
Emulation as a Service       
for Heritage Institutions 
 

Test Report 
 
 

 

Version 1.0 | October 2020 



   

2 
 



Contents 

1. Introduction 4 
1.2 Background 4 
1.3 Preliminary Definitions 4 

2. Basic Principles 9 
2.2 Objects 9 
2.3 Software 9 
2.4 Environments 10 

3. Deployment 11 
3.2 Cloud Version 11 
3.3 Installation notes for local version 12 

4. Preparing the Environment for Use Cases 14 
4.2 Regionaal Archief Alkmaar 14 
4.3 Het Nieuwe Instituut 14 
4.4 Beeld en Geluid 16 

5. Results 18 
 

6. Recommendations 20 
 

7. Future Considerations 22 
 

8. Appendix 24 
 

9. Credits 36 

3 
 



Emulation as a Service - Test Report 

 
 

1. Introduction 
This report explores the concept of emulation in an archival context by examining what exactly the                               
term means, providing an overview of a current framework for its implementation, and offering some                             
suggestions for institutions or individuals that are looking to get started on this topic. 
 

1.2 Background 
 
The NDE Software Archiving project, conducted during the “intensiveringsperiode” 2019–2020,                   
brings together research, best practices, and guidelines for Dutch heritage institutions looking to                         
start with software preservation. Central to this research has been the exploration of possibilities for                             
the use of emulation as part of preservation and access workflow. The ability to render and interact                                 
with outdated formats and obsolete software through emulated environments opens collections up                       
to researchers and the public in a more engaging way. The issue of integrity, and faithfulness to the                                   
original, is key to archival practice. Given the difficulty of maintaining legacy hardware and software                             
into the future, as new technologies continue to emerge, emulation can be seen as a worthwhile                               
approach for sustainable access to such materials. As early as 2005, the Dutch National Archives                             
and the National Library of the Netherlands were investigating and developing tools for emulation, as                             
part of Dioscuri1 project. Various other initiatives and research projects have been carried out on the                               
topic but, with the ever advancing improvements in the technology and its implementation within                           
current emulation projects, now is the time to investigate and test this approach in a Dutch context.                                 
This report is aimed at application managers who are interested in installing the Emulation as a                               
Service (EaaS) framework, as well as general users who are looking to learn about creating object                               
environments and how the framework operates. 
 

1.3 Preliminary Definitions 

Emulation 

In its most basic description, emulation is the simulation of legacy computing hardware that works                             
by allowing the execution of legacy software on contemporary computing hardware. There are                         
several layers of complexity in relation to the way components contribute to providing access to                             
legacy formats. For example, a file is generally dependent on a particular software package. In turn,                               
this package will require a specific operating system in order to install and run. Lastly, this operating                                 
system is likely to be dependent on particular hardware specifications.  
 
 

1 http://www.digitalpreservation.gov/series/edge/koninklijke.html 

4 
 

http://www.digitalpreservation.gov/series/edge/koninklijke.html


Emulation as a Service - Test Report 

 
 
Fig. 1 

 
The aim of emulation is to provide these hardware environments where the original hardware is no                               
longer available. There are a host of open source emulators2 available that can achieve this goal for                                 
most historical computers, as well as for arcade and console platforms. A common issue with use of                                 
emulators to date has been that they require a certain degree of technical expertise to set-up and                                 
configure. 

EaaS & EaaSI 

Emulation as a Service (EaaS) is a software framework that endeavours to provide long-term                           
preservation and access to digital material through emulation. A key goal is to simplify the process                               
and management of emulation components. The framework has been in development by the bwFLA                           
team at the University of Freiburg since 2011 and now operates under the OpenSLX label. It makes                                 
use of abstract emulation components to standardize deployment and to hide individual emulator                         
complexity.3 The user of the framework does not need to worry about the full technical workings of                                 
the emulator in use as the framework is designed to interact with the prepackaged, or containerised,                               
emulators provided. These containers can be slotted in easily via the framework’s front end without                             
the need for users to understand what is going on in the background. The framework supports all                                 
major desktop systems and utilises a host of containerised, open source emulators including Qemu,                           
Basilisk II, Sheepshaver and Vice. 
 

2 Qemu, SheepShaver, and VICE are examples of emulators that are able to render WIndows, Mac, and Commodore 64 respectively 
3 http://eaas.uni-freiburg.de/eaas.html 

5 
 

http://eaas.uni-freiburg.de/eaas.html


Emulation as a Service - Test Report 

The Emulation as a Service Infrastructure (EaaSI) project, led by Yale University Library, has been                             
working towards the development of technology and services to expand and scale the capabilities of                             
the EaaS software since 2018. Much of their work has revolved around the establishment of a                               
network of partner institutions to share the testing, research, and improvements of the framework.                           
Among these institutions, software environments can be shared and reused where needed.  
 
The framework uses environment configuration templates, stored in XML, to assemble the individual                         
components that make up an emulated environment.4 These include the designated emulator for the                           
session, the hardware settings required, a bootable disk image5 for the operating system being used,                             
and then any additional software disk or file images that are being accessed. The way in which the                                   
recreated physical environment corresponds to the emulated environment can be seen below: 
 
 
 

 

 

 

 
 
 
 
 
 
 
 

4 https://eaasi.gitlab.io/eaasi_user_handbook/guide/architecture.html 
5 As well the operating system, the bootable disk image contains associated utilities and boot and recovery data. The image can be stored on 
memory sticks or similar devices and acts as a one stop location for installation of a particular operating system 

6 
 

https://eaasi.gitlab.io/eaasi_user_handbook/guide/architecture.html


Emulation as a Service - Test Report 

 
 
Fig. 2 System Architecture Diagram taken from the EaaSI User Handbook 

Methodology 

For the purpose of this report, digital preservation analysts Eoin O’Donohoe and Claudia Rock of                             
Beeld en Geluid (Sound and Vision) carried out the research, installation, testing, and evaluation of                             
the EaaS framework. This was conducted both independently and with the assistance of project                           
partners. The work explores the current state of the framework and its feasibility as an approach to                                 
preserving, and making accessible, obsolete software and software-dependent objects found within                     
Dutch heritage institutions. Furthermore, the EaaSI project was consulted on elements relating to                         
user feedback and also acted as a marker for what a future network might look like. The process                                   
consisted of: 
 

1. Familiarisation and experimentation with a preconfigured version of the framework hosted in                       
the cloud 

2. Installation of a local version on a dedicated machine to investigate the technical complexity                           
of the framework 

3. Research into the individual case studies from partner institutions and their specific needs in                           
relation to the creation of suitable environments 

4. Creating and testing environments in order to generate a feedback survey for partners 

Goal 

The goal of this study is to provide knowledge and recommendations on the feasibility of the EaaS                                 
framework for use within Dutch heritage institutions. Specifically, it focuses on the available use                           
cases of the partner institutions and considers how they would operate within an emulated                           
environment. Also, it gives advice and recommendations on the possibilities for future deployment                         
and pricing. 

Scope 

As we began the research and testing process, two options for installing the EaaS framework were                               
available to us: cloud installation and local installation The cloud installation, which runs in Google                             
Cloud, came preconfigured by the people at OpenSLX6 with several base environments, employing                         

6 The OpenSLX GmbH, founded 2006, is a University of Freiburg technology spin-off, developing long-term preservation solutions for complex 
digital content. https://openslx.org/ 

7 
 

https://openslx.org/


Emulation as a Service - Test Report 

different emulators, and is ready to start adding software objects and data objects immediately. For                             
the local installation, we used a dedicated Linux laptop, running Ubuntu version 18.04.4 LTS, with                             
adequate specifications for testing purposes.7 We wanted to test this option to get a better idea of                                 
how the framework came together when installed from scratch. This enabled us to gain a greater                               
understanding of the technology involved, how components of the framework interact with each                         
other, and how disk images could be stored in a local manner.  
 
Another installation option is the full implementation of a networked version of the framework, either                             
internally or externally, but we did not pursue this as it would require thoughtful integration into an                                 
existing IT infrastructure and was beyond the needs of this study. We did, however, manage to                               
experiment with the duplication of preconfigured environments made available from the EaaSI                       
project across a standard internet connection. The primary focus of investigating such a framework                           
is to make software and software-dependent files more easily accessible to the end users. The many                               
considerations that take place in relation to the preservation of such material, including metadata                           
and storage, will be addressed elsewhere in the project. Finally, the issue of licensing for obsolete                               
software and the debate surrounding the legality of emulation is an important area that will be                               
addressed elsewhere in the project and are therefore out of the scope of this report.8 
 

   

7 https://eaasi.gitlab.io/eaasi_user_handbook/install/requirements.html 
8 Much work has been carried out in this area in the United States in relation to their Fair Use policy. Without a similar policy in place in Europe it 
will likely be necessary for institutions to try to advocate for a similar, or alternative, agreement with software companies or even at an EU 
legislative level. Nevertheless, the Code of Best Practices In Fair Use For Software Preservation offers some interesting ideas for what might be 
possible in the future: https://www.arl.org/wp-content/uploads/2018/09/2019.2.28-software-preservation-code-revised.pdf 

8 
 

https://eaasi.gitlab.io/eaasi_user_handbook/install/requirements.html
https://www.arl.org/wp-content/uploads/2018/09/2019.2.28-software-preservation-code-revised.pdf


Emulation as a Service - Test Report 

2. Basic Principles 
The basic principles of the EaaS framework are based around the ideas of Objects, Software, and                               
Environments. The separation of each of these elements makes the management of material simple.                           
While environments generally make up the foundation of each emulation session, it is important to                             
start from the Object level when understanding the process. 
 

  

 
Fig. 3 Objects, Software and Environments 

 

2.2 Objects 
An object can be anything from a piece of software or game to a virtual disk or datafile. Objects form                                       
the first layer of the environment creation process and can be imported into the framework using the                                 
designated page. This could be the image of an installation CD or an archive file packaging software                                 
components or a collection of specific file formats. The user is provided with the option of adding an                                   
object to the framework, designating it to one of four categories; an ISO (optical disc image), a                                 
Floppy, a Disk, or a File. Depending on the size of the object in question, adding it may take a minute                                         
or more. Once uploaded, the object appears in the Local Object Archive with whatever title the user                                 
provided. 
 

2.3 Software 
Objects can be promoted to software in order to keep separation between software applications and                             
other datafile objects. The environment creation process relies on multiple components, ranging                       
from operating systems, commercial and open source software applications, device drivers, etc., in                         
order to work. By promoting these objects to software it is possible to keep a clearer separation                                 
between the components that comprise the emulated environments and the files which are                         
themselves the target of emulation. In this step, the user can associate additional metadata with the                               
object, including the rendering environment, licensing information, and whether or not the object                         
should be designated as an operating system. Software can easily be attached to an architecture, as                               
defined by the specific emulator, and run to create new environments. 
 

9 
 



Emulation as a Service - Test Report 

2.4 Environments 
Environments are where users engage with the majority of the objects. They are ways of saving                               
combinations of specific emulated computer hardware, and specific operating systems and                     
software for reuse. The EaaS framework has three different types of environments: Base                         
Environments, Virtual Machines, and Object Environments. A Base Environment is the combination                       
of a specific architecture and a bootable operating system, e.g., x86_64 + Windows 98 Second                             
Edition. Once created, these environments provide the foundation for other software applications.                       
The Virtual Machines tab of the Environments section acts as a crossover point. Here, the user can                                 
find their stored base environments, but also any further derivative environments they create. A                           
derivative environment generally consists of a Base Environment and an additional piece of software                           
that has been installed and configured to the users’ needs. It is these derivative environments that                               
are used to access specific objects, such as file sets. Objects can be associated with a particular                                 
environment from the Objects tab, allowing the user to launch an environment directly from the                             
chosen object. Files are wrapped as ISOs for ease of use and can be found in the emulated systems                                     
CD-ROM drive. Once the user is happy with the rendering of the objects within the environment, they                                 
can make another derivative consisting of all three of the above elements; the Base Environment, the                               
necessary software to access the file, and the files themselves. This is known as an Object                               
Environment and allows for quick and easy access to objects. 
 

 
Fig. 4 Diagram of “base” environment and how derivatives can be built up.9 
 
For further information relating to these concepts please consult the EaaSI User handbook. To see                             
the process in action you can visit here.10 

   
9 https://eaasi.gitlab.io/eaasi_user_handbook/overview/architecture.html 
10 https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html 

10 
 

https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html
https://eaasi.gitlab.io/eaasi_user_handbook/overview/architecture.html
https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html


Emulation as a Service - Test Report 

3. Deployment 

3.2 Cloud Version 

The cloud version of the framework was hosted using the Google Cloud platform and was fully                               
preconfigured and installed by the OpenSLX team. The option to have OpenSLX take care of the                               
more technical backend side of things allowed us to focus on the creation and management of                               
environments, software, and objects using the front end of the framework. For the purpose of this                               
study we have made use of a set capacity that kept the pricing fairly standard month on month. Our                                     
basic package included allowance for continuously running four virtual CPUs, allowing four                       
simultaneous instances of the framework at the same time. This package also included 500GB of                             
storage and 16GB of RAM. The estimated cost for this setup is projected at an effective hourly rate                                   
of €0.137 per hour according to the Google Cloud Calculator. Combined with the cost of storage, the                                 
monthly price is estimated at €190.95 before taking into account 30% sustained use discount. Our                             
current pricing comes in at an average monthly cost of €140 per month.  
 

 
 
Fig. 5 Google Cloud pricing calculator 

 
Depending on scaling strategy, it is possible for additional CPUs to be added on demand when                               
needed. This is done in set steps, in the case of the above example, steps of 4 CPUs once the next                                         
threshold is reached. This will effectively double the hourly rate while in use but will revert back to                                   

11 
 



Emulation as a Service - Test Report 

the starting price when not in use. A sixteen-CPU setting is recommended for high traffic scenarios,                               
where a lot of clients are expected. In this case it would scale up in sixteen CPU steps and would                                       
keep one 16 core instance running continuously. The sustained use discount is applied depending on                             
the amount of time each CPU is running, with greater savings for increased use. This means that the                                   
user only pays for the number of minutes that they use in an instance, and the provider automatically                                   
gives the best price. There’s no reason to run an instance for longer than needed.11 
 

 
 
Fig. 6 Taken from Google Cloud documentation. 

3.3 Installation notes for local version 12 

Although the majority of the testing of use cases was carried out using the cloud version, we decided                                   
that it would be beneficial to attempt our own installation of the framework on a local machine. This                                   
process is documented in several sources in both the EaaS and EaaSI user handbooks, but these                               
instructions do not fully account for installing on one single machine. Through discussions with the                             
OpenSLX team, a new local installer was created for testing purposes.  
 
Installing a standalone version of the framework required some prerequisites before getting started.                         
In order to simplify deployment of EaaSI, all components have been containerised as Docker                           
instances. This acts as a one stop location where all resources for installation can be gathered by                                 
the installer. In order to access these Docker instances, the intended machine must have Docker                             
installed. Docker allows developers and users to package and run applications in a loosely isolated                             
environment called a container.13 A project’s Docker Registry contains a collection of images that                           
can be combined to run a specific application. In the case of EaaSI, the installation templates, as well                                   
as the individual emulators, exist as images in the EaaSI registry. 
 
 

11 https://cloud.google.com/compute/docs/sustained-use-discounts 
12 These notes should be viewed as a case study in their own right. As the EaaSi project is continuously evolving it means that these 
instructions are likely to change with time. As of March 2020 a new version of EaaSi has been released which has integrated the single machine 
test version. Full documentation on this can be found here: https://eaasi.gitlab.io/eaasi_user_handbook/overview/demo.html 
13 https://docs.docker.com/get-started/overview/ 

12 
 

https://cloud.google.com/compute/docs/sustained-use-discounts
https://eaasi.gitlab.io/eaasi_user_handbook/overview/demo.html
https://docs.docker.com/get-started/overview/


Emulation as a Service - Test Report 

The following steps detail the installation of an EaaSI instance on a single machine. A supported                               
Linux operating system should be installed on the target machine. Currently Ubuntu 16.04, Ubuntu                           
18.04, and CentOS 7 distributions are supported. At least 10 GB of free disk space are needed for a                                     
minimal EaaSI installation. Additional disk space is required to run emulators and store disk images.                             
Through trial and error, as well as discussions with the developers, it was discovered that a                               
simplified, test instance of the framework would be beneficial for institutions looking to get a sense                               
of its capabilities. The installation process makes use of an automatic installer but requires some                             
basic interaction with the command line. The general steps include: 
 
 

1. Clone the EaaSI-Installer from the Gitlab repository14 to a location on the target machine. 
 

2. Via the command line, navigate to the EaaSI-Installer folder and use the following command                           
to prepare the machine for installation: 

 
./scripts/prepare.sh --local-mode 

 
3. Define the target machine simply by copying a file template. Use the following command: 

 
cp ./config/localhost.yaml.template ./artifacts/config/hosts.yaml 

 
4. EaaSI deployment configuration must be defined in the eaasi.yaml file. This again can be                           

copied from an existing template using the following command: 
 

 cp ./config/eaasi.yaml.template ./artifacts/config/eaasi.yaml 
 

5. When everything is configured correctly, the installation process can be started by running: 
 

 ./scripts/deploy.sh 
 

Once installed, the EaaSI instance can be accessed from the local host in a web browser. 
 

   

14 https://gitlab.com/eaasi/eaasi-installer/-/tree/master 

13 
 

https://gitlab.com/eaasi/eaasi-installer/-/tree/master


Emulation as a Service - Test Report 

4. Preparing the Environment for Use Cases 
For the purpose of testing our use cases we worked in the cloud version of the framework. This                                   
ensured that everything was configured correctly from the outset and allowed us to receive rapid                             
support from the OpenSLX team if required. We also wanted to receive testing feedback from the                               
project partners, allowing them to access the cloud instance via a dedicated link. 

4.2 Regionaal Archief Alkmaar 
The Regional Archive Alkmaar has two video game collections: the company archive of game                           
developer M2H and the archive of Joost Honig, hacker and game developer in the 1980s and founder                                 
of the 1001 Crew. Both collections have been made available via the institution’s website as a                               
download, but it is the user’s responsibility to install and configure a suitable emulator or                             
environment in order to play these games. This creates a barrier for less technical users and leads to                                   
potentially inaccurate or inconsistent results. For our test we focused on the Commodore 64                           
cassette files. These vary from playable games to interactive demos and intros and cover several                             
different file extensions, including .d64, .t64, .prg, and .tap. 
 
The first step was to identify the necessary emulator for these particular files. The Vice15 emulator,                               
which is provided within the EaaSI framework, is intended to run old 8-bit computers, including the                               
Commodore 64, and does not require any additional operating system or software. The user manual                             
of the Vice emulator covered all of the example file formats we wished to work with, so this proved                                     
to be the perfect starting point. The Vice emulator settings can be adjusted to optimise video and                                 
sound quality, as well as the frame rate and mapping of keyboard controls. The various test files we                                   
selected were saved as derivative environments of a base Commodore 64 environment, allowing us                           
to start an emulated session directly to the specific game with all the correct settings. 
 

 
 
Fig. 7 Example files from Regionaal Archief Alkmaar 
 
The files we chose for testing purposes covered as broad a spectrum as we could find. We used at                                     
least one of each file extension. The test cases ranged from basic visual animations to intros                               
featuring text, animation, and audio. In some cases there was an interactive element with keyboard                             
commands, and in one particular case we tested a fully controllable game. 

4.3 Het Nieuwe Instituut 
The collection of Het Nieuwe Instituut (HNI) contains drawings, photographs, and models from the                           
archives of Dutch architects and urban planners. Many items are born digital, covering a range of file                                 
formats. The format provided by Het Nieuwe Institute as a use case was the QuarkXpress Data File. 

15 https://vice-emu.sourceforge.io/ 

14 
 

https://vice-emu.sourceforge.io/


Emulation as a Service - Test Report 

 
 
Fig. 8 Batch of test files 

 
The batch of files we received from HNI consisted of thirty-nine .qxd files (QuarkXPress Data File),                               
dating from the year 1998 to 2005. Our first impression was that the .qxd format would require                                 
additional investigation and research in order to determine the specific version of files we were                             
dealing with, information that would be vital to set up the necessary environment in which to access                                 
these files. Our initial searches led us to the understanding that the .qxd extension was discontinued                               
after QuarkXPress version 5, released in 2002. This gave us a rough idea of what we were working                                   
with, but with only the year of creation to go on, we could not be sure of the exact version of                                         
QuarkXPress used to make the files. The files were examined with the National Archive’s DROID File                               
Profiling Tool,16 which makes use of the associated PRONOM17 file format registry. Unfortunately, the                           
only result available was a generic placeholder entry that confirmed the file format was QuarkXpress,                             
but no further information relating to the specific version was available. Luckily, the discovery of a                               
trial version of FlightCheck18 software allowed us to be more precise. FlightCheck is a compliance                             
and quality assessment tool for print publishing materials and covers a broad range of desktop                             
publishing files and formats. Simply running the files through this software produced a small report                             
with important metadata, including the file version (most, it turned out, were version 4 and some                               
version 3.33). This research was a necessary part of our work and highlighted the gap in file-profiling                                 
tools available today. The importance of knowing what is in your collection, having good metadata,                             
and contributing knowledge to the wider archival community cannot be overstated. Our findings                         
were included in the PRONOM research week of November 2019 and, with the work of many other                                 
organisations, there are now unique entries for several QuarkXpress versions within the PRONOM                         
registry. 

 
Fig. 9 File identification research for PRONOM 

16 
https://www.nationalarchives.gov.uk/information-management/manage-information/policy-process/digital-continuity/file-profiling-tool-droid/#:
~:text=DROID%20stands%20for%20Digital%20Record,wide%20range%20of%20file%20formats. 
17 https://www.nationalarchives.gov.uk/PRONOM/Default.aspx 
18 https://markzware.com/products/flightcheck/ 

15 
 

https://www.nationalarchives.gov.uk/information-management/manage-information/policy-process/digital-continuity/file-profiling-tool-droid/#:~:text=DROID%20stands%20for%20Digital%20Record,wide%20range%20of%20file%20formats.
https://www.nationalarchives.gov.uk/information-management/manage-information/policy-process/digital-continuity/file-profiling-tool-droid/#:~:text=DROID%20stands%20for%20Digital%20Record,wide%20range%20of%20file%20formats.
https://www.nationalarchives.gov.uk/PRONOM/Default.aspx
https://markzware.com/products/flightcheck/


Emulation as a Service - Test Report 

 
This new information gave us the platform to start working on the necessary environment for the                               
files. We acquired a copy of version 4 of QuarkXpress for MacOS and also the necessary operating                                 
system, MacOS 8.5. It was important to use a contemporary version of the software, as close to the                                   
version in which the original document was created, in order to achieve the highest level of integrity.                                 
The emulator selected was SheepShaver,19 which is optimised for classic MacOS applications. First,                         
the base environment needed to be configured. This operating system disk image was attached to                             
the relevant architecture as provided by the emulator. From here, the system could be booted and                               
configured. The saved environment offered a platform on which we could install our additional                           
software, just as with any modern computer system. The virtual disk image of QuarkXpress version 4                               
was loaded into the base environment, the setup file was deployed, and the software was                             
successfully installed onto the emulated system. This could then be saved as a new environment in                               
its own right, with the user simply updating the new derivative’s label to something such as “MacOS                                 
8.5 + QuarkXpress 4.1”. As is the layered nature of the EaaS framework, this new environment was                                 
ready to accept and process our QuarkXpress Data Files. 
 

 
Fig. 10 QuarkXpress 4.1 installed in framework 

4.4 Beeld en Geluid 
The Beeld en Geluid collection contains a broad spectrum of Dutch audiovisual and new media                             
objects. In terms of software, the archive holds a diverse collection of computer games, including                             
Commodore 64 and PC titles. The prospect of utilising the EaaS framework for something more                             
graphically intensive than 8 bit games, as a way to test the emulator performance, led us to selecting                                   
a number of PC games from the 1990s.  
 
In a similar manner to the creation of the QuarkXpress environment, it was necessary to first create a                                   
suitable base environment onto which the game media could be installed. The emulator we used for                               
this test case was Qemu,20 which supports a multitude of computer architectures, including legacy                           
PC options. In the environment creation stage of the EaaS framework, the user is presented with                               
various options for computer architectures. These are based on the emulators installed. For our                           
purposes, we tested both the ‘90s PC and 2000s PC systems. It is these foundations upon which we                                   

19 https://sheepshaver.cebix.net/ 
20 https://www.qemu.org/ 

16 
 

https://sheepshaver.cebix.net/
https://www.qemu.org/


Emulation as a Service - Test Report 

were again able to boot up the relevant operating systems, installing and saving versions of                             
Windows 95, Windows 1998, Windows 2000, and WindowsXP. Matching the year of release of each                             
game to a corresponding environment allowed us to install the content from a virtual disk image and,                                 
again, create a new derivative of the operating system plus game. Similarly to the Commodore 64                               
examples, the internal settings of each game needed to be adjusted in order to get the best                                 
performance, particularly with the game controls and display aspect ratio.  

 
 
Fig. 11 Grachten Racer, 2000. 
 

   

17 
 



Emulation as a Service - Test Report 

5. Results 
For each of the above use cases a feedback workflow and survey was designed. The purpose of this                                   
test is to evaluate and gain feedback on the key operations of using the framework, but also the                                   
quality and accuracy of the emulated file. For ease of access the test made use of the cloud instance                                     
of the framework with the necessary base environments included. 
 
The four areas of functionality the survey assessed were: 

1. Importing a new object  
2. Running an instance with object attached 
3. Saving this instance as a new object environment for easy access in future 
4. Evaluating the performance and integrity of the test files 

 
These areas of interaction provide an opportunity to get a good sense of the look and feel of the                                     
framework and also to see the level of quality of emulation. Feedback on the first three points was                                   
generally positive, with users noting that the framework navigation and controls were easy to use.                             
Two testers highlighted that the user interface labels differed from those noted in the workflow                             
provided. This was discovered to be an issue with the framework not having translation capabilities                             
when running in a Dutch version of Google Chrome. 
 
The results of the performance and integrity of the emulated files varied upon the intensity of the                                 
session. Noticeably, the more graphically intensive files suffered from more lag when rendering. For                           
both the Regionaal Archief Alkmaar and Beeld en Geluid use cases, the areas of evaluation fell under                                 
the headings of Graphics, Audio, and Interactivity. For Het Nieuwe Instituut’s QuarkXpress use case,                           
the survey focussed on general interactivity and processes. Each test criteria was evaluated using a                             
rating system of “Poor/ does not work”, “Moderate/ works partly”, “Accurate/ works correctly”. These                           
ratings are mostly subjective to the testers from each institution, based on their in-depth knowledge                             
of the content. The results below show the feedback for each case study: 
 

Regionaal Archief Alkmaar (Commodore 64 files) 

 
 
Fig. 12 Regionaal Archief Alkmaar Feedback 

 
Almost all Commodore files tested displayed an accurate level of rendering. In a couple of cases the                                 
image appeared to be slightly cropped with some minor information towards the edges being                           
clipped. As this isn’t the case for all files, it is possible that these examples may require further                                   
adjustments within the VICE emulator settings. 
 

18 
 



Emulation as a Service - Test Report 

Het Nieuwe Instituut (QuarkXpress Files) 

 
Fig. 13 Het Nieuwe Instituut Feedback 

 
The overall accuracy of the QuarkXpress use case was quite positive. The operating system features                             
and software ran smoothly and the basic interactions with the files worked well. Some minor issues                               
were encountered that may require further research, including the rendering of specific fonts and                           
language settings. The version of QuarkXpress available for the test was an English-language                         
version, while the files in question contained Dutch. A warning that the font may not be rendered                                 
correctly was displayed upon opening several files. To date, a Dutch language pack or Dutch version                               
of this software has not been found, but one may be available either from the developers or from                                   
private publishing houses that previously used these packages. A final comment on an issue of                             
missing link to images within a particular file; it was noted that this was not an issue with the                                     
emulation environment but instead was due the individual images not being archived along with the                             
document in the same package. 

Beeld en Geluid (PC Games) 

 
Fig. 14 Beeld en Geluid feedback 

 
The PC games testing displayed the most issues due to the added graphical requirements. As can be                                 
seen in the feedback, less graphically challenging software performs better in the framework                         
whereas the PC games show considerable lag, which affects the overall look and feel. It was                               
suggested that this may be dependent on internet speed when using the cloud instance, but there                               
was no significant improvement when using a local version. It is important to understand that                             
emulators continue to develop and improve and that, even as a reference point for otherwise                             
inaccessible material, they offer a valuable option for heritage institutions.  
 
Overall, the testing carried out above demonstrates that emulation through the EaaSI framework is a                             
viable option, although there are varied results in terms of quality from one use case to another due                                   
to the differences in computing resources required. The vast array of collections, and workflows,                           
within heritage institutions is sure to present both opportunities and challenges going forward, but                           
the ongoing development and support of the software by OpenSLX, and the extensive                         
implementation work carried out by the team at Yale University Library, provides a valuable                           
launchpad for getting started.    

19 
 



Emulation as a Service - Test Report 

6. Recommendations 
Where emulation is seen as, or hoped to be, a viable option for access, there are certain steps to                                     
take. Overall, based on the test cases and investigations to date, several scenarios for use of the                                 
framework have emerged. Though the testing was conducted on a relatively small scale, the                           
exploration of different versions of deployment opens up new possibilities for institutions to make                           
their digital material available to their end user, whether that is internal staff, researchers, or                             
members of the public. While licensing considerations for obsolete software needs to be further                           
researched and advocated for, the two distinct options of cloud deployment and local deployment                           
offers institutions different ways to integrate the framework into their infrastructure. This could                         
resemble traditional onsite reading room access at dedicated terminals whereby visitors to the                         
institution could access preconfigured environments for specific collections. It could also have a                         
wider reach online with the cloud deployment option, offering a password protected platform for                           
users to engage with content. The particular route taken will be influenced both by the size of the                                   
collection to be made available as well as the size and frequency of access requests. As mentioned                                 
above, the choice between local and cloud deployment and storage, primarily comes down to an                             
institution’s plan for access and who the end users will be. A further consideration is the current                                 
infrastructure of the institution. Is local storage and terminal access currently available or will they                             
need to be added? Does the quantity of material being made accessible warrant purchasing cloud                             
storage?  
 
It is advised that, as a starting point, users identify a particular collection that would suit an                                 
emulation pilot project at their institution. This will require staff to conduct research into a sample                               
set of files they hope to use, including identification and sourcing of the components required to                               
create environments. The intensity of the computing resources or graphical requirements needed to                         
interact with the sample files should be considered and tested for suitability before committing to a                               
larger file set. Once identified, the questions for these institutions should then be: 
 

1. Consider the requirements of end users and the specific needs of each type. 
- Who will be the likely designated audience for the collection and what are their                           

preferences for access? This question can be answered with capacity building                     
surveys and questionnaires that gain feedback from particular  
groups. 

 
2. Examine the existing access practices of the institution and how a software-dependent                       

collection could be incorporated. 
- How does your institution currently provide access to its collection? Is there a high                           

visitor rate in person or is there a strong online presence? Identify what ways you                             
provide access well already and explore how this can be tailored to the new                           
collection. 
 

3. Consider the collection’s size, access frequency, and potential need to scale up in the future. 
- Starting small, and getting the framework setup and running properly, will allow for                         

further expansion as needed. Again, designated audience feedback can help provide                     
insights into demand for access. 
 

4. Consider the current IT infrastructure and who would be responsible for the framework. 
- As a framework that is under ongoing development it is likely that a line of                             

communication will be necessary between institution and developers. Decisions                 
around deployment and access may be of interest to an institution’s IT department,                         
particularly with regard to deploying on a network or for online access. 

20 
 



Emulation as a Service - Test Report 

 
5. Consider and budget for a small scale trial for a defined period. 

- Organising and managing a small test case can be the best way to get a sense of                                 
the possibilities of the framework. Work out the minimum hardware/storage/cloud                   
resources needed. 

 
These questions should help with the process of thinking through the initial steps of how a collection                                 
might benefit from an emulation pilot. 
 

 

   

21 
 



Emulation as a Service - Test Report 

7. Future Considerations 
The examination of the use cases in this report has focussed primarily on the viability of working                                 
with such a framework from a technical and functional perspective. The wider concept of emulation                             
itself, however, requires a number of other questions to be answered. 
 
First, as with any collection, documentation of software and environments is a vital consideration.                           
The difficulty in terms of describing such objects stems from their complexity. Often there will be                               
several layers of dependencies that contribute to make up a particular environment, with seemingly                           
endless variables that can drastically alter integrity. There is no concrete schema for documenting                           
software, but several platforms are available to facilitate documentation in a linked manner.                         
Wikidata, the preferred choice of the EaaSI project, as well as The National Archive’s PRONOM                             
registry, already include descriptions of common obsolete software packages and files. These                       
initiatives make use of UIDs and common vocabulary to describe entries and are largely dependent                             
on crowdsourcing. Both resources were investigated during the course of this research and further,                           
active participation in adding to such registries is seen as a valuable and insightful practice.                             
Questions for further research are: Which existing schemas can provide crosswalk potential for the                           
purposes of documenting software collections? What work has already been carried out in this area?                             
What resources can aid this process (eg. Wikidata, PRONOM)? 
 
Second, the legal challenges surrounding the emulation and access to licenced software material are                           
extremely troublesome. Most commercial software, including operating systems, was originally sold                     
under licence from a specific company. Each licence would specify how the product could be used,                               
usually limiting its availability to a single user or machine. Even as software becomes obsolete, and                               
no longer in common use, these licences dictate how and when a piece of software can be used. The                                     
ever-evolving nature of the field of technology presents heritage institutions with a real dilemma                           
when it comes to preserving software objects. The urgency for their protection is not helped by                               
current European copyright laws. This is a potential stumbling block for access to collections and an                               
ever-increasing concern for heritage institutions as they continue to acquire technology-based                     
cultural material. Questions that need to be addressed include: What is the viability of a fair use                                 
model21, such as exists in the US? How this may be advocated for within the Netherlands? Who are                                   
the key decision makers? An alternative, and perhaps short term, approach would be to see about                               
approaching individual companies regarding licensing and use within an institutional context. This is                         
something that might be worthwhile for something as broadly applicable as operating systems. 
 
Third, there is the question of how to progress with all of this work in a collaborative and                                   
constructive manner. Engaging in these conversations in wider group settings can highlight potential                         
crossover areas in research for partner institutions. Is it possible to further explore these topics with                               
a unified approach between Dutch heritage institutions? What might this look like? The template of                             
the EaaSI project is a good example of institutions pulling together in this manner and a lot of the                                     
groundwork has already been carried out, including conducting surveys on some of the ‘getting                           
started’ questions. Sharing environments between institutions is possible using OAI-PMH                   
Synchronisation, which is built into the framework, allowing members of the EaaSI network to benefit                             
from the collective work of all member institutions. This is something that could be mirrored in the                                 
Netherlands, allowing institutions to gain a greater understanding of not only their own                         
software-dependent collections but the broader area of research and innovation.  
 
We hope the scenarios presented in this paper provide a better overview of how an emulation                               
framework such as EaaSI might be used to access obsolete software and software-dependent data                           

21 https://www.copyright.gov/fair-use/more-info.html 

22 
 

https://www.copyright.gov/fair-use/more-info.html


Emulation as a Service - Test Report 

in a heritage context. Furthermore, we hope that the questions posed around the wider area of                               
research into software collections’ management act as a starting point for greater discussions,                         
collaboration, and action going forward. 

   

23 
 



Emulation as a Service - Test Report 

8. Appendix  

Workflow Regionaal Archief Alkmaar 
Testing of Commodore 64 emulation using EaaSI framework 
 
The testing of specific Commodore 64 files will use a cloud instance of the EaaSI framework for                                 
ease of access. The EaaSI cloud instance includes a preconfigured Commodore 64 environment                         
which utilises the VICE emulator. This is ready to load d64, t64, PRG, etc. files directly without the                                   
need for an additional operating system layer. For an idea of how EaaSI links hardware templates                               
with operating systems to create base environments please see this example workflow22. This                         
example shows the core principles of creating an environment, adding software and object files, and                             
how these interact with each other. Below is a more specific workflow developed for the needs of                                 
this survey. 
 
The 4 areas of functionality we wish to assess are: 

1. Importing a new Object 
2. Running an instance of the Commodore 64 environment with Object attached 
3. Saving this instance as a new Object Environment for easy access in future 
4. Evaluating the performance and integrity of the test files 

 
The suggested test cases are listed below but we welcome feedback on additional files. 
 
Test files 
Another_Tune.t64 
Warrior - 1001 Crew.PRG 
1001 Crew - The Final Edge.d64 
1001_Joke.t64 
Rollerboard.d64 
 
Workflow 
1. The first step is to import a new object. From the main dashboard, navigate to the “Objects” tab.                                     
To add a new object, use the “Import Object” button. All new objects imported from a local file                                   
system will end up in the “Local Object Archive”. 

 

22 https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html 

 

24 
 

https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html
https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html


Emulation as a Service - Test Report 

 

 
 
From the “Object Upload” page you can add your file of choice. The “Add File” button opens a                                   
dialogue box that prompts the user for input. Select the desired file and then choose the media type                                   
from the drop-down menu. The media type for Commodore 64 files is “Floppy.” 
 

 
 
Back at the “Object Upload” page, add an Object Label for the file and click the “Import” button. You                                     
will see the system working on the import and, if successful, be returned to the “Objects” page. There                                   
should also be a green success notification in the top right corner of the screen. To double check                                   
that the import worked, click into the Local Object Archive to see if the new object is listed. 
 

25 
 



Emulation as a Service - Test Report 

2. Now that you have a new Commodore 64 object imported, you can test it out in an emulation                                     
instance. Starting from the Local Object Archive, you can assign specific rendering environments to                           
your objects. Locate your object in the list and select from the “Choose action” drop-down menu                               
“Choose action → Details” 
 
The Object Details page has a drop-down section for Rendering Environments. If you know which                             
environment you want to use for these particular objects you can use the “Add Environment” button                               
to select the correct one, in this case the Commodore 64 environment. 
 

 

 
 
Adding the Commodore 64 environment presents the user with the option to run the object in an                                 
emulation instance directly from the Object Details page. The “Run” button will prepare a new                             
emulation session. From here the user can interact with and assess the object. 

26 
 



Emulation as a Service - Test Report 

 
 

 
 
Please note that out of all the test cases the Rollerboard example appears to be the only one that                                     
doesn’t start with the standard controls configured. These, along with other VICE settings, can be                             
adjusted within the emulation session using the F12 key to open the menu. This is probably useful to                                   
explore and figure out yourself but please contact us if it proves troublesome.  
 
3. When you are happy with the look and feel of the emulated environment you can save it for future                                       
use. This saves the trouble of having to reassign rendering environments each time you launch a                               
new session. 
 
To the left of the emulated screen is a menu. You can use the “Save Environment” button to create a                                       
new Object Environment that links the Commodore 64 environment with the object in question. This                             
action will prompt you to make sure “to shutdown the guest operating system before creating a                               
snapshot”. For the Commodore environments you can ignore this and choose to continue. A                           
dialogue box allows you to add some descriptive information about the new environment, and when                             
saved the user is returned to the Environments page. 

27 
 



Emulation as a Service - Test Report 

 
 
The new environment can be located in the “Object Environments” tab and can easily be launched via                                 
the Run Environment button in the Actions drop-down menu. 
 

 

Workflow Het Nieuwe Instituut 
 
Testing of QuarkXpress emulation using EaaSI framework 
 
The testing of specific QuarkXpress files will use a cloud instance of the EaaSI framework for ease                                 
of access. The EaaSI cloud instance includes a preconfigured Quarkxpress environment which                       
utilises the Sheepshaver emulator in combination with images of MacOS 8.5 and QuarkXpress 4.1.                           
This environment is ready to add QXD files for use with the QuarkXpress software. For an idea of                                   
how EaaSI links hardware templates with operating systems to create base environments, please                         
see this example workflow23. This example shows the core principles of creating an environment,                           
adding software and object files, and how these interact with each other. Below is a more specific                                 
workflow developed for the needs of this survey. 
 
 
 

23 https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html 

 

28 
 

https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html
https://eaasi.gitlab.io/eaasi_user_handbook/resources/workflow.html


Emulation as a Service - Test Report 

The 4 areas of functionality we wish to assess are: 
1. Importing a new Object 
2. Running an instance of the Commodore 64 environment with Object attached 
3. Saving this instance as a new Object Environment for easy access in future 
4. Evaluating the basic operations and integrity of the test files 

 
The suggested test cases are listed below but we welcome feedback on additional files. Please note                               
that these files are a mix of Windows native files and Mac native files. The cross compatibility of the                                     
QuarkXpress software allows for interaction with the files, but the limited availability of software                           
images means that the test environment will be using a Mac version. 
 
Test files 
Booklet1 
HUNTING3 
AteliersA5 
Bookje06012001 
Flight Forum xp4_#1 
 
 
Workflow 
 
1. 
The first step is to import a new object. From the main dashboard, navigate to the “Objects” tab. To                                     
add a new object use the “Import Object” button. All new objects imported from a local file system                                   
will end up in the “Local Object Archive”. 
 

 

29 
 



Emulation as a Service - Test Report 

 

 
 
From the “Object Upload” page, add your file of choice. The “Add File” button opens a dialogue box                                   
which prompts the user for input. Select the desired file and then choose the Media Type from the                                   
drop-down menu. The Media Type for the individual QXD files is “Files”.  
 

 
 
The “Add File” operation can be repeated to include multiple files in the one import. The EaaSI                                 
framework will package all file uploads into an ISO image for ease of use within the emulated                                 
environment. 

30 
 



Emulation as a Service - Test Report 

 
 
Back at the “Object Upload” page, add an Object Label for the file and click the “Import” button. You                                     
will see the system working on the import and, if successful, be returned to the “Objects” page. There                                   
should also be a green success notification in the top right corner of the screen. To double check                                   
that the import worked, click into the Local Object Archive to see if the new object is listed. 
 
2. 
Now that you have the QXD files imported as an object, you can test it out in an emulation instance.                                       
Starting from the Local Object Archive, you can assign specific rendering environments to our                           
objects. Locate your object in the list and select from the “Choose action” drop-down menu: “Choose                               
action → Details” 
 
The Object Details page has a drop-down section for Rendering Environments. If you know which                             
environment you want to use for these particular objects you can use the “Add Environment” button                               
to select the correct one, in this case the “MacOS_8.5 + QuarkXxpress_4.1” environment. 
 

 

31 
 



Emulation as a Service - Test Report 

 
 
Adding the “MacOS_8.5 + QuarkXxpress_4.1” environment presents the user with the option to run                           
the object in an emulation instance directly from the Object Details page. The “Run” button will                               
prepare a new emulation session. Once running, please ensure to click inside the emulation window.                             
This will enable relative mouse control. To leave the relative mouse control press the “Esc” key. From                                 
here the user can interact with and assess the object. 
 

 

32 
 



Emulation as a Service - Test Report 

 
 
The files are best accessed by first launching the QuarkXpress software and then using the “File” ->                                 
“Open” method. The location of the files will be “CDROM”. From this point you will be able to use all                                       
the tools available in QuarkXpress. Some toolbars may not appear as default, so spend some time                               
exploring the menu bar along the top of the screen. 
 
3. 
When you are happy with the look and feel of the emulated environment, you can save it for future                                     
use. This saves the trouble of having to reassign rendering environments each time you launch a                               
new session. 
 
To save a new Object Environment you first need to cleanly shut down the emulated environment.                               
This can be done through the “Special” menu. Once the emulated Operating System has been shut                               
down you will be notified that the emulator has stopped and presented with the option to “Save                                 
Environment” in the left hand menu. 

33 
 



Emulation as a Service - Test Report 

 

 
 
When “Save Environment” is selected, a dialogue box is displayed to allow you to add some                               
descriptive information about the new environment. When this is saved, the user is returned to the                               
Environments page. For future alterations to the environment, or to ensure that changes to files                             
persist, you can follow the same steps, choosing to save the environment as a revision or as a new                                     
Object Environment. 

34 
 



Emulation as a Service - Test Report 

 
 
 
The new environment can be located in the “Object Environments” tab and can easily be launched via                                 
the Run Environment button in the Actions drop-down menu. 
 

 
 
 
 
 

35 
 



 

9. Credits 
 

If you have any queries or comments about the contents of the report, please feel free to email them                                     
to: info@netwerkdigitaalerfgoed.nl 
 
 
 
 
 

Eoin O’Donohoe, author of this report, is a Digital Preservation Analyst at Beeld en Geluid. He is                                 
currently working on areas of research that aim to lower the threshold for institutions looking to make                                 
a start on software archiving. 

eodonohoe@beeldengeluid.nl 

About this publication 

This report was published by the Dutch Digital Heritage Network (NDE) in October 2020. 
For further information, see: netwerkdigitaalerfgoed.nl 

mailto:info@netwerkdigitaalerfgoed.nl
mailto:eodonohoe@beeldengeluid.nl
https://www.netwerkdigitaalerfgoed.nl/

