Supplementary Details for
Our Paper

Outline

1. lllustrative examples for our false positive case
2. lllustrative examples for our false negative cases

3. Do different algorithms generate inaccurate mappings for the same
sets of statements and file revisions?

4. Similarity measures that are most commonly used to determine
Inaccurate mappings for GT, MTD and M

5. Advantages and disadvantages of GT, MTD and JM.

Our false positive case

1l - LOG.trace("redelivery #" + redeliveryCount + " of: " + messageReference.getMessageId() + " with delay: "
+ delay + ", dest: " +|messageReference.getRegionDestination(ﬂ.getActiveMQDestination());

\\\\\\\\\EELIJM

éstination) hessageReference.getRegionDestination()L
iveryCount + " of: " + messageReference.getMessageId() + " with delay: "
\ + regionDestination.getActiveMQDestination())

MTD

2 + Destination regionDestination =
3 + LOG.trace ("redelivery #" + red
+ delay + ", dest:

GT, MTD and IIM represents the mappings inferred by GT, MTD and /M.
This is the only one false positive case in our evaluation dataset. The correct mapping is shown with a green arrow.

In this case, the developer is extracting the method invocation messageReference.getRegionDestination() as a new
variable. GT and IJM accurately maps message.getRegionDestination() at line 1 to line 2. MTD inaccurately maps
messageReference at line 1 to regionDestination at line 3.

The statement at line 1 should be mapped to the statement at line 3. In our paper, our approach considers that
mapping two tokens in mapped statements is better than mapping two tokens from unmapped statements.

However, when a developer performs refactoring changes, mapping tokens from unmapped statements may be
better than mapping tokens in mapped statements.

https://github.com/apache/activemq/commit/9a8f6e415db43a4e43ad42a87b3617b3641aa07d#diff-12a98a6ac2236738502713b224a7b0c3e7e2e52cl16e2e36461fed351334b8341

Our false negative case (1)

1| - public String applyUniquesOnAlter (UniqueKey uniqueKey, String defaultCatalog, String defaultSchema) ;

2| - public String dropUniquesOnAlter (UniqueKey uniqueKey, String defaultCatalog, String defaultSchema) ; GT,IJM
3| + public String applyUniquesOnAlter (org.hibernate.mapping.UniqueKey uniqueKey, String defaultCatalog, String defaultSchema)¢

4| + public String dropUniquesOnAlter (org.hibernate.mapping.UniqueKey uniqueKey, String defaultCatalog, String defaultSchema) ;

MTD maps an empty element to the statement at line 4

Correct mappings are: (line 1 -> line 3) (line 2 -> line 4)
All of the studies algorithms cannot generate inaccurate mapping for the statement at line 2.

Both GT and)M maps the statement at line 2 to the statement at line 3. Thus, by comparing the two algorithms, we
cannot find the inaccurate mapping.

https://github.com/hibernate/hibernate-orm/commit/7b05f4aed8845d4ccefce71eea438b81bel0610e#diff-040ff7552977d9dSefea3002e4a2cfc2b4ca61186e239ad445¢f58d681149e05

Our false negative case (2)

1| - public static PrintableResult testResult(Class<?> type) { GT
) MTD and IJM map the two statements

2 | + public static PrintableResult testResult (Class<?> type) { to empty elements

Correct mapping is shown with a green arrow.

When an algorithm maps two statements and another algorithm maps them to empty elements, our
method is not able to determine if the two statements should be mapped. Thus, our method cannot
determine which algorithm generates the inaccurate mapping.

https://github.com/junit-team/junit4/commit/409a8e06c9f2ecSaa0d9db8a3d4131394¢c290f6d#diff-c40e1815088500323bf382134b4869a70ae146cf28b72¢7a2505bba965ce2610

Our false negative case (3)

1| - final BufferedOutputStream output2 = new BufferedOutputStream(new FileOutputStream(equalFile)),GT and IJM map the two
MTD tokens to empty element.

2| + try (final BufferedOutputStream output2 = new BufferedOutputStream(new FileOutputStream(equalFile))) ({

. . . GT and MTD map the two tokens to
3| - if (this.useJaf && jafPresent) empty element.
IJM
4 + if (jafMediaType '= null && !'MediaType.APPLICATION OCTET STREAM.equals(jafMediaType))

Correct mapping in the first figure is shown with the green arrow. Correct mapping in the second figure is
shown with the green text.

When an algorithm maps two tokens and another algorithm maps the two tokens to empty elements, our
similarity measures cannot determine which algorithm generates the inaccurate mapping.

https://github.com/apache/commons-io/commit/79b4df582d0035¢196d4dc10894778faeS8311 ce#diff-d7f0d0432bfbd4488035ea3c9db78425b68e83cca9893fc876b3400b7d74d440

https://github.com/spring-projects/spring-framework/commit/83¢83d4d152ff6d8bffe79e¢9eece31ealfc89cle#diff-d30fabbec53e504481aacb52d762606d3980515b7¢2400456011e026954a243f

Our false negative case (4)

[y
1

br.readline () ;

2| - br.readline();
ID GT, IJM

w
+

br.readline () ;
4| + br.readline() ;

Correct mapping is shown with the green arrow.

From the figure, we find that the four statements are identical.
The statement at line 1 should be mapped to the statement at
line 3. And the statement at line 2 should be mapped to the
statement at line 4.

Currently, our similarity measure does not consider the order
of mapped statements. Hence, we cannot determine the
accuracy of the mappings as generated by the three algorithms.

https://github.com/apache/commons-io/commit/6b57d2a14089735¢cf1¢653a2717d05023a3be441#diff-43b196¢3930¢6682a2{391e2621d0397dScal12e08b34075db235bS5327dcecS14

Different algorithms can generate inaccurate mappings in the
same sets of statements and file revisions.

309390 %v
1,287,149 196,518
MTD IM

A Venn diagram of the statements with Inaccurate A Venn diagram of the file revisions with inaccurate
mappings for comparing GT, MTD and liM mappings for comparing GT, MTD and /M

Similarity measures used to determine the accuracy of
generated mappings by different algorithms

Table 2. Number of statements with inaccurate mappings that are determined by the similarity measures when comparing each pair of algorithms.

Algorithms VAL LLCS
GT 12,077 13,016
GT vs. MTD Rank1
MTD 112,682 1,661 6,464 -
GT 6,120 14,396
GT vs. UM : : Rank?
LJM 3,680 1,945 2,240 -
MTD vs. MTD 128,667 1,416 5,725 - Rank3
IIM 1JM 4,854 5,561 1,524

We highlight the top 3 commonly used measures to detect statements with inaccurate mappings for each algorithm (i.e., for each row).

Findings:

1. NIT, PMand STMT are the most commonly used measures to determine inaccurate mappings for different algorithms
2. For GT, TYPE is also an important measure for detecting the inaccurate mappings

Advantages and Disadvantages of GT, mtp and 1JM

Table 2. Number of statements with inaccurate mappings that are determined by the similarity measures when comparing each pair of algorithms.

Algorithms NIT PM TYPE STMT LLCS
G 5L oo ot o des e
croum O e
MTD 12 236,304
MTD vs. UM 7 137.257 i:ggz 1382?1)4

We highlight the algorithm that is detected to generate the most and least number of inaccurate mappings for each measure (i.e., for each row).

Advantages:

GT:
1. GTis less likely to map dissimilar statements with less identical tokens

MTD:
1. MTDis less likely to map tokens with different values.

UM

1. IMis less likely to map dissimilar statements without parent nodes
mapped.

2. IMis less likely to map tokens with different types.

3. M s more likely to sequentially map the tokens in mapped statements.

Disadvantages.

GT:

1. GT is more likely to map tokens with different types

2. GTis more likely to map tokens with different values

3. GT is more likely to map tokens out-of-order in mapped statements

MTD:
1. MTD is more likely to map dissimilar statements, for which we can find
better mapped statements with a larger number of identical tokens or
parent nodes mapped.

1IM:
1. M is more likely to generate inaccurate mappings of tokens because
tokens in the mapped statements are not mapped.

