts to 250mL min−1, which corresponds to a mass flow rate
of 0.3126g min−1. The required density of the gas can be computed using the method described
in ISO 6976 [28,29]. The standard uncertainty of the volume flow rate is 0.2%. For the mass flow
rate, the same relative standard uncertainty applies, which is as absolute standard uncertainty
0.0006 gmin−1. The uncertainty of the gas density at reference conditions is ignored, as it is in
the order of 0.02 % [29], which is negligible in view of the standard uncertainty associated with
the mass flow rate.
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Uncertainty in permeation rate

The permeation data are given at two temperatures, in tables E17.1 and E17.2. According to
ISO 6145-10 [7], a number of observations shall be taken so that u(ṁ)/|ṁ| ≈ 1%. In this exam-
ple, this requirement corresponds to measurement data taken over an interval of approximately
20 min, which is a reasonable time span considering effects such as the stabilisation time of the
permeation system. The calculated permeation rate is an average taken over such a time span.

Table E17.1: Measured values of time t, temperature T , pressure p and mass m of the permeation
tube containing ammonia in the permeation chamber at nominally 52 °C

t/min T/°C p/mbar m/g t/min T/°C p/mbar m/g

49.39 52.45 1018.1 16.467067 58.44 52.45 1018.7 16.466 999
49.72 52.45 1018.1 16.467063 58.77 52.45 1018.7 16.466 994
50.06 52.45 1018.2 16.467059 59.11 52.45 1018.7 16.466 987
50.39 52.45 1018.2 16.467055 59.44 52.45 1018.7 16.466 986
50.72 52.43 1018.1 16.467056 59.77 52.45 1018.7 16.466 990
51.06 52.45 1018.1 16.467044 60.11 52.45 1018.7 16.466 987
51.39 52.45 1018.2 16.467046 61.63 52.45 1018.7 16.466 976
51.72 52.45 1018.1 16.467047 61.97 52.45 1018.7 16.466 967
53.25 52.45 1018.7 16.467035 62.30 52.45 1018.7 16.466 962
53.58 52.45 1018.7 16.467032 62.63 52.45 1018.7 16.466 965
53.92 52.45 1018.7 16.467029 62.97 52.45 1018.7 16.466 963
54.25 52.45 1018.7 16.467026 63.30 52.45 1018.7 16.466 960
54.58 52.45 1018.7 16.467021 63.63 52.45 1018.7 16.466 956
54.92 52.45 1018.7 16.467022 63.97 52.45 1018.7 16.466 957
55.25 52.45 1018.7 16.467021 64.30 52.45 1018.7 16.466 955
55.58 52.45 1018.7 16.467013 65.83 52.45 1018.7 16.466 939
55.92 52.45 1018.7 16.467016 66.16 52.45 1018.7 16.466 938
57.44 52.45 1018.7 16.467003 66.49 52.45 1018.7 16.466 936
57.77 52.45 1018.7 16.467002 66.83 52.43 1018.7 16.466 931
58.11 52.45 1018.7 16.467001 67.16 52.45 1018.7 16.466 926

The resolution of the time measurement is 1 s. Hence, modelling this effect with the rectangu-
lar distribution leads to standard uncertainty of 1 s/

p
12 = 0.29 s. The resolution of the balance

is 1µg. The standard deviation of weighing a 10 g weight for approximately 40 hours is 2.9µg.
These standard uncertainties have been used in errors-in-variables (EIV) regression [6,62]. This
regression method is appropriate here, for it takes into consideration the uncertainties associated
with the independent and dependent variables.

The permeation rate is determined using regression. The results using errors-in-variables
regression, which takes into account the standard uncertainties associated with the time and
mass measurements, are shown in figure E17.3. The top-left panel shows the permeation data
and the bottom-left panel the same data with the fitted straight line. The residuals are shown
in the right panels, the top figure displaying the residuals in the x-direction (time) and the
bottom figure those in the y-direction (mass). Practically all residuals meet the consistency
criteria of Deming regression [6, 78], namely that their absolute value does not exceed the ex-
panded uncertainty. From the EIV regression, ṁ = −13.599µg min−1 with standard uncertainty
u(ṁ) = 0.088µg min−1. Using OLS [81], ṁ = −13.599µg min−1 with standard uncertainty
u(ṁ) = 0.108µg min−1. To the last stated digit, the calculated permeation rates concur, which
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Table E17.2: Measured values of time t, temperature T , pressure p and mass m of the permeation
tube containing ammonia in the permeation chamber at nominally 62 °C

t/min T/°C p/mbar m/g t/min T/°C p/mbar m/g

1382.38 62.01 1014.3 16.449565 1392.65 62.00 1014.2 16.449 430
1383.91 62.00 1014.3 16.449544 1392.98 62.00 1014.2 16.449 424
1384.25 62.00 1014.3 16.449540 1393.32 62.00 1014.2 16.449 418
1384.58 62.00 1014.4 16.449526 1393.65 61.99 1014.2 16.449 418
1384.91 62.00 1014.3 16.449526 1393.98 62.00 1014.2 16.449 413
1385.25 62.00 1014.3 16.449528 1394.32 62.01 1014.2 16.449 407
1385.58 62.00 1014.3 16.449529 1394.65 62.00 1014.2 16.449 404
1385.91 62.00 1014.3 16.449522 1394.98 61.98 1014.1 16.449 395
1386.25 62.00 1014.3 16.449518 1396.52 62.00 1014.1 16.449 374
1386.58 62.00 1014.3 16.449513 1396.85 62.00 1014.1 16.449 369
1388.11 61.99 1014.2 16.449489 1397.18 62.00 1014.1 16.449 365
1388.45 61.99 1014.2 16.449491 1397.52 61.99 1014.1 16.449 359
1388.78 62.00 1014.2 16.449482 1397.85 62.00 1014.1 16.449 356
1389.11 61.99 1014.2 16.449477 1398.18 62.00 1014.1 16.449 349
1389.45 61.99 1014.2 16.449473 1398.52 62.00 1014.1 16.449 345
1389.78 62.00 1014.2 16.449464 1398.85 62.00 1014.2 16.449 339
1390.11 62.00 1014.2 16.449468 1399.18 62.00 1014.1 16.449 339
1390.45 62.00 1014.2 16.449465 1400.72 62.00 1014.2 16.449 318
1390.78 61.99 1014.2 16.449457 1401.05 62.00 1014.2 16.449 317
1392.32 62.00 1014.2 16.449434 1401.39 62.00 1014.2 16.449 308

implies that it is justified to use OLS.
For OLS, the built-in function LINEST in MS Excel provides identical values to the OLS results

above for the slope and associated standard uncertainty. To obtain both the estimate and the
standard uncertainty, LINEST should be called with the last two arguments equal to TRUE; the
first one to allow for a non-zero intercept, the second for calculating additional statistics.

E17.5.3 Uncertainty due to materials purity

The squared standard uncertainty of xs j is computed as

u2(xs j) =
q
∑

i=1
i 6=s

u2(x i j). (E17.9)

The expression for the covariance term of the amount fraction of the most abundant component
and all other components in the parent gas j (i 6= s) is given by [171]

u(xs j , x i j) = −u2(x i j).

Both expressions follow from the applying the law of propagation of uncertainty to equation (E17.2).
The composition of the materials used is summarised in table E17.3. The amount fractions am-
monia (parent 1) and nitrogen have been computed using equation (E17.2) and the standard
uncertainty has been obtained from equation (E17.9). The amount fractions methane, carbon
monoxide, carbon dioxide and oxygen in nitrogen stem from the limit of quantification of the
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Figure E17.3: Results of the errors-in-variables regression of the permeation data at 62 °C from
table E17.2

respective methods. The derivation of the values and standard uncertainties has been performed
using the rectangular distribution in accordance with ISO 19229 [35].

Table E17.3: Purity information of ammonia (Parent 1) and nitrogen (Parent 2), expressed in
amount fractions (mol mol−1)

Component Parent 1 Parent 2
x u(x) x u(x)

Argon 0.000005 0.000 003
Methane 8.00× 10−9 5.00× 10−9

Carbon monoxide 1.50× 10−8 9.00× 10−9

Carbon dioxide 1.00× 10−8 6.00× 10−9

Hydrogen 2.50× 10−8 1.50× 10−8

Water 0.010 0.002 1.00× 10−8 6.00× 10−9

Nitrogen 0.999995 0.000 003
Oxygen 5.00× 10−9 3.00× 10−9

Ammonia 0.990 0.002
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E17.5.4 Uncertainty due to the molar masses

The squared standard uncertainty of the molar mass is computed by applying the law of propa-
gation of uncertainty of the GUM [51] to equation (E17.3):

u2(Mi) =
Z
∑

z=1

ν2
ziu

2(Az), (E17.10)

where u(Az) is obtained by using the rectangular distribution to model the uncertainty of the
standard atomic weights [24].

ISO 6142-1 [24] does not take into account covariance between the molar masses of two
components, yet according to [171] it can be calculated as:

u(Mi , M j) =
L
∑

z=1

vzi vz ju
2(Az), (E17.11)

where L denotes the number of atoms that components i and j have in common.
Molar masses of each component of ammonia (Parent 1) and nitrogen (Parent 2) have been

calculated by using the standard atomic weights of elements (E17.3). As an illustration of equa-
tion (E17.11) we can consider the covariance between the molar masses of water and ammonia.
The common element for these components is hydrogen (H), where its stochiometric number
in molecular formula of water is vzi = 2 and in ammonia vz j = 3. The standard uncertainty of
the standard atomic weight of hydrogen with the assumed rectangular probability distribution
amounts to u(Az) = 0.00007803, which gives u(MH2O, MNH3

) = 3.64× 10−8. The covariance
matrix of the molar masses of each component has been computed as

VM × 10−8 =



























33.3 0 0 0 0 0 0 0 0
0 43.1 33.3 33.3 4.86 4.86 0 0 7.29
0 33.3 37.9 42.5 0 4.56 0 9.13 0
0 33.3 42.5 51.6 0 9.13 0 18.3 0
0 4.86 0 0 2.43 2.43 0 0 3.64
0 4.86 4.56 9.13 2.43 6.99 0 9.13 3.64
0 0 0 0 0 0 2.41 0 12.0
0 0 9.13 18.3 0 9.13 0 18.3 0
0 7.29 0 0 3.64 3.64 12.0 0 11.5



























, (E17.12)

where each diagonal element represents the squared standard uncertainty of molar masses and
otherwise the covariance between the molar masses of two components.

The components themselves are ordered into rows and columns according to their distribu-
tion shown in table E17.3. The matrix multiplication can be carried out in MS Excel by using the
in-built function MMULT.

The molar masses of components of parent gases, accompanied by associated standard un-
certainties, are given in table E17.4.

The squared standard uncertainty associated with the molar mass of parent gas j is calcu-
lated using the law of propagation of uncertainty for correlated input quantities of the GUM [51,
eqn (13)]:

u2(M̄ j) =
q
∑

i=1

x2
i ju

2(Mi)+
q
∑

i=1

M2
i u2(x i j)+2

q−1
∑

i=1

q
∑

k=i+1

x i j xk ju(Mi , Mk)+2
q−1
∑

i=1

q
∑

k=i+1

Mi Mku(x i j , xk j),

where x i j denotes the amount fraction of component i in parent gas j.
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Table E17.4: Molar masses of components of parent gases ammonia and nitrogen and their
standard uncertainties

Component Mi u(Mi)

Argon 39.948 5.77× 10−4

Methane 16.0425 6.56× 10−4

Carbon monoxide 28.010 00 6.16× 10−4

Carbon dioxide 44.0094 7.18× 10−4

Hydrogen 2.01595 1.56× 10−4

Water 18.01535 2.64× 10−4

Nitrogen 28.013 71 4.91× 10−4

Oxygen 31.9988 4.27× 10−4

Ammonia 17.03078 3.39× 10−4

The expression for the covariance between M̄1 and M̄2 can be derived as follows. Let

M̄1 =
q
∑

i=1

x i1Mi ,

M̄2 =
q
∑

i=1

x i2Mi .

Given that the Mi are correlated, we need to generalise equation (F.1.2) of the GUM [51] to
enable working with correlated variables. Suppose we have two functions Y = f (X1, . . . , XN )
and Z = g(X1, . . . , XN ); then [47]

u(Y, Z) =
∑

i

∂ f
∂ X i

∂ g
∂ X i

u2(X i) +
∑

i

∑

j 6=i

∂ f
∂ X i

∂ g
∂ X j

u(X i , X j). (E17.13)

Noting that the molar masses are the shared variables in the expressions for M̄1 and M̄2,

u(M̄1, M̄2) =
∑

i

x i1 x i2u2(Mi) +
∑

i

∑

k

x i1 xk2u(Mi , Mk).

This expression could also have been obtained using the law of propagation of uncertainty for
the explicit, multivariate measurement model of GUM-S2 [54], where the above expressions
for M̄1 and M̄2 form the multivariate measurement model. The covariance matrix contains
u2(M̄1), u2(M̄2) and u(M̄1, M̄2). The molar masses of parent gases have been calculated and
amount to M̄1 = 17.04063 gmol−1 for ammonia and M̄1 = 28.01377 gmol−1 for nitrogen. The
associated squared standard uncertainties and covariance have been computed as u2(M̄1) =
3.99× 10−6 g2 mol−2,
u2(M̄2) = 2.42× 10−7 g2 mol−2 and u(M̄1, M̄2) = 1.19× 10−7 g2 mol−2. Hence, the correlation
coefficient is r(M̄1, M̄2) = 0.121, which implies a weak correlation between the molar masses of
the two parent gases.

E17.6 Reporting the result

The amount fraction NH3 is 70.8µmol mol−1 with standard uncertainty 0.6µmolmol−1. For the
components that have been added intentionally (in this example NH3 and N2), it is appropriate
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to assume the normal distribution or t distribution to obtain a coverage factor to calculate the
expanded uncertainty. Hence, the result can be stated as (70.8± 1.2)µmolmol−1 (k = 2) with
95 % probability.

The full composition of the calibration gas mixture is given in table E17.5, computed with
the measurement model from ISO 6142-1 [24]. The measurement model in this example only
provides the amount fraction, which is also given in table E17.5.

Table E17.5: Composition of a calibration gas mixture of NH3 in N2, expressed in amount frac-
tions (mol mol−1)

Component y u(y) u(y)

Argon 5× 10−6 3× 10−6 60.0 %
Methane 8× 10−9 5× 10−9 62.5 %
Carbon monoxide 1.5× 10−8 9× 10−9 60.0 %
Carbon dioxide 1× 10−8 6× 10−9 60.0 %
Hydrogen 2.5× 10−8 1.5× 10−8 60.0 %
Water 7.25× 10−7 1.43× 10−7 19.7 %
Nitrogen 0.999923 0.000 003 0.0003%
Oxygen 5× 10−9 3× 10−9 60.0 %
Ammonia 7.08× 10−5 5.99× 10−7 0.8%

E17.7 Interpretation of results

Experience has shown that as far as the amount fractions of abundant components are concerned,
the use of the law of propagation of uncertainty suffices to obtain an estimate and standard un-
certainty of the amount fraction of the component of interest. Also the establishment of coverage
intervals for these amount fractions using the normal or t distribution is appropriate. For trace
components, it can be necessary to use another probability density function for establishing cov-
erage intervals, such as the beta distribution [35,175].

In this example, we have shown how the use of OLS can be justified. The principal question
was whether the uncertainty associated with the recorded time measurements could be ignored
in the calculation of the permeation rate. The resolution of the time measurement is 1 s (see
tables E17.1 and E17.2). The comparison between the permeation rates obtained by EIV and
OLS shows that the simpler method can be used.

The method of total differentials as employed in section E17.5.2 is a convenient way to ob-
tain the expressions for the partial derivatives. It is particularly useful in multistage measurement
models, as it eases the use of the chain rule of differentiation. It can be shown that the chain rule
of differentiation can be readily implemented by substituting differentials [58]. The resulting
expressions for the sensitivity coefficients are compact. When applying this method to a mul-
tivariate measurement model (such as the model in ISO 6142-1 [24] to compute the amount
fractions of all components in the calibration gas mixture), the chain rule of differentiation can
be implemented in the form of a matrix multiplication [171].
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Example E18

Pressure drop measurement
M. Čaušević, M.G. Cox, J. Greenwood

E18.1 Summary

This example demonstrates how correlations can sometimes be removed from an uncertainty
evaluation by modifying the measurement equation so that strongly correlated quantity esti-
mates do not appear together. This is demonstrated by an example considering the pressure
drop in a pressurised vessel, in which the effect of correlation between temperature measure-
ments is removed. In this example the uncertainty associated with an estimate of pressure drop
is appreciably smaller when correlation is taken into consideration.

E18.2 Introduction of the application

In every kind of measurements involving gases, it is necessary to have a controlled situation
in terms of gas temperature, pressure and volume. This example is derived from a real-world
test that involves the gas at a pressure up to 50 MPa trapped in a vessel having small volume
at standard temperature. Probes to measure the pressure and temperature were fixed inside
the sealed vessel. The aim of the test was to show that the uncertainty due to gas leakage, i.e.
the pressure drop in the vessel, can vary for two cases that involved the same measurement
results but different approaches of evaluation. All correlations within this example arise from
the application of the gas equation, which is a good approximation of the behaviour of many
gases under many conditions, although it has some limitations [42].

E18.3 Specification of the measurand(s)

The measurand is the pressure drop in a pressurised vessel and depends on several physical quan-
tities: pressure, temperature and time at the beginning and end of the test. Measured values of
these quantities and their associated standard uncertainties are based upon actual measurements.
The period over which the test was performed was 1800s. Measured values are corrected to a
standard temperature, that is, the reference temperature of 20 °C. The mathematical model for
pressure drop, which gives the relation between the measurand and all influence quantities is
explained in the following section.

The aim of the example is to show how the use of a temperature difference as opposed to the
temperature at the end of the test leads to a much smaller uncertainty.
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E18.4 Measurement model

E18.4.1 Measurement principle

The measurement model in this example originates from the gas equation, which is the equation
of state of the ‘ideal’ gas [122]:

pV = nRT, (E18.1)

where

• p is the pressure in the vessel,
• V is the volume of the vessel,
• n is the number of moles of gas,
• R is the gas constant,
• T is the absolute temperature of the gas.

To obtain the pressure drop in the vessel during the period of the test, we observe quantities
in equation (E18.1) with respect to times t1 and t2 at the beginning and end of the test. Number
of moles, i.e amount of the gas at the start time (t1), can be expressed as

n1 =
V p1

RT1
(E18.2)

and accordingly the amount of gas at the end time (t2) is

n2 =
V p2

RT2
. (E18.3)

Loss of material in the form of gas escaping from the system is therefore provided by the difference

∆n= n2 − n1 =
V
R

�

p2

T2
−

p1

T1

�

. (E18.4)

Since pressure change is one of the best indicators of gas leakage in the sealed system it would be
useful to show the relation between the number of moles and the pressure change, i.e pressure
drop at some reference temperature Ts:

∆ps =∆n
R
V

Ts. (E18.5)

By substituting equation (E18.4) into (E18.5) we obtain

∆ps =
�

p2

T2
−

p1

T1

�

Ts. (E18.6)

The resulting change of pressure occurring over the period ∆t = t2 − t1 can be scaled to some
reference interval ∆ts; thus the equation (E18.6) becomes

∆ps =
�

p2

T2
−

p1

T1

�

Ts
∆ts

∆t
. (E18.7)

For test items of a predefined volume, pressure change is often a sufficient measurand. Therefore,
expression (E18.7) is the measurement model we will consider.
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In general, for arbitrary volumes, pressure change does not fully specify the size of a leak in
the way that loss of material ∆n does.

More commonly a leak-rate is evaluated in terms of rate of mass flow

Qm =
V

MR

�

p2

T2
−

p1

T1

�

1
∆t

, (E18.8)

where M represents the molar mass of the gas. Alternatively, a leak rate might be expressed in
terms of rate of change of volume for gas at a reference temperature Ts and pressure Ps:

Qv = V
�

p2

T2
−

p1

T1

�

Ts

ps
. (E18.9)

The arguments presented shortly apply equally well to flow rate measurement equations (E18.8)
and (E18.9).

E18.4.2 Correlations in the measurement model

Whenever estimates of a quantity are measured using a common process or common equipment
(such as in a comparison of values ‘before’ and ‘after’ some change) there is a possibility of
correlation between the estimates. In this example correlations could exist between the pressure
measurements, between the temperature measurements and between the time measurements.
These correlations could arise from a variety of sources such as common errors in traceability,
or from metrological effects such as the positioning of gauges, or from gradients in temperature
between the location of the measurement and the location of interest.

Where there are significant correlations present, the normal process is to follow the procedure
described in GUM Annex F.1.2. However, if the equation can be modified and expressed in such
a way that the correlation can be removed, then the more straightforward approach offered by
GUM equation (10) can be followed.

For example, if the same measuring instrument were used for obtaining two measured values,

y1 = x1 + s,

y2 = x2 + s,

where the yi denotes corrected values, the x i and s represent measured values and systematic
error, respectively. By differencing y1 and y2 the common systematic error s cancels.

In this example we concentrate on temperature correlation, since this is found to have the
most significant effect. Therefore it is worthwhile re-expressing (E18.7) in terms of T1 and the
temperature difference

∆T = T2 − T1, (E18.10)

in other words, to eliminate T2, which is strongly correlated with T1, from explicit considera-
tion. Such an approach prevents any common systematic error appearing multiple times in the
measurement equation. The standard uncertainty associated with the temperature difference is
much smaller than that associated with a single temperature, that is,

u(∆T )� u(T1). (E18.11)

Making use of (E18.10) and (E18.11), expression (E18.7) becomes

∆ps =
�

T1p2 − T2p1

T2T1

�

Ts

∆t
∆ts (E18.12)

≈
�

p2 − p1

T1
−
∆T p1

T1
2

�

Ts

∆t
∆ts. (E18.13)
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E18.5 Uncertainty propagation

E18.5.1 Law of propagation of uncertainty

For the measurement uncertainty evaluation, the GUM [51] law of propagation of uncertainty
(LPU) is applied for the two measurement equations (E18.7) and (E18.13). As described above,
the first equation takes no account of correlation, and the second accounts for correlation by ex-
pressing the second temperature term as the sum of the first temperature term and the difference
between the two terms. Use of equation (E18.13), knowing the standard uncertainty associated
with the difference, is shown to decrease significantly the measurement uncertainty associated
with the estimated pressure drop.

The mathematical models presented in equations (E18.7) and (E18.13) will be used as a
starting point for evaluation of uncertainties.

Both approaches distinguish between Type A (uA) and Type B (uB) uncertainty evaluations,
where Type A uncertainty is the standard deviation associated with repeatability of measure-
ments. Three consecutive measurements were performed with the same results used for both
approaches.

The probability distributions in this example are assigned based on knowledge concerning
the measurement.

E18.5.2 Ignoring temperature correlation

In this subsection correlation between temperature values is ignored, that is, it is taken as zero.
For model (E18.7) the sensitivity coefficients are

∂∆ps

∂ p1
= −

1
T1

Ts

∆t
∆ts = −

Ts∆ts

T1∆t
, (E18.14)

∂∆ps

∂ p2
=

1
T2

Ts

∆t
∆ts =

Ts∆ts

T2∆t
, (E18.15)

∂∆ps

∂ T2
= −

p2

T2
2

Ts

∆t
∆ts = −

p2Ts∆ts

T2
2∆t

, (E18.16)

∂∆ps

∂ T1
=

p1

T1
2

Ts

∆t
∆ts =

p1Ts∆ts

T1
2∆t

, (E18.17)

∂∆ps

∂ t1
=
�

p2

T2
−

p1

T1

�

Ts

(∆t)2
∆ts =

∆ps

∆t
, (E18.18)

∂∆ps

∂ t1
=
�

p2

T2
−

p1

T1

�

Ts

(∆t)2
∆ts = −

∆ps

∆t
. (E18.19)

The standard measurement uncertainty of individual measurement quantities can be determined
as the standard deviations of the according rectangular or normal probability distributions. It is
assumed that the expanded uncertainties, denoted by U , for pressure measurements are based
on normal probability distributions. Expected values of temperature and time lie within inter-
vals whose lengths are denoted by 2aT and 2at , respectively, and rectangular distributions are
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assumed for both quantities. The corresponding standard uncertainties are therefore

u(p1) =
U(p1)

2
, (E18.20)

u(p2) =
U(p2)

2
, (E18.21)

u(T2) =
aTp

3
, (E18.22)

u(T1) =
aTp

3
, (E18.23)

u(t1) =
atp

3
, (E18.24)

u(t2) =
atp

3
. (E18.25)

All the results obtained from equations (E18.14)–(E18.25) can be combined into a Type B mea-
surement uncertainty evaluation for the pressure drop in the vessel:

u2
B =

�

∂∆ps

∂ p1
u(p1)

�2

+
�

∂∆ps

∂ P2
u(p2)

�2

+
�

∂∆ps

∂ T2
u(T2)

�2

+
�

∂∆ps

∂ T1
u(T1)

�2

+
�

∂∆ps

∂ t1
u(t1)

�2

+
�

∂∆ps

∂ t2
u(t2)

�2

.

(E18.26)

The combined measurement uncertainty uc for the pressure drop in the vessel is obtained from

u2
c = u2

A + u2
B. (E18.27)

E18.5.3 Accounting for temperature correlation

In this subsection correlation between temperature values is taken into consideration through
use of the model presented in equation (E18.13). The sensitivity coefficients are as follows:

∂∆ps

∂ p1
= −

�

1
T1
−
∆T
T1

2

�

Ts

∆t
∆ts = −

(T1 +∆T )Ts∆ts

T1
2∆t

≈ −
Ts∆ts

T1∆t
, (E18.28)

∂∆ps

∂ p2
=

1
T1

Ts

∆t
∆ts =

Ts∆ts

T1∆t
, (E18.29)

∂∆ps

∂∆T
= −

p1

T1
2

Ts

∆t
∆ts = −

p1Ts∆ts

T1
2∆t

, (E18.30)

∂∆ps

∂ T1
=

�

p1 − p2

T1
2 +

2T1∆T p1

T1
4

�

Ts

∆t
∆ts =

Ts∆ts[T1(p1 − p2) + 2∆T p1]
T1

3∆t
, (E18.31)

∂∆ps

∂ t1
= −

�

p2 − p1

T1
−
∆T p1

T1
2

�

Ts

(∆t)2
∆ts = −

∆ps

∆t
, (E18.32)

∂∆ps

∂ t2
=

�

p2 − p1

T1
−
∆T p1

T1
2

�

Ts

(∆t)2
∆ts =

∆ps

∆t
. (E18.33)

The standard measurement uncertainty of individual measurement quantities can be deter-
mined as the standard deviations of the according rectangular, triangular or normal probability
distributions. As in the previous case, when the correlation between temperatures are not taken
into account, it is assumed that pressure measurements have normal probability distributions
and temperature and time measurements have rectangular. In case of temperature difference,
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the length of the interval in which ∆T is expected to lie is denoted by 2a∆T . It is assumed
that the temperature difference has a triangular distribution based on the earlier assumption of
rectangular distributions for T1 and T2. Hence,

u(p1) =
U(p1)

2
, (E18.34)

u(p2) =
U(p2)

2
, (E18.35)

u(∆T ) =
a∆Tp

6
, (E18.36)

u(T1) =
aTp

3
, (E18.37)

u(t1) =
atp

3
, (E18.38)

u(t2) =
atp

3
. (E18.39)

All the values obtained from equations (E18.28)–(E18.39) can be combined into a Type B mea-
surement uncertainty evaluation for the pressure drop in the vessel:

u2
B =

�

∂∆ps

∂ p1
u(p1)

�2

+
�

∂∆ps

∂ p2
u(p2)

�2

+
�

∂∆ps

∂∆T
u(∆T )

�2

+
�

∂∆ps

∂ T1
u(T1)

�2

+
�

∂∆ps

∂ t1
u(t1)

�2

+
�

∂∆ps

∂ t2
u(t2)

�2

.

(E18.40)

The combined standard uncertainty for the pressure drop in the vessel is obtained from equation
(E18.27).

E18.6 Reporting the result

During the measurement the data in table E18.1 were obtained (values are given as provided).
Uncertainties of individual quantities are taken from uncertainty budgets for the use of the pres-
sure, temperature and time measuring equipment. The temperature uncertainty includes a dom-
inant contribution with limits of about 0.15 K for a common (for all such measurements) but
poorly understood systematic effect due to temperature gradients between the thermometer and
the gas in the vessel.

The results of the second approach are presented in table E18.2.
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Table E18.1: Measured values including values of the pressure drop, assigned probability density
functions and combined standard uncertainty based upon application of LPU to equation (E18.7)

Quantity Value Std. uncertainty PDF Sensitivity coefficient Variance

p1 50.001 MPa 0.0056 MPa norm. −1.0010 7.856× 10−6 MPa2

p2 49.951 MPa 0.0056 MPa norm. 1.0007 7.851× 10−6 MPa2

T1 292.850 K 0.15 K rect. 0.1709 MPa K−1 2.191× 10−4 MPa2

T2 292.950 K 0.15 K rect. −0.1706 MPaK−1 2.184× 10−4 MPa2

t1 1000 s 5 s rect. −3.73× 10−5 MPas−1 1.159× 10−8 MPa2

t2 2800 s 5 s rect. 3.73× 10−5 MPas−1 1.159× 10−8 MPa2

Ts 293.150 K
ts 1800 s
∆ps −0.06712 MPa

uA 0.0025 MPa norm. 1 0.0025 MPa
uc 0.0214 MPa
U(k = 2) 0.0429 MPa

Table E18.2: Measured values including values of the pressure drop, assigned probability den-
sity functions and combined standard uncertainty based upon application of LPU to equation
(E18.13)

Quantity Value Std. uncertainty PDF Sensitivity coefficient Variance

p1 50.001 MPa 0.0056 MPa norm. −1.0010 7.856× 10−6 MPa2

p2 49.951 MPa 0.0056 MPa norm. 1.0007 7.851× 10−6 MPa2

T1 292.850 K 0.15 K rect. 0.0030 MPa K−1 6.205× 10−10 MPa2

∆T 0.100 K 0.02 K trian. −0.1709 MPaK−1 1.947× 10−6 MPa2

t1 1000 s 5 s rect. −3.73× 10−5 MPa s−1 1.159× 10−8 MPa2

t2 2800 s 5 s rect. 3.73× 10−5 MPa s−1 1.159× 10−8 MPa2

Ts 293.150 K
ts 1800 s
∆ps −0.06714 MPa

uA 0.0025 MPa norm. 1 0.0025 MPa
uc 0.0049 MPa
U(k = 2) 0.0098 MPa

E18.7 Interpretation of results

It can be seen from the results in section E18.6 that both equations (E18.7) and (E18.13) yield
essentially the same normalized pressure drop (−0.06712 MPa and −0.067 14 MPa). An extra
decimal digit is quoted beyond that for the associated standard uncertainties (0.0429 MPa and
0.0049 MPa, respectively) to show the difference is two units in the fifth digit, some two orders
of magnitude smaller than these uncertainties. However, these standard uncertainties are sig-
nificantly different from each other, being a factor four smaller when correlation is taken into
account. Thus, on the basis of the data used, some means of treating the correlation is necessary
to establish a reliable measurement uncertainty.

The question may arise whether it is also necessary to take into account correlation between
pressures at the beginning and end of the test. In this example we decided to consider only the
correlation between temperature terms, since the uncertainty due to pressure measurements is
appreciably lower than that due to temperature measurements.

Besides the GUM approach [51], the Monte Carlo method described within GUM Supple-
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ment 1 (GUM-S1) [52] was also used for the evaluation of the measurement uncertainty for
the measurement models described by equations (E18.7) and (E18.13). GUM-S1 recommends
application of the Monte Carlo method approach to validate the use of the GUM uncertainty
framework. In this example, in order to obtain an estimate of the output quantity, a value for the
associated standard uncertainty and endpoints of the shortest coverage interval, the number of
Monte Carlo trials used was 107. The MATLAB programming language was used to perform the
calculations for the Monte Carlo method.

Input quantities, together with associated standard uncertainties and assumptions on the
probability density function for each input quantity remained the same as listed in table E18.1
and E18.2 in section E18.6. The results of the GUM uncertainty framework and the Monte Carlo
method are presented in tables E18.3 and E18.4. Table E18.3 shows results for the first approach
in which the temperature correlation was ignored and table E18.4 shows results for the second
approach.

Table E18.3: Results obtained by the GUM uncertainty framework (GUF) and the Monte Carlo
method (MCM) not accounting for temperature correlation

Approach Estimate/bar Std. unc./bar CI (95%)/bar

GUF −0.067120 0.02143 (−0.10999, 0.02425)
MCM −0.067118 0.02143 (−0.10789, 0.02634)

Table E18.4: Results obtained by the GUM uncertainty framework (GUF) and the Monte Carlo
method (MCM) accounting for temperature correlation

Approach Estimate/bar Std. unc./bar CI (95%)/bar

GUF −0.067143 0.00489 (−0.07693, 0.05735)
MCM −0.067485 0.00471 (−0.07671,−0.00582)

Summary statistics obtained with GUM uncertainty framework and Monte Carlo method do
not differ greatly.

Further information can be obtained by considering the full PDF as shown in figures E18.1
and E18.2 (note the different scales).
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Figure E18.1: Probability density functions for pressure drop obtained by the GUM uncertainty
framework and the Monte Carlo method not accounting for temperature correlation

Figure E18.2: Probability density functions for pressure drop obtained by the GUM uncertainty
framework and the Monte Carlo method accounting for temperature correlation (note the differ-
ent scale from figure E18.1)

Figures E18.1 and E18.2 show the Gaussian PDF for pressure drop (red line) resulting from
the GUM uncertainty framework. They also show the PDF for the pressure drop obtained as a
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result of scaled frequency distribution of M = 1× 107 Monte Carlo trials (blue line). The end-
points of the probabilistically symmetric 95 % coverage interval provided by both methods and
both approaches are shown as horizontal lines. Probability density functions, coverage intervals
and pressure drop estimates are visually very similar. It can be noticed that the slope of the PDF
on figure E18.1 as a result of the Monte Carlo method is steeper than that of the GUM method.
The MCM curve agrees well with a triangular distribution. On the other hand, the shape of the
PDFs as result of both methods (GUM and MCM) in figure E18.2 show very good agreement.
The reason for this could be the correlation between the measured temperature at the beginning
and end of the test.

According to [51], if the measurement model is linear in the input quantities and the domi-
nant contributions have normal probability distributions, the GUM uncertainty framework (GUF)
will provide reliable results. Even though the measurement models for both approaches (ignor-
ing and accounting for the temperature correlation) were non-linear, both the MCM and GUM
provided similar results (see table E18.3 and table E18.4). The Monte Carlo method in this ex-
ample was used for the purpose of analysis of results and validation of the GUM uncertainty
framework, which was successfully achieved.
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Flow meter calibration using the
master meter method
M. Čaušević, M.G. Cox, A.M.H. van der Veen

E19.1 Summary

This example demonstrates the calibration of a gas flow measuring instrument by the so-called
“master meter” method, i.e. by comparing the measured flow on a master meter (reference
standard) and the measured flow on the device under test. The measurements in this example
were performed by using three measurement standards with different measuring ranges and one
device under test in the “SARAJEVOGAS” Laboratory. The measurements were performed at 10
different flow rates, where each flow rate was measured three times, which gives in total 30
measurements of flow rate. As a result, this example gives the uncertainty of measurement of
the meter under test at each of ten flow rates within this set-up.

E19.2 Introduction of the application

The test facility operates on the so-called “master meter” principle where the meter under test
(MUT) is located downstream from the standard meter (figure E19.1). Ambient air is sucked by
a fan and the flow rate is adjusted by regulation of the fan and electromotive valve. The testing
procedure is controlled by software. The measurement of flow rate for this kind of set-up first

Figure E19.1: Set-up in the SARAJEVOGAS laboratory

starts with entering the desired flow rate into the flow computer. After the first recorded pulse
from the MUT, the volume flow rate from the MUT and the reference measurement standard
(master meter or MM) are measured and recorded separately on the indicating devices of these
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measuring instruments. After two or more MUT pulses (depending on the selected volume)
the measurement stops automatically. The volume flow rates from the MUT and the MM are
calculated by dividing the number of pulses by the pulse value for each measuring instrument.
Figure E19.1 shows the location of the master meter, the meter under test and the measuring
instruments for temperature and pressure measurements in the laboratory set-up.

E19.3 Specification of the measurand(s)

The measurement, which in this case was for calibration purposes, was performed at atmospheric
conditions with air temperature around 22 °C. The absolute pressure was measured directly with
the standard and the meter under test, while the temperatures were measured downstream.
Single tests lasted a minimum of 200s to reach a stable flow rate. The calibration was performed
with three standard/master meters with the following measuring ranges given in table E19.1.

Table E19.1: Volume flow rate ranges of the meters involved

G40 Rotary gas meter G250 Turbine gas meter G1000 Turbine gas meter

20 m3 h−1–50 m3 h−1 100 m3 h−1–350 m3 h−1 450 m3 h−1–1000 m3 h−1

E19.4 Measurement model

E19.4.1 Main effects

The basic procedure within this example differentiates between two types of quantities that in-
fluence the measurement uncertainty. The first type refers to the measurement error of the meter
under test and the second type to the measurement standard, repeatability of measurement as
well as any other additional influence quantity. The measurement error of the device under test
is considered to be the main effect since it includes measurement effects of pressure, temperature
and impulses.

The mathematical model for the measurement error of the MUT can be expressed as follows
[79]:

e =
VMUT − VREF

VREF
(E19.1)

=
VMUT

VREF
− 1, (E19.2)

where
e is the measurement error of the MUT,
VMUT is the volume of the gas flow that is measured with the MUT,
VREF is the reference volume, i.e. the volume of the gas flow measured with the MM.

The reference volume VREF is not the same as VMM, which is the volume of the gas flow
measured with the MM, because it is corrected for the reference conditions (temperature and
pressure) at the measurement point where the MUT is placed. VREF is calculated by using the the
gas equation [122]

pV = ZRT, (E19.3)

where

Examples of evaluating measurement uncertainty First edition (M27)



Example E19. Flow meter calibration using the master meter method 197

p is the pressure of the gas,
V is the volume of the gas,
Z is the compressibility factor of the gas,
T is the absolute temperature of the gas,
R the ideal gas constant.

Z and R are considered to remain constant for both the measurement point of the MM and the
MUT [79]:

pMUTVREF

TMUT
=

pMMVMM

TMM
= ZR, (E19.4)

VREF = VMM
pMM

pMUT

TMUT

TMM
, (E19.5)

where
VMM is the volume of gas measured with the MM,
pMM is the gas pressure measured with the MM,
pMUT is the gas pressure measured with the MUT,
TMUT is the gas temperature measured with the MUT,
TMM is the gas temperature measured with the MM.

By substituting equation (E19.5) into equation (E19.2),

e =
VMUT

VMM

pMUT

pMM

TMM

TMUT
− 1. (E19.6)

By using a slightly different notation from that in [79] the volume of the measured gas can be
expressed in terms of the number of pulses and the K-factor (pulse value) of the measuring
instrument:

VMUT =
IMUT

KMUT
, (E19.7)

VMM =
IMM

KMM(1+ fMM)
, (E19.8)

where
IMUT is the number of pulses recorded on the MUT,
KMUT is the pulse value directly given on the label of the MUT (a constant value for the
individual measuring instrument),
IMM is the number of pulses recorded on the MM,
KMM is the pulse value directly given on the label of the MM (a constant value for the
individual measurement standard),
fMM is the MM error according to the calibration certificate.

After substitution, equation (E19.6) becomes

e =
IMUT

IMM

KMM(1+ fMM)
KMUT

pMUT

pMM

TMM

TMUT
− 1. (E19.9)

E19.4.2 Other influencing factors

Other factors that influence the measurement results are considered to be related to the calibra-
tion of the MM, i.e. the measurement standard (QMM), repeatability of measurement (QREP) and
additional influencing quantities (QAUX). The additional influencing factors on the measuring
results are as follows:

MASTER METER
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• Location of the MM (some MMs are located directly under the ceiling),
• Drift of the MM.

METER UNDER TEST

• Unknown characteristics.

LABORATORY

• Inadequate thermal insulation,
• For large flows, air is drawn from adjacent rooms whose temperature is different from that

in the laboratory,
• Low interconnecting room,
• Flow computer,
• Separated pressure and temperature probes from the related transmitters/converters (the

probes are on the test bench and the converters are remote and located in the control
cabinet).

The measurement model used for the evaluation of measurement uncertainty is obtained by
summing all influencing quantities on the measurement result as follows:

eflow = e+Q, (E19.10)

where Q denotes other influencing quantities and

Q =QMM +QREP +QAUX. (E19.11)

E19.5 Uncertainty propagation

Uncertainty propagation follows the procedure described within GUM [51] (although we vali-
date the results obtained using the propagation of distributions in section E19.7). The measure-
ment model used for the uncertainty propagation is described by equation (E19.10), where it
is assumed that the quantities QMM, QREP and QAUX have zero mean values and standard devi-
ations equal to the standard uncertainties that will be explained in the following subsections.
The standard uncertainty of eflow given in equation (E19.10) can be expressed using the law of
propagation of uncertainty [51] as follows:

u2(eflow) =

�

�

∂ eflow

∂ e
u(e)

�2

+
�

∂ eflow

∂Q
u(Q)

�2�

, (E19.12)

where
partial derivatives denote sensitivity coefficients of the measurement error (e) and other
influencing quantities Q,
u(e) is the standard uncertainty of the measurement error,
u(Q) is the standard uncertainty of other influencing quantities.

E19.5.1 Standard measurement uncertainty u(e) of the measurement error of the
meter under test

The standard measurement uncertainty of the measurement error can be obtained from the math-
ematical model (E19.9), and can be expressed as follows:

u2(e) =
�

∂ e
∂ IMUT

u (IMUT)
�2

+
�

∂ e
∂ IMM

u (IMM)
�2

+
�

∂ e
∂ pMUT

u (pMUT)
�2

+
�

∂ e
∂ pMM

u (pMM)
�2

+
�

∂ e
∂ TMUT

u (TMUT)
�2

+
�

∂ e
∂ TMM

u (TMM)
�2

.

(E19.13)
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The uncertainties of the pulse values (K) for the MM and the MUT, as well as the uncertainties
of the error of the MM in this example were considered negligible.

Using (E19.9), let

S = e+ 1=
IMUT

IMM

KMM(1+ fMM)
KMUT

pMUT

pMM

TMM

TMUT
.

Then, sensitivity coefficients are calculated from equation (E19.9) as follows:

∂ e
∂ IMUT

=
S

IMUT
, (E19.14)

∂ e
∂ IMM

= −
S

IMM
, (E19.15)

∂ e
∂ pMUT

=
S

pMUT
, (E19.16)

∂ e
∂ pMM

= −
S

pMM
, (E19.17)

∂ e
∂ TMM

=
S

TMM
, (E19.18)

∂ e
∂ TMUT

= −
S

TMUT
. (E19.19)

The standard measurement uncertainty of the following individual measurement quantities can
be determined as the standard deviations of the according rectangular probability distributions:

u(eni
) =

Lnip
3

, (E19.20)

u(epi
) =

Lpip
3

, (E19.21)

u(eTi
) =

LTip
3

, (E19.22)

where
– eni

is the presumed error due to reading the number of pulses on the measuring instru-
ment. According to [51] it is expected that the value of this error to lie within the interval
[ni−, ni+] = [−0.5,0.5] pulse with length Lni

= ni+ − ni− = 1 pulse,
– epi

is the presumed error due to measurement with pressure tubes, where, as in the previous
case for eni

, the length of the interval is Lpi
= 0.2 mbar,

– eTi
is the presumed error due to measurement with temperature tubes, where again as for

eni
the length of the interval is for the MM LTMM

= 0.132K and for the MUT LTMUT
= 0.163 K.

Since the location of the pressure and temperature probes on the test bench can be changed, in
the measurement uncertainty budget two probes for each quantity and their combination on the
test bench are considered. In this way measurement uncertainty is slightly increased, but the
measurement uncertainty calculation is simplified and kept on the “safe side” (despite its being
not in keeping with the GUM, which recommends the use of realistic values).

The calculated values of the standard measurement uncertainty of individual quantities, ac-
companied by sensitivity coefficients, are used in equations (E19.14)–(E19.19).
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E19.5.2 Standard measurement uncertainties of other influencing quantities QREP,
QMM, QAUX

Standard measurement uncertainty uREP of the mean value, obtained by a series of consec-
utive measurements — repeatability of the measurement

The method used for obtaining the standard deviation follows the principle described within the
GUM [51]. The repeatability of measurement is calculated using

uREP =
s
p

n
, (E19.23)

where s denotes the standard deviation of the series of n consecutive measurements.

Standard measurement uncertainty uMM of the standard used -– master meter

The standard measurement uncertainty of the MM is calculated by using the expanded mea-
surement uncertainty and a coverage factor, both obtained from the calibration certificate, i.e.

uMM =
UMM

k
, (E19.24)

where

UMM is the expanded measurement uncertainty of the MM during the calibration procedure,
k is the coverage factor (k = 2).

Standard measurement uncertainty uAUX of additional influence factors

When evaluating measurement uncertainty it is necessary to include additional factors, which
have influence on the measurement results and which influence is hard to quantify. The com-
bined standard measurement uncertainty of other influence factors can be calculated from the
estimated measurement error contribution, as well as from the assumption of rectangular distri-
bution for influence factors, i.e.

uAUX =
eAUXp

3
, (E19.25)

where eAUX is the estimated error, which is usually bounded by |eAUX| ≤ 0.1 %.
Since the sensitivity coefficients in equation (E19.12) have the value 1,

u(eflow) =
q

u2(e) + u2
REP + u2

MM + u2
AUX. (E19.26)

E19.6 Reporting the result

The measurements were carried out according to the requirements set out in standards [22]
and [21] for turbine and rotary gas meters. During the calibration process the measurement
data presented in tables E19.2 and E19.3 were obtained.
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Table E19.2: Data on flow, pressure and temperature parameters obtained by involving measure-
ment standards G1000, G250 in the calibration procedure

Standard G1000 G1000 G1000 G250 G250

Flow/(m3/h) 995.832 800.404 650.997 452.394 349.768
IMM 91 330.33 73804 59990 206280.67 159517.67
IMUT 25 379.67 20477.33 16625 11539.67 8907.6
KMM 1630.75 1630.75 1630.75 8100 8100
KMUT 450.238 450.238 450.238 450.238 450.238
fMM/% −0.0212 0.004962 0.0189 0.1300 0.1200
pMM/mbar 957.5 958.83 959.74 947.51 952.75
pMUT/mbar 954.6 956.93 958.48 942.43 949.59
TMM/K 295.010 294.920 294.980 294.970 295.000
TMUT/K 295.080 294.990 294.980 295.030 295.050

Table E19.3: Data on flow, pressure and temperature obtained by involving measurement stan-
dards G250, G40 in the calibration procedure

Standard G250 G250 G250 G40 G40

Flow/(m3 h−1) 251.649 159.545 100.092 50.232 20.015
IMM 115029.33 73059.67 45954 9452.33 7564
IMUT 6413.67 4066.67 2553.33 1277.67 1022
KMM 8100 8100 8100 3338.82 3338.82
KMUT 450.238 450.238 450.238 450.238 450.238
fMM/% 0.1171 0.1604 0.2796 0.1000 −0.0276
pMM/mbar 956.67 959.35 960.47 960.41 961.03
pMUT/mbar 954.96 958.67 960.23 958.31 960.79
TMM/K 295.060 295.12 295.20 295.370 295.470
TMUT/K 295.070 295.100 295.140 295.170 295.200

In tables E19.2 and E19.3 ‘Flow’ represents the mean value of three observations of flow
rate. One flow rate value was selected among the results in these tables in order to present
step-by-step calculation of measurement uncertainty in this example. The selected flow rate is
251.649 m3/h and it was measured by turbine gas meter G250. The data used for calculation
appear in Tables E19.2 and E19.3. The error of the measuring instrument for this measuring
point can be calculated according to equation (E19.9) as follows:

e =
�

6413.67
115 029.33

8100(1+ 0.1171/100)
450.238

954.96
956.67

295.06
295.07

− 1
�

× 100 % (E19.27)

= 0.2441 %. (E19.28)

The standard measurement uncertainty of the measurement error of the MUT can be calculated
from equation (E19.13). However, it is necessary first to calculate the sensitivity coefficients
of each influencing parameter, which can be carried out according to formulæ (E19.14) and
(E19.15). The value of S was calculated as 100.243.
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Sensitivity coefficients are calculated as follows:

∂ e
∂ IMUT

=
100.243
6413.67

= 0.0156, (E19.29)

∂ e
∂ IMM

= −
100.243

115 029.33
= −0.000871, (E19.30)

∂ e
∂ pMUT

=
100.243
954.96

= 0.14970, (E19.31)

∂ e
∂ pMM

= −
100.243
956.67

= −0.14780, (E19.32)

∂ e
∂ TMM

=
100.243
295.06

= 0.33974, (E19.33)

∂ e
∂ TMUT

= −
100.243
295.07

= −0.339729. (E19.34)

From equations (E19.20)–(E19.22) and information on errors given in subsection E19.5.1, we
obtain

u (Ii) =
1
p

3
= 0.5780, (E19.35)

u (pi) =
0.2
p

3
= 0.1156, (E19.36)

u (TMU T ) =
0.163
p

3
= 0.0942 (E19.37)

u (TM M ) =
0.132
p

3
= 0.0763. (E19.38)

Results (E19.35)–(E19.37) combined with equation (E19.13) give the standard uncertainty of
the measuring system measurement error:

u(e) = 0.045 %. (E19.39)

The relative standard deviation (s) of the measured values at this point is s = 0.0031 %, which
gives the relative standard uncertainty due to repeatability of measurements:

uREP = 0.0018%. (E19.40)

The standard measurement uncertainty uMM of the standard used -– master meter – is calculated
according to equation (E19.24), where the the expanded measurement uncertainty of the MM
(obtained from the calibration certificate) is UMM = 0.25%, giving

uMM =
0.25

2
(E19.41)

= 0.125 %. (E19.42)

The relative standard uncertainty uAUX of other influence factors can be calculated according
to equation (E19.25), where it is assumed the estimated error is eAUX = 0.1 % and to have a
rectangular probability distribution:

uAUX =
0.1
p

3
% (E19.43)

= 0.0578 % (E19.44)
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By substituting the uncertainty contributions obtained in (E19.40), (E19.42), (E19.39) and (E19.44)
into equation (E19.26), the combined relative standard uncertainty becomes

u(eflow) = (0.0452 + 0.00182 + 0.1252 + 0.05782)1/2 %, (E19.45)

u(eflow) = 0.1449%. (E19.46)

The expanded measurement uncertainty, with coverage factor k = 2 is

U = 2× u(eflow) (E19.47)

= 0.29 %. (E19.48)

The results for the uncertainty contributions at every flow rate, as well as the combined and
expanded measurement uncertainty (k = 2) are presented in table E19.4.

Table E19.4: Uncertainty contributions for individual flow rates

Standard uREP/% uMM/% u(e)/% uAUX/% u(eflow)/% U/%

G1000 0.044 65 0.125 0.000 25 0.057 73 0.144 74 0.29
G1000 0.044 67 0.125 0.000 87 0.057 73 0.144 76 0.29
G1000 0.044 69 0.125 0.001 50 0.057 73 0.144 77 0.29
G250 0.044 85 0.125 0.002 36 0.057 73 0.144 83 0.29
G250 0.045 01 0.125 0.000 39 0.057 73 0.144 86 0.29
G250 0.045 41 0.125 0.001 78 0.057 73 0.144 99 0.29
G250 0.046 68 0.125 0.005 42 0.057 73 0.145 48 0.29
G250 0.049 82 0.125 0.001 27 0.057 73 0.146 43 0.29
G40 0.063 70 0.125 0.001 82 0.057 73 0.151 72 0.30
G40 0.072 42 0.125 0.001 32 0.057 73 0.155 57 0.31

E19.7 Interpretation of results

The approach for uncertainty evaluation described within this example can be generally used for
calibration of gas flow meters by the ‘master meter’ method, when the meter under test is located
downstream of the master meter. Depending on the costumer needs, it can be decided earlier
how many flow rate points are necessary for the calculation of the measurement uncertainties.

In this example the uncertainties due to additional influence factors (uAUX), which were not
exactly known, were quantified. One way of improving this example would be to quantify other
uncertainty sources and include them to the overall uncertainty budget.

According to [51], if the measurement model is linear in the input quantities and the domi-
nant contributions have normal probability distributions, the GUF will provide reliable results. In
order to validate the GUF, the MCM, described in GUM Supplement 1 (GUM-S1) [52] was used
for the evaluation of measurement uncertainty for the measurement model described by equation
(E19.10). For this method the number of Monte Carlo trials was prescribed to be 108. Values for
the input quantities, their associated standard uncertainties and their probability distributions
remained the same as described in section E19.6.

The results of the applied method are shown in table E19.5.
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Table E19.5: Results obtained by two approaches for measurement uncertainty evaluation: GUF–
GUM uncertainty framework, MCM–Monte Carlo method, CI–Coverage interval (lower limit,
higher limit)

Approach Estimate/% Std. unc./% CI (95%)/%

GUF 0.024 41 0.1449 (−0.0459, 0.5341)
MCM 0.02441 0.1402 (−0.0309, 0.5185)

Figure E19.2 shows the probability density functions as a result of the evaluation of uncer-
tainty by following the principles described within GUM and GUM Supplement 1 (Monte Carlo
method) [52]. It can be noticed, both in table E19.5 and from figure E19.2 that the obtained
results for the methods differ insignificantly. The 95 % coverage interval for the MCM method is
slightly shorter than that obtained by the GUM method, while the estimates of the flow measure-
ment error are the same.

Figure E19.2: Probability density functions for Monte Carlo and GUM approach

Due to the sufficiently large number of Monte Carlo trials and even though the measurement
model was not linear in this example, the GUM method provided accurate results.

The GUM approach for evaluation of measurement uncertainty in terms of the measurement
error described in previous sections is followed by several national metrology institutes in Europe.
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