
Measuring the degree of library
dependency

Núria Bruch Tàrrega
nuria.bruch@gmail.com

November 2, 2020, 97 pages

Academic supervisor: Dr. Ana M. Oprescu, ana.oprescu@uva.nl

Host supervisor: Dr. Lodewijk Bergmans, l.bergmans@sig.eu

Host supervisor: Dr. Miroslav Živković, m.zivkovic@sig.eu

Host organisation: Software Improvement Group (SIG), www.softwareimprovementgroup.com

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Master Software Engineering

http://www.software-engineering-amsterdam.nl

mailto:nuria.bruch@gmail.com
mailto:ana.oprescu@uva.nl
mailto:l.bergmans@sig.eu
mailto:m.zivkovic@sig.eu
https://www.softwareimprovementgroup.com
http://www.software-engineering-amsterdam.nl

Abstract

The usage of libraries, both commercial and open-source, provides the implementation of certain func-
tionalities and is a widespread practice among developers. The usage of these libraries allows developers
to avoid duplicating code by reusing it instead. However, when a developer uses a library in a software
product, this creates a dependency. This dependency may result in transitive dependencies when the
library depends on other libraries. The dependencies created when reusing a library can also carry prob-
lems — if a library has a security issue, it can be propagated to the software product, which depends
on it, directly or indirectly. To deal with dependencies, developers can use package managers, which
allow them to install and update the libraries they use. However, these package managers generally do a
simple evaluation of the dependencies: either there is a dependency or not. Hence, a detailed evaluation
of the dependencies is missing, which could help developers deal with vulnerabilities, breaking changes,
and deprecated dependencies.

In this thesis, we propose a model for software dependencies, which can help to provide a fine-grained
evaluation of them. The model includes three types of metrics: coupling, coverage, and usage per class.
For each metric in the model, we provide a formal definition and a theoretical validation by proving the
metrics’ properties. We additionally implemented a proof-of-concept tool that, given a library from the
Maven Central Repository, calculates the metrics of the model for each of the dependencies using bytecode
analysis. Moreover, the proof-of-concept includes a visualization of the dependency tree, including the
calculated metrics.

Finally, we conducted experiments to validate the model, the implementation of the proof-of-concept,
and the visualization. The experiments include interviews with 15 professional developers who evaluated
the clarity and actionability of the model’s metrics and the proposed visualizations.

1

Contents

1 Introduction 7
1.1 Research questions . 7
1.2 Research method . 8
1.3 Contributions . 8
1.4 Outline . 9

2 Background 10
2.1 Terminology . 10
2.2 Dependency management . 12

2.2.1 Maven Dependencies . 12
2.3 Coupling . 13
2.4 Metrics validation . 17

3 Dependency evaluation model 18
3.1 Measuring the degree of dependency . 18

3.1.1 Definition of coupling . 18
3.1.2 Metrics for direct dependencies . 21
3.1.3 Metrics for transitive dependencies . 26

3.2 Measuring coverage of the dependency . 30
3.2.1 Definition of coverage . 30
3.2.2 Formal definition of the metrics . 32
3.2.3 Theoretical validation . 32

3.3 Measuring usage per class . 34
3.3.1 Definition of usage per class . 35
3.3.2 Formal definition of the metrics . 36
3.3.3 Theoretical validation . 36

4 Proof of Concept 39
4.1 Analysis technique . 39
4.2 Architecture . 39

4.2.1 Model of the dependency tree . 40
4.3 Calculating coupling metrics . 41

4.3.1 Method Invocation Coupling . 42
4.3.2 Aggregation Coupling . 42
4.3.3 Transitive Method Invocation Coupling . 43
4.3.4 Transitive Aggregation Coupling . 44
4.3.5 Propagation Formula . 45

4.4 Calculating coverage metrics . 46
4.4.1 Step 1 . 46
4.4.2 Step 2 . 46

4.5 Calculating usage per class metrics . 48
4.6 Visualization . 48

4.6.1 Technologies . 49
4.6.2 Dependency Tree . 49
4.6.3 Dependency Table . 50
4.6.4 Distribution per class . 51

2

CONTENTS

5 Experiments 53
5.1 Experiment 1: Comparison . 53

5.1.1 Experimental setup . 53
5.1.2 Results . 53
5.1.3 Discussion . 54

5.2 Experiment 2: Coupling metrics significance . 55
5.2.1 Experimental set up . 56
5.2.2 Results . 57
5.2.3 Discussion . 58

5.3 Experiment 3: Sensitivity Analysis . 59
5.3.1 Experimental set up . 59
5.3.2 Results . 59
5.3.3 Discussion . 61

5.4 Experiment 4: Expert Interviews . 64
5.4.1 Experimental set up . 64
5.4.2 Results . 64
5.4.3 Discussion . 73

5.5 Experiment 5: Benchmarking . 75
5.5.1 Experimental set up . 76
5.5.2 Results . 76
5.5.3 Discussion . 76

6 Discussion 82
6.1 RQ1: How can we measure the degree of code dependency between two software products

with a direct dependency? . 82
6.2 RQ2: How can we measure the degree of code dependency between two software products

with a transitive dependency? . 83
6.3 RQ3: How can we measure how much of a dependency is used by a software product? . . 83
6.4 RQ4: How can we visualize the metrics designed to model the software dependencies? . . 83
6.5 Proof-of-Concept . 84
6.6 Limitations . 84

7 Related Work 85
7.1 Software dependencies . 85

7.1.1 Summary . 87
7.2 Coupling metrics . 88

7.2.1 Summary . 89

8 Conclusion 90
8.1 Future work . 90

8.1.1 The model . 90
8.1.2 The proof-of-concept . 91

Bibliography 93

Appendix A Data set 96

3

List of Figures

3.1 Example of coupling special cases, based on example from Briand et al. [11] 20
3.2 Reachability example . 27
3.3 Example dependency tree . 28
3.4 Example of noncoarseness, percentage of reachable classes 33
3.5 Example of nonuniqueness, percentage of reachable classes 34
3.6 Example to calculate usage per class . 35
3.7 Example of noncoarseness, number of method invocations 37
3.8 Example of nonuniqueness, number of method invocations 38

4.1 Overview of the proof-of-concept implementation of the calculation of the model 41
4.2 Class diagram, dependency tree model . 41
4.3 Pseudo-code of the algorithm to calculate MIC . 42
4.4 Pseudo-code of the algorithm to calculate AC . 43
4.5 Pseudo-code of the algorithm to find polymorphic implementations 43
4.6 Pseudo-code of the BFS used for TMIC . 44
4.7 Pseudo-code of the algorithm to calculate TMIC . 44
4.8 Pseudo-code of the BFS used for TAC . 45
4.9 Pseudo-code of the algorithm to calculate TAC . 45
4.10 Pseudo-code of the step 1 to calculate coverage of the dependencies (Part 1) 46
4.11 Pseudo-code of the step 1 to calculate coverage of the dependencies (Part 2) 47
4.12 Pseudo-code of the step 1 to calculate coverage of the dependencies (Part 3) 47
4.13 Pseudo-code of the step 2 to calculate coverage of the dependencies (Part 1) 48
4.14 Pseudo-code of the step 2 to calculate coverage of the dependencies (Part 2) 48
4.15 Pseudo-code of the step 2 to calculate coverage of the dependencies (Part 3) 48
4.16 Pseudo-code of the calculation of the #MethodInvocations of a dependency 49
4.17 Example of the tree visualization . 49
4.18 Example of the table visualization . 50
4.19 Example of the distribution per class visualization . 51

5.1 Example dependency tree involving annotations . 59
5.2 TMIC as a function of the propagation factor, with quadratic regression (left) and linear

regression (right). R is the Pearson correlation coefficient, and p corresponds to the
confidence interval . 61

5.3 TAC as a function of the propagation factor, with quadratic regression (left) and linear
regression (right). R is the Pearson correlation coefficient, and p corresponds to the
confidence interval . 61

5.4 Covariance of propagation factor and TMIC as a function of the sumation of the coupling
measured at each distance (DTMIC). p corresponds to the confidence interval 62

5.5 Covariance of propagation factor and TAC as a function of the sumation of the coupling
measured at each distance (DTAC). p corresponds to the confidence interval 62

5.6 The correlation between propagation factor and TMIC as a function of the maximum dis-
tance at which coupling is measured. p corresponds to the confidence interval 63

5.7 The correlation between propagation factor and TAC as a function of the maximum distance
at which coupling is measured. p corresponds to the confidence interval 63

5.8 Answers to Question 3 of the interview . 66
5.9 Answers to Question 6 of the interview . 67

4

LIST OF FIGURES

5.10 Answers to Question 7 of the interview . 67
5.11 Answers to Question 8 of the interview . 68
5.12 Answers to Question 9 of the interview . 68
5.13 Answers to Question 10 of the interview . 69
5.14 Answers to Question 11 of the interview . 69
5.15 Answers to Question 13 of the interview . 70
5.16 Answers to Question 15 of the interview . 71
5.17 Answers to Question 16 of the interview . 72
5.18 Answers to Question 17 of the interview . 72
5.19 Histogram MIC benchmark, 60 bins . 76
5.20 Histogram AC benchmark, 60 bins . 77
5.21 Histogram TMIC benchmark, propagation factor = 1, 60 bins 77
5.22 Histogram TAC benchmark, propagation factor = 1, 60 bins 78
5.23 Histogram TMIC benchmark, propagation factor = 0.5, 60 bins 78
5.24 Histogram TAC benchmark, propagation factor = 0.5, 60 bins 79
5.25 Histogram TMIC benchmark, propagation factor = 0.1, 60 bins 79
5.26 Histogram TAC benchmark, propagation factor = 0.1, 60 bins 80

5

List of Tables

2.1 Terminology from the literature . 10
2.2 Types of connections, obtained from [11] . 14
2.3 Counting connections, obtained from [11] . 15
2.4 Coupling metrics comparison . 16

3.1 Literature usage of the types of connection . 19
3.2 Criteria of the set of metrics . 21
3.3 Characteristics of the coverage metrics . 31
3.4 Criteria of the set of metrics . 36

5.1 Identifiers of the Maven artifacts used for comparison . 54
5.2 Results of the comparison with Soto-Valero et al. [7] . 55
5.3 Summary of the significance experiment . 57
5.4 List of the server libraries for which the coupling metrics were not enough to indicate usage 58
5.5 Sensitivity analysis, list of dependencies used . 60
5.6 Covariance and Pearson correlation of the metrics TMIC and TAC with the propagation

factor, for all the dependencies used in the sensitivity analysis 60
5.7 Questions of the interview . 65
5.8 Answers to Question 12 of the interview. ⊕ indicates that the interviewee considered that

visualization to be the most useful, the ⊙ is used when the visualization was considered
useful but in a clear second position, and an empty cell means that the the visualization
was not mentioned. 70

5.9 Results Question 15: Average marks of the metrics, given by developers, non-developers,
and all . 71

5.10 Answers to Question 18 of the interview. ⊕ indicates that the interviewee considered the
metric to be the most useful, the ⊙ is used when the metric was considered useful but in
a clear second position, and an empty cell means that the the metric was not mentioned. 73

5.11 70th, 80th, and 90th percentiles of the coupling metrics 80
5.12 Risk profile of coupling metrics . 81

7.1 Summary comparison, software dependencies related work 87
7.2 Summary comparison, coupling metrics related work . 89

A.1 List of libraries from Maven Central used in experiments 2 and 5. 97

6

Chapter 1

Introduction

Currently, many libraries are available for developers, both commercial and open-source. Using libraries
is becoming more and more popular [1] since it allows reusing previously developed code and helps devel-
opers avoid implementing the same functionalities multiple times. For example, the Maven Repository
Central, which contains the artifacts of a large amount of Java libraries, included 2.8M artifacts in 2018,
which is 13.5x more artifacts than in 2011 [2].

When a developer uses a library in a project, it creates a dependency between the project and the
library. It implies that a significant number of projects depend on other libraries. The Maven Repository
Central includes more than 9M dependencies between artifacts, dated 2018 [2]. This adds the task of
managing these dependencies to the maintenance tasks of the project — proper maintenance of the
dependencies of a project is also part of the software applications’ health and security. The management
of dependencies is one of the problems that software engineering is trying to solve [3]. For instance, an
update of a dependency may require changing part of the code if the update contains breaking changes
[4].

The management and maintenance of the dependencies of a project is an important task. External
libraries, just like any other software product, can have security vulnerabilities that may affect the
projects that depend on these libraries. For example, some security vulnerabilities can become problems
that can negatively impact a software product regarding integrity, privacy, or availability 1.

Currently, developers have package managers at their disposal to ease managing the dependencies of their
projects. However, the dependency management available in these package managers only evaluates if a
dependency exists or not, and a more detailed evaluation is missing [5]. For instance, there is no way to
evaluate how much a project depends on a library or how much of the library is used. Therefore, there
is no way to know how likely it is that the project is affected by a vulnerability in the library and which
parts of the project’s code would need updating in case of a breaking change in the library.

Therefore, this thesis aims to create a model to evaluate the dependencies to obtain information on the
actual usage of the dependencies. A set of metrics is proposed to measure the dependencies between
projects and the dependencies these have. The metrics are designed to evaluate the dependencies accord-
ing to three different perspectives: (1) the code affected by the dependency, (2) how much of a library is
used, and (3) the usage of the dependency per class.

This project has been carried out in collaboration with the company Software Improvement Group
(SIG), and it is motivated by the FASTEN project 2. The FASTEN project aims to improve the quality
of open-source development environments to make them more secure and reliable. For this reason, one
of the goals is to analyze the software library dependencies in more detail.

1.1 Research questions

To address the problems described in the previous section, we formulate the following research questions:

RQ1: How can we measure the degree of code dependency between two software products with a direct
dependency?

1https://cve.mitre.org/cve/cna/rules.html#section_7-1_what_is_a_vulnerability
2https://www.fasten-project.eu/

7

https://cve.mitre.org/cve/cna/rules.html#section_7-1_what_is_a_vulnerability
https://www.fasten-project.eu/

CHAPTER 1. INTRODUCTION

With this question, we want to propose a set of metrics to measure a dependency from the product’s
point of view that has a dependency on another product. We want to measure how much the project is
affected by the dependency.

∙ RQ1.1: What constitutes a dependency between two products?

First, we need to determine what creates a dependency — the type of connection between the
products and how it can be measured.

∙ RQ1.2: Which metrics can be used to measure the dependency?

We propose metrics to measure the dependency described in the previous subquestion. Existing
metrics are considered, as well as new ones.

∙ RQ1.3: How can we validate the proposed metrics?

There are many approaches to validate metrics used in the literature, some of which are used to
validate the proposed metrics in this thesis, based on which apply to the proposed metrics.

RQ2: How can we measure the degree of code dependency between two software products with a transitive
dependency?

Transitive dependencies involve more factors than direct dependencies, such as the propagation of the
dependency and its impact. Therefore, the metrics proposed for the direct dependencies have to be
adapted for the transitive ones.

RQ3: How can we measure how much a library is used by a software product?

For this question, we look at the dependency from another perspective. RQ1 focused on how much does
the software product depends on a library. In this case, we measure how much of the library is being
used by the software product.

RQ4: How can we visualize the metrics designed to model the software dependencies?

For the model to be usable by developers, it is necessary to create a way to visualize the results, which
is usable for the target audience. The visualizations are presented to software developers to discuss their
usefulness and actionability, based on the situation in which these would be used.

1.2 Research method

The main research method we use during this project is the Technical Action Research (TAR) [6]. This
research method is artifact-based, which means that the first step is to produce the artifact meant
to be used in certain situations envisioned by the researcher. The testing of this artifact, to see if it
is effective in these situations, is done through several iterations. First, under ideal conditions, and
subsequently changing the experiments step by step to reach a real-world situation. In this master
thesis, the artifact is the proof-of-concept that implements the model for software dependencies and
the proposed visualizations. Because of time constraints, performing multiple iterations is not possible.
Therefore, we created a setting with an example input, in which the interviewees can use the artifact
and evaluate it. However, there is the option of continuing with this part of the work in the future.

Furthermore, the research includes experiments. These experiments will be conducted as the empirical
part of the validation of the metrics and the proof-of-concept implementation of both the model and the
proposed visualizations.

1.3 Contributions

Considering the current state of the art in the domain of this thesis project, the main contributions made
by this research are the following:

1. Model for software dependencies:

We have created a model for both direct and transitive software dependencies. It contains three
types of metrics, which measure the dependency from a different point of view: coupling, coverage,
and usage per class. In total, there are eight metrics in the model. For each of the metrics, we
provide a formal definition and a property-based theoretical validation.

8

CHAPTER 1. INTRODUCTION

2. Proof-of-Concept tool:

To complement the model and be able to evaluate it, we create a proof-of-concept implementation.
The tool can calculate all the model metrics for the dependency tree of a given library by using
Java bytecode analysis. To calculate the metrics for each library in the dependency tree, all the
libraries have to be available in the Maven Central Repository.

The proof-of-concept includes a front-end which contains three visualizations of the model: a tree
graph, a table, and a class distribution bar-chart.

3. Validation:

To validate the other contributions, we have conducted five experiments. First, we have compared
our results with the results of the research by Soto-Valero et al. [7]. Second, for the first type of
metrics, the coupling metrics, we have evaluated their significance. Third, for the coupling metrics
for transitive dependencies, which have a propagation factor, we have conducted a sensitivity
analysis of this factor. Next, to validate the visualizations as well as the actionability and clarity
of all the metrics, we have conducted expert interviews. We interviewed 15 professional developers
who used the tool during the interview, considering certain usage scenarios. Finally, we have
created a benchmark of the coupling metrics to understand their scale and distribution.

1.4 Outline

In Chapter 2, we describe the background of this thesis based on the literature of the domain. Chapter
3 describes the metrics created to model the dependencies between software products. The model is
used in Chapter 4, which describes the creation of the proof-of-concept tool that calculates the metrics
of the model. In Chapter 5, the setup and execution of the experiments are explained, and the results
of the experiments are shown and discussed. The research questions are answered in chapter 6. Chapter
7 contains the work related to the domain of this thesis. Finally, we present our concluding remarks, as
well as future work in Chapter 8.

9

Chapter 2

Background

In this chapter, we present the background information needed for the research conducted in this thesis.
In addition, we also define some terminology used throughout the thesis.

2.1 Terminology

This section contains a review of the terms used in some related literature, particularly those papers
that specify the terminology used. The different terms used are compared by explaining the differences.
Finally, we specify the terms used in this thesis and its definition.

Term [8] [1] [9] [7]

Library x x x

Package x x

Application x

Project x x x

Version x x x

Instance x

Release x

Artifact x

Package manager x x

Package repository x

Dependency x x x x

Reverse dependency x

Inherited dependency x

Direct/Transitive dependency x x x x

Direct/Indirect dependency x

Deployed/non-deployed dependency x x

Own/third-party dependency x

Halted dependency x x

Bloated dependency x

Dependency tree x x

Dependency network x x

Ecosystem x

Table 2.1: Terminology from the literature

First, we discuss the differences between the first four terms of the table. A library is a software unit
distributed independently and can be reused in other software components. The term library is replaced
by the term package in some papers, when referring to certain software ecosystems or package managers

10

CHAPTER 2. BACKGROUND

which use this term. The term application is used to differentiate the software components that are
available in repositories to be reused (libraries) and those that are not (applications) [1]. The term
project is used in different papers with different meanings. Pashchenko et al. [8] use it to refer to a group
of libraries developed or maintained by the same team of developers. Kikas et al. [1] use it to refer to
both library and application. Finally, Soto-Valero et al. use it to refer to Maven Projects.

Each library, available in a package repository, can have different versions. Apart from the word
version, the literature also uses the terms instance and release, with the same meaning. The word
artifact is used by Soto-Valero et al. [7] to refer to a Maven Artifact, which corresponds to a Maven
Project version.

The papers that specifically define package manager or package repository in the terminology, it is
because these tools have an important role in the research.

When describing the relationship in which a library uses another, relevant literature uses the term
dependency. However, different types of dependencies are defined depending on the paper and the
research done, which will be discussed below.

The dependencies declared in a library are always called direct dependencies, and those introduced
by the direct dependencies are called transitive or indirect.

There is also the distinction between deployed and non-deployed dependencies. The deployed ones
are those included in the software product once it is in production, and the non-deployed ones are those
used for development tasks (e.g., testing libraries).

When considering the risk associated with a dependency, it is important to consider whether the
library is own or third-party. An own dependency is maintained by the same team that develops the
product that has the dependency.

Another particular case when considering risk is halted dependencies. These dependencies are not
updated anymore, which means that if a vulnerability is found, it will not be fixed.

The last type of dependency is the bloated dependency. These dependencies can be direct or not, but
have the characteristic that the library is never used and uselessly increase the dependency tree’s size
without the need.

Finally, the terms dependency tree and dependency network refer to the graph created by the depen-
dencies. In these graphs, the library versions are the nodes, and the dependencies are the edges. The
ecosystem includes all the libraries and applications involved in the dependency network.

Based on the terminology discussed above, we define the terms that are used within this thesis.

∙ Library: A software artifact that is distributed independently. It can have different implemen-
tations distinguished by versions. The model created in this thesis is meant to analyze the de-
pendencies of any software product. However, for simplicity during the thesis, we always refer to
libraries.

∙ Version: A version of a library that contains an implementation of the library. Each version has
specific metadata associated to build the version successfully. Among other data, it specifies which
versions of other libraries it is using.

∙ Dependency: When a library version uses another library version, it creates a relationship be-
tween the versions of the two libraries, a dependency. In particular, the first library version depends
on the second one.

∙ Direct and transitive dependencies: A direct dependency is when a library version directly
uses a version of another library. A transitive dependency means a library version uses another
one indirectly, through other library versions that it depends on.

∙ Unused dependencies: We have decided to use the term unused dependency, instead of bloated
dependency since we find it easier to understand. A dependency is unused when included in the
library version’s dependency tree, but the library never reaches it. This could happen with both
direct and transitive dependencies for different reasons.

∙ Dependency network: Graph that represents the dependencies between library versions. In a
dependency network, the library versions are the nodes, and the dependencies between them are
the edges.

∙ Ecosystem: A set of libraries that have versions with dependencies. When the libraries are
updated (new versions), the ecosystem evolves.

11

CHAPTER 2. BACKGROUND

2.2 Dependency management

There exist several dependency managers. In this thesis, we analyze Java libraries, and in particular,
we will use projects in the Maven ecosystem, Maven Central Repository1. Therefore, the dependency
manager used is the one included in Maven. This section describes the characteristics of Maven, including
the types of dependencies and how these are declared.

2.2.1 Maven Dependencies

The configuration of a Maven Project, including the dependency management, is done in the Project
Object Model (POM) file. Apart from defining the dependencies of a project, the POM file contains the
project’s description and the build plugins that it uses.

The following parameters define a project:

∙ GroupID: The identifier of the group or company that developed the project.

∙ ArtifactID: The identifier of the project itself.

∙ Version: The version of the implementation of the project.

∙ Packaging: The packaging method that the project uses. Although other packaging methods are
available, jar files are the default ones and can be used to analyze the bytecode of the libraries.

Module hierarchy A Maven Project can be configured using two different strategies. First, as a
single module, it will only have one POM file, and that only one packaging will result in the build of the
project. The second option is to create a multi-module project. In this case, the project has multiple
POM files. These POM files can have a defined hierarchy in which there is a parent POM that has
children POMs, these children will inherit dependencies from the parent file. For the development of
the PoC of this thesis, a module with a POM file, even if it has a parent module, is considered a library
since it can be used in a different library as an individual dependency.

Dependencies and DependencyManagement There are two sections in a POM file that are used
for dependency management purposes: dependencies and dependencyManagement.

The dependencyManagement section is used in multi-module projects. It is used to define certain
dependency information (e.g., the version of the artifacts). It is used in the parent POM to simplify the
dependency definition of the children’s files.

The dependencies section is where the dependencies are declared. If a parent file has dependencies
declared in this section, these will always be inherited by the children’s files.

Maven uses both sections of the POM file to resolve the dependencies of a library.

Scope of the dependencies One of the main mechanisms that the Maven dependency manager offers
is the dependency scope specified for each dependency included in a POM file. A direct dependency’s
scope affects how the transitive dependencies are treated, except the scope import. There are 6 different
scopes:

∙ Compile: The default scope, all direct dependencies without a specified scope, have compiled
scope. These dependencies are available in the library’s classpath and will be propagated as tran-
sitive dependencies to the libraries that depend on the current library.

∙ Provided: This scope type means that the dependency is expected to be provided by the JDK or
the container during runtime. The dependencies with scope provided do not propagate transitive
dependencies and are only available in the classpath on compilation and test.

∙ Runtime: In this case, the dependency is only needed during the execution, and therefore not
necessary during compilation. It is available in the classpath during runtime and test. Runtime
dependencies are propagated as transitive dependencies.

∙ Test: This scope specifies a dependency that is only used for testing purposes. It is available in
the classpath during test and execution phases. Test dependencies do not propagate as transitive
dependencies.

1https://repo1.maven.org/maven2/

12

https://repo1.maven.org/maven2/

CHAPTER 2. BACKGROUND

∙ System: Similar to provided, but it is necessary to indicate the path to the jar of the dependency.
It may cause problems if the product is built in a machine where the indicated path does not match
the actual one. This scope is not transitive.

∙ Import: This scope is only available for dependencies declared in the section DependencyManage-
ment and with specified type pom. It indicates that the dependency should be replaced with the
dependencies declared in its pom. Therefore, these dependencies are replaced and do not affect
transitivity.

Optional dependencies and exclusions In Maven, it is possible to declare dependencies as optional.
The primary use case for this is when a project is not divided into sub-modules, and specific dependencies
are only used in certain parts of the project. In this case, it might be possible to use the project without
using these parts, and the dependency might not be necessary. Declaring the dependency as optional
allows saving both space and memory when the dependency is not used.

Another feature of the dependency management available in Maven is the dependency exclusions.
This feature has the goal of saving part of the memory and space used by transitive dependencies. When
a particular transitive dependency is not used in your project, it is possible to specify the transitive
dependency exclusion. It could be useful if you use only a part of a direct dependency that does not need
the transitive dependency. The excluded dependency will not be included in the project’s dependency
tree and will not be imported in the library’s classpath.

Dependency resolution To resolve the dependencies, Maven uses the POM file and scopes recursively
to create the dependency tree. However, another aspect of dependency resolution is the version of each
of the dependencies. It is possible that a dependency tree contains the same dependency more than
once, and maybe with different versions. Maven uses the dependency mediation algorithm to resolve
the version of the dependencies. The algorithm’s strategy is the ”nearest definition,” which consists
of choosing the version of the dependency closer to the root in the dependency tree. If one artifact is
declared twice with different versions and at the same level, the dependency mediation will choose the
first declaration of the dependency.

2.3 Coupling

When assessing the quality of software, many aspects are considered and measured. One of these,
in particular for Object-Oriented systems, is coupling. Coupling measures the degree of dependency
between two different parts of a system. In the literature of coupling metrics, these have been used
to measure the dependence of the same system elements or give an overview of the coupling within a
system. However, in this thesis, we measure the coupling, or degree of dependency, between two systems.

Therefore, we propose revisiting the existing coupling metrics, meant to measure the coupling between
units of the same project and adapt them to measure coupling between projects.

According to Poshyvanyk and Marcus in [10], there are six main groups of coupling metrics:

∙ Structural coupling metrics: Measured directly from static source code analysis. Largely
studied by the literature about coupling [10–13].

∙ Dynamic coupling measures: Measured using dynamic code analysis. ”Introduced as the re-
finement to existing coupling measures due to gaps in addressing polymorphism, dynamic binding,
and the presence of unused code by static structural coupling measures” [10].

∙ Evolutionary and Logical coupling: According to Zimmermann and Diehl [14], the evolution-
ary coupling can: ”tell us which parts of the system are coupled by common changes or cochanges.”

∙ Coupling measures based on information entropy approach: Coupling metrics based on
the information-theory approach, such as the metrics proposed by Allen and Khoshgoftaar in [15].

∙ Conceptual coupling metrics: Based on the semantic similarity between the elements. This is
the focus of the work from Poshyvanyk and Marcus [10].

∙ Coupling metrics for specific types of software applications: Specialized coupling metrics
for certain kinds of projects, such as knowledge-based systems or aspect-oriented approach.

13

CHAPTER 2. BACKGROUND

Since this research is aimed to be independent of the domain, the last category is not considered in
this thesis. Moreover, the evolutionary coupling is not possible to be applied in our context. Likely,
the separate projects will not evolve simultaneously, given that the same team does not develop them.
Finally, the research of this project, owing to the time limitation, will be centered on the structural
metrics.

These metrics are going to be proposed as a first step to measure the degree of library dependency.
Nevertheless, the metrics can be extended and calculated more accurately by adding dynamic coupling
and information entropy approach metrics in future work.

There are many structural coupling metrics, each measuring a different type of coupling from a
different perspective, depending on the purpose for which the metrics are needed. To define the necessary
metrics to measure the dependency between products, we have used the framework described by Briand
et al. [11], which unifies the frameworks defined by Eder et al. [13], Hitz and Montazeri [16], and Briand
et al. [12].

According to the unified framework defined by Briand et al. [11], the coupling metrics have specific
characteristics defining which type of coupling they are measuring. In particular, six criteria are defined:

∙ Type of connection: This criterion defines which mechanism creates coupling, which type of
dependency is measured, how the two elements are connected. The different types of connection,
as described by Briand et al. [11] can be found in Table 2.2.

∙ Locus of impact: If the coupling is import or export. In other words, if the class for which
coupling is being measured is the client or the server of the relationship.

∙ Granularity of the measure: The detail at which the metric calculates coupling. It is defined
by 1) The domain at which coupling is measured (e.g., class-level) and 2) how the metric counts
the connections (e.g., evaluating whether two elements are connected or not, or counting each one
of the connections individually). The six options to count connections as defined by Briand et al.
[11], can be found in Table 2.3.

∙ Stability of the server: In the framework by Briand et al. [11], the servers are classified as
unstable if these are ”subject to development or modification in the project at hand” and stable if
these ”are not subject to change in the project at hand.” The last one includes classes imported
from libraries. According to Briand et al., coupling with an unstable class represents more risk than
coupling with a stable class. However, the framework’s studied metrics do not use this criterion
and treat all classes with the same importance.

∙ Direct and indirect coupling: Does the connection between the two elements are direct or
transitive (there is at least one other element connecting the two). The metrics that do not
account for indirect coupling can be adapted by calculating the metric’s transitive closure.

∙ Inheritance: In this criteria, Briand et al. [11] define the position of the metric respecting
exceptional cases such as inheritance and polymorphism.

Client Item Server Item Description

1 attribute a of a class c class d, d != c class d is the type of a

2 method m of a class c class d, d != c class d is the type of a parameter of m, or the return
type of m

3 method m of a class c class d, d != c class d is the type of a local variable of m

4 method m of a class c class d, d != c class d is the type of a parameter of a method in-
voked by m

5 method m of a class c
attribute a of a

class d, d != c
m references a

6 method m of a class c
method m’ of a

class d, d != c
m invokes m’

7 class c class d, d != c high-level relationships between classes, such as uses
or consists-of

Table 2.2: Types of connections, obtained from [11]

14

CHAPTER 2. BACKGROUND

Counting

connections
Level Description

A
Method or

attribute
count individual connections

B
Method or

attribute
count the number of distinct items at the other end of the connections

C Class add up the number of connections counted as in A) for each method or
attribute of the class

D Class add up the number of connections counted as in B) for each method or
attribute of the class

E Class count the number of distinct items at the end of connections starting from
or ending in methods or attributes of the class

F Class for a class c, count the number of other classes to which there is at least
one connection

Table 2.3: Counting connections, obtained from [11]

Based on these criteria, Briand et al. classify the existing coupling metrics, according to their definitions
[11]. The comparison of all the metrics, according to the criteria of the framework, can be found in
Table 2.4. The criteria stability of the server has been excluded from the table since none of the metrics
consider it.

Coupling Between Objects (CBO) This metric counts the number of other classes to which the
client class coupled. This metric has two definitions: the original definition, CBO’ in Table 2.4, which
does not count inheritance. Then, there is the revised definition of the metric [17], which does include
inheritance.

Response for Class (RFC) This metric calculates the response set of a class. According to Chi-
damber and Kemerer [17], ”The response set of a class is a set of methods that can potentially be executed
in response to a message received by an object of that class”. The return set includes the methods called
directly by the class, as well as the methods that are called by transitivity. In the framework by Briand
et al. [11], it is considered that the inherited methods should be included in this set since they can
be executed to respond to a message received in the class. Based on this definition, there are three
defined metrics, the first one being 𝑅𝐹𝐶𝛼 [18]. The 𝛼 defines the number of nested levels of transitivity
considered in the calculation of the metric. The other two metrics are particular cases of this one: RFC
corresponds to when 𝛼 = 1, and RFC’ when 𝛼 = ∞.

Message Passing Coupling (MPC) This metric, created by Li and Henry [19], counts invocations
from the new methods of a class to methods of other classes. This means that the inherited methods are
not considered, but it is unclear how it treats overridden methods or calls to inherited methods. Briand
et al. [11], to eliminate ambiguity, redefined the metric as ”the number of static invocations of methods
not implemented in c by methods implemented in c”.

Data Abstraction Coupling (DAC) This metric was also defined by Li and Henry [19] as follows:
”number of ADTs defined in a class”, where ADT is abstract data type. However, this definition does
not specify how the metric should count the connections or consider inherited ADTs. Because of this
ambiguity in the original definition of the metric, Briand et al. [11] redefined the metric: ”DAC is the
number of not inherited attributes that have a class as their type. The number of the classes used as
types for attributes is counted by DAC’”.

Coupling Factor (COF) COF is the only metric of which the domain of measurement is the entire
system and was defined by Abreu et al. [20]. COF calculates the number of relations between classes of
the system, which are not related through inheritance. The relations are counted in a binary manner,
only counted to how many other classes is a class related, instead of how many times these are connected.

15

CHAPTER 2. BACKGROUND

M
et
ri
c

In
h
er
it
an

ce

L
o
cu
s
o
f
im

p
ac
t

T
y
p
es

of
co
n
n
ec
ti
o
n

D
o
m
ai
n
of

m
ea
su
re

C
ou

n
ti
n
g
co
n
n
ec
ti
o
n
s

In
d
ir
ec
t
co
u
p
li
n
g

CBO both both 5, 6 class F no

CBO’ no both 5, 6 class F no

𝑅𝐹𝐶𝛼 both import 6 class E depends

RFC both import 6 class E no

RFC’ both import 6 class E yes

MPC both import 6 class C no

DAC both import 1 class C no

DAC’ both import 1 class D no

COF no both 5, 6 system F no

ICP both import 6 method, class, set A, C no

IH-ICP only import 6 method, class, set A, C no

NIH-ICP no import 6 method, class, set A, C no

IFCAIC no import 1 class C no

ACAIC only import 1 class C no

OCAIC no import 1 class C no

FCAEC no export 1 class C no

DCAEC only export 1 class C no

OCAEC no export 1 class C no

IFCMIC no import 2 class C no

ACMIC only import 2 class C no

OCMIC no import 2 class C no

FCMEC no export 6 class C no

DCMEC only export 6 class C no

OCMEC no export 6 class C no

OMMIC no import 6 class C no

IFMMIC no import 6 class C no

AMMIC only import 6 class C no

OMMEC no export 6 class C no

FMMEC no export 6 class C no

DMMEC only export 6 class C no

Table 2.4: Coupling metrics comparison

16

CHAPTER 2. BACKGROUND

The coupling factor is normalized between 1 and 0 by dividing the number of relations by the system’s
maximum number of relations possible. This way, it is possible to compare systems of different sizes.

Information-flow-based Coupling (ICP) The original ICP metric counts ”for method m of class
c, the number of polymorphically invoked methods of other classes, weighted by the number of parameters
of the invoked method.” Sadly, we have not been able to obtain the original paper, but it is described by
Briand et al. [11]. From this description, the metrics IH-ICP and NIH-ICP are defined. IH-ICP counts
only inheritance-based coupling, whereas NIH-ICP counts coupling to those classes with no inheritance
relationship. Finally, the metric ICP is the sum of the previous two.

Suite of metrics by Briand et al. This set of metrics was defined by Briand et al. with their previous
framework for coupling metrics [12]. This framework was specially created for C++, and therefore, it has
some extensions specific to this language. The metrics of the set are named according to three criteria:
relationship, locus, and type of interaction. Each metric’s name is composed in the following way: the
initials of the relationship, the initials of the type of interaction, and the initials of the locus. These
initials are described below.

There are three types of connections, listed below, which can be used to determine the coupling of a
class 𝑐. All the definitions have been obtained from [12].

∙ Inheritance (A, D): Interactions from a class to its antecessors or descendants, depending on the
locus.

∙ Friendship (F, IF): Extension for C++, interactions from class to all the classes declared as friends
or the classes that declare it their friend (inverse friends), depending on the locus.

∙ Other (O): interaction with classes that do not have an inheritance or friendship relationship.

The three different types of interaction described by Briand et al. [12] are the following:

∙ Class-Attribute (CA): ”There is a class-attribute (CA-) interaction from class c to class d if an
attribute of class c is of type class d.”

∙ Class-Method (CM): ”There is a class-method (CM-) interaction from class c to class d if a newly
defined method of class c has a parameter of type class d.”

∙ Method-Method (MM): ”There is a method-method (MM-) interaction from class c to class d, if a
method implemented at class c statically invokes a method of class d (newly defined or overriding),
or receives a pointer to such a method.”

Finally, the two types of locus are:

∙ Export from a class (EC): ”Change flows away from a class” related to the descendants (D) and
the friends (F).

∙ Import to a class (IC): ”Change flows towards a class” related to the ancestors (A) and the inverse
friends (IF).

The suite of metrics is defined based on all possible combinations of these three criteria.

2.4 Metrics validation

This thesis includes evaluating and validating the metrics included in the proposed model by using
the proof-of-concept. Since there is no unique way to validate metrics which is globally accepted and
used, various approaches are adopted. In the paper [21], Srinivasan et al. explain that there are two
fundamental approaches for metric validation: theoretically and empirically. Therefore, to provide a
check of validity that is as broad as possible, a mixture of these two approaches will be used during this
project. However, this research does not contain a full validation of the metrics due to time constraints.

The coupling metrics’ theoretical validation is conducted according to the Mathematical Properties of
Measures for Coupling [21]. Also, a subset of the aspects presented by Meenely et al. [22] are also used
to validate all the metrics in the model; in particular, we focus on Actionability and Definition validity.

17

Chapter 3

Dependency evaluation model

This chapter contains a description of the metrics proposed to measure dependencies from various per-
spectives: coupling, coverage, and usage per class. Each metric is also validated theoretically by proving
the metrics fulfill certain properties that the aspect being measured has.

3.1 Measuring the degree of dependency

Although we have not been able to find any other research which proposes metrics to measure the degree
of code dependency in a dependency with a library, this has been previously done to measure the degree
of dependency within a library or any other software product. The type of metrics used is coupling
metrics. Therefore, we are going to define coupling metrics, which can be used in our use case. To create
the metrics, we first need to define the coupling we measure. Then, we define the metrics which measure
the type of coupling described. Finally, for the theoretical validation of the metrics, the five properties
of coupling established in the literature [23], are proven for each one.

3.1.1 Definition of coupling

To measure the degree of dependency, we investigate the characteristics of the coupling between libraries.
Following the framework defined by Briand et al. [11], described in Section 2.3, we define the coupling to
measure according to the six criteria in the framework, which were defined based on the characteristics
of existing coupling definitions.

Criterion 1 - Type of connection: This criterion defines which type of connection creates coupling
between the two items. Several and clearly distinguishable mechanisms can create coupling, as defined
by Briand et al. [11], listed below.

Given class a of library A, and class b of library B...

1. ... class a has an attribute of type b (Relationship of aggregation).

2. ... method of class a has a parameter of type b or has return type b.

3. ... method of class a has a local variable of type b.

4. ... method of class a calls a method which has a parameter of type b.

5. ... method of class a references an attribute of class b.

6. ... method of class a invokes a method of class b.

7. ... class a and class b have a relationship such as uses or consists-of.

Having a single metric measure more than one of these types of connections is not recommended
for various reasons. To begin with, the strengths of every type of connection have to be justified: Has
the coupling created by a local variable (type 5) the same strength as the one created by a method
invocation (type 6)? How is the strength quantified? When mixing types of connections, there is
information missing; it is impossible to know how much of the coupling is created by which type of

18

CHAPTER 3. DEPENDENCY EVALUATION MODEL

connection, and therefore which fix has a priority. Therefore, all relevant types of connections in the use
case of RQ1, measuring the degree of dependencies between libraries, are measured by different metrics.

To decide which types of connections to measure, we reviewed the literature on coupling metrics
to understand which connections are the most measured and why. Our findings are summarized in
Table 3.1.

Reference 1 2 3 4 5 6 7

[13] x x x x x x

[16] x x x x x x

[12] x x x

[24] x x

[25] x x x x x

[26] x x x

[27] x x x x x x x

[28] x x

[29] x x x

[30] x x x

Table 3.1: Literature usage of the types of connection

Types 1 and 6 are the most used in the literature and, in particular, method invocation coupling is
hypothesized to be the most relevant type of connection by Briand et al. [11]. Therefore, we define a
first metric to measure type 6: method invocation.

The second metric that we consider is type 1: aggregation coupling, for two key reasons. First,
it is used as much as type 6 in the reviewed literature. Besides, in some cases, measuring method
invocations may not be enough to understand how much impact a dependency may have on a library.
There is the possibility that a class contains a field with the type of another class but never calls a
method that belongs to that class.

The above-mentioned types of connections are those that we consider for these metrics, and we will
explain them in greater detail in Section 3.1.2. Nevertheless, it might be necessary to include additional
metrics in the future, to account for other connection types.We discuss this in the experiment 2 (see
Section 5.2).

Criterion 2 - Locus of impact: As explained in Section 2.3, Briand et al. define two options for the
locus of impact: import and export [11]. According to the definition of the problem, this measurement
aims to know how much a library depends on another, from the point of view of the library that uses
another one. Hence, the locus of impact of the coupling to be measured in this thesis is import. We
measure the dependency from the point of view of the library that acts as a client of a server library.

Criterion 3 - Granularity of the measure: In this criterion, there are two aspects to define. (1)
The aggregation level of the measure, and (2) how the metric counts the connections. We first discuss
the aggregation level. Briand et al. [11] define the following levels:

– Attribute
– Method
– Class
– Set of classes
– System

The goal is to measure the coupling between the set of classes of the client library and the server library
classes. The measurement is done by aggregating the coupling of the more fine-grained levels [11]. For
consistency with the terminology used in this thesis, we name this aggregation level library level.

Next, we define how the metric has to count connections. The options for counting connections
defined by Briand et al. [11] are explained in Table 2.3. The options B), D), E), and F) are not useful for
our use case. These options count the distinct items at the other end of the connection, not considering
how many times those items are at the other end of the connection.

19

CHAPTER 3. DEPENDENCY EVALUATION MODEL

The two other options are A) and C), which count individual connections. The difference between A
and C is the aggregation level at which the connections are counted. Option C) counts the connections
as in A), but adding the result for each class’s method or attribute. Since the level of the domain of
the metrics is not class but library, a new option for counting connections is defined, which would be
option G. The definition is created following the same style as Briand et al.: Add up the number
of connections counted as in C) for each class of the library. By following this method of
aggregating the number of connections through aggregation levels, a fine-grained analysis is maintained
for the aggregation level of the metrics.

Criterion 4 - Stability of the server: Briand et al. define stable classes as ”Classes that are not
subject to change in the project at hand” [11]. Following this definition, the server of the connection
has to be stable in this case. Therefore, we are going to count connections from non-stable elements
to stable servers. According to the previously defined locus of impact, the non-stable classes are the
stable classes’ clients.

However, in this thesis, the differentiation between stable and unstable classes is not enough. The
goal is to measure coupling only with classes that are part of other libraries. Therefore, the classes that
belong to standard libraries and the programming language types, although stable, will not be considered
by these metrics.

Criterion 5 - Direct and indirect coupling: To decide whether the metrics count or not indirect
coupling, we need to distinguish two alternative scenarios in which we want to measure coupling: Direct
dependencies and transitive dependencies. When measuring direct dependencies, we want to measure
only direct coupling between the libraries, whereas, for transitive dependencies, it is necessary to measure
indirect coupling. Hence, both types of coupling will be measured, with two different metrics for each
selected type of connection: One for direct dependencies and another for transitive dependencies.

Criterion 6 - Inheritance: There are three aspects to decide within this criterion: how, if at all,
does the metric distinguish between inheritance-based coupling and noninheritance-based coupling? If
the metric counts method invocations, does it account for polymorphism? Finally, what defines if a
method or an attribute is part of a class or not?

Figure 3.1: Example of coupling special cases, based on example from Briand et al. [11]

In order to answer the first question, we focus on the method mc of ClassB in Figure 3.1. This
method invokes ma of ClassA, inherited by ClassB.

20

CHAPTER 3. DEPENDENCY EVALUATION MODEL

This is known as inheritance-based coupling and is sometimes considered as a special case of coupling.
When there is a change of an inherited method that a class uses, it requires the same maintenance as the
method that is not inherited. Therefore, our metrics include inheritance-based coupling without
distinction.

In the case of the second question, polymorphism, we look at the methods of ClassA. This class
contains an attribute of type Class1, which considering dynamic assignation of types could also be of
type Class2 or Class3.

We first analyze whether a call to a method of Class1 would create coupling with Class2 and Class3,
and if it makes a difference when the method is overridden or not. The method ma invokes m1, which is
not overridden by any of the descendants of Class1. When a change is made in Class2 or Class3 no
change is required as the invoked method remains the same. In contrast, method mb calls m2, which is
overridden in Class2. Here, the implementation of m2 in Class2 could be updated, and this may affect
the way ClassA uses it, and therefore changes may be needed. Thus, it is necessary to account for
polymorphism.

Lastly, we discuss about how to decide whether a method belongs to a class or not. We have two
options: (1) a method belongs to the class that implements it (could be more than one since we account
for polymorphism), or (2) a method belongs to the class that it is referenced from. An example of this
can be found in the last two lines of the method mc of ClassB call method m1 and m2 on an object of
type Class2. The difference is that m1 is implemented in Class1 and m2 is overridden in Class2. From
a maintenance perspective, when the method m1 is updated in Class1, this probably requires update in
ClassB as well. However, changes in Class2 will not generate a need to update the method call m1 in
ClassB. When m2 is updated in Class1, it will not make a difference for the call to m2 in ClassB since
it is not executing the implementation of Class1. Therefore, a method call creates coupling with
the class that contains the implementation.

Summary Based on the criteria discussed above, we have four different definitions of coupling. There-
fore, we create four metrics, each one measuring one type of coupling. The summary of the definitions
of coupling created can be found in Table 3.2.

M
et
ri
c

T
y
p
e
of

co
n
n
ec
ti
on

L
o
cu
s
of

im
p
ac
t

D
o
m
ai
n
of

m
ea
su
re

C
ou

n
ti
n
g
co
n
n
ec
ti
on

s

D
ir
ec
t/
In
d
ir
ec
t

In
h
er
it
an

ce

P
ol
y
m
or
p
h
is
m

It
em

b
el
on

gs
to

cl
a
ss

#1 6 Import Library Individual connections Direct Both Yes Implemented

#2 1 Import Library Individual connections Direct Both Yes Implemented

#3 6 Import Library Individual connections Indirect Both Yes Implemented

#4 1 Import Library Individual connections Indirect Both Yes Implemented

Table 3.2: Criteria of the set of metrics

3.1.2 Metrics for direct dependencies

This section begins with a brief discussion in which the definition of coupling of the proposed metrics is
compared with the existing metrics in the literature described in Section 2.3. Next, there is the formal
definition of each of our metrics. To end the section, the metrics’ theoretical validation is done by proving
the five properties of coupling metrics as defined by Briand et al. [23], for each of the new metrics.

Revisiting existing metrics

Once we have defined the coupling that is going to be measured by each of the metrics (see Table 3.2),
we can compare it with the existing coupling metrics, according to Table 2.4 in Section 2.3, to decide

21

CHAPTER 3. DEPENDENCY EVALUATION MODEL

whether there are metrics measuring the same coupling we previously defined, or if it is necessary to
create new metrics.

Metric #1 To compare the coupling defined for this first metric defined in Table 3.2 with the coupling
measured by existing metrics, we focus on the ones that have the following characteristics:

∙ Type of connection: method invocations (type 6 in Table 2.2)

∙ Locus of impact: import

∙ Direct or indirect coupling: direct

∙ Counting connections: count individual connections (option A or C in Table 2.3).

The metrics that share these characteristics are MPC, the group ICP, and the metrics AMMIC,
IFMMIC and OMMIC. However, MPC does not consider polymorphic implementations of the called
methods. IFMMIC is a metric formulated specifically for C++ [12] and therefore is not useful for our
model. The metric IFMMIC focuses on method invocations between classes with a friend relationship,
which does not exist in most languages. Furthermore, in case the language is C++ no distinction should
be made between friend and non-friend classes.

From the group of metrics ICP, the metric ICP considers both inheritance and non-inheritance
coupling and therefore shares the definition of coupling with our metric. However, according to the
definition of ICP, the coupling created by each method call is weighted by the number of parameters of
the called method. In this aspect, it differs from metric #1 from Table 3.2.

Finally, the metrics AMMIC and OMMIC use the same definition of coupling as metric #1 except
that AMMIC counts the method invocations to ancestors and OMMIC to other classes. Therefore,
metric #1 is the sum of AMMIC and OMMIC, but aggregated at the library level instead of the class
level.

Metric #2 In the case of the second metric, which measures the coupling as defined in Table 3.2, we
focus on the metrics with the following characteristics:

∙ Type of connection: client class contains an attribute of type server class, aggregation coupling
(type 1 in Table 2.2)

∙ Locus of impact: import

∙ Direct or indirect coupling: direct

∙ Counting connections: count individual connections (option A and C in Table 2.3, measure indi-
vidual connections at the method and class level respectively)

According to Table 2.4, the metrics that share these characteristics are DAC, and from the suite
of metrics by Briand et al. [12] the metrics IFCAIC, ACAIC and OCAIC. However, IFCAIC is an
extension for C++ and will not be considered, for the same reasons for which we discarded IFMMIC for
metric #1.

According to the definition of DAC, it counts the number of attributes of a class that have any other
class as type. Therefore, instead of calculating the coupling between two classes, it calculates a class’s
coupling with every other class. However, metric #2 is used at the library level and calculates coupling
between two libraries instead of the coupling of one library with all the others.

Finally, ACAIC and OCAIC consider aggregation coupling with ancestors and others respectively.
Therefore, metric #2 is the sum of these two metrics but aggregated to the library level since the metrics
are designed for class level.

Formal definitions

Metric #1: Direct method invocation coupling (MIC) The MIC metric measures the depen-
dency between two libraries, one acting as a client (𝐿𝑐) and the other as a server (𝐿𝑠). Based on the
granularity of the measure criterion discussed in Section 3.1.1, this metric is calculated for each of the
classes implemented in 𝐿𝑐, and for each of the methods implemented M(𝐿𝑐) in these classes. For each
implemented method 𝑚𝑐 ∈ M(𝐿𝑐), we count the number of individual invocations to a method of 𝐿𝑠,
denoted nII(𝑚𝑐, 𝐿𝑠). For each method invocation made by the methods implemented in 𝐿𝑐, we count

22

CHAPTER 3. DEPENDENCY EVALUATION MODEL

only the ones implemented in stable classes (not implemented in 𝐿𝑐). The set of stable methods invoked
is denoted SIM(𝑚𝑐).

MIC(𝐿𝑐, 𝐿𝑠) =
∑︁

𝑚𝑐∈M(𝐿𝑐)

nII(𝑚𝑐, 𝐿𝑠) (3.1)

According to the criterion inheritance, it is necessary to consider all the polymorphic implementations
of the invoked method that are implemented in 𝐿𝑠. Therefore, we intersect the set of polymorphic
implementations of an invoked method PM(𝑚𝑠) with the set of methods M(𝐿𝑠) implemented in 𝐿𝑠. Finally,
to obtain the number of individual invocations, nII(𝑚𝑐, 𝐿𝑠), we multiply the number of times a stable
method (𝑚𝑠 ∈ SIM(𝑚𝑐)) has been invoked, nI(𝑚𝑐,𝑚𝑠) by the number of polymorphic implementations
nP(𝑚𝑠, 𝐿𝑠) of the method in 𝐿𝑠.

nII(𝑚𝑐, 𝐿𝑠) =
∑︁

𝑚𝑠∈SIM(𝑚𝑐)

nI(𝑚𝑐,𝑚𝑠) * nP(𝑚𝑠, 𝐿𝑠) (3.2)

nP(𝑚𝑠, 𝐿𝑠) = |PM(𝑚𝑠) ∩ M(𝐿𝑠)| (3.3)

Metric #2: Direct aggregation coupling (AC) The AC metric counts the number of times when a
class of 𝐿𝑐 has an attribute whose type is a class implemented in 𝐿𝑠. Therefore, the metric is calculated
for each class implemented in 𝐿𝑐 (𝑐𝑐 ∈ C(𝐿𝑐)). We consider only those attributes types that are stable
classes (not implemented in 𝐿𝑐) for each class 𝑐𝑐. The set of stable attribute types in a class 𝑐 is SAT(𝑐𝑐).

To account for polymorphism (criterion inheritance), we count all the descendants of the class that
are implemented in 𝐿𝑠. Therefore, we intersect the set of the descendants of the class, DC(𝑐𝑠), with the
set of classes implemented in 𝐿𝑠 (C(𝐿𝑠)). Finally, to count the individual connections, we multiply the
number of times a client class 𝑐𝑐 has an attribute of type the server class 𝑐𝑠 (NA(𝑐𝑐, 𝑐𝑠)) by the number
of class descendants (class included) implemented in 𝐿𝑠 (nDC(𝑐𝑠, 𝐿𝑠)).

AC(𝐿𝑐, 𝐿𝑠) =
∑︁

𝑐𝑐∈C(𝐿𝑐)

∑︁
𝑐𝑠∈SAT(𝑐𝑐)

NA(𝑐𝑐, 𝑐𝑠) * nDC(𝑐𝑠, 𝐿𝑠) (3.4)

nDC(𝑐𝑠, 𝐿𝑠) = |DC(𝑐𝑠) ∩ C(𝐿𝑠)| (3.5)

Theoretical validation

The theoretical validation of the metrics consists of demonstrating the properties of the metrics. Theoret-
ical validation is necessary since it proves that the metrics share properties with the attribute measured;
in this case, the attribute is coupling. In particular, for coupling metrics, there are five properties defined
by Briand et al. [23], which have been largely used by literature [10, 15, 31]. First, we describe each of
the properties, and then we prove them for each of the metrics.

1. Nonnegativity: The value of the coupling metrics should never be negative.

2. Null value: The value of the coupling is expected to be zero if there is no relationship from the
client library to the server library.

3. Monotonicity: It is expected that if more relationships are added from the client library to the
server library, the metric value does not decrease.

4. Merging of classes: If two classes of the client library are merged, the total coupling between
the client library and the server library should not increase.

5. Merging of unconnected classes: When two classes of the client library, which do not share
usage of the server library, are merged, the total coupling between the client library and the server
library should remain equal.

To describe the properties in greater detail, we use Coupling(𝐿𝑐, 𝐿𝑠) to refer to both AC and MIC,
and R(𝐿𝑐, 𝐿𝑠) to refer to the set of relationships between 𝐿𝑐 and 𝐿𝑠, Coupling(𝐿𝑐, 𝐿𝑠) uses R(𝐿𝑐, 𝐿𝑠) to
evaluate the coupling between the two elements, but the way it is used differs per metric. To refer to the
relations between a class of the client library, 𝑐𝑐, and the server library, we use R(𝑐𝑐, 𝐿𝑠), and the coupling
between the class and the server library is Coupling(𝑐𝑐, 𝐿𝑠). The description of the properties is based
on the description done by Briand et al. [23], which was meant for coupling metrics that measure the

23

CHAPTER 3. DEPENDENCY EVALUATION MODEL

coupling within an element, or between an element and all the other elements. Therefore, the properties’
description has been adapted for metrics that measure coupling between two different elements. Also,
since all the newly introduced metrics measure import coupling, the properties’ definitions are focused
on this locus of impact.

Nonnegativity Let 𝐿𝑐 be a client library and 𝐿𝑠 be a server library. The coupling between the two
libraries is non-negative, Coupling(𝐿𝑐, 𝐿𝑠) ≥ 0.

Null value Coupling is expected to be null (zero) when there is no import relationship between the
client and the server libraries.

Let 𝐿𝑐 be a client library and 𝐿𝑠 be a server library. The coupling between the two libraries is null
if the set of import relationships from 𝐿𝑐 to 𝐿𝑠, R(𝐿𝑐, 𝐿𝑠), is empty. Therefore, R(𝐿𝑐, 𝐿𝑠) = ∅ =⇒
Coupling(𝐿𝑐, 𝐿𝑠) = 0.

Monotonicity Considering the definition of coupling, it is expected that when more relationships are
added between the libraries, coupling does not decrease.

Let 𝐿𝑐 be a client library, 𝐿𝑠 be a server library, and 𝑐 ∈ 𝐿𝑐 be a class in 𝐿𝑐. We modify class 𝑐 to
form a new class 𝑐′ which is identical to 𝑐 except that R(𝐿𝑐, 𝐿𝑠) ⊆ R(𝐿′

𝑐, 𝐿𝑠). For example, some method
invocations have been added from 𝑐 to classes implemented in 𝐿𝑠. Let 𝐿′

𝑐 be a library identical to 𝐿𝑐

but in which 𝑐 has been replaced by 𝑐′. Then, Coupling(𝐿𝑐, 𝐿𝑠) ≤ Coupling(𝐿′
𝑐, 𝐿𝑠).

Merging of classes The original definition of the property is created for metrics that measure coupling
within a system, and therefore it is necessary to reformulate it. It is expected that if two classes of a
system are merged, the system’s coupling does not increase. If two classes are merged, the coupling
between the two classes is subtracted from the system’s total coupling.

When considering the coupling between a client library and a server library, if two client library
classes are merged, the two libraries’ coupling would not increase. It could decrease, depending on how
the refactoring is performed. If the classes share usage of the server library, one of the usages may be
removed.

Therefore, let 𝐿𝑐 be a client library, 𝐿𝑠 be a server library, and 𝑐1, 𝑐2 ∈ 𝐿𝑐 two classes in 𝐿𝑐. Let
𝑐′ be the class that results from merging 𝑐1 and 𝑐2, and 𝐿′

𝑐 be the library resulting from 𝐿𝑐 when 𝑐1
and 𝑐2 have been replaced by 𝑐′. Then, Coupling(𝑐1, 𝐿𝑠) + Coupling(𝑐2, 𝐿𝑠) ≥ Coupling(𝑐′, 𝐿𝑠) and
Coupling(𝐿𝑐, 𝐿𝑠) ≥ Coupling(𝐿′

𝑐, 𝐿𝑠).

Merging of unconnected classes This property is a variation of the previous one, and it has to be
adapted to the use case of this thesis. It is expected that the system’s coupling will stay the same if two
classes of a system, which have no relationship, are merged. This is because the class that results in the
merging will have the same number of relationships with other classes as the original two.

When measuring the coupling between a client library and a server library, we define two unconnected
classes as classes that do not share usage of the server library. Therefore, none of the relationships with
the server library can be merged when merging the two classes, and the coupling with the server library
stays the same.

Let 𝐿𝑐 be a client library, 𝐿𝑠 a server library, and 𝑐1, 𝑐2 ∈ 𝐿𝑐 two classes from 𝐿𝑐 which do not share the
same relationship with 𝐿𝑠. Let 𝑐

′ be the class that is the union of 𝑐1 and 𝑐2, and 𝐿′
𝑐 be the library identical

to 𝐿𝑐 but in which 𝑐1 and 𝑐2 have been replaced by 𝑐′. If there are no relationships between 𝑐1 and 𝑐2, then,
Coupling(𝑐1, 𝐿𝑠) + Coupling(𝑐2, 𝐿𝑠) = Coupling(𝑐′, 𝐿𝑠) and Coupling(𝐿𝑐, 𝐿𝑠) = Coupling(𝐿′

𝑐, 𝐿𝑠).

Theoretical validation: MIC

Nonnegativity If we assume that the metric MIC does not fulfill the property Nonnegativity, there
should be a client library 𝐿𝑠 and a server library 𝐿𝑐 such that MIC(𝐿𝑐, 𝐿𝑠) < 0. According to the equation
3.1, this means that exists at least one client method 𝑚𝑐 ∈ M(𝐿𝑐) such that nII(𝑚𝑐, 𝐿𝑐) < 0. Following
the equation of nII 3.2, this opens two possibilities.

First, that there is a server method 𝑚𝑠 ∈ SIM(𝑚𝑐) such that nI(𝑚𝑐,𝑚𝑠) < 0. However, 𝑚𝑠 is a
method out of the set SIM(𝑚𝑐) which is the set of stable methods invoked by 𝑚𝑐, which means that
nI(𝑚𝑐,𝑚𝑠) > 0 for all 𝑚𝑠 ∈ SIM(𝑚𝑐), therefore it is a contradiction.

The other option is that there is a method 𝑚𝑠 ∈ SIM(𝑚𝑐) such that nP(𝑚𝑠, 𝐿𝑠) < 0. nP(𝑚𝑠, 𝐿𝑠),
according to the equation 3.3, corresponds to the cardinality of the intersection between the set PM(𝑚𝑠)

24

CHAPTER 3. DEPENDENCY EVALUATION MODEL

and M(𝐿𝑠). Therefore, the cardinality of the intersection has to be less than zero. However, the cardinality
of the intersection is by definition greater or equal to zero. This constitutes a contradiction.

Therefore, the initial assumption is not true, and Nonnegativity holds for the metric MIC.

Null value Assuming there is no null value for metric MIC, there is a client library 𝐿𝑐 and a server
library 𝐿𝑠 such that R(𝐿𝑐, 𝐿𝑠) = ∅, and MIC(𝐿𝑐, 𝐿𝑠) ̸= 0. As non-negativity holds, we have that
MIC(𝐿𝑐, 𝐿𝑠) ≥ 0. Therefore, MIC(𝐿𝑐, 𝐿𝑠) > 0. Hence, following equation 3.1 there is a client method
𝑚𝑐 ∈ 𝑀(𝐿𝑐) such that nII(𝑚𝑐, 𝐿𝑠) > 0.

Thus, according to equation 3.2, there is a server method 𝑚𝑠 ∈ SIM(𝑚𝑐), such that nI(𝑚𝑐,𝑚𝑠) > 0
and nP(𝑚𝑠, 𝐿𝑠) > 0. Therefore, the method 𝑚𝑠 is called at least one time by the method 𝑚𝑐 from the
client library 𝐿𝑐, and at the same time is implemented by the server library 𝐿𝑠, which means that there
is a relationship between 𝐿𝑐 and 𝐿𝑠, which contradicts the original assumption that R(𝐿𝑐, 𝐿𝑠) = 0.

Consequently, there is a null value for metric MIC.

Monotonicity Let 𝐿𝑐 be a client library that contains class 𝑐𝑐, and let 𝑐′𝑐 be a class resulting from
adding relationships with the server library 𝐿𝑠 to the class 𝑐𝑐. Then, R(𝑐𝑐, 𝐿𝑠) ⊆ R(𝑐′𝑐, 𝐿𝑠). Let 𝐿′

𝑐 be a
client library identical to 𝐿𝑐 but in which the class 𝑐𝑐 has been replaced by 𝑐′𝑐. Therefore, R(𝐿𝑐, 𝐿𝑠) ⊆
R(𝐿′

𝑐, 𝐿𝑠).
Let’s assume that the MIC metric does not fulfill the property monotonicity, this would mean that

MIC(𝐿𝑐, 𝐿𝑠) > MIC(𝐿′
𝑐, 𝐿𝑠). Since the only difference between 𝐿𝑐 and 𝐿′

𝑐 is the substitution of 𝑐𝑐 by
𝑐′𝑐, then

∑︀
𝑚𝑐∈M(𝑐𝑐) nII(𝑚𝑐, 𝐿𝑠) >

∑︀
𝑚′

𝑐∈M(𝑐′𝑐)
nII(𝑚′

𝑐, 𝐿𝑠) (see equation 3.1). Therefore, the methods of

class 𝑐𝑐 have more individual invocations to 𝐿𝑠 than the methods from class 𝑐′𝑐. This contradicts the
initial assumption that R(𝑐𝑐, 𝐿𝑠) ⊆ R(𝑐′𝑐, 𝐿𝑠).

Therefore, Monotonicity holds for the metric MIC.

Merging of classes Let 𝐿𝑐 be a client library that includes the classes 𝑐1 and 𝑐2. Let 𝑐′ be a class
such that 𝑐1 + 𝑐2 = 𝑐′ and 𝐿′

𝑐 be a client library identical to 𝐿𝑐 but where 𝑐1 and 𝑐2 have been replaced
by 𝑐′. If we assume that the property merging of classes does not hold for metric MIC, it would mean
that R(𝑐1, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) ∧ R(𝑐2, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) and at the same time MIC(𝐿𝑐, 𝐿𝑠) > MIC(𝐿′

𝑐, 𝐿𝑠).
Therefore, there is a method 𝑚𝑐 which is implemented in 𝑐1 or 𝑐2 such that contains a call to a

method 𝑚𝑠 which does not exist in any of the methods implemented in 𝑐′. This is a contradition with
the initial affirmation R(𝑐1, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) ∧ R(𝑐2, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠). Therefore, the property Merging of
classes holds for metric MIC.

Merging of unconnected classes Let 𝐿𝑐 be a client library and 𝐿𝑠 be a server library. Let 𝑐1 and 𝑐2
be classes implemented in 𝐿𝑐, such that R(𝑐1, 𝐿𝑠)∩ R(𝑐2, 𝐿𝑠) = ∅. Let 𝑐′ be a class such that 𝑐1+ 𝑐2 = 𝑐′.
Therefore, R(𝑐1, 𝐿𝑠)+ R(𝑐2, 𝐿𝑠) = R(𝑐′, 𝐿𝑠). Let 𝐿

′
𝑐 be a client library identical to 𝐿𝑐 but in which 𝑐1 and

𝑐2 have been replaced by 𝑐′. We assume that the metric MIC does not fulfill this property.
Therefore, MIC(𝐿𝑐, 𝐿𝑠) ̸= MIC(𝐿′

𝑐, 𝐿𝑠). According to property Merging of classes, MIC(𝐿𝑐, 𝐿𝑠) cannot
be less than MIC(𝐿′

𝑐, 𝐿𝑠). Thus, MIC(𝐿𝑐, 𝐿𝑠) > MIC(𝐿′
𝑐, 𝐿𝑠). This means that there is a 𝑚𝑐 implemented

in 𝑐1 or 𝑐2 that contains an invocation to a method 𝑚𝑠 implemented in 𝐿𝑠, which is not included in 𝑐′.
This contradicts that R(𝑐1, 𝐿𝑠) + R(𝑐2, 𝐿𝑠) = R(𝑐′, 𝐿𝑠).

Therefore, property Merging of unconnected classes holds for metric MIC.

Theoretical validation: AC

Nonnegativity Supose that the metric AC does not have the nonnegativity property. Thus, there is a
client library 𝐿𝑐 and a server library 𝐿𝑠 such that AC(𝐿𝑐, 𝐿𝑠) < 0. Then, according to equation 3.4 there
is a client class 𝑐𝑐 ∈ C(𝐿𝑐) and a server class 𝑐𝑠 ∈ SAT(𝑐𝑐) such that either NA(𝑐𝑐, 𝑐𝑠) or nDC(𝑐𝑠, 𝐿𝑠) have
a negative value.

Let’s assume that NA(𝑐𝑐, 𝑐𝑠) < 0. This means that the 𝑐𝑠 is a class that is included in the set of stable
classes declared as fields in 𝑐𝑐 (𝑐𝑠 ∈ SAT(𝑐𝑐)) and, at the same time is declared a negative number of
times, which is a contradiction.

Therefore, nDC(𝑐𝑠, 𝐿𝑠) has to be negative. According to equation 3.5, nDC(𝑐𝑠, 𝐿𝑠) corresponds to the
cardinality of the intersection between two sets. Even if the two sets do not share any element, by
definition, the intersection will be the empty set, and the cardinality will be zero. Hence, nDC(𝑐𝑠, 𝐿𝑠)
cannot have a negative value, and the initial assumption is false.

In conclusion, Nonnegativity holds for the metric AC.

25

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Null value If we assume that property null value does not hold for metric AC, there has to be a client
library 𝐿𝑐 and a server library 𝐿𝑠 such that have no relationship (R(𝐿𝑐, 𝐿𝑠) = 0) and AC(𝐿𝑐, 𝐿𝑠) ̸= 0.
Since AC has the property Nonnegativity, the result cannot be negative, which means that AC(𝐿𝑐, 𝐿𝑠) > 0.
Hence, following equation 3.4, there is a client class 𝑐𝑐 ∈ C(𝐿𝑐) and a server class 𝑐𝑠 ∈ SAT(𝑐𝑐) such that
NA(𝑐𝑐, 𝑐𝑠) > 0 and nDC(𝑐𝑠, 𝐿𝑠) > 0. This means that the class 𝑐𝑠 is at the same time declared at least
once by the client class 𝑐𝑐 (NA(𝑐𝑐, 𝑐𝑠) > 0) and implemented in the server library 𝐿𝑠. However, this would
create a relationship between 𝐿𝑐 and 𝐿𝑠, which contradicts the initial assumption.

Therefore, the property Null value holds for metric AC.

Monotonicity Let 𝐿𝑐 be a client library that contains class 𝑐𝑐, and let 𝑐′𝑐 be a class identical to 𝑐𝑐
but more relationships with the server library 𝐿𝑠. Then, R(𝑐𝑐, 𝐿𝑠) ⊆ R(𝑐′𝑐, 𝐿𝑠). Let 𝐿

′
𝑐 be a client library

identical to 𝐿𝑐 but in which the class 𝑐𝑐 has been replaced by 𝑐′𝑐. Therefore, R(𝐿𝑐, 𝐿𝑠) ⊆ R(𝐿′
𝑐, 𝐿𝑠).

If we assume that the metric AC does not fulfill this property, means that AC(𝐿𝑐, 𝐿𝑠) > AC(𝐿′
𝑐, 𝐿𝑠).

The only difference between these two calculations is the result of the calculation for 𝑐𝑐 and 𝑐′𝑐. Therefore,∑︀
𝑐𝑠∈SAT(𝑐𝑐) NA(𝑐𝑐, 𝑐𝑠) * nDC(𝑐𝑠, 𝐿𝑠) >

∑︀
𝑐𝑠∈SAT(𝑐′𝑐)

NA(𝑐′𝑐, 𝑐𝑠) * nDC(𝑐𝑠, 𝐿𝑠), see equation 3.4.

This means that there is a server class 𝑐𝑠 ∈ SAT(𝑐𝑐), that is implemented in 𝐿𝑠 (nDC(𝑐𝑠, 𝐿𝑠) > 0)
such that NA(𝑐𝑐, 𝑐𝑠) > NA(𝑐′𝑐, 𝑐𝑠). This contradicts the original assumption that 𝑐′𝑐 is constructed from
𝑐𝑐 but with additional relationships with 𝐿𝑠. NA(𝑐𝑐, 𝑐𝑠) will only be greater than NA(𝑐′𝑐, 𝑐𝑠) if there is an
attribute of type 𝑐𝑠 in 𝑐𝑐 (which is a relationship between 𝑐𝑐 and 𝐿𝑠) that does not exist in 𝑐′𝑐.

Therefore, Monotonicity holds for the metric AC.

Merging of classes Let 𝐿𝑐 be a client library that includes the classes 𝑐1 and 𝑐2. Let 𝑐′ be a class
such that 𝑐1+𝑐2 = 𝑐′ and 𝐿′

𝑐 be a client library identical to 𝐿𝑐 but where 𝑐1 and 𝑐2 have been replaced by
𝑐′. We assume that the property merging of classes does not hold for metric AC. Therefore, R(𝑐1, 𝐿𝑠) ⊆
R(𝑐′, 𝐿𝑠) ∧ R(𝑐2, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) and, also AC(𝐿𝑐, 𝐿𝑠) > AC(𝐿′

𝑐, 𝐿𝑠).
Thus, either 𝑐1 or 𝑐2 contain an attribute of type 𝑐𝑠, such that 𝑐𝑠 is implemented in 𝐿𝑠 and it is not

included 𝑐′. This creates a contradition with the initial affirmation R(𝑐1, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) ∧ R(𝑐2, 𝐿𝑠) ⊆
R(𝑐′, 𝐿𝑠), since the declaration of an attribute of type 𝑐𝑠 is included in R(𝑐1, 𝐿𝑠) or R(𝑐2, 𝐿𝑠). Therefore,
Merging of classes holds for metric AC.

Merging of unconnected classes Let 𝐿𝑐 be a client library and 𝐿𝑠 be a server library. Let 𝑐1 and 𝑐2
be classes implemented in 𝐿𝑐, such that R(𝑐1, 𝐿𝑠)∩ R(𝑐2, 𝐿𝑠) = ∅. Let 𝑐′ be a class such that 𝑐1+ 𝑐2 = 𝑐′.
Therefore, R(𝑐1, 𝐿𝑠) + R(𝑐2, 𝐿𝑠) = R(𝑐′, 𝐿𝑠). Let 𝐿′

𝑐 be a client library identical to 𝐿𝑐 but in which 𝑐1
and 𝑐2 have been replaced by 𝑐′. We assume that the metric AC does not fulfill property Merging of
unconnected classes.

Therefore, AC(𝐿𝑐, 𝐿𝑠) ̸= AC(𝐿′
𝑐, 𝐿𝑠). According to property Merging of classes, it cannot happen that

AC(𝐿𝑐, 𝐿𝑠) < AC(𝐿′
𝑐, 𝐿𝑠). Therefore, AC(𝐿𝑐, 𝐿𝑠) > AC(𝐿′

𝑐, 𝐿𝑠). The only way this is if there is an attribute
of type 𝑐𝑠 declared in 𝑐1 or 𝑐2 and implemented in 𝐿𝑠, such that is not included in 𝑐′. This creates a
contradition with the initial affirmation that R(𝑐1, 𝐿𝑠) + R(𝑐2, 𝐿𝑠) = R(𝑐′, 𝐿𝑠).

Therefore, metric AC fulfills Merging of unconnected classes.

3.1.3 Metrics for transitive dependencies

In this section, the metrics to measure transitive dependencies are described. First, the characteristics
of the metrics, according to the criteria previously discussed and summarized in Table 3.2, are compared
to the existing metrics described in section 2.3. Next, some concepts involved in the formulation of
the transitive metrics are explained. Then, there is a formal definition of the two metrics for transitive
dependencies. Finally, the five properties of coupling metrics are demonstrated.

Revisiting existing metrics

In the set of metrics reviewed by Briand et al. [11], there is only one metric that does count indirect
coupling, 𝑅𝐹𝐶 ′ (see Table 2.4). This metric also counts inheritance-based coupling, and it is focused
on the client element, just as the metrics #3 and #4 defined in Table 3.2. However, 𝑅𝐹𝐶 ′ is calculated
at the class aggregation level, whereas the metrics for this work are calculated at the library level.
Furthermore, the strategy to count connections is E, which means that it counts the number of elements
with which the class has a connection, not how many connections.

Therefore, both metrics #3 and #4 are entirely unrelated to those reviewed by Briand et al. [11].

26

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Concepts related to transitive dependencies

Other factors have to be taken into account to define the coupling for transitive metrics, which are not
needed for the direct metrics.

Reachability To measure the transitive dependencies, only those methods or classes of the transitive
dependencies that are reachable from the analysed client library are considered. For a given call-graph, a
method is reachable if there is a path from the client library to the method [32]. For example, in Figure
3.2, there is no path from Lib1 (the client library) to the method Method10. Therefore, Method10 is not
reachable form Lib1 and the call from Method6 to Method10 will not be considered when measuring the
transitive dependency between Lib1 and Lib3, in the case of method invocation coupling.

Figure 3.2: Reachability example

Propagation Factor The propagation represents how the impact of a change can spread across depen-
dencies [9]. In Figure 3.2, a change in Method3 would affect directly the client library (Lib1). However,
a change in Method7, affects first Method3, and then it can spread to Method1, in case it is not mitigated
in Method3. This possible mitigation is accounted for by the Propagation Factor.

Formal definition

Metric #3: Transitive method invocation coupling (TMIC) If we look at how the metric MIC is
calculated, it could be summarized as follows: find all the methods in 𝐿𝑠 that are reachable from 𝐿𝑐.
Then, for each one, count how many method calls exist in 𝐿𝑐 that reach this method, and sum up the
results. The main difference between MIC and TMIC is that the calls in 𝐿𝑐 will not directly execute a
reachable method of 𝐿𝑠. The execution of a method in 𝐿𝑠 is indirect since 𝐿𝑠 is not a direct dependency
of 𝐿𝑐.

Therefore, it is necessary to take into account the distance between 𝐿𝑐 and 𝐿𝑠. In addition, it could
happen that 𝐿𝑠 is reachable from 𝐿𝑐 at different distances. For instance, if 𝐿𝑠 appeared twice in the
dependency tree of 𝐿𝑐, this is is the case in Figure 3.3 if we take Lib1 as 𝐿𝑐 and Lib4 as 𝐿𝑠.

Therefore, the coupling will be measured for a certain distance, denoted TMICD(𝐿𝑐, 𝐿𝑠, distance).
The value of the metric TMIC(𝐿𝑐, 𝐿𝑠), will be measured as follows. For each distance at which there is
coupling between 𝐿𝑐 and 𝐿𝑠, sum up the coupling measured by TMICD(𝐿𝑐, 𝐿𝑠, distance), multiplied by
a propagation factor (PF) to the power of the distance − 1, where PF ∈ (0, 1). We have designed the
formula by taking the propagation factor to the power of distance− 1, because this way, the coupling
of the direct dependencies (distance = 1) is not mitigated. Also, then when distance = 2, which
corresponds to the first level of transitivity, the coupling is mitigated only once.

TMIC(𝐿𝑐, 𝐿𝑠) =
∑︁

distance

TMICD(𝐿𝑐, 𝐿𝑠, distance) * PFdistance−1 (3.6)

The transitive coupling between two libraries at a certain distance TMICD(𝐿𝑐, 𝐿𝑠, distance) is cal-
culated in the following manner. For each method from 𝐿𝑠 that is reachable from 𝐿𝑐 throught method
calls at distance (𝑟𝑚 ∈ RM(𝐿𝑐, 𝐿𝑠, distance)), we count the number of method invocations in 𝐿𝑐 from

27

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Figure 3.3: Example dependency tree

which 𝑟𝑚 is reachable, nIR(𝑟𝑚,𝐿𝑐). The number of method invocations is multiplied by the number of
polymorphic implementations of 𝑟𝑚 in 𝐿𝑠 (nDC(𝑟𝑚,𝐿𝑠)).

TMICD(𝐿𝑐, 𝐿𝑠, distance) =
∑︁

𝑟𝑚∈RM(𝐿𝑐,𝐿𝑠,distance)

nIR(𝑟𝑚,𝐿𝑐) * nP(𝑟𝑚,𝐿𝑠) (3.7)

Metric #4: Transitive aggregation coupling (TAC) To calculate TAC, just as in the case of TMIC,
the distance between 𝐿𝑐 and 𝐿𝑠 should be considered. Therefore, for each distance, we take the
number measured by TACD(𝐿𝑐, 𝐿𝑠, distance), and multiply it by a propagation factor PF to the power
of the distance− 1.

TAC(𝐿𝑐, 𝐿𝑠) =
∑︁

distance

TACD(𝐿𝑐, 𝐿𝑠, distance) * PFdistance−1 (3.8)

The transitive aggregation coupling per distance (TACD(𝐿𝑐, 𝐿𝑠, distance)), is calculated in the fol-
lowing way. For each class of 𝐿𝑠 that is reachable from 𝐿𝑐 through field declarations at distance

(𝑟𝑐 ∈ RC(𝐿𝑐, 𝐿𝑠, distance)), count all the field declarations from which it is reachable (nFR(𝑟𝑐, 𝐿𝑐)), and
multiply it by the number of descendants of the reachable class (nDC(𝑟𝑚,𝐿𝑠)).

TACD(𝐿𝑐, 𝐿𝑠, distance) =
∑︁

𝑟𝑐∈RC(𝐿𝑐,𝐿𝑠,distance)

nFR(𝑟𝑐, 𝐿𝑐) * nDC(𝑟𝑚,𝐿𝑠) (3.9)

Theoretical validation: TMIC

Nonnegativity Assume that nonnegativity does not hold for metric TMIC. Then, there exists a client
library 𝐿𝑐, and a server library 𝐿𝑠 such that TMIC(𝐿𝑐, 𝐿𝑠) < 0. According to equation 3.6, there is a

distance for which either TMICD(𝐿𝑐, 𝐿𝑠, distance) < 0 or PFdistance - 1 < 0. Since distance is a
positive integer, and PF ∈ (0, 1), the second option is not possible.

Let us assume that TMICD(𝐿𝑐, 𝐿𝑠, distance) < 0. Looking at the equation 3.7, we see that there
has to be at least one method, 𝑟𝑚, from 𝐿𝑠 and reachable from 𝐿𝑐 at a certain distance (𝑟𝑚 ∈
RM(𝐿𝑐, 𝐿𝑠, distance)), such that nIR(𝑟𝑚,𝐿𝑐) < 0 or nP(𝑟𝑚,𝐿𝑠) < 0. Since nP(𝑟𝑚,𝐿𝑠) corresponds
to the number of polymorphic implementations of 𝑟𝑚 in 𝐿𝑠, and we know that 𝑟𝑚 belongs to 𝐿𝑠, then
nP(𝑟𝑚,𝐿𝑠) ≥ 1. Finally, for nIR(𝑟𝑚,𝐿𝑐) < 0 to be true, there should be less than zero method invocations
in 𝐿𝑐 from which 𝑟𝑚 is reachable. However, since 𝑟𝑚 ∈ RM(𝐿𝑐, 𝐿𝑠, distance), and RM(𝐿𝑐, 𝐿𝑠, distance)
corresponds to the set of methods from 𝐿𝑠 that are reachable from 𝐿𝑐, we have that nIR(𝑟𝑚,𝐿𝑐) ≥ 1,
which constitutes a contradition.

28

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Therefore, the metric TMIC fulfills the property Nonnegativity.

Null value Assuming that TMIC does not fulfill property Null value, there exists a client library 𝐿𝑐,
and a server library 𝐿𝑠 such that R(𝐿𝑐, 𝐿𝑠) = ∅ and TMIC(𝐿𝑐, 𝐿𝑠) ̸= 0.

For TMIC(𝐿𝑐, 𝐿𝑠) ̸= 0 to be true, according to equation 3.7, there has to be a method 𝑟𝑚 such that
𝑟𝑚 ∈ RM(𝐿𝑐, 𝐿𝑠, distance). However, that would mean that 𝑟𝑚 belongs to 𝐿𝑠, and is reachable from
𝐿𝑐, which constitutes a relation between 𝐿𝑐 and 𝐿𝑠, and contradicts R(𝐿𝑐, 𝐿𝑠) = ∅.

Hence, the property null value holds for metric TMIC .

Monotonicity Let 𝐿𝑐 be a client library containing class 𝑐𝑐, and 𝑐′𝑐 be a class resulting from adding
relationships with the server library 𝐿𝑠 to class 𝑐𝑐. Then, R(𝑐𝑐, 𝐿𝑠) ⊆ R(𝑐′𝑐, 𝐿𝑠). Let 𝐿

′
𝑐 be a client library

resulting from replacing class 𝑐𝑐 by 𝑐′𝑐 in 𝐿𝑐. Therefore, R(𝐿𝑐, 𝐿𝑠) ⊆ R(𝐿′
𝑐, 𝐿𝑠). If we assume that TMIC

does not fulfill property Monotonicity, it would be true that TMIC(𝐿𝑐, 𝐿𝑠) > TMIC(𝐿′
𝑐, 𝐿𝑠). Therefore,

for a certain distance, we have that TMICD(𝐿𝑐, 𝐿𝑠, distance) > TMICD(𝐿′
𝑐, 𝐿𝑠, distance), according to

equation 3.6. According to the equation 3.7, this opens two possibilities.
First, we have that |RM(𝐿𝑐, 𝐿𝑠, distance)| > |RM(𝐿′

𝑐, 𝐿𝑠, distance)|, which means that there are more
methods from 𝐿𝑠 reachable from 𝐿𝑐 than from 𝐿′

𝑐. This is not possible since, the only difference between
𝐿𝑐 and 𝐿′

𝑐 is the substitution of class 𝑐𝑐 by class 𝑐′𝑐, which only adds relationships with 𝐿𝑠. The second
option is that for a certain 𝑟𝑚 ∈ RM(𝐿𝑐, 𝐿𝑠, distance), and therefore also 𝑟𝑚 ∈ RM(𝐿′

𝑐, 𝐿𝑠, distance),
such that nIR(𝑟𝑚,𝐿𝑐) > nIR(𝑟𝑚,𝐿′

𝑐). However, that means that in 𝐿𝑐 there are more method invocations
that reach 𝑟𝑚, than in 𝐿′

𝑐. As discussed earlier, this constitutes a contradicion with the way 𝐿′
𝑐 is created.

Therefore, property 3 Monotonicity holds for TMIC.

Merging of classes Let 𝐿𝑐 be a client library that includes the classes 𝑐1 and 𝑐2. Let 𝑐
′ be a class such

that 𝑐1+𝑐2 = 𝑐′ and 𝐿′
𝑐 be a client library resulting from replacing 𝑐1 and 𝑐2 by 𝑐′ in 𝐿𝑐. If we assume that

the property merging of classes does not hold for TMIC, then R(𝑐1, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) ∧ R(𝑐2, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠)
and TMIC(𝐿𝑐, 𝐿𝑠) > TMIC(𝐿′

𝑐, 𝐿𝑠).
Since the only difference between 𝐿𝑐 and 𝐿′

𝑐 is the replacement of 𝑐1 and 𝑐2 by 𝑐′, there has to be a
method invocation from 𝑐1 or 𝑐2 to a method 𝑟𝑚 ∈ RM(𝐿𝑐, 𝐿𝑠, distance), which is not included in 𝑐′.
However, the method invocation has to be a relation included in R(𝑐1, 𝐿𝑠) or R(𝑐2, 𝐿𝑠), and we have that
R(𝑐1, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) ∧ R(𝑐2, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠). Therefore it is a contradiction.

Hence, the property Merging of classes holds for TMIC.

Merging of unconnected classes Let 𝐿𝑐 be a client library and 𝐿𝑠 be a server library. Let 𝑐1 and 𝑐2
be classes implemented in 𝐿𝑐, such that R(𝑐1, 𝐿𝑠)∩ R(𝑐2, 𝐿𝑠) = ∅. Let 𝑐′ be a class such that 𝑐1+ 𝑐2 = 𝑐′.
Therefore, R(𝑐1, 𝐿𝑠)+ R(𝑐2, 𝐿𝑠) = R(𝑐′, 𝐿𝑠). Let 𝐿

′
𝑐 be a client library identical to 𝐿𝑐 but in which 𝑐1 and

𝑐2 have been replaced by 𝑐′. We assume that the metric TMIC does not fulfill this property.
Therefore, TMIC(𝐿𝑐, 𝐿𝑠) ̸= TMIC(𝐿′

𝑐, 𝐿𝑠). According to property Merging of classes, TMIC(𝐿𝑐, 𝐿𝑠) ≥
TMIC(𝐿′

𝑐, 𝐿𝑠). Hence, TMIC(𝐿𝑐, 𝐿𝑠) > TMIC(𝐿′
𝑐, 𝐿𝑠).

Then, there is a method invocation is 𝑐1 or 𝑐2 which is not included in 𝑐, which contradicts that
R(𝑐1, 𝐿𝑠) + R(𝑐2, 𝐿𝑠) = R(𝑐′, 𝐿𝑠).

We conclude that TMIC fulfills property Merging of unconnected classes.

Theoretical validation: TAC

Nonnegativity Assuming that nonnegativity does not hold for metric TAC, there exists a client library
𝐿𝑐, and a server library 𝐿𝑠 such that TAC(𝐿𝑐, 𝐿𝑠) < 0. In line with equation 3.8, there is a distance for

which two things can happen. First, PFdistance−1 < 0. However, since distance is a positive integer,
and PF ∈ (0, 1), this is not possible.

The second option is that TACD(𝐿𝑐, 𝐿𝑠, distance) < 0. Looking at the equation 3.9, we see that there
has to be at least one class, 𝑟𝑐 ∈ RC(𝐿𝑐, 𝐿𝑠, distance), that belongs to 𝐿𝑠 and is reachable from 𝐿𝑐, such
that nFR(𝑟𝑐, 𝐿𝑐) < 0 or nDC(𝑟𝑚,𝐿𝑠) < 0. nDC(𝑟𝑚,𝐿𝑠) is the number of descendants of 𝑟𝑐 in 𝐿𝑠. As we
know that 𝑟𝑐 belongs to 𝐿𝑠, we have that nDC(𝑟𝑚,𝐿𝑠) ≥ 1.

Finally, if nFR(𝑟𝑐, 𝐿𝑐) < 0 is true, there are less than zero field declarations in 𝐿𝑐 from which 𝑟𝑐 is
reachable. However, since 𝑟𝑐 ∈ RC(𝐿𝑐, 𝐿𝑠, distance), and RC(𝐿𝑐, 𝐿𝑠, distance) corresponds to the set
of classes from 𝐿𝑠 that are reachable from 𝐿𝑐 through field declarations, we have that nFR(𝑟𝑐, 𝐿𝑐) ≥ 1,
which constitutes a contradition.

Therefore, the property Nonnegativity holds for metric TAC.

29

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Null value Let us assume that TAC does not fulfill property Null value. Therefore, there exists a client
library 𝐿𝑐, and a server library 𝐿𝑠 such that R(𝐿𝑐, 𝐿𝑠) = ∅ and TAC(𝐿𝑐, 𝐿𝑠) ̸= 0.

If TAC(𝐿𝑐, 𝐿𝑠) ̸= 0 then, as stated in equation 3.9, there has to be a class 𝑟𝑐 such that 𝑟𝑐 ∈
RC(𝐿𝑐, 𝐿𝑠, distance). However, if 𝑟𝑐 ∈ RC(𝐿𝑐, 𝐿𝑠, distance), then 𝑟𝑐 belongs to 𝐿𝑠, and is reachable
from 𝐿𝑐. This creates a relation between 𝐿𝑐 and 𝐿𝑠, and therefore contradicts R(𝐿𝑐, 𝐿𝑠) = ∅.

In conclusion, the property Null value holds for metric TAC.

Monotonicity Assuming that property Monotonicity does not hold for metric TAC, let 𝐿𝑐 be a client
library containing class 𝑐𝑐, and 𝐿𝑠 be a server library. Also, let 𝑐′𝑐 be the resulting class of adding new
relationships with 𝐿𝑠 to class 𝑐𝑐. Then, R(𝑐𝑐, 𝐿𝑠) ⊆ R(𝑐′𝑐, 𝐿𝑠). Let 𝐿

′
𝑐 be the client library resulting from

replacing class 𝑐𝑐 by 𝑐′𝑐 in 𝐿𝑐. Therefore, R(𝐿𝑐, 𝐿𝑠) ⊆ R(𝐿′
𝑐, 𝐿𝑠).

Since TAC does not fulfill property Monotonicity, we have that TAC(𝐿𝑐, 𝐿𝑠) > TAC(𝐿′
𝑐, 𝐿𝑠). Hence,

for a certain distance, it is true that TACD(𝐿𝑐, 𝐿𝑠, distance) > TACD(𝐿′
𝑐, 𝐿𝑠, distance), according to

equation 3.8. As equation 3.9 indicates, this can be true in two cases.
The first option is |RC(𝐿𝑐, 𝐿𝑠, distance)| > |RC(𝐿′

𝑐, 𝐿𝑠, distance)|. In other words, there are more
classes from 𝐿𝑠 reachable from 𝐿𝑐 than from 𝐿′

𝑐. Since the only difference between 𝐿𝑐 and 𝐿′
𝑐 is the

replacement of class 𝑐𝑐 by 𝑐′𝑐, and according to the definition of class 𝑐′𝑐, this is not possible.
Therefore, the last option is that there is a class 𝑟𝑐 ∈ RC(𝐿𝑐, 𝐿𝑠, distance)∧𝑟𝑐 ∈ RC(𝐿′

𝑐, 𝐿𝑠, distance),
such that nFR(𝑟𝑐, 𝐿𝑐) > nFR(𝑟𝑐, 𝐿′

𝑐). This implies that the number of field declarations that reach 𝑟𝑐 in
𝐿𝑐is greater than in 𝐿′

𝑐, which is a contradicion with the definition of 𝐿′
𝑐.

Therefore, property Monotonicity holds for TAC.

Merging of classes Let 𝐿𝑐 be a client library, and let classes 𝑐1 and 𝑐2 be classes implemented in
𝐿𝑐. Also, let 𝑐′, created as follows 𝑐′ = 𝑐1 + 𝑐2, and 𝐿′

𝑐 be a client library based on 𝐿𝑐 in which 𝑐1
and 𝑐2 have been replaced by 𝑐′. Assuming merging of classes does not hold for TAC, we have that
R(𝑐1, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) ∧ R(𝑐2, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) ∧ TAC(𝐿𝑐, 𝐿𝑠) > TAC(𝐿′

𝑐, 𝐿𝑠).
𝐿𝑐 and 𝐿′

𝑐 are only different in the replacement of 𝑐1 and 𝑐2 by 𝑐′. Hence, there has to be a field
declaration from 𝑐1 or 𝑐2 which reaches a class 𝑟𝑐 ∈ RC(𝐿𝑐, 𝐿𝑠, distance), and is not found in 𝑐′. However,
the reachability through a field declaration is a relation included in R(𝑐1, 𝐿𝑠) or R(𝑐2, 𝐿𝑠), and we have
that R(𝑐1, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠) ∧ R(𝑐2, 𝐿𝑠) ⊆ R(𝑐′, 𝐿𝑠), which constitutes a contradiction.

Therefore, TAC fulfills property Merging of classes.

Merging of unconnected classes Let 𝐿𝑐 and 𝐿𝑠 be a client and a server library respecively. Let 𝑐1
and 𝑐2 be classes implemented in 𝐿𝑐, such that R(𝑐1, 𝐿𝑠) ∩ R(𝑐2, 𝐿𝑠) = ∅. Let 𝑐′ defined as 𝑐′ = 𝑐1 + 𝑐2.
Hence, R(𝑐1, 𝐿𝑠) + R(𝑐2, 𝐿𝑠) = R(𝑐′, 𝐿𝑠). Let 𝐿

′
𝑐 be a client library which is the result of replacing 𝑐1 and

𝑐2 by 𝑐′ in 𝐿𝑐.
Assume that the TAC does not fulfill Merging of unconnected classes. This means that TAC(𝐿𝑐, 𝐿𝑠) ̸=

TAC(𝐿′
𝑐, 𝐿𝑠). Since TAC has the property Merging of classes, we know that TAC(𝐿𝑐, 𝐿𝑠) ≥ TAC(𝐿′

𝑐, 𝐿𝑠),
which leaves TAC(𝐿𝑐, 𝐿𝑠) > TAC(𝐿′

𝑐, 𝐿𝑠).
Then, there exists a field declaration in 𝑐1 or 𝑐2 which reaches a class included in 𝐿𝑠 and is not

included in 𝑐. However, we have that R(𝑐1, 𝐿𝑠) + R(𝑐2, 𝐿𝑠) = R(𝑐′, 𝐿𝑠), which creates a contradiction.
Therefore, the metric TAC fulfills property Merging of unconnected classes.

3.2 Measuring coverage of the dependency

The metrics presented in this section measure the dependencies from a different perspective. Instead of
measuring import coupling between the client library and the server library, we look at how much of the
server library is used by the client library. With these metrics, the developers, for example, can estimate
the probability that a breaking change in a library affects their code.

3.2.1 Definition of coverage

Just as with the coupling metrics, it is necessary to define the characteristics of the coverage that will be
measured. In this case, there is no framework indicating which are the relevant characteristics to define
and with which criteria.

Therefore, based on the criteria discussed for the definition of coupling, we have created the list
criteria to define the coverage of a dependency, discarding those that are only relevant for coupling.

30

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Type of connection For these metrics, since it is not about coupling but about how much of the server
library is used by the client library, the metrics will not be focused solely on one type of connection.
Instead, we will consider every type of connection in the measurement of coverage.

The types of connections discussed previously (see section 3.1.1) are some of the most common types
of connection. Nevertheless, there are others which are also considered.

Given class a and class b...

∙ ... class a has an annotation of type b.

∙ ... class a has a declared field with an annotation of type b.

∙ ... class a has method m, which has an annotation of type b.

∙ ... class a has method m, which has a parameter with an annotation of type b.

∙ ... class a has method m, which throws an exception of type b.

Granularity In this case, we have to define a unit to measure which percentage of the server library
units are being used by the client library. According to the type of connections, two different kinds of
units can be used: methods and classes. For the goal of these metrics, it is also necessary to use both
units of measure. For example, the breaking changes of a library can be at a metric or for an entire
class, and we want to measure it for both cases. Therefore, we define two metrics, one for methods and
another for classes. Nevertheless, the metrics’ aggregation level is still at the library level since the goal
is to measure the percentage of reachable units.

The last aspect of the granularity to consider is how the connections are evaluated. The goal is to
know how many items are reached, but not how many times. Therefore, we count the distinct items at
the other end of the connections.

Direct & Indirect Finally, we have to decide whether to consider indirect usage or not. Since we
want to know the total percentage of the server library coverage, we will consider both the units that
are directly used and those indirectly used.

Inheritance Although these metrics measure coverage and not coupling, we still have to decide how
the metrics deal with inheritance. Just as in the case of the coupling metrics, all the polymorphic
implementations of the methods and the descendants of the classes will be considered in the calculation
of the coverage metrics. This is because all the possible implementations might be executed, and therefore
should be considered as covered. Finally, we have defined that a method belongs to both the class that
declares it and the class that implements it. Both classes are reachable from the client and should be
considered as covered.

Summary The metrics resulting from the description of coverage can be found in Table 3.3.

M
et
ri
c

T
y
p
e
of

co
n
n
ec
ti
on

U
n
it
of

m
ea
su
re

A
gg
re
ga
ti
on

le
v
el

C
ou

n
ti
n
g
co
n
n
ec
ti
on

s

D
ir
ec
t/
In
d
ir
ec
t

In
h
er
it
an

ce

% Reachable classes All Class Library Distinct items Both Accounted for

% Reachable methods All Method Library Distinct items Both Accounted for

Table 3.3: Characteristics of the coverage metrics

31

CHAPTER 3. DEPENDENCY EVALUATION MODEL

3.2.2 Formal definition of the metrics

Percentage of reachable classes

This metric calculates the percentage of coverage of a dependency using classes as the unit of measure.
Therefore, it calculates the cardinality of the set of classes implemented in the server library (𝐿𝑠) that
are reachable from the code of the client library (𝐿𝑐), denoted RC(𝐿𝑐, 𝐿𝑠). The number of reachable
classes is divided by the total number of classes in 𝐿𝑠.

As explained in section 3.2.1, all types of connections are considered for this metric. Hence, RC(𝐿𝑐, 𝐿𝑠)
includes all the classes reachable through any of the types of connection or a combination of these,
accounting for inheritance.

%ReachableClasses(𝐿𝑐, 𝐿𝑠) =
|𝑅𝐶(𝐿𝑐, 𝐿𝑠)|

|𝐶(𝐿𝑠)|
(3.10)

Pergentage of reachable methods

This metric works exactly as the previous one, but instead of using the class as the unit of measure, it
uses methods. Therefore, it divides the number of elements in the set of methods from the server library
(𝐿𝑠) that are reachable from the code of the client library (𝐿𝑐), 𝑅𝑀(𝐿𝑐, 𝐿𝑠), by the total number of
methods (|𝑀(𝐿𝑠)|).

For this metric, since the unit of measure is the method, the only type of connection through which
a method is reachable is the method call or method invocation. Thus, the methods included in the
reachable classes are not considered reachable by default since it is not sure if the method has been
invoked. Nevertheless, for the reachable methods, the polymorphic implementations of these are also
considered.

%ReachableMethods(𝐿𝑐, 𝐿𝑠) =
|𝑅𝑀(𝐿𝑐, 𝐿𝑠)|

|𝑀(𝐿𝑠)|
(3.11)

3.2.3 Theoretical validation

In this section, the theoretical validation of the metrics %ReachableClasses and %ReachableMethods is
done by proving the properties that these metrics should fulfill. Given that the two metrics are highly
similar, the proofs are done for the first metric, namely %ReachableClasses, but could easily be done
for the second one with the same reasoning.

The properties chosen for these metrics are the ones that the aspect being measured should have.
We based the properties on the work by Srinivasan and Devi [21], which reviews the methodologies to
validate metrics in software engineering. We obtained the following list of properties, which apply to
these metrics. The first two properties were originally described by Weyuker [33] and the last three
by Briand et al. [23]. Some properties are originally defined using the class as the aggregation level.
Therefore, we adapted the definition of the properties for metrics with library as the aggregation level.

1. Noncoarseness: Two different libraries can have different values for the same metric.

2. Nonuniqueness: There can exist different libraries with the same value.

3. Nonnegativity: The value of the metric should never be negative.

4. Null value: The value of the metric is expected to be zero if there is no usage of the server library
in the client library code.

5. Monotonicity: It is expected that if more usage is added from the client library to the server
library, the metric value does not decrease.

Noncoarseness Let us consider the two cases in Figure 3.4. In the first case, Lib1 would be the
client library, and Lib2 the server library. In the example, we can see that the number of classes
in the server library is: |C(𝐿𝑖𝑏2)| = 3. Also, the number of classes of the server library, reached
by the client library is |𝑅𝑀(𝐿𝑖𝑏1, 𝐿𝑖𝑏2)| = 2. Therefore, following the equation 3.10, we have that
%ReachableClasses(𝐿𝑖𝑏1, 𝐿𝑖𝑏2) = 2

3 = 0.66.
In the second case in Figure 3.4 we take Lib3 as the client library, and Lib4 as the server library.

Therefore, we have |C(𝐿𝑖𝑏4)| = 3 and |𝑅𝑀(𝐿𝑖𝑏3, 𝐿𝑖𝑏4)| = 3, which means that the value of the metric is
%ReachableClasses(𝐿𝑖𝑏3, 𝐿𝑖𝑏4) = 3

3 = 1.

32

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Therefore, two different libraries can have different values for %ReachableClasses, which means that
this metric fulfills the property Noncoarseness.

Figure 3.4: Example of noncoarseness, percentage of reachable classes

Nonuniqueness Following the first example in Figure 3.5 we take Lib1 as the client library, and
Lib2 the server library. Therefore, we can see that |C(𝐿𝑖𝑏2)| = 3, and |𝑅𝑀(𝐿𝑖𝑏1, 𝐿𝑖𝑏2)| = 2. Hence,
calculating the metric using equation 3.10, we obtain %ReachableClasses(𝐿𝑖𝑏1, 𝐿𝑖𝑏2) = 2

3 = 0.66.
In the second case in Figure 3.4 we have Lib3 as the client library, and Lib4 as the server library.

Looking at the example, we know that |C(𝐿𝑖𝑏4)| = 3 and |𝑅𝑀(𝐿𝑖𝑏3, 𝐿𝑖𝑏4)| = 2. Therefore, the metric
for these two libraries is %ReachableClasses(𝐿𝑖𝑏3, 𝐿𝑖𝑏4) = 2

3 = 0.66.
Therefore, two different libraries can have the same value for metric %ReachableClasses. Hence, the

property Nonuniqueness holds for this metric.

Nonnegativity Assume that the metric %ReachableClasses does not fulfill this property. Let 𝐿𝑐 be
a client library, and 𝐿𝑠 be a server library, such that %ReachableClasses(𝐿𝑐, 𝐿𝑠) < 0. Then, we have
that |𝑅𝐶(𝐿𝑐, 𝐿𝑠)| < 0 ⊕ |𝐶(𝐿𝑠)| < 0. This means that the cardinality of a set is negative, which is not
true by definition. Therefore, it is a contradition.

Hence, the metric fulfills property Nonnegativity.

Null value Let 𝐿𝑐 be a client library, and 𝐿𝑠 be a server library. There is no usage in 𝐿𝑐 of library
𝐿𝑠, 𝑅𝐶(𝐿𝑐, 𝐿𝑠) = ∅. Assuming that the property null value does not hold for %ReachableClasses,
then %ReachableClasses(𝐿𝑐, 𝐿𝑠) ̸= 0. Since this metric has the property nonnegativity, it follows that

33

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Figure 3.5: Example of nonuniqueness, percentage of reachable classes

%ReachableClasses(𝐿𝑐, 𝐿𝑠) > 0. Therefore, |𝑅𝐶(𝐿𝑐,𝐿𝑠)|
|𝐶(𝐿𝑠)| > 0 and |𝑅𝐶(𝐿𝑐, 𝐿𝑠)| > 0, which contradicts

that 𝑅𝐶(𝐿𝑐, 𝐿𝑠) = ∅.
Therefore, the property Null value holds for metric %ReachableClasses.

Monotonicity Having 𝐿𝑐 a client library, and 𝐿𝑠 a server library. Let 𝑐𝑐 be a class in 𝐿𝑐, and 𝑐′𝑐
a class created as the result of adding more connections to 𝐿𝑠 in 𝑐𝑐. Then, let 𝐿′

𝑐 be a client library
resulting of replacing 𝑐𝑐 by 𝑐′𝑐 in 𝐿𝑐. Assuming that the property does not hold, we would have that
%ReachableClasses(𝐿𝑐, 𝐿𝑠) > %ReachableClasses(𝐿′

𝑐, 𝐿𝑠). Therefore, since |𝐶(𝐿𝑠)| is the same in
both cases because 𝐿𝑠 does not change, we have that |𝑅𝐶(𝐿𝑐, 𝐿𝑠)| > |𝑅𝐶(𝐿′

𝑐, 𝐿𝑠)|. This means that
there is some 𝑐𝑠 in 𝐿𝑠, which is reachable from 𝑐𝑐 and not reachable from 𝑐′𝑐. However, 𝑐′𝑐 contains all
the connections between 𝑐𝑐 and 𝐿𝑠, and that is therefore not possible.

In conclusion, the metric %ReachableClasses has the property Monotonicity.

3.3 Measuring usage per class

In this case, the goal is to give low-level information on the usage of the server library of a dependency
from the client library. It can be useful for a developer or a maintainer to know exactly which parts of
the code of the client are using the server library. For example, if there is a breaking change or if the
server library has to be replaced. Therefore, the goal is to know how much usage there is of a server
library for each class of the client library.

This section describes how the usage is measured by these metrics and provides a formal definition
of the metrics. Finally, we perform a theoretical validation of the metrics.

34

CHAPTER 3. DEPENDENCY EVALUATION MODEL

3.3.1 Definition of usage per class

To define the usage to be measured by these metrics, we use the relevant criteria for this case. We based
the list on the criteria used to define coupling, removing those not applicable for the definition of usage.

Type of connection Just as with the coupling metrics, all the types of connection can be relevant,
but the usage of each type of connection might have a different impact. Therefore, these should not be
measured together. Since this work is meant to be the first approach, we select two possible connection
types.

First, the method invocation, since it is the only type of connection that refers to the methods used
in the dependencies, and therefore is the only one indicating where the server libraries’ methods can be
invoked from. Then, to represent how the classes of the server libraries are used, and for consistency
with the previous metrics, we select the field declaration.

Locus of impact In the case of the usage per class metrics, the locus of impact is import. This is
because we look at the usage from the client class’s point of view, which uses a server library through a
dependency.

Granularity As the title of the section indicates, these metrics are measuring the usage per class.
Hence, the aggregation level of the metric is the class level for the client library. In other words, we
calculate the metric taking a class of the client library and a server library.

The way the connections are counted for these metrics is not considered in the original list created
by Briand et al. [11]. Instead, it is counted the number of places of the client class where a connection
is originated. For instance, let’s take Lib1 from Figure 3.6 as the client library, and Lib3 as the server
library. From Class1 to Lib3 there are four different connections, but there are only two origins of these
connections. The same happens with Class2, in which there are two connections with Lib3, but only
one origin.

Figure 3.6: Example to calculate usage per class

Direct & Indirect The connection measured can be either direct or indirect, depending on the de-
pendency between the client and the server library. However, this does not change the calculation of the
metric. Hence, both types of dependencies are calculated with the same metric.

Inheritance To fully calculate whether a method invocation reaches a server library or not, it is
necessary to consider inheritance when computing the reachability. A server library may be only reachable
through one of the polymorphic implementations of a method or a descendant of a reachable class.
Therefore, the usage per class metrics, do account for inheritance.

Summary Based on the criteria discussed above, we define two metrics. The summary of the charac-
teristics of these two metrics can be found in Table 3.4.

35

CHAPTER 3. DEPENDENCY EVALUATION MODEL

M
et
ri
c

T
y
p
e
o
f
co
n
n
ec
ti
o
n

A
g
g
re
ga
ti
o
n
le
ve
l

C
o
u
n
ti
n
g
co
n
n
ec
ti
on

s

D
ir
ec
t/
In
d
ir
ec
t

In
h
er
it
an

ce

#1 Method invocation Class #origin of connection Both Accounted for

#2 Field declaration Class #origin of connection Both Accounted for

Table 3.4: Criteria of the set of metrics

3.3.2 Formal definition of the metrics

In this section, we provide a formal definition of the metrics method invocations per class and field
declarations per class.

Method invocations per class Having a client library (𝐿𝑐), and a server library (𝐿𝑠). The result of
this metric for a class of the client library (𝑐𝑐 ∈ C(𝐿𝑐)) corresponds to the number of method invocations
contained in the methods of 𝑐𝑐 (𝑚𝑐 ∈ M(𝑐𝑐)) such that, the call graph created from these method
invocations reach a method implemented in the client library (𝑚𝑠 ∈ M(𝐿𝑠)). The set with the method
invocations in 𝑚𝑐 that reach a method in 𝐿𝑠 is nIR(𝑚𝑐, 𝐿𝑠), where the computation of the reachability
accounts for inheritance.

#MethodInvocations(𝑐𝑐, 𝐿𝑠) =
∑︁

𝑚𝑐∈M(𝑐𝑐)

|nIR(𝑚𝑐, 𝐿𝑠)| (3.12)

Field declaration per class This metric is calculated in the following manner. For a class 𝑐𝑐 of a
client library 𝐿𝑐 (𝑐𝑐 ∈ C(𝐿𝑐)), and a server library 𝐿𝑠. The result of the metric for 𝑐𝑐, corresponds to
the number of field declarations in 𝑐𝑐 such that, through field declarations reach a class implemented
in 𝐿𝑠. The set of field declarations that reach 𝐿𝑠 is denoted nFR(𝑐𝑐, 𝐿𝑠), where the computation of the
reachability of 𝐿𝑠 considers inheritance.

#FieldDeclarations(𝑐𝑐, 𝐿𝑠) = |nFR(𝑐𝑐, 𝐿𝑠)| (3.13)

3.3.3 Theoretical validation

This section contains the proofs, for the metrics #MethodInvocations and #FieldDeclarations, of the
properties that these should have. The proofs are done for one metric since they can be done for the
other metric very similarly.

The properties chosen in this case are the same as the ones chosen in Section 3.2.3 since these
properties can also be applied for these metrics. Nevertheless, the description of the properties has been
adapted to fit the characteristics of the metrics.

1. Noncoarseness: Two different classes can have different values for the same metric.

2. Nonuniqueness: There can exist different classes with the same value.

3. Nonnegativity: The value of the metric should never be negative.

4. Null value: The value of the metric is expected to be zero if there is no connection of the type
measured by the metric from the client class to the server library.

5. Monotonicity: It is expected that if more usage is added from the client class to the server library,
the metric value does not decrease.

36

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Noncoarseness Following the first case in Figure 3.7, we take textitLib1 as the client library, Lib2 as
the server library, and the only class in Lib1 as 𝑐𝑐. We can see that the class has only one method, for
which |nIR(𝑀𝑒𝑡ℎ𝑜𝑑, 𝐿𝑖𝑏2)| = 1. Following the equation 3.12, #MethodInvocations(𝑐𝑐, 𝐿𝑖𝑏2) = 1.

Now we move to the second case in Figure 3.7. In this case we take Lib3 as the client library,
Lib4 as the server library, and the class in Lib3 as 𝑐𝑐. Class 𝑐𝑐 has only one method, for which
|nIR(𝑀𝑒𝑡ℎ𝑜𝑑, 𝐿𝑖𝑏4)| = 3. Hence, #MethodInvocations(𝑐𝑐, 𝐿𝑖𝑏4) = 3.

In conclusion, two different classes can have different values for metric #MethodInvocations, which
fulfills property Noncoarseness.

Figure 3.7: Example of noncoarseness, number of method invocations

Nonuniqueness Now we look at Figure 3.8, and in the first example we take Lib1 as the client library,
Lib2 the server library, and the class in Lib1 as the client class, 𝑐𝑐. The client class has only one method,
for which |nIR(𝑀𝑒𝑡ℎ𝑜𝑑, 𝐿𝑖𝑏2)| = 2. Therefore, #MethodInvocations(𝑐𝑐, 𝐿𝑖𝑏2) = 2.

Focusing on the second case in Figure 3.8, we have that Lib3 is the client library and Lib4 the server
library. Also, the client class, 𝑐𝑐, is the only class in Lib3. We can see that there is one method in 𝑐𝑐,
which calls Lib4 a total of 2 times, |nIR(𝑀𝑒𝑡ℎ𝑜𝑑, 𝐿𝑖𝑏4)| = 2. Hence, #MethodInvocations(𝑐𝑐, 𝐿𝑖𝑏4) = 2.

With this example, we see that two different classes can have the same value for #MethodInvocations.
Therefore, this metric fulfills the property Nonuniqueness.

Nonnegativity If the property does not hold for #MethodInvocations, there exists a client library 𝐿𝑐

containing 𝑐𝑐 and a server library 𝐿𝑠, such that #MethodInvocations(𝑐𝑐, 𝐿𝑠) < 0. Therefore, a method
𝑚𝑐 ∈ M(𝑐𝑐), exists such that |nIR(𝑚𝑐, 𝐿𝑠)| < 0. However, the cardinality of a set cannot be negative by
definition, and therefore it is a contradition.

Hence, the property Nonnegativity holds for metric #MethodInvocations.

Null value Assume that the metric does not fulfill property null value. Let 𝐿𝑐 and 𝐿𝑠 be a client
library and a server library, adn 𝑐𝑐 a class in 𝐿𝑐. Assume that 𝑐𝑐 does not have any connection to
𝐿𝑠, and given that the metric does not fulfill null value, #MethodInvocations(𝑐𝑐, 𝐿𝑠) ̸= 0. From the
previous proof we know that #MethodInvocations(𝑐𝑐, 𝐿𝑠) ≥ 0, then #MethodInvocations(𝑐𝑐, 𝐿𝑠) > 0.
Hence, there is a method 𝑚𝑐 ∈ M(𝑐𝑐) such that |nIR(𝑚𝑐, 𝐿𝑠)| > 0. Since nIR(𝑚𝑐, 𝐿𝑠) is the set of method

37

CHAPTER 3. DEPENDENCY EVALUATION MODEL

Figure 3.8: Example of nonuniqueness, number of method invocations

invocations in 𝑐𝑐 that reach 𝐿𝑠, there has to be a connection between 𝑐𝑐 and 𝐿𝑠, which constitutes a
contradition.

Therefore, the metric fulfills property Null value.

Monotonicity Let 𝐿𝑐 be a client library, and let 𝐿𝑠 be a server library. Given a class 𝑐𝑐 in 𝐿𝑐, we define
𝑐′𝑐 as a copy 𝑐𝑐 with added connections to 𝐿𝑠. Let 𝐿′

𝑐 be a client library identical to 𝐿𝑐,. but in which
𝑐𝑐 has been replaced by 𝑐′𝑐. Assume that metric #MethodInvocations does not fulfill Monotonicity.
Therefore, #MethodInvocations(𝑐𝑐, 𝐿𝑠) > #MethodInvocations(𝑐𝑐, 𝐿𝑠). Then, for a given 𝑚𝑐 ∈ M(𝑐𝑐),
and its copy in 𝑐′𝑐, 𝑚

′
𝑐 ∈ M(𝑐′𝑐), such that |nIR(𝑚𝑐, 𝐿𝑠)| > |nIR(𝑚′

𝑐, 𝐿𝑠)|. This means that 𝑚𝑐 contains a
method invocation which reaches 𝐿𝑠 and it is not included in 𝑚′

𝑐. However, all the method invocations
contained in 𝑐𝑐 are maintained in 𝑐′𝑐. Therefore, it is a contradition.

Hence, property Monotonicity holds for metric #MethodInvocations.

38

Chapter 4

Proof of Concept

In this section, we describe the proof-of-concept implementation to calculate the metrics of the model,
which can be found publicly in GitHub 1. In order to empirically validate the metrics defined in the
previous section, it is necessary to be able to calculate them. Therefore, we decided to create a proof-
of-concept tool to calculate the metrics for real-world libraries and experiment with the results. First,
we discuss the possible techniques to implement it and describe the chosen one. Then, there is an
explanation of how each metric is calculated, including pseudo-code, to illustrate it.

4.1 Analysis technique

Several techniques could have been used to implement the PoC that calculates the different metrics
proposed.

∙ Bytecode analysis

∙ Source code analysis

∙ Call-level dependency graph

After an initial effort, source code analysis has been discarded. The reason for it is that the source
code is needed for both the client library and all its dependencies. Although it is sometimes available
in Maven, it is not available as often as the bytecode. Furthermore, obtaining the code from GitHub
created issues when resolving the dependency tree. In many cases, the version of the dependency being
used in the repository was not yet available in Maven. Therefore, the dependency tree could not be
resolved.

The option of call-level dependency graphs is useful for the metrics that measure method invocations.
However, the information needed to calculate aggregation coupling is not contained in the call-level
graphs. Therefore, the approach to developing this PoC has been bytecode analysis. Furthermore,
obtaining the complete dependency tree’s call-graphs is still a work in progress within the FASTEN
project 2.

The model proposed in this research is meant to be language-agnostic. Nevertheless, the proof-of-
concept scope is limited to Java since the bytecode analysis performed by the proof-of-concept is limited
to this programming language. Furthermore, the PoC is focused on the libraries available in Maven. It
has been decided to limit the scope to Java and Maven since it allows us to compare the results with
the research by Soto-Valero et al. [7] (see Section 5.1). Furthermore, the work done by the FASTEN
project is also focused on Maven. Therefore, it will be easier in the future to compare the results when
measuring the metrics with bytecode analysis and call-graphs since the source will be the same.

4.2 Architecture

The proof-of-concept tool is divided into two parts: the frontend and the backend. The frontend contains
the visualizations proposed to see the dependency tree and display the metrics of the model. Meanwhile,

1https://github.com/NuriaBruchTarrega/alexandria
2https://www.fasten-project.eu/

39

https://github.com/NuriaBruchTarrega/alexandria
https://www.fasten-project.eu/

CHAPTER 4. PROOF OF CONCEPT

the backend receives requests to calculate the dependency tree for a given Maven library. The response to
a request consists of the result of the calculation of the metrics for each server library in the dependency
tree of the given client library. The implementation of the backend is supported by the libraries Aether3,
and Javassist4.

Aether Aether is a library created by Eclipse, which allows us to fetch Maven artifacts from different
repositories. Besides, it is also used to resolve the dependencies of a library and create the dependency
tree. To create the dependency tree, Aether uses the same strategy to resolve the dependencies as Maven.

In the PoC, this library has been used for the initial steps. The request to calculate the metrics
receives the identifiers of the library to analyze (GroupId, ArtifactId, and version). Aether is used to
fetch the library jar and POM files from the Maven Central Repository.

Once the artifact of the client library is obtained, Aether is used to resolve the dependencies of the
artifact. For the calculation of the metrics to be possible, all the client library dependencies should also be
available in the Maven Central Repository. The dependency tree of the artifact is visited, and each of the
dependencies is also obtained to have the jar files to analyze. Also, the dependency tree calculated with
Aether is used to create a custom dependency tree using the custom class DependencyTreeNode, which
stores the data about each of the libraries needed for calculating the metrics. The DependencyTreeNode
will be described in greater detail later on.

Javassist Javassist is a library that allows the user to perform bytecode manipulation in a simple way.
It has two levels, a source-level and a bytecode level. Using the source-code level, it is possible to perform
bytecode analysis and manipulation without a deep knowledge of bytecode. Meanwhile, the bytecode
level allows the user to manipulate bytecode directly. For this thesis, the level used is source-code.

The javassist library has been used to interpret and analyze the jars of the client library and all the
server libraries. Once the jars of the client library and all its dependencies are available, the first step is to
join all the .class files in a ClassPool object, which is the main object of Javassist. Once the ClassPool
is created, it is used to obtain the classes from the client library, from which the different metrics are
calculated. The process of calculating the metrics is explained in greater detail in the following.

Overview In Figure 4.1, one can see the process the proof-of-concept does to calculate the metrics of
the model. First, obtaining the .jar files of each library included in the dependency tree. Then, by using
Javassist, it iterates through the classes of the client library to find the usage of the direct dependencies.
Next, based on the direct usage calculated, it iterates through the entire dependency tree to find the
necessary data to calculate the metrics of the model. Finally, with all the necessary information stored
in the data model, the metrics’ value is calculated. The process of obtaining the data to store in the
data model and the data model itself are described below.

4.2.1 Model of the dependency tree

In order to represent the dependency tree of the client library, the implementation uses the class
DependencyTreeNode. Each DependencyTreeNode contains the information of the library it represents,
namely groupID, artifactID, and version. Also, to represent the dependencies of the library represented
by each DependencyTreeNode, there is a List of DependencyTreeNode.

To store the information needed to calculate the coupling metrics, there are two other classes:
MicBehaviors, AcClasses, for MIC and AC respectively. MicBehaviors is a map, containing for each
method or constructor (behavior) of the server library used to calculate MIC, a Set with all the method
calls from which it is reachable. In the same way, AcClasses is a map, in which for each class of a server
library used to calculate AC, there is a Set of all the field declarations from which the class is reachable.
The behaviors and classes used to calculate MIC and AC are those which are reachable through the type
of connection of the metric.

Each DependencyTreeNode has an object MicBehaviors and AcClasses for each of the distances
at which the metric is measured, stored as a map, where the distance is the key and MicBehaviors or
AcClasses, the value.

Also, for the metrics that measure the dependencies’ coverage, two additional fields have been created:
ReachableClasses and ReachableBehaviors. The first field is to calculate the %ReachableClasses,

3https://wiki.eclipse.org/Aether/What_Is_Aether
4http://www.javassist.org/

40

https://wiki.eclipse.org/Aether/What_Is_Aether
http://www.javassist.org/

CHAPTER 4. PROOF OF CONCEPT

Figure 4.1: Overview of the proof-of-concept implementation of the calculation of the model

and the second one for %ReachableMethods. Both ReachableClasses and ReachableBehaviors are
sets containing the classes, in the first case, and behaviors in the second case, of the library represented
by the DependencyTreeNode, which are reachable from the client library.

Figure 4.2: Class diagram, dependency tree model

4.3 Calculating coupling metrics

This section contains the description of how the metrics MIC, AC, TMIC, and TAC are calculated in the
implementation of the PoC. During this section, we use the terminology of the library Javassist. For

41

CHAPTER 4. PROOF OF CONCEPT

example, to refer to methods and constructors, we say behaviors. Also, the classes used from Javassist are
named as Ct<name of the element>, where Ct means compile-time. Therefore, the class representing
a java class is CtClass.

4.3.1 Method Invocation Coupling

The pseudo-code in Figure 4.3 represents the algorithm used to calculate the metric MIC for each one
of the direct dependencies of a given client library. The algorithm’s output is a map containing the set
of BehaviorCalls that call each CtBehavior. The map is generated for each of the direct dependencies
and stored in the DependencyTreeNode of each library.

The class CtBehavior contains information about the behavior itself and about the class in which
it is declared. Each of the CtBehavior is used later on to find the polymorphic implementations of the
behavior and calculate the metrics for the transitive dependencies.

To calculate this first metric, the implementation iterates through all the classes of the client library
(line 3). For each class, the behaviors are obtained (line 4).

Then, the tool iterates through all the behaviors (line 5) and calls the method instrument. The
main use case of this method is to modify the bytecode of the method, but in this case, we use it
to find the connections of interest for this metric. The method instrument receives an ExprEditor

object, which is a class that can be extended to implement the methods for editing the bytecode, which
are empty by default. To calculate this metric, the overridden methods are edit(MethodCall mc),
edit(ConstructorCall cc), and edit(NewExpr ne). These methods will be called for each method
call or constructor call, existing in the method (line 6). The constructor calls in the form of this() or
super() are captured by the method edit(ConstructorCall cc). Meanwhile, the constructor calls in
the form of new Object() are captured by edit(NewExpr ne).

For each captured call to a behavior, it is checked whether the called behavior belongs to a server
library (line 9). In case it does, the call is added to the MicBehaviors map of the server library (line
10), with 1 as the distance at which the connection is found since it is a direct dependency.

1 clientClasses = classPoolManager.getClientLibraryClasses()
2

3 for each clientClass in clientClasses
4 behaviors = clientClass .getDeclaredBehaviors()
5 for each behavior in behaviors
6 for each behaviorCall in behavior
7 serverBehavior = behaviorCall.getBehavior()
8 serverClass = serverBehavior.getDeclaringClass()
9 if (classPoolManager.belongsToDependency(serverClass))

10 dependencyTreeNode.addMicBehavior(serverBehavior, behaviorCall, distance = 1)

Figure 4.3: Pseudo-code of the algorithm to calculate MIC

4.3.2 Aggregation Coupling

The pseudo-code in Figure 4.4 represents the algorithm used to calculate the metric AC. The output of
the algorithm is a map containing for each CtClass of the server library, the set of CtField that are
of the type of the CtClass. The class CtClass represents a class and contains the information about
the class itself and about the library where it is implemented. CtClass is used later on to find the
descendants of the class and calculate the metric TAC for the transitive dependencies.

The algorithm for this second metric is similar to the previous one. First, the implementation iterates
through all the classes of the client library (line 3). Then, for each class, it iterates through all the declared
fields (line 5). Next, each of the fields containing a generic type is parsed separately (line 6) to obtain all
the types included in the generic (line 7), which are treated individually (line 8). All the simple fields,
if the class’s implementation is found in a server library (line 13), are included in the calculation of the
metric (line 14). The distance is set to 1 due to the server library being a direct dependency.

Inheritance Once the two algorithms (Figures 4.3 and 4.4) are finished, to follow the definition of the
metrics as specified in section 3.1.2, the hierarchies in the server libraries are visited. For the metric MIC,

42

CHAPTER 4. PROOF OF CONCEPT

1 clientClasses = classPoolManager.getClientLibraryClasses()
2

3 for each c in clientClasses
4 fields = c.getDeclaredFields()
5 for each field in fields
6 if (field .containsGeneric())
7 serverClasses = getAllClasses(field)
8 for each serverClass in serverClasses
9 if (classPoolManager.belongsToClientLibrary(serverClass))

10 dependencyTreeNode.addAcClass(serverClass, field)
11 else
12 serverClass = field .getType()
13 if (classPoolManager.belongsToDependency(serverClass))
14 dependencyTreeNode.addAcClass(serverClass, field, distance = 1)

Figure 4.4: Pseudo-code of the algorithm to calculate AC

all the polymorphic implementations of the behaviors are found, and for the metric AC all the descendants
of the classes.

The algorithms to find the descendants and the polymorphic implementations of the methods are
used with each of the libraries with which the client library has a direct dependency and for which
coupling was found, either MIC or AC.

The pseudo-code used to find the polymorphic implementations of the methods can be found in
Figure 4.5. The process is as follows: First, iterate through all the classes of the server library, given
its DependencyTreeNode (line 5). Then, it iterates through the behaviors in the map contained in
MicBehaviors. If the current library class is a descendant of the class containing the reachable behavior
(line 8) and contains a behavior with the same signature as the reachable behavior (line 9), a polymor-
phic implementation of the behavior has been found. Therefore, the found behavior is added to the
MicBehaviors with the same set of BehaviorCall and distance as the mic behavior (line 11).

1 serverLibrary = dependencyTreeNode.getLibrary()
2 micBehaviorsMap = dependencyTreeNode.getMicBehaviors()
3 serverLibraryClasses = classPoolManager.getLibraryClasses(serverLibrary)
4

5 for each serverClass in serverLibraryClasses
6 for each micBehavior in micBehaviorsMap
7 declaringClass = micBehavior.getDeclaringClass()
8 if (serverClass .isSubClassOf(declaringClass))
9 if (serverClass .containsBehavior(micBehavior.getSignature()))

10 serverBehavior = serverClass.getBehavior(reachableBehavior.getSignature())
11 dependencyTreeNode.addMicBehavior(serverBehavior, micBehavior.getBehaviorCalls(), distance)

Figure 4.5: Pseudo-code of the algorithm to find polymorphic implementations

The process to find descendants in the case of the metric AC is the same as the one in Figure 4.5,
but iterating over the reachableClassesMap instead of the reachableBehaviorsMap. Therefore, if the
server class is a sub-class of a reachable class, it is added to the AcClasses of the library.

As can be observed in the previous explanation of how the detection of inheritance is done, in this PoC
implementation, it is not detected if a class is extended in the client library instead of in the server
library.

4.3.3 Transitive Method Invocation Coupling

The calculation of TMIC takes place after calculating MIC for all the direct dependencies of the client
library. The methods used in the calculation of MIC from these dependencies are used as a base to
calculate TMIC.

To calculate the metric for every dependency in the tree, the dependency tree is traversed using a
breadth-first search (BFS) on the DependencyTreeNode. The algorithm starts with the direct dependen-
cies since the client library node has already been used for the calculation of MIC. A branch finishes the

43

CHAPTER 4. PROOF OF CONCEPT

traversing either when a node does not have more children or when no reachable methods have been
found in a server library. The pseudo-code of the implemented algorithm can be found in Figure 4.6.

For each DependencyTreeNode visited, the method calculateTransitiveMIC is executed. The
pseudo-code of this method can be found in Figure 4.7, which is going to be explained below.

1 toVisit = queue(clientLibraryNode.getChildren())
2

3 while (!toVisit .isEmpty())
4 visiting = toVisit. poll ()
5 if (visiting .hasMicBehaviors())
6 findPolymorphicImplementations(visiting.getMicBehaviors())
7 if (visiting .hasChildren())
8 calculateTransitiveMIC(visiting)
9 toVisit .add(visiting .getChildren())

Figure 4.6: Pseudo-code of the BFS used for TMIC

1 micBehaviors = visitingTreeNode.getMicBehaviors()
2

3 for each micBehavior in micBehaviors
4 behaviorsToVisit = queue(micBehavior)
5 visitedBehaviors = ∅
6 while (!behaviorsToVisit.isEmpty())
7 visitingBehavior = behaviorsToVisit.poll()
8 if (visitedBehaviors .contains(visitingBehavior)) continue
9 visitedBehaviors .add(visitingBehavior)

10

11 for each behaviorCall in visitingBehavior
12 calledBehavior = behaviorCall.getBehavior()
13 calledClass = calledBehavior.getDeclaringClass()
14 if (classPoolManager.isStandardClass(calledClass))
15 continue
16 else if (classPoolManager.isClassInDependency(calledClass, visitingLibrary))
17 visitingLibrary .addMicBehaviorToDependency(calledClass, distance + 1)
18 else // calledClass is in current library
19 behaviorsToVisit.add(calledBehavior)

Figure 4.7: Pseudo-code of the algorithm to calculate TMIC

First, we obtain all the behaviors of the visited DependencyTreeNode, used for the calculation of MIC
(line 1). For each one of these behaviors (line 3), the call graph of the behavior is iterated to find all the
reachable behaviors of the dependencies of the library that is being visited.

A queue of the behaviors that have to be visited is created, containing initially only the current
behavior (line 4). A set of all the previously visited behaviors is created (line 5) to avoid infinite loops.

For each behavior in the queue, all the behaviorCall are visited (line 11). Then, there are three
different cases to consider. First, if the called behavior is implemented in a standard class, the call is
ignored (line 14). Also, if the called behavior is implemented in a dependency of the current library,
the behavior is added to the behaviors to consider for the dependency (line 16), with the same distance
plus 1, since it is one level more of dependency than the current DependencyTreeNode. Finally, the last
option is if the called behavior is implemented in the current library, in which case it is added to the
queue of behaviors to visit (line 19). This way, the entire call graph of the relevant behaviors is visited.

4.3.4 Transitive Aggregation Coupling

The calculation of TAC is very similar to the calculation of TMIC but using the ac classes instead of the
mic behaviors. The pseudo-code of the BFS for the TAC is in Figure 4.8.

The implementation of the method calculateTransitiveAC also follows a similar strategy as the
calculateTransitiveMIC. However, instead of iterating the call graphs of the reachable methods, it
iterates the field declarations of the classes. The pseudo-code can be found in Figure 4.9.

For each class in the field AcClasses of the current library (line 3), a queue is created with all the
classes to be visited (line 4). The queue is declared containing only the current class. To avoid visiting

44

CHAPTER 4. PROOF OF CONCEPT

1 toVisit = queue(clientLibraryNode.getChildren())
2

3 while (!toVisit .isEmpty())
4 visiting = toVisit. poll ()
5 if (visiting .hasAcClasses())
6 findDescendants(visiting .getAcClasses())
7 if (visiting .hasChildren())
8 calculateTransitiveAC(visiting)
9 toVisit .add(visiting .getChildren())

Figure 4.8: Pseudo-code of the BFS used for TAC

1 acClasses = visitingTreeNode.getAcClasses()
2

3 for each acClass in acClasses
4 classesToVisit = queue(acClass)
5 visitedClasses = ∅
6 while (!classesToVisit .isEmpty())
7 visitingClass = classesToVisit. poll ()
8 if (visitedClasses .contains(visitingClass)) continue
9 visitedClasses .add(visitingClass)

10

11 fields = visitingClass .getDeclaredFields()
12 for each field in fields
13 if (field .containsGeneric())
14 classesInField = getAllClasses(field)
15 for each classInField in classesInFIeld
16 if (classPoolManager.isStandardClass(classInField)) continue
17 else if (classPoolManager.isClassInDependency(classInField, visitingLibrary))
18 visitingLibrary .addAcClassToDependency(classInField)
19 else // classInField is in current library
20 classesToVisit .add(classInField)
21 else
22 classInField = field .getType()
23 if (classPoolManager.isStandardClass(classInField)) continue
24 else if (classPoolManager.isClassInDependency(classInField, visitingLibrary))
25 visitingLibrary .addReachableClassToDependency(classInField, distance + 1)
26 else // classInField is in current library
27 classesToVisit .add(classInField)

Figure 4.9: Pseudo-code of the algorithm to calculate TAC

the same classes multiple times, a set with all the visited classes is also maintained (line 5). When a
class is visited, all the fields declared in the class are obtained. For each of the declared fields, just as
in the calculation of AC (Figure 4.4), the fields containing generic signature are parsed to obtain all the
types included in the field (line 14).

Then, for each type in the fields, a similar process to the one used for TMIC is done. If the type is
implemented in a standard class, it is ignored. Meanwhile, if the type is implemented in a class that
belongs to a dependency of the current library, it is added to the relevant classes of the dependency,
with the distance of the current DependencyTreeNode plus one. Finally, if the type is implemented in
the current library, it is added to the queue of classes to visit.

Inheritance During the calculation of TMIC and TAC, it is possible that one of the classes visited during
the algorithms described in Figures 4.7 and 4.9 is found to be abstract. In this case, the possible executed
implementations of the class or methods are found by using the same strategy described in Figure 4.5.

4.3.5 Propagation Formula

To calculate the actual value of both, TMIC and TAC, we use the values stored in MicBehaviorsAtDistance

and AcClassesAtDistance (see Figure 4.2). Then, using the value calculated at each distance, we apply
the formula described in the equations 3.6 and 3.8. The only value of these formulas that cannot be
extracted from the analysis of the bytecode, is the propagation factor. This variable depends on the
real-world behavior of these metrics, and its value will be discussed in Chapter 5.

45

CHAPTER 4. PROOF OF CONCEPT

4.4 Calculating coverage metrics

This section describes how the metrics %ReachableClasses and %ReachableMethods are calculated in
the proof-of-concept, including the pseudo-code of the implementation. Both metrics are calculated at
the same time since some of the connections are entangled. For example, one class can be reachable
because it is the return type of a method. The implementation is done in two steps: finding the classes
and methods of the direct dependencies directly reachable from the client library, and a second one to
find the rest of the reachable methods and classes of all the dependency tree.

4.4.1 Step 1

The pseudo-code to perform the first step of the calculation of the coverage metrics can be found in
Figures 4.10, 4.11, and 4.12. First, in Figure 4.10, the implementation iterates through all the classes in
the client library to find the usage of the dependencies (line 3). In the case of these metrics, the coverage
can be due to any type of connection, in the methods of each of the classes (line 4) or in the class itself
(line 5). In Figure 4.11, we show which connections are detected in the client library methods.

1 clientClasses = classPoolManager.getClientLibraryClasses()
2

3 for each clientClass in clientClasses
4 findDependencyUsageInBehaviors(clientClass)
5 findDependencyUsageInClass(clientClass)

Figure 4.10: Pseudo-code of the step 1 to calculate coverage of the dependencies (Part 1)

In the pseudo-code of Figure 4.11, the connections are detected in the client library methods. The
code iterates through every behavior declared in the current client class (line 3). For each behavior,
different types of connections are detected. If any of the types involve a class or a behavior implemented
in one of the dependencies, it is added to the information of the dependency as reachable. The first type
of connection detected is the method or constructor calls (line 4) and the field access performed in the
methods (line 10). Also, the types of the parameters of the method (line 15) and the return type (line
20) are possible connections with the dependencies, as well as the exceptions thrown by the methods
(line 24). Finally, the annotations contained in the method are also detected (line 29); these annotations
include those specified in the method itself and the annotations of the parameters of the method.

Finally, the connections that happen at a class level are detected with the pseudo-code in Figure
4.12. The first one of these connections is, as was detected by metric AC, the field declarations (line
2), the parsing of the generic types, is skipped for simplicity. It is then detected as a connection, the
superclass of the client class (line 8), and the interfaces implemented (line 12). Lastly, it is also detected
as a connection, the annotations in the class (line 17). These annotations can be in the class itself or
any of the declared fields.

4.4.2 Step 2

The pseudo-code of the second step can be found in Figures 4.13, 4.14, and 4.15. The code which iterates
through all the dependencies is in Figure 4.13. It contains a BFS, which visits the entire dependency
tree. For each one of the libraries in the tree, all the reachable methods and classes are found to calculate
the coverage of the dependencies of the visited library. This is because the initial step only finds those
methods directly used by the client library, but other methods and classes are indirectly reachable.

The code to find all the reachable methods and usage of dependencies is in Figure 4.14. To do so, the
directly reachable methods of the library are iterated (line 4). For each of these methods, the call-graph
created from the method is visited in the same way it is done for the metric TMIC (see Section 4.3.3).
However, for each visited method (line 8), all the possible connections are detected (line 9). These
connections are the same as the ones detected in Figure 4.11. In the first step, the difference is that for
each connection, the only check is if the element on the other end is in a different library. Nevertheless,
in this second step, it is also checked if the element at the other end of the connection is in the same
library. In this case, it is added to the reachable method or classes. Besides, if it is a method, it is added
to the methods to visit since it is part of the call-graph.

46

CHAPTER 4. PROOF OF CONCEPT

1 findDependencyUsageInBehaviors(clientClass)
2 behaviors = clientClass .getDeclaredBehaviors()
3 for each behavior in behaviors
4 for each behaviorCall in behavior
5 serverBehavior = behaviorCall.getBehavior()
6 serverClass = serverBehavior.getDeclaringClass()
7 if (classPoolManager.belongsToDependency(serverClass))
8 dependencyTreeNode.addReachableBehavior(serverBehavior)
9

10 for each fieldAccess in behavior
11 serverClass = fieldAccess .getField() .getType()
12 if (classPoolManager.belongsToDependency(serverClass))
13 dependencyTreeNode.addReachableClass(serverClass)
14

15 for each parameter in behavior
16 serverClass = parameter.getType()
17 if (classPoolManager.belongsToDependency(serverClass))
18 dependencyTreeNode.addReachableClass(serverClass)
19

20 returnType = behavior.getReturnType()
21 if (classPoolManager.belongsToDependency(returnType))
22 dependencyTreeNode.addReachableClass(returnType)
23

24 exceptions = behavior.getThrowsExceptions()
25 for each exception in behavior
26 if (classPoolManager.belongsToDependency(exception))
27 dependencyTreeNode.addReachableClass(exception)
28

29 annotations = behavior.getAnnotations()
30 for each annotation in annotations
31 if (classPoolManager.belongsToDependency(annotation))
32 dependencyTreeNode.addReachableClass(annotation)

Figure 4.11: Pseudo-code of the step 1 to calculate coverage of the dependencies (Part 2)

1 findDependencyUsageInClass(clientClass)
2 fields = clientClass .getDeclaredFields()
3 for each field in fields
4 serverClass = field .getType()
5 if (classPoolManager.belongsToDependency(serverClass))
6 dependencyTreeNode.addReachableClass(serverClass)
7

8 superClass = clientClass .getSuperClass()
9 if (classPoolManager.belongsToDependency(superClass))

10 dependencyTreeNode.addReachableClass(superClass)
11

12 interfaces = clientClass .getImplementedInterfaces()
13 for each interfaceClass in interfaces
14 if (classPoolManager.belongsToDependency(interfaceClass))
15 dependencyTreeNode.addReachableClass(interfaceClass)
16

17 annotations = clientClass .getAnnotations()
18 for each annotation in annotations
19 if (classPoolManager.belongsToDependency(annotation))
20 dependencyTreeNode.addReachableClass(annotation)

Figure 4.12: Pseudo-code of the step 1 to calculate coverage of the dependencies (Part 3)

The last part is the code to find all the reachable classes and usage of the dependencies in the classes.
The reachable classes found until this point are iterated (line 4), and all the reachable classes from those
classes are visited. For each visited class, the different types of connections are checked (line 9). The
connections checked are the same as in Figure 4.12. Also, if the class at the other end of the connection
is in the same library, it is added to the library’s reachable classes and in the toVisit to check the
connections starting in this class.

47

CHAPTER 4. PROOF OF CONCEPT

1 toVisit = queue(clientLibraryNode.getChildren())
2

3 while (!toVisit .isEmpty())
4 visiting = toVisit. poll ()
5

6 findAllReachableMethodsAndUsageOfDependencies(visiting)
7 findAllReachableClassesAndUsageOfDependencies(visiting)
8

9 toVisit .add(visiting .getChildren())

Figure 4.13: Pseudo-code of the step 2 to calculate coverage of the dependencies (Part 1)

1 findAllReachableMethodsAndUsageOfDependencies(dependencyTreeNode)
2 directlyReachableMethods = dependencyTreeNode.getReachableMethods()
3

4 for each directlyReachableMethod in directlyReachableMethods
5 behaviorsToVisit = queue(directlyReachableMethod)
6 visitedBehaviors = ∅
7 while (!behaviorsToVisit.isEmpty())
8 visiting = toVisit. poll ()
9 findConnectionsInBehavior(toVisit)

10 visitedBehaviors .add(visiting)

Figure 4.14: Pseudo-code of the step 2 to calculate coverage of the dependencies (Part 2)

1 findAllReachableClassesAndUsageOfDependencies(dependencyTreeNode)
2 directlyReachableClasses = dependencyTreeNode.getReachableClasses()
3

4 for each directlyReachableClass in directlyReachableClasses
5 classesToVisit = queue(directlyReachableClass)
6 visitedClasses = ∅
7 while (!classesToVisit .isEmpty())
8 visiting = toVisit. poll ()
9 findConnectionsInClass(toVisit)

10 visitedClasses .add(visiting)

Figure 4.15: Pseudo-code of the step 2 to calculate coverage of the dependencies (Part 3)

4.5 Calculating usage per class metrics

These two metrics are calculated after the calculation of the coupling metrics. In order to calculate the
usage per class, the sets of MethodCall and CtField from MicBehaviors and AcClasses, are used (see
Figure 4.2).

The pseudo-code used to calculate the metric #MethodInvocations, for a certain dependency and
all the client classes from which it is reachable, can be found in Figure 4.16. The micBehaviors of the
DependencyTreeNode are iterated (line 4). For each one of the methodCall involved (line 7), the class
where the methodCall takes place is added to the map of the #MethodInvocations with value 1, or
summed 1 to the value of the metric for that class, in case the class is already included in the map. In
the case of the #FieldDeclarations the process is the same, but using the CtField stored in AcClasses

instead.

4.6 Visualization

In this section, we explain how the visualization of the tool has been designed and implemented.
This section contains a brief description of the technologies and libraries used to develop the appli-

cation’s visualization and a description of each part of the visualization.
For each part of the visualization, we discuss different visual aspects of the visualization following

the structure used by Kula et al. [3]. However, since the tool implemented for this thesis is meant to be
interactive, we have added this new aspect. Therefore, the visual aspects considered are the following:
Layout, shape, color, and interaction.

48

CHAPTER 4. PROOF OF CONCEPT

1 methodInvocationMap = map(class, int)
2 micBehaviorsMap = dependencyTreeNode.getMicBehaviorsMap()
3

4 for each entry in micBehaviorsMap
5 methodCallSet = entry.getValue()
6

7 for each methodCall in methodCallSet
8 clientClass = methodCall.fromClass()
9 if methodInvocationMap.contains(clientClass)

10 methodInvocationMap.update(clientClass, value + 1)
11 else
12 methodInvocationMap.add(clientClass, 1)

Figure 4.16: Pseudo-code of the calculation of the #MethodInvocations of a dependency

4.6.1 Technologies

The visualization has been implemented using the framework Angular5. Most of the UI elements used
are obtained from Angular Material6. Finally, for graph representations we have used vis.js7, and
ngx-charts8 to display charts.

4.6.2 Dependency Tree

The first visualization element’s goal is to provide an overview of the client library’s dependency tree
after being resolved with the Maven algorithm. In this overview, the maintainer should be able to
see the degree of dependency with each of the client library’s dependencies. Furthermore, the unused
dependencies, as well as the most used ones, should be easily identifiable. An example of this visualization
for the client library org.apache.flink:flink-core:1.9.1 can be found in Figure 4.17

Figure 4.17: Example of the tree visualization

Layout Since this visualization displays the dependency tree of the client library, the chosen layout
is a graph. In particular, it is a tree. In this graph, each node represents a library, and each edge a
dependency between the nodes. The tree is organized by levels, such that the first level only contains the
client library, and the second level the direct dependencies. The rest of the levels are organized according
to the dependencies of the previous levels.

Each node displays the following information about the library: GroupID, ArtifactID, version, and
the result of the metrics — MIC and AC for the direct dependencies, and TMIC and TAC for the transitive
dependencies.

5https://angular.io/
6https://material.angular.io/
7https://visjs.org/
8https://github.com/swimlane/ngx-charts

49

https://angular.io/
https://material.angular.io/
https://visjs.org/
https://github.com/swimlane/ngx-charts

CHAPTER 4. PROOF OF CONCEPT

Shape For this visualization, the shape of each of the nodes is the same, an ellipse. This is because the
differentiation between the nodes is done with the node’s color, not the shape. Furthermore, the ellipse
is the shape that allows us to display all the necessary information in the node without taking too much
extra space.

Color To indicate the state of the dependency with the nodes’ color, we have used three different
colors. The nodes representing libraries for which no coverage has been found are light grey. The rest of
the dependencies have different blue shades, going from lighter blue for the less used and darker blue for
the most used. Furthermore, the color of the node representing the client library is dark pink. Finally,
when a node is selected (see next paragraph), the color of the node changes to light pink.

Interaction The main problem with the dependency tree visualization is that if the tree contains too
many nodes, it is difficult to see its content. To fix this, all the nodes can be selected. When a node is
selected, the visualization zooms in the selected node so that the user can see the content.

There are two ways to select a node. The first one is by clicking the node. The second option is by
finding the node in the search bar. The search bar has been implemented to give suggestions containing
all the libraries’ names displayed in the tree. To clear the node selection, the user has to click in the
graph view, outside of the nodes.

The second type of interaction has been implemented to display some additional information on the
nodes. When a user hovers over a node, a tooltip appears. The tooltip contains the data of the library
and the value of the coupling and coverage metrics. For the coupling metrics, two tables display the
value measured and the distance at which the value was measured for each metric.

4.6.3 Dependency Table

The dependency tree visualization gives an overview of the dependencies. However, it is not useful to
compare the values of the metrics among dependencies. Therefore, this second visualization is focused
on seeing together all the values to sort and compare. Figure 4.18 shows the table visualization for the
client library org.apache.flink:flink-core:1.9.1.

Figure 4.18: Example of the table visualization

Layout To be easy to compare the metrics’ value among all the dependencies, the layout chosen for
this visualization is a table. The table displays one dependency on each row, while the columns display
information about the dependency and the coupling and coverage metrics calculated for the dependency.

50

CHAPTER 4. PROOF OF CONCEPT

For each library, there is a column for the groupId, the artifactId, the version, and whether the dependency
is direct or transitive. Then, the rest of the columns the values displayed are MIC and AC (or TMIC and
TAC for transitive dependencies), and the metrics %ReachableClasses and %ReachableMethods.

Shape For this visualization, the shape is already defined by the layout, which is a table.

Color The color is used in this visualization only to indicate which library has been selected by the
user, in which case the row of the library has a pink background. The rest of the rows have a white
background.

Interaction As explained earlier, this visualization is meant to compare the values easier, and therefore
the first interaction implemented for this visualization is sorting. The rows of the table can be sorted
according to the values of any of the columns. Also, it is possible to filter the content of the table. The
rows can be filtered based on whether the dependencies are direct or transitive and if the client library
uses the dependencies or not.

4.6.4 Distribution per class

With the previous visualizations, the user has an overview of the dependency tree. However, there is no
way the user can have more detailed information about a specific library of the dependency tree. There-
fore, and making use of the node selection implemented in the visualization described in section 4.6.2,
we have created a visualization to display the usage per class metrics for the analyzed client library and
the selected server library. An example of this visualization for the client library org.apache.flink:flink-
core:1.9.1 and the server library com.esotericsoftware.kryo:kryo:2.24.0, can be found in Figure 4.19.

Figure 4.19: Example of the distribution per class visualization

Layout The chosen layout for this visualization is a multi-chart. The chart contains two values for
each represented class, the metrics #MethodInvocations and #FieldDeclarations. Only the classes
for which at least one of the two metrics is measured appear in the chart.

Shape The shape chosen for this chart is the bar. The line was discarded since it is not the goal to
show progression between the different classes. Hence, the chart used is a multi-bar chart. At the x-axis

51

CHAPTER 4. PROOF OF CONCEPT

of the chart, only the simple names of the classes are displayed to avoid having too much text in the
chart. In the y-axis, there is a numeric scale, which corresponds to the calculated #MethodInvocations

and #FieldDeclarations.

Color To follow the palette used for the rest of this tool’s frontend, we use the dark blue color for the
bars displaying the metric #MethodInvocations, while the bars displaying the #FieldDeclarations are
pink.

Interaction This visualization appears and disappears according to the node selection of the depen-
dency tree and table visualizations.

Also, if the user hovers the cursor over a column, a tooltip appears. This tooltip contains the values
of the calculated metrics since these values are not displayed in the chart. Furthermore, it contains the
fully-qualified name of the class to indicate the user the exact path to find the class within the project.

52

Chapter 5

Experiments

In this section, we describe the experiments conducted with the dependency model created in this thesis,
as well as the PoC. For each of the experiments, we explain the goal, the setup, the results, and finally,
we discuss the results and the conclusions extracted from these.

5.1 Experiment 1: Comparison

The goal of this experiment is to validate the implementation in the PoC. We compare against the results
of the study ”A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem” by Soto-Valero
et al. [7]. In this work, a bytecode analysis is performed on Maven Artifacts to detect which of these
artifacts’ dependencies are bloated, which we refer to as unused. Although the PoC created in this thesis
does not perform the same kind of analysis, we consider that a dependency is unused if all the model’s
metrics detects no usage.

5.1.1 Experimental setup

Soto-Valero et al. perform a qualitative analysis, in which they analyze 31 libraries available as Maven
artifacts. If unused dependencies are found during the analysis, a Pull Request is made to the GitHub
repository of the artifact in which the unused dependencies are deleted from the pom file.

With the information in the paper, we collect the GroupId and ArtifactId of the 31 artifacts. Out of
the 31, 2 could not be found in the Maven Repository Central. For the other 29, the version to use in
the experiment is determined by finding the last version released before the experiment by Soto-Valero
et al. was conducted — November of 2019.

Of the 29 artifacts, the PoC could not use 13 because either the artifact itself or some dependency
could not be downloaded from Maven Central. Therefore, we have 16 libraries to analyze and compare
the results with the results obtained by Soto-Valero et al. Table 5.1 contains the artifacts’ identifiers
used in this experiment.

The first idea was to create a request that computed the comparison automatically. However, finding
why the results were not the same, in most cases, needed manual checking and research. That is why
the analysis of the libraries in Table 5.1 has been executed one by one, and the comparison has been
made manually.

5.1.2 Results

The results obtained from the comparison with the data from Soto-Valero et al. [7] is done in two parts:
if all the libraries found as unused in the paper are also found as unused by the tool, and if all the other
libraries are found as used. For the first part, there are several cases:

∙ Correct: All the dependencies detected as unused in the paper are also detected as unused by the
PoC.

∙ Testing: At least one of the unused dependencies is a testing dependency, and therefore it is not
detected by the PoC.

53

CHAPTER 5. EXPERIMENTS

Group Id Artifact Id Version

org.mybatis mybatis 3.5.3

org.apache.flink flink-core 1.9.1

com.puppycrawl.tools checkstyle 8.27

com.google.auto auto-common 0.10

edu.stanford.nlp stanford-corenlp 3.9.2

com.squareup.moshi moshi-kotlin 1.9.2

org.neo4j neo4j-collections 3.5.13

org.asynchttpclient async-http-client 2.10.4

org.alluxio alluxio-core-transport 2.1.0

com.github.javaparser javaparser-symbol-solver-logic 3.15.5

io.undertow undertow-benchmarks 2.0.27.Final

org.teavm teavm-core 0.6.1

com.github.jknack handlebars-markdown 4.1.2

ma.glasnost.orika orika-eclipse-tools 1.5.4

fr.inria.gforge.spoon spoon-core 8.0.0

org.jacop jacop 4.7.0

Table 5.1: Identifiers of the Maven artifacts used for comparison

∙ Parent: At least one of the unused dependencies is from a parent module, and it does not appear
in the artifact’s tree.

∙ Used: At least one of the unused dependencies is found as used by the PoC.

The cases that can happen for the rest of the libraries, the ones that are found as used by Soto-Valero
et al., are listed below:

∙ Correct: All the used dependencies, according to the paper, are also used according to the tool.

∙ Shaded: At least one dependency is detected as unused because it is shaded within the jar file of
the client library in the building process.

∙ Testing: At least one dependency is found as unused since it is only used for testing but not
marked with scope testing.

∙ Unused: At least one dependency found as used by the paper is unused in the tool’s analysis.

In Table 5.2, there are the results for each one of the client libraries used in the experiment.

5.1.3 Discussion

To evaluate this experiment’s results, we will discuss the meaning of the different cases involved in
detecting unused dependencies. There are 9 cases in which the unused dependencies were not correctly
detected. Out of these 9, 4 can completely be fixed if the tool could also analyze the tests defined in
the client library. This could be fixed by doing source-code analysis, including the testing, instead of
bytecode analysis. Also, the 2 cases in which the dependencies are inherited from the parent, and the
algorithm used to resolve the dependencies does not include them. Finally, there are 3 cases in which
there is at least one dependency, which should be unused according to the paper, but it was detected
used by the PoC. Therefore, the PoC implementation is overestimating in a certain measure the usage
of the dependencies.

Next, we take a look at the detection of used dependencies. There are 9 cases in which at least one
of the dependencies that were supposed to be used has no usage detected. Two of these cases are due
to the dependencies being shaded within the client library’s jar during the build process. Also, one case
includes a dependency used for testing. These scenarios could be fixed by doing source-code analysis
since the dependencies would not be shaded yet, and the tests could be included in the analysis. Finally,
the other 7 cases include dependencies detected as unused, according to the paper by Soto-Valero et al.

54

CHAPTER 5. EXPERIMENTS

Library Unused in paper Used in paper

org.mybatis:mybatis:3.5.3 Testing Shaded

org.apache.flink:flink-core:1.9.1 Testing Unused

com.puppycrawl.tools:checkstyle:8.27 Testing Correct

com.google.auto:auto-common:0.10 Testing Unused

edu.stanford.nlp:stanford-corenlp:3.9.2 Correct Unused

com.squareup.moshi:moshi-kotlin:1.9.2 Correct Correct

org.neo4j:neo4j-collections:3.5.13 Correct Unused

org.asynchttpclient:async-http-client:2.10.4 Used Shaded

org.alluxio:alluxio-core-transport:2.1.0 Correct Unused

com.github.javaparser:javaparser-symbol-solver-logic:3.15.5 Correct Correct

io.undertow:undertow-benchmarks:2.0.27.Final Parent Correct

org.teavm:teavm-core:0.6.1 Parent Correct

com.github.jknack:handlebars-markdown:4.1.2 Correct Unused

ma.glasnost.orika:orika-eclipse-tools:1.5.4 Testing, Used Correct

fr.inria.gforge.spoon:spoon-core:8.0.0 Used Correct

org.jacop:jacop:4.7.0 Correct Testing, Unused

Table 5.2: Results of the comparison with Soto-Valero et al. [7]

[7]. Therefore, there are some false negatives, which could be related to the way we defined an unused
dependency: based on the model’s metrics. There may still be some types of connections not detected by
the tool (e.g., reflection constructs). In some other cases, it could be a particular type of server library
involved, the usage of which cannot be detected on the code. For example, we researched the server
libraries of these cases, and it includes a case in which the dependency is related to the compilation of
the project. Another case involves a client library in which the part that uses the dependency is not
shipped with Maven, and therefore it cannot be detected in the jar file. Finally, there are some empty
dependencies - have no classes. A next step could be to investigate what these libraries are used for and
how to detect it.

Finding 1: The scope of the PoC has limited the analysis in some cases, such as testing and
shaded dependencies. This could be fixed by either including the tests in the jar files or doing
source-code analysis instead.

Threats to validity The results of this experiment depend on the results of the research done by
Soto-Valero et al. [7]. Therefore, if their implementation has a bug or fails to detect some usage, the
results of this experiment might be affected. Moreover, as we have seen in the discussion of the results,
there are some cases in which the results of our tool do not match the results obtained by Soto-Valero et
al. due to testing dependencies. But without considering these cases, there are also false positives and
negatives in our results. However, some of these can be due to testing dependencies — we have already
found some cases in which a dependency used for testing is not declared with scope testing, which can
alter our results. To fix this, it would be necessary to include the tests in the analysis.

5.2 Experiment 2: Coupling metrics significance

The goal of this experiment is to validate if the coupling metrics designed in the model, namely MIC,
AC, TMIC, and TAC, are a good indicator of the usage of the dependencies by the clients. As a partial
validation of the metrics’ significance, we compare it with the results gathered from the usage metrics.
We want to know how often a dependency is used, either by using classes or methods, and it is detected
as uncoupled by the coupling metrics. This way, we know if there are many cases in which a dependency
is only used with a type of connection other than method invocation or field declaration.

55

CHAPTER 5. EXPERIMENTS

Data collection The original idea was to measure real-world data about how the clients update the
dependencies and their impact on the code. We could then have seen the correlation of this impact with
the degree of dependency measured with the coupling metrics. Different approaches were taken to obtain
real-world data.

First, we tried to find GitHub commits in which there had been an update of a dependency. However,
the search engine in GitHub does not allow to filter the results by the language of the commit. Therefore,
most of the results obtained were not useful. Also, most of the updates are only patches, which require
only a bump in the version number of the declared dependency.

Based on these findings, the second approach we took was to look for updates that contained breaking
changes. To find the libraries, and the versions of these libraries, that had these types of changes, we
used the Maven Dependency Dataset [34]. Raemaekers et al. used this dataset to analyze the use of
semantic versioning and the possible impact of breaking changes [4]. It is possible to query this dataset
to obtain libraries with breaking changes, with version numbers, and other libraries that depended on
these. However, we need to find the commit of the client library in which the update containing a
breaking change was made, and it is not always possible. We considered some of the requirements to
be able to analyze a dependency with the PoC. For instance, we need all the dependencies of the client
library available in Maven, and testing dependencies cannot be used since they are not analyzed by the
tool. Considering all these requirements, obtaining enough data for the experiment from the Maven
Dependency Dataset had to be done manually.

Next, we contacted the first author of the paper ”Why and How Java Developers Break APIs” [35],
which mines GitHub repositories to find possible breaking changes in APIs, to obtain the dataset of
breaking changes created based on their findings. Brito, the author, shared the dataset with us. The
dataset includes 24 commits containing breaking changes, which correspond to 19 different libraries. Out
of the 25 commits, 12 are from Gradle libraries instead of Maven and cannot be used with the PoC.
Besides, we could not find four of the commits in GitHub, and two others correspond to testing libraries,
which are out of the scope of the analysis performed by the PoC. Therefore, there were only six breaking
changes left, for which three the Maven artifact that these belong to had no dependants for which to
do the analysis. The last three have only one dependant, and therefore is not possible to compare the
impact of the breaking changes.

Finally, we tried to manually search for deprecated libraries and other libraries that used them —
however, similar problems were encountered. Finding commits that replaced a deprecated dependency
and the client library and all the dependencies are available in Maven Central Repository was a laborious
manual task that eventually gave no results.

5.2.1 Experimental set up

In this experiment, we calculated the coupling and coverage metrics of the model for a set of Maven
libraries (see list of libraries in Appendix A), to compare the results between the two types of metrics. To
run this experiment, we prepared a new request in the API of the PoC. The request has to contain a path
to a .txt file (tab-delimited). The file has to contain three columns (with headers): Group Id, Artifact
Id, and version. For each one of the rows, the metrics are calculated for each of the dependencies. The
result of each of the analyses is processed, summarizing all the analyses with the following information:

∙ Total number of dependencies: Number of dependencies of all the analyzed client libraries,
including both direct and indirect.

∙ Times coupling metrics were not enough: Number of dependencies for which all the coupling
metrics had value zero, but there were methods and classes found reachable by the usage metrics.

∙ Times MIC/TMIC were not enough: Number of times in which there was usage found, but
MIC (or TMIC in the case of transitive dependencies) had value zero.

∙ Times AC/TAC were not enough: Number of times in which there was usage found, but MIC
(or TMIC in the case of transitive dependencies) had value zero.

∙ List server libraries coupling metrics not enough: The list of GroupId, ArtifactId, and
version of the server libraries for which all the coupling metrics were not enough to indicate if
there is usage or not.

∙ List server libraries MIC/TMIC not enough: The list of GroupId, ArtifactId, and version
of the server libraries for which the metrics MIC and TMIC were not enough to indicate if there is
usage or not.

56

CHAPTER 5. EXPERIMENTS

∙ List server libraries AC/TAC not enough: The list of GroupId, ArtifactId, and version of
the server libraries for which the metrics AC and TAC were not enough to indicate if there is usage
or not.

As can be seen, in addition to the number of times that a dependency was used and it was not
detected by the metrics (or at least by one of them), the list of server libraries of these dependencies is
also stored. This way, it is possible to analyze which types of libraries are those and why the coupling
metrics are not enough to detect their usage.

The experiment was run with a file containing 67 client libraries from the Maven Central Repository. We
selected the client libraries to use for this experiment with the following criteria. First, we used the same
libraries as in the comparison experiment (see Section 5.1), but using the last version of each library.
We decided to reuse these libraries because the criteria used to select these libraries by Soto-Valero et
al. [7] is aligned with the needs of this experiment and are listed below:

∙ The library is relevant - has more than 100 stars on GitHub.

∙ The library can be built successfully with Maven.

∙ Has been developed recently - in the case of Soto-Valero et al., at least October 2019.

∙ The library has at least one dependency declared.

∙ It is indicated how to create a pull request.

Although some of the items on the list are not explicitly required for our experiment. We need that
the library can be built and is available in Maven as well as that it has at least one relevant dependency
(compile scope). Therefore, the libraries in this set are a good fit for the experiment.

To analyze more client libraries and, therefore, more dependencies, we extended the list of libraries.
First, we visited the popular libraries list of the Maven Central Repository 1. Also, we queried the
dataset generated by Harrand et al. [36] with the 99 most popular libraries from Maven, according to
the number of clients these have. For each of the libraries, we selected the last version available in Maven
and filtered the resulting list according to the following criteria:

∙ The artifact of the last version of the library should have at least one dependency with scope
compile.

∙ The artifact and all its dependencies can be obtained from the Maven Central Repository.

5.2.2 Results

The summary of the results of this experiment is shown in Table 5.3. We can see the total number of
analyzed dependencies, the number of dependencies for which the coverage metrics have found usage,
and the coupling metrics have not. The last two rows show the number of dependencies which have more
than 0% coverage, and no coupling has been found by the metrics MIC/TMIC and AC/TAC respectively.

Analyzed dependencies 699

Metrics are not enough 35

MIC/TMIC are not enough 40

AC/TAC are not enough 147

Table 5.3: Summary of the significance experiment

The server libraries for which usage was found by the coverage metrics but not by the coupling metrics
can be found in Table 5.4. The first two columns of this table are the group id, and the artifact id of the
server libraries. Only by looking at the libraries’ names one can see that some of them are libraries that
contain annotations. We have checked the content of all the libraries to find out which include only
annotations. The result of this search can be seen in the last column of Table 5.4.

1https://mvnrepository.com/popular

57

https://mvnrepository.com/popular

CHAPTER 5. EXPERIMENTS

Group Id Artifact Id Type

com.fasterxml.jackson.core jackson-annotations Annotations

com.github.javaparser javaparser-symbol-solver-model Other

com.google.code.findbugs findbugs-annotations Annotations

com.google.code.findbugs jsr305 Annotations

com.google.errorprone error prone annotations Annotations

com.google.j2objc j2objc-annotations Annotations

org.apache.flink flink-annotations Annotations

io.grpc grpc-context Other

io.netty netty-codec-socks Other

jakarta.activation jakarta.activation-api Other

org.apiguardian apiguardian-api Annotations

org.codehaus.mojo animal-sniffer-annotations Annotations

org.codehaus.plexus plexus-component-annotations Annotations

org.codehaus.woodstox stax2-api Other

org.glassfish.jaxb jaxb-core Other

org.jetbrains annotations Annotations

org.joda joda-convert Other

org.junit.jupiter junit-jupiter-api Other

org.neo4j annotations Annotations

org.yaml snakeyaml Other

Table 5.4: List of the server libraries for which the coupling metrics were not enough to
indicate usage

5.2.3 Discussion

Based on the results shown in Table 5.3, we can see that the combination of the two types of coupling
metrics allows us to detect used dependencies in 664/699 of the cases, approximately 95%. In addition,
the metrics MIC and TMIC alone, detect 659/699 of the cases, which corresponds to a 94%. This means
that AC and TAC are only really needed in 5 of these dependencies. However, this only talks about whether
or not the metrics can define whether a dependency is used or not, which was not the goal of this thesis.
Therefore, AC and TAC are also necessary to consider the type of coupling measured by this metric.

Nevertheless, if we compare the number of times that AC/TAC are not able to detect whether a
dependency is used or not with the times that the same happens with MIC/TMIC, we can conclude that:

Finding 2: Method invocation is enough to detect dependency usage in more cases than Field
declaration. Therefore, it is a more significant metric.

This is in line with the intuition that method invocation is the most significant type of connection.
Generally, if there is an object of a particular class type in the code, at some point, a method call will
be done on this object. However, an object can exist in the code through mechanisms other than field
declaration (e.g., return type of a method call or a variable).

Nevertheless, since there are cases in which the combination of both types of metrics was not enough,
it indicates that there are some other types of connections to be considered and measured. Given that
half of the server libraries used but not detected by the coupling metrics contain annotations, creating a
metric to measure the coupling created by annotations would improve these results.

Finding 3: A metric to measure coupling created by the use of annotations would improve
the precision of the model. The usage of annotations is sometimes the only type of connection
between a client and a server library.

During the process of this thesis, it was intended to create this type of coupling metric. However,

58

CHAPTER 5. EXPERIMENTS

it is not a trivial problem for transitive dependencies. In the coupling metrics defined in this thesis,
only one type of connection is considered throughout the whole dependency tree. For example, in the
dependency tree in Figure 5.1, the client library uses direct dependency through a connection other than
annotations. Then, the non-annotation server library uses some annotation from the annotation server
library. Iterating the dependency tree through annotations connection would still not detect the usage
of the transitive dependency.

Figure 5.1: Example dependency tree involving annotations

Threats to validity It is important to remark that the results of this experiment, as indicated in the
goal of the experiment, should not be interpreted as a full validation of the significance of these metrics.
The experiment is checking whether these metrics are significant enough to detect coupling between a
client library and a server library or not. However, there is no information about the coupling created
by other types of connections. In addition, we have to consider the sample size of this experiment; a
larger dataset could change the experiment results.

5.3 Experiment 3: Sensitivity Analysis

As explained before, we have not been able to obtain the real-world data to understand what the impact
of the transitive dependencies is, or can be, and correlate it with our transitive coupling metrics TMIC,
and TAC. Therefore, we cannot derive an actual value of the propagation factor for these two metrics.
Instead, we conduct a sensitivity analysis of the propagation factor on these two metrics.

A Sensitivity Analysis consists of analyzing how much the output of a model depends on an input
variable [37]. In this case, the input variable is the propagation factor, and the output is the value of the
metrics.

5.3.1 Experimental set up

To run this analysis, we have set up a new request in the API of the PoC. This request receives a list
of Maven artifacts in a .txt file (tab-delimited). The file includes three columns, containing for each
artifact, the following information: group id, artifact id, and version.

The first step is to run the dependency model’s calculation for each of the dependencies of the Maven
artifacts included in the list. Then, for each one of the transitive dependencies with coupling, we run
the sensitivity analysis. Since the propagation factor is a value in the range (0, 1], we calculate the value
of the metrics incrementing the propagation factor by 0.01 from 0.01 to 1.

We run this experiment with a randomly selected subset of the libraries used for the significance
experiment. Then, out of the set of dependencies that can be used for the sensitivity analysis, we select
a representative subset of 15 dependencies. This subset is chosen to have dependencies with different
distances and values measured at each distance. The dependencies used for the sensitivity analysis can
be found in Table 5.5.

5.3.2 Results

With the data obtained from running the experiment, we calculate the covariance of the metrics TMIC
and TAC with the propagation factor, to understand how much the value of the metrics changes due to a
change in the propagation factor. The values of the covariance are displayed in Table 5.6.

59

CHAPTER 5. EXPERIMENTS

Client library Server library

1 org.asynchttpclient async-http-client 2.12.1 io.netty netty-common 4.1.48.Final

2 org.asynchttpclient async-http-client 2.12.1 io.netty netty-buffer 4.1.48.Final

3 org.easymock easymock 4.2 org.hamcrest hamcrest-core 1.3

4 org.apache.maven maven-project 3.0-alpha-2 org.codehaus.plexus plexus-classworlds 1.3

5 org.springframework.boot
spring-boot-autoconfigure 2.3.4.RELEASE

org.springframework
spring-core 5.2.9.RELEASE

6 org.springframework.boot
spring-boot-autoconfigure 2.3.4.RELEASE

org.springframework
spring-jcl 5.2.9.RELEASE

7 org.springframework.boot
spring-boot-autoconfigure 2.3.4.RELEASE

org.springframework
spring-beans 5.2.9.RELEASE

8 org.eclipse.jetty jetty-server 11.0.0.beta1 org.eclipse.jetty jetty-util 11.0.0.beta1

9 org.asynchttpclient async-http-client 2.12.1 log4j log4j 1.2.17

10 org.alluxio alluxio-core-transport 2.3.0 com.google.protobuf protobuf-javalite 3.11.0

11 fr.inria.gforge.spoon spoon-core 8.2.0 org.eclipse.platform org.eclipse.osgi 3.16.0

12 fr.inria.gforge.spoon spoon-core 8.2.0 org.eclipse.platform
org.eclipse.equinox.preferences 3.8.0

13 fr.inria.gforge.spoon spoon-core 8.2.0 org.eclipse.platform
org.eclipse.equinox.common 3.13.0

14 com.puppycrawl.tools checkstyle 8.36.2 log4j log4j 1.2.17

15 com.puppycrawl.tools checkstyle 8.36.2 org.apache.geronimo.specs
geronimo-jms 1.1 spec 1.0

Table 5.5: Sensitivity analysis, list of dependencies used

TMIC Covariance TAC Covariance TMIC Correlation TAC Correlation

1 21.40 7.74 0.9921 0.9915

2 35.29 4.46 0.9999 0.9999

3 0.67 1.52 1 1

4 1.43 0.68 0.9999 0.9919

5 15.34 2.28 0.9993 0.9978

6 5.91 1.02 0.9951 0.9919

7 3.54 0.93 1 1

8 16.84 4.55 0.9999 1

9 0.34 2.01 0.9689 0.9446

10 35.94 6.23 0.9999 1

11 10.22 0.59 0.9412 0.9634

12 9.18 1.23 0.9797 0.9613

13 31.63 1.78 0.9742 0.9749

14 1.32 0.67 0.9777 0.9995

15 2.92 1.36 0.9471 0.9689

Table 5.6: Covariance and Pearson correlation of the metrics TMIC and TAC with the propa-
gation factor, for all the dependencies used in the sensitivity analysis

In addition, we also calculate the Pearson correlation coefficient [38], since it is the most used when
measuring the degree of relationship between two variables. The values of the correlation range from
0.941282 to 1 for TMIC, and from 0.9446 to 1 for TAC. Figures 5.2 and 5.3 show the a plot with the values
of the metrics TMIC and TAC as a function of propagation factor. On the left side, for the client library
fr.inria.gforge.spoon:spoon-core:8.2.0 and the server library org.eclipse.platform:org.eclipse.osgi:3.16.0,

60

CHAPTER 5. EXPERIMENTS

and on the right side for org.easymock:easymock:4.2 and org.hamcrest:hamcrest-core:1.3.

Figure 5.2: TMIC as a function of the propagation factor, with quadratic regression (left)
and linear regression (right). R is the Pearson correlation coefficient, and p corresponds
to the confidence interval

Figure 5.3: TAC as a function of the propagation factor, with quadratic regression (left) and
linear regression (right). R is the Pearson correlation coefficient, and p corresponds to the
confidence interval

5.3.3 Discussion

The sensitivity analysis results indicate a high sensitivity of the two coupling metrics to the propagation
factor since there is a high correlation between these two values, the Pearson correlation coefficient is
always higher than 0.94 (see Table 5.6).

Finding 4: The value of the metrics TMIC and TAC is highly sensitive to the value of the
propagation factor.

In Table 5.6, we can see that the values of the covariance for TMIC are generally greater than those
of TAC. This seems to be related to the fact that the values measured for TMIC are greater than those
measured for TAC. Also, the cases in which the covariance is greater than 30 seem to have greater
coupling values at each distance. If we look at equation 3.6, the coupling measured at each distance
(TMICD(𝐿𝑐, 𝐿𝑠, distance)), is the value multiplied by the propagation factor. Therefore if the propaga-
tion factor is increased, the total value of the metric will increase more in consequence if the value of

61

CHAPTER 5. EXPERIMENTS

TMICD(𝐿𝑐, 𝐿𝑠, distance) is greater. To confirm this intuition, we create a plot to compare the covariance
with the sum of the coupling measured at each distance. These plots can be seen in Figure 5.4 and 5.5,
for TMIC and TAC respectively.

Figure 5.4: Covariance of propagation factor and TMIC as a function of the sumation of the
coupling measured at each distance (DTMIC). p corresponds to the confidence interval

Figure 5.5: Covariance of propagation factor and TAC as a function of the sumation of the
coupling measured at each distance (DTAC). p corresponds to the confidence interval

Finally, in the results of the correlation coefficient between the propagation factor and the metrics,
we also observe that the cases with the lowest correlation coefficients tend to be dependencies in which
there is more distance between the client library and the server library. To compare the correlation and
the distances, we create a plot with the correlation coefficient calculated for the sensitivity analysis and

62

CHAPTER 5. EXPERIMENTS

the maximum distance at which coupling is found. The plots for TMIC, and TAC can be found in Figures
5.6 and 5.7 respectively.

Figure 5.6: The correlation between propagation factor and TMIC as a function of the
maximum distance at which coupling is measured. p corresponds to the confidence interval

Figure 5.7: The correlation between propagation factor and TAC as a function of the maxi-
mum distance at which coupling is measured. p corresponds to the confidence interval

Threats to validity To evaluate the results of this experiment, it is important to consider the sample
size of dependencies used. To ensure that the set of dependencies used was as relevant as possible, we
selected a representative sample. The selection was made considering the distance between the client

63

CHAPTER 5. EXPERIMENTS

and the server, the number of times the server appeared in the dependency tree of the client, and the
coupling measured.

5.4 Experiment 4: Expert Interviews

This last experiment has various goals. The main one is to validate the design of the visualization.
According to Munzner [39], there are four levels at which this validation can be done:

1. Domain Problem and Data Characterization

2. Operation and Data Type Abstraction

3. Visual Encoding and Interaction Design

4. Algorithm Design

In this case, we focus on the third option: Visual Encoding and Interaction Design. To carry out
this validation, we designed an Expert Review through interviews. In addition, the second goal of this
experiment is to evaluate the clarity and actionability of the metrics included in the model. Therefore, we
added questions about clarity and actionability so that the participants could give their views. Therefore,
these two aspects of the metrics, which are included in the set of validation criteria defined by Meneely
et al. [22], can also be validated. It is important to mention that this experiment is not a complete
validation of the metrics or the visualization in all scenarios. Instead, it is used to evaluate the clarity
and actionability of the metrics and the usability of the visualizations in the discussed scenarios, not in
a general sense.

5.4.1 Experimental set up

The interview consists of 19 questions and a demonstration of the PoC, with two proposed scenarios in
which the interviewee uses the tool. The questions are divided into four sections, which, together with
the demonstration, divide the interview into a total of five parts:

1. Demographics: The questions of this section are related to the interviewee’s professional experi-
ence and current job.

2. Dependency Management: In this part, the questions are focused on the interviewee’s experi-
ence with dependency management and the tools used for this purpose.

3. Demonstration: The third part is the demonstration of the tool, in which two scenarios are
presented to the interviewee. During the discussion of the scenarios, the interviewee controls the
mouse to interact directly with the tool.

4. Visualizations: The section after the demonstration contains questions about the tool itself and
the designed visualizations.

5. Metrics: The last section focuses on the designed metrics, the clarity, and comprehensibility of
these, as well as actionability.

The interviews contain three types of questions: open answer, binary, and scaled from 1 to 5. During
every question, even the binary and scaled questions, the interviewee can make comments or discuss the
answer. The list of questions contained in the interview can be found in Table 5.7.

The interviews were done via Zoom2. Zoom offers the possibility of sharing the control of the mouse
with other participants and the option of recording the interview. The interviews are recorded to rewatch
it afterward and take notes of the interviewees’ answers. Therefore, the interview itself feels more like a
normal conversation, and there are no pauses.

5.4.2 Results

In this section, we show the answers obtained during the interviews. The results will be discussed in
section 5.4.3: the suitability of the visualizations, as well as the clarity and actionability of the metrics.

2https://zoom.us/

64

https://zoom.us/

CHAPTER 5. EXPERIMENTS

Question Section Type

1. What is your software development role? Demographics Open answer

2. How many years of experience do you have as a soft-
ware developer?

Demographics Open answer

3. Which programming language(s) do you usually use
in your job?

Demographics Open answer

4. Which type of projects do you usually work on? Demographics Open answer

5. Do you have experience with dependency manage-
ment?

Dependency Management Binary

6. To what extent is it important to you (or do you try)
to have the dependencies up to date?

Dependency Management Scaled

7. To what extent is it important to you to monitor the
vulnerabilities that your dependencies may be exploit-
ing?

Dependency Management Scaled

8. Which tools (if any) do you use for dependency man-
agement?

Dependency Management Open answer

9. To what extent do you think the tools you used so far
are helping you to maintain your dependencies?

Dependency Management Scaled

Scenario 1: You are a new maintainer of the library
org.apache.flink:flink-core. Since you have not worked
in this library’s development, you want to see how the
dependency tree looks like. What would you look for?

Demonstration Scenario

Scenario 2: You realize that a library called kryo has a
new version, which has been announced to contain break-
ing changes. How likely it would affect your library, and
which classes are affected.

Demonstration Scenario

10. How much do you agree that the tool is useful in the
presented scenarios?

Visualizations Scaled

11. How much do you agree that managing dependencies
would be easier with the presented tool?

Visualizations Scaled

12. With your job in mind, which (if any) are the most
useful of the visualizations?

Visualizations Open answer

13. How much do you agree that the presented tool would
be useful in your job?

Visualizations Scaled

14. Is there some other visualization or change you would
like to see? For which cases do you think it would be
useful?

Visualizations Scaled

15. To what extent do you agree that the metrics are
clear and comprehensible? (Answer per metric)

Metrics Scaled

16. To what extent do you agree that the metrics are
useful in the described scenarios

Metrics Scaled

17. To what extent do you agree that the metrics are
actionable in the sense that they give you the information
you need to make a decision?

Metrics Scaled

18. Which (if any) do you think are the most useful of
the metrics? Based on the tasks that you usually do in
your job.

Metrics Open answer

19. Is there some other metric or change that you would
like to be added to the model? In which scenarios do you
think it could be useful?

Metrics Open answer

Table 5.7: Questions of the interview

65

CHAPTER 5. EXPERIMENTS

Demographics

The roles of the 15 participants in the interviews include: Software developer, Software engineer, Tech-
nology lead, Head of innovation, Head of development, and Head of product. In some of the results, we
differentiate between the answers given by developers and non-developers. In the developers’ group, we
consider the interviewees who answered with the role of software developer and engineer, and the rest of
the interviewees are considered non-developers. The key difference is that the non-developers have tasks
related to architecture or management, and therefore their needs and their perspective is different.

The years of experience range from 1 to 20, with an average of 7.13. Half of the interviewees have
worked in backend development and web services systems. In addition, some of the other types of projects
include mobile applications and frontend development. The languages in which the interviewees have
experience can be seen in Figure 5.8.

Figure 5.8: Answers to Question 3 of the interview

Dependency Management

The 15 interviewees have experience with dependency management. However, some of them indicated
that it is not a task that they usually perform in their jobs, but rather in personal projects or time. Figure
5.9 shows the answers to question 6 regarding the importance of updating the dependencies. The reasons
given by the interviewees answering Neutral and Important for not giving it more importance include:
prioritizing the fact that the versions used are compatible, that there is no version incompatibilities with
the current version used, and that the version used is stable.

Figure 5.10 shows the answers to question 7 about the importance of monitoring the dependencies’
vulnerabilities. The interviewees considered that the importance of monitoring the dependencies’ vul-
nerabilities was less than Very important reasoned about it. For example, some said that it is something
that they do, but not regularly. They just update when there is a new version to ensure that the patch
is always used if a vulnerability has been discovered. Finally, the last reason depends on the type of
dependency — if it is not a customer-facing dependency, it is not that important.

In Figure 5.11, there are the answers to question 8. The interviewees gave more than one answer to
the question, but always at least one explicitly included in the figure.

Finally, the answers to question 9, regarding how helpful are the tools that the interviewees use for
dependency management. The interviewees who considered the tools to be really helpful (5) compared
it to not using any tool. Whilst the interviewees giving lower marks (2-3), considered that features
are missing. Mainly, they considered that the basic needs are covered. However, some more detailed
information about how to manage the dependencies is not there.

66

CHAPTER 5. EXPERIMENTS

Figure 5.9: Answers to Question 6 of the interview

Figure 5.10: Answers to Question 7 of the interview

Visualizations

The interviewees’ answers to question 10 about the tool’s usefulness are displayed in Figure 5.13. Some
of the interviewees’ reasons for not giving it the maximum grade are the need for improvement in some
aspects of both the visualization and the metrics and being useful for some particular scenarios.

67

CHAPTER 5. EXPERIMENTS

Figure 5.11: Answers to Question 8 of the interview

Figure 5.12: Answers to Question 9 of the interview

Figure 5.14 we can see the results for Question 11. In this case, the interviewees who answered
Disagree or Neutral considered that the tool is meant for some particular cases, which are not very likely
to be needed. The other interviewees agreed that the tool would probably not be used daily but would
make some tasks easier, such as those discussed in the scenarios.

For Question 12, about which visualizations are most useful, most of the interviews answered more
than one visualization. Table 5.8 summarizes the answers.

The answers to Question 13 are shown in Figure 5.15. Just as in Question 11, the reason given by
the interviewees who answered Disagree or Neutral are that the tasks for which the tool is useful are not
one of the regular tasks in their job.

With Question 14, the interviewees gave their suggestions for improvements to the current visualiza-
tions and completely new visualizations. The list of suggestions can be found below:

68

CHAPTER 5. EXPERIMENTS

Figure 5.13: Answers to Question 10 of the interview

Figure 5.14: Answers to Question 11 of the interview

∙ Add tree visualization at the class level.

∙ List with the classes and methods used from a library.

∙ Add a decision-making model, indicating which actions should be taken.

69

CHAPTER 5. EXPERIMENTS

Tree Table Barchart

⊙ ⊕
⊕

⊕ ⊕
⊕
⊕ ⊙ ⊕
⊕ ⊙
⊙ ⊕
⊕ ⊕ ⊕

⊕
⊙ ⊙ ⊕
⊕ ⊕ ⊕
⊕
⊕ ⊕ ⊕
⊙ ⊕
⊕ ⊕ ⊕

Table 5.8: Answers to Question 12 of the interview. ⊕ indicates that the interviewee
considered that visualization to be the most useful, the ⊙ is used when the visualization
was considered useful but in a clear second position, and an empty cell means that the the
visualization was not mentioned.

Figure 5.15: Answers to Question 13 of the interview

∙ Visualization to know how much of the system is depending on a library.

∙ Smart visualization displaying some potential problems: the freshness of the dependency, multiple
versions of the same library being used.

∙ Color legend in the tree graph.

70

CHAPTER 5. EXPERIMENTS

∙ Tooltip with a description of the metrics of the model.

∙ Display the licenses of the dependencies.

∙ Change the bar chart for a table.

∙ Possibility to move and reorganize the nodes of the tree.

∙ Turn the features into a command interface to be unattended running in the build pipeline.

Metrics

The answers to question 15 can be found in Figure 5.16; for each metric, the number of times an
interviewee answered with each number of the options. In addition, Table 5.9 shows the average mark
given to each metric, first considering only the marks given by developers, then by non-developers, and
finally, the total average.

Figure 5.16: Answers to Question 15 of the interview

Metric Average developers Average non-developers Total Average

MIC/TMIC 3.8 4.6 4.06

AC/TAC 3.6 4.2 3.8

% Reachable classes 4.6 4.8 4.66

% Reachable methods 4.8 4.6 4.73

Field declaration per class 4.8 4.2 4.6

Method invocation per class 4.8 4.4 4.66

Table 5.9: Results Question 15: Average marks of the metrics, given by developers, non-
developers, and all

In Figure 5.17, there are the answers to question 16 of the interview. The reasons for not giving
the metrics the best grade include that it would be more useful if the metrics suggested as missing in
question 19 were included. It was also suggested that context is missing for some metrics (e.g., the
absolute number of reachable methods and classes, risk assessment for the coupling metrics).

The answers to question 17 can be found in Figure 5.18. The interviewees who gave the grade Neutral
reasoned that the metrics need some improvements to be truly actionable and that there is information
that still can only be found in other places. The interviewees who answered Agree suggested that the
model’s metrics are a good starting point to know which actions to take to start with.

71

CHAPTER 5. EXPERIMENTS

Figure 5.17: Answers to Question 16 of the interview

Figure 5.18: Answers to Question 17 of the interview

For question 18, the interviewees answered with which metrics they considered more useful. Their
answers can be found in Table 5.10.

Finally, the suggestions made for improving the current metrics or adding new ones, in the answers
to question 19, can be found in the list below:

72

CHAPTER 5. EXPERIMENTS

M
IC

/
T
M
IC

A
C

/
T
A
C

%
R
ea
ch
a
b
le

cl
a
ss
es

%
R
ea
ch
ab

le
M
et
h
o
d
s

F
ie
ld

d
ec
la
ra
ti
on

p
er

cl
a
ss

M
et
h
o
d
in
vo

ca
ti
on

p
er

cl
a
ss

R
ol
e

⊕ ⊕ Developer

⊕ ⊕ Developer

⊕ ⊕ Developer

⊙ ⊕ Developer

⊕ ⊕ Developer

⊕ ⊕ Developer

⊕ ⊕ ⊕ Non-developer

⊕ Non-developer

⊕ ⊕ ⊕ ⊕ Developer

⊕ ⊕ ⊕ ⊕ Developer

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ Non-developer

⊕ ⊕ Developer

⊕ ⊕ Non-developer

⊕ ⊕ Developer

⊕ ⊕ Non-developer

Table 5.10: Answers to Question 18 of the interview. ⊕ indicates that the interviewee
considered the metric to be the most useful, the ⊙ is used when the metric was considered
useful but in a clear second position, and an empty cell means that the the metric was not
mentioned.

∙ Min, max, and mean of the coupling metrics.

∙ How much of the client is depending on the server library.

∙ A list of the reachable methods and classes.

∙ The absolute number of reachable methods and classes.

∙ Freshness indicator.

∙ Aggregate of the coupling metrics.

∙ Muber of files of the client using the server library.

∙ Lines of code of the client affected by the dependency.

∙ Code reuse: a combination of the metrics.

5.4.3 Discussion

In this section, we discuss the answers to the interviews, divided into sections. First, there is a discussion
on the interviewees’ general evaluation, according to their role.

We have found a difference in how the interviewees evaluate the model and the visualizations according
to whether the interviewee’s main focus is development or not.

The developers want more information that can be directly transformed into development actions.
For example, they suggested seeing the list of reachable methods of the dependencies, which can answer

73

CHAPTER 5. EXPERIMENTS

a vulnerable method is used or not. Another example is the lines of code where the calls to a dependency
are made, so the developer can directly go to that line of code to make the necessary changes.

However, non-developers are interested in more high-level information. One of the suggestions made
was to create a metric regarding how much of the client library depends on the server library. Also, how
widespread the usage is in the client library. These two metrics would be related to the architecture of
the system.

Furthermore, there is also an indicator of this difference in their answers to the preferred metric. The
coupling metrics are more useful at an architectural level to understand how much a client depends on
a server library. In Table 5.10, we see the the interviewees with non-developer role, always mentioned
at least MIC/TMIC as the most useful metric. If we compare the average marks of the developers and
non-developers in Table 5.9, we can see this same difference. The marks given by non-developers to the
coupling metrics are higher than those given by developers.

Dependency Management With the questions answered in the Dependency Management section, we
know that all the interviewees have experience with this type of task. Also, the interviewees considered
it more important to monitor the dependencies’ vulnerabilities than the update to the last version (see
Figures 5.9, and 5.10). This is also confirmed by some interviewees’ comments, saying that the main
reason to update a dependency is to avoid being affected by possible vulnerabilities.

Visualizations When asked about the tool’s usefulness, there is a general agreement that the tool is
useful in the scenarios discussed during the interview, Figure 5.13. There are some negative answers to
whether the tool can make dependency management easier. However, most of the comments about these
answers are related to the tool being useful for particular cases. Therefore, the negative responses are
not associated with the tool, not making the tasks easier.

Finding 5: There is a consensus that the created tool is useful in certain scenarios related to
dependency management.

In the answers to Question 12, only four interviewees answer only one of the visualizations (see Table
5.8). Some of the other interviewees also commented that there is value in combining the perspectives
in the visualizations. Each visualization has a point of view, which adds to the value of the entire
tool. The Tree visualization gives an understanding of the hierarchy of the dependencies and where the
transitive dependencies come from. The Table visualization makes it possible to compare the metrics,
and therefore, the degree of dependence. Finally, the Barchart gives a more detailed view of the impact
of the dependencies in the client library.

Finding 6: It is important to have a different perspective on a system’s dependencies in the
visualizations to have a complete understanding of the dependency tree.

With the last question about the visualizations, the interviewees suggested some improvements to be
made. Certain suggestions are small improvements in terms of interaction with the visualizations and
some other additions to make it easier to use. According to the research method, the next step would be
implementing some of these suggestions and doing more interviews. However, due to time limitations,
we cannot do these tasks.

Also, some interviewees expressed a need to integrate the different sources of information about
dependency management. This data includes vulnerability data, the new versions available of the depen-
dencies, and the licenses of the libraries used. Some related suggestions for making this tool’s features
into another type of tool are to make it an IDE Plugin and a command interface. Hence, there is a
general interest in the tool, but it might be important to consider changing the format in which these
are supplied.

Metrics Regarding the clarity and comprehensibility of the metrics, the interviewees’ average grade
for all the metrics is positive, being a 3.8/5, the lowest one, and a 4.73/5, the highest one, as shown in
Table 5.9.

Finding 7: There is a consensus that the metrics defined in this model are clear and compre-
hensible.

74

CHAPTER 5. EXPERIMENTS

The metrics with the lowest grade are the coupling metrics. As confirmed by the comments on the
model’s actionability, most of the interviewees agreed that the coupling metrics are harder to understand
since there is not a clear scale. Therefore, a number gives some information on the dependency itself and
how it compares to the rest of the dependencies in the tree, but there is no clear meaning that indicates
if a certain value is ”good” or ”bad.”

Finding 8: The coupling metrics could be improved with a clear scale or rating evaluation.

The answers to Question 16, about the model’s usefulness, are mainly positive (see Figure 5.17). Just
as in the visualizations, the interviewees giving the lowest marks reasoned that the need to have such a
detailed evaluation of the dependencies is not necessary daily.

Finding 9: The model is useful for dependency management. However, it is not needed for the
most common and regular tasks.

With respect to question 18, regarding which are the most useful metrics in the model, the metrics
that got more votes are the coverage metrics, as shown in Table 5.10. This result is consistent with the
answers to Question 15, in which the coverage metrics have two of the highest average scores. Also, just
as in the visualizations, some interviewees commented that it is the different perspectives given by each
of the metrics making the model more useful.

In the last question of the interviews, we gathered suggestions about the model’s metrics and can
also be grouped into changes to current metrics and new metrics. One of the main suggestions obtained
is to create a combination of the coupling metrics, have a general evaluation, and dive into the detail
with the current metrics. The users would then have a general indicator, which can already point them
to the dependencies that need a more detailed look.

Finding 10: There is an interest in a general metric indicating the general degree of dependency
as a combination of the model’s existing metrics.

We have also obtained some suggestions, which are modifications to the current metrics. For example,
having the absolute number of reachable methods or classes and the list of their names. It should be
evaluated, which is the need for this information, and in which cases it would be useful.

Finally, one of the suggestions to improve the coupling metrics’ actionability is to create a risk profile
of these metrics by evaluating the common values of these metrics and the outliers. This suggestion is
further investigated in the following experiment.

Threats to validity Given the number of participants in the interviews, some other profiles which
could also be potential users of the tool might not have been represented in this study. To avoid this
threat, we have not limited the participants to the host organization of this thesis. Instead, we have
included professionals from other organizations and backgrounds.

A common threat to validity when conducting interviews is the Hawthrone effect, according to which
the interviewees act differently because they are being observed. To avoid this bias and prevent the
interviewees from being biased towards evaluating the tool positively, each question was followed by a
discussion. The interviewees could explain their opinion completely.

5.5 Experiment 5: Benchmarking

One of the main remarks received for the coupling metrics during the interviews is that there is no clear
scale for those metrics. Therefore, the metrics’ value can be hard to interpret since there is no indicator
of which number is very high or very low.

Hence, we have benchmarked the values of the metrics MIC, AC, TMIC, and TAC. The goal is to
understand, which is the distribution of the values and be able to indicate which are the outliers of these
metrics.

75

CHAPTER 5. EXPERIMENTS

5.5.1 Experimental set up

To execute this experiment, we have set a new request in the backend of the PoC. This request should
contain the path to a .txt file, which includes three different columns, tab-delimited. Each row represents
a Maven artifact, and for each column it indicates: group id, artifact id, and version.

Then, the calculation of the metrics of the model is performed. For each analyzed dependency, the
value of the benchmarked metrics is stored. The result consists on 4 different .csv files. The first two
contain all the different values of the MIC and AC metrics. The last files represent the values of the
transitive coupling metrics, represented in three columns. The first, the dependency id, the second the
distance, and the third the value calculated at that distance. Therefore, more than one row might be
used to represent the TMIC or TAC of a dependency.

5.5.2 Results

We have analyzed a total of 299 direct dependencies and 470 transitive dependencies, obtained from
analyzing a set of Maven libraries (see list of libraries in Appendix A). We filtered out zero values since
there is no coupling in those cases, and we plot the rest of the values. In Figures 5.19 and 5.20, we show
the histograms representing the distribution of the values of MIC and AC respectively.

Figure 5.19: Histogram MIC benchmark, 60 bins

For the transitive metrics, namely TMIC and TAC, we have calculated the benchmarking with different
values for the propagation factor. The histogram of the benchmarks for metrics TMIC and TAC with
propagation factor 1, 0.5, and 0.1, can be found in Figures 5.21, 5.22, 5.23 and 5.24, 5.25, and 5.26,
respectively.

Finally, we also generated 70th, 80th, and 90th percentiles of each of the metrics, which can be found
in Table 5.11.

5.5.3 Discussion

In the results of all the metrics, one can see that the majority of the values are the lowest ones. In other
words, many dependencies are loosely coupled, while there are a few which are highly coupled. Also, it is
possible to observe a difference in the values of the metrics measuring method invocation coupling (MIC
and TMIC), with those measuring aggregation coupling — namely AC and TAC. The method invocation
metrics generally have higher values. This can also be intuitively perceived: for each field declared,
multiple method calls can occur.

76

CHAPTER 5. EXPERIMENTS

Figure 5.20: Histogram AC benchmark, 60 bins

Figure 5.21: Histogram TMIC benchmark, propagation factor = 1, 60 bins

Finding 11: The four coupling metrics have a similar distribution: small values are common,
while larger values are rare.

When comparing the results of the metrics TMIC and TAC with different values of propagation factor,
the comparison is not exactly as it could be intuitively expected. In Figures 5.21 and 5.25 we can see the
benchmark of TMIC with propagation factor 1 and 0.1, respectively. Given that one propagation factor is
10 times smaller than the other one, we would expect the results of the metrics to be 10 times smaller as
well. However, we can see that on the right side of the plot; there is at least one dependency with TMIC

around 5000 for both propagation factors. We looked at the values measured to understand why this

77

CHAPTER 5. EXPERIMENTS

Figure 5.22: Histogram TAC benchmark, propagation factor = 1, 60 bins

Figure 5.23: Histogram TMIC benchmark, propagation factor = 0.5, 60 bins

happened. The dependency has two distances at which coupling is measured: 1 and 2. These distances
have a coupling of 4958 and 11, respectively. Following the equation 3.6, since the propagation factor is
used to the power of distance− 1, it is not applied when distance is 1. This is also consistent with the
fact that distance 1 means that the server library is, in this case, a direct dependency, and therefore there
is no mitigation of the coupling. Hence, that is why this value appears with both propagation factors
because it is only applied for distance 2, which has a small value, in comparison with distance 1. The
same scenario can be seen in the case of TAC (Figures 5.22 and 5.26).

Furthermore, it is expected that with a lower propagation factor, the values of the metrics are pushed
to zero. Therefore, the first bin of the graph should substantially increase. Looking at Figure 5.21, we
can see that the first bin with 1 as the propagation factor is around 100. In Figure 5.23, we can see

78

CHAPTER 5. EXPERIMENTS

Figure 5.24: Histogram TAC benchmark, propagation factor = 0.5, 60 bins

Figure 5.25: Histogram TMIC benchmark, propagation factor = 0.1, 60 bins

that the first bin increased to around 110, and in Figure 5.25, the count of the first bin is around 120.
The increment is not as high as could be expected, considering the difference between the propagation
factors. However, this is again due to some server libraries being at the same time direct and transitive
dependencies; the coupling measured at distance 1 decreases the difference in the value of the metric.
Nevertheless, the fact that a decrease in the propagation factor moves the distribution of the metric’s
values to zero can be seen in Table 5.11. In the table, we can see that the percentiles’ values are closer
to zero as the propagation factor decreases.

79

CHAPTER 5. EXPERIMENTS

Figure 5.26: Histogram TAC benchmark, propagation factor = 0.1, 60 bins

Metric

Percentile
70th 80th 90th

MIC 79.00 118.80 305.40

AC 21.50 35.00 61.00

TMIC (PF = 1) 59.50 129.00 215.00

TAC (PF = 1) 19.50 24.00 56.00

TMIC (PF = 0.5) 30.37 87.00 141.87

TAC (PF = 0.5) 10.50 12.25 39.12

TMIC (PF = 0.1) 11.40 33.00 105.70

TAC (PF = 0.1) 7.35 7.77 25.15

Table 5.11: 70th, 80th, and 90th percentiles of the coupling metrics

Finding 12: The values of TMIC and TAC, do not decrease as much as could be expected when
the propagation factor is decreased. This is because of the libraries which are found in direct and
transitive dependencies. The coupling created in the direct dependency remains equal regardless
of which propagation factor is applied.

In Table 5.11, there are the 70th, 80th, and 90th percentiles of each of the metrics. These percentiles
have been previously used for software metrics for risk assessment [40]. Considering the values in Table
5.11, the risk assessment for each of the metrics can be found in Table 5.12, with four risk profiles:
low risk, medium risk, high risk, and very high risk. It is worth saying that the percentiles should be
calculated with other datasets with different characteristics for this risk profile to be completely useful.
Therefore, this risk profile is only valid for the current dataset.

Threats to validity Just as in the case of the experiment coupling metrics significance, when evaluat-
ing the results of this experiment is necessary to consider the dataset used. The results of the benchmark
would change if a larger dataset were used. It is also worth mentioning that we have selected the client
libraries to use based on the most popular libraries of the Maven Central Repository. However, it could
be interesting to see how the results change if less popular or smaller client libraries are also included in

80

CHAPTER 5. EXPERIMENTS

Metric

Risk
Low risk Medium risk High risk Very high risk

MIC <79 <118.8 <305.4 >305.4

AC <21.5 <35 <61 >61

TMIC (PF = 1) <59.5 <129 <215 >215

TAC (PF = 1) <19.5 <24 <56 >56

TMIC (PF = 0.1) <11.4015 <33 <105.7 >105.7

TMIC (PF = 0.5) <30.37 <87.00 <141.87 >>141.87

TAC (PF = 0.5) <10.50 <12.25 <39.12 >39.12

TAC (PF = 0.1) <7.35 <7.77 <25.15 >25.15

Table 5.12: Risk profile of coupling metrics

the dataset.

81

Chapter 6

Discussion

This chapter discusses the answers to the research questions formulated in this thesis and the process
used to obtain these answers, and possible threats to validity.

6.1 RQ1: How can we measure the degree of code

dependency between two software products with

a direct dependency?

To answer this question, we have created the metrics MIC and AC. These metrics measure the coupling
between the code of the client and the server library.

RQ1.1: What constitutes a dependency between two products? To define what constitutes
code dependency, we discuss the meaning of coupling. To define coupling in the scenario of this research
question, we use the framework created by Briand et al. [11] as described in Section 3.1.1. To correctly
represent the code dependency scenario between two software products, we adapt the framework. For
example, by adding a new aggregation level: the library level.

An important decision in this stage is to define two types of coupling to be considered: the method
invocation coupling and aggregation coupling. As discussed in Section 5.2, these two types of coupling
might not be sufficient to represent the coupling between two libraries accurately. As mentioned in
Section 5.2, there are cases in which the two types of coupling metrics measured in this thesis might not
be enough. This could be solved by analyzing which types of dependencies could add information about
the dependency and design the metric.

RQ1.2: Which metrics can be used to measure the dependency? The answer to this question is
described in Section 3.1.2. Based on the definition of coupling created to answer the previous question, we
formally defined the metrics to measure the degree of code dependency for direct dependencies: Method
Invocation Coupling (MIC), and Aggregation Coupling (AC).

RQ1.3: How can the proposed metrics be validated? To validate the metrics, we have taken
different approaches. First, we have provided proof that both metrics fulfill the five properties of coupling
metrics, defined by Briand et al. [23], which have been largely used in the literature. Then, from the set
of validation criteria for software metrics described by Meneely et al. [22], we selected the actionability
and clear definition. Professional developers have conducted the validation of these two criteria. In order
to improve the actionability of these metrics, we have created a benchmark. This benchmark allows us
to create a scale or a risk evaluation, which helps de users understand what a certain value for the metric
means and how to react to it.

82

CHAPTER 6. DISCUSSION

6.2 RQ2: How can we measure the degree of code

dependency between two software products with

a transitive dependency?

We have adapted the metrics designed for the previous question to measure code dependency of a
transitive dependency. The result is the metrics Transitive Method Invocation Coupling TMIC and
Transitive Aggregation Coupling TAC. These two metrics consider the distance between the client and
the server library, and according to it, apply a propagation factor. The coupling’s impact is reduced
due to the libraries between the client library and the server library. This mitigation is modeled with
the propagation factor. Moreover, the metrics TMIC and TAC use reachability to measure the coupling.
Therefore, only the parts of the server library that are reachable are measured. We have provided a
formal definition of both of the coupling metrics for transitive dependencies. However, the value of the
propagation factor cannot be determined since we have not been able to measure the impact of coupling
in the real world and how it behaves. The propagation factor may also change depending on why you
are looking at the coupling metrics (e.g., vulnerabilities or breaking changes). Since we cannot set only
one value for the propagation factor, we have conducted a sensitivity analysis, which indicated that the
value of the metrics is highly sensitive to the value of the propagation factor.

The metrics are validated by proving that they fulfill the five properties of coupling metrics. And as
the metrics for direct dependencies, these are included in the expert interviews to evaluate their clarity
and actionability. Moreover, these two metrics also have a benchmarking. We have created it twice, one
with propagation factor set to 1 and another one set to 0.1. This way, we have two extremes of the value,
and we can see the differences.

6.3 RQ3: How can we measure how much of a de-

pendency is used by a software product?

This question is answered by creating the coverage metrics: Percentage of reachable classes and percentage
of reachable methods. These two metrics measure how much of a dependency is used by considering the
reachable classes and methods compared to the total classes and methods of the dependency. The
reachability is measured by considering all possible types of connections between the client and the
server. Both of the coverage metrics, are formally defined in Section 3.2.

We have conducted a theoretical validation by proving a subset of software metrics’ properties that
apply to the coverage metrics. Moreover, these metrics were also evaluated by professional developers to
validate their actionability and the clarity of their definition.

6.4 RQ4: How can we visualize the metrics designed

to model the software dependencies?

To visualize the model created during the previous questions, we have added a front-end to the proof-
of-concept tool, which contains three visualizations. The first one is a tree graph visualization, which
shows the dependency tree’s hierarchy, and the unused parts are easily identifiable. Each node of the
tree displays the coupling and coverage metrics for the client library and the server library. The second
visualization is a table visualization. It shows the data of the server library of each dependency and
the metrics measured for each. The table allows the user to filter the dependencies to be displayed and
sort according to any values of the table. Finally, there is a third visualization when a dependency is
selected. This visualization shows the distribution per class of the server library usage by displaying the
usage per class metrics.

This visualization has been validated by conducting expert interviews. The experts agreed that
the tool and the visualizations are useful for specific scenarios. Moreover, when asked about the most
valuable visualizations, the answers were diverse, indicating no clear favorite. Some of the interviewees
said that the combination of the three visualizations is needed. The goal for the future work would be
to improve the visualizations is to implement some of the changes suggested by the interviewees, and
conduct interviews again in a more real-world setup.

83

CHAPTER 6. DISCUSSION

When conducting the interviews, we also noticed that there are apparent differences in the opinions
of the interviewees according to their roles. Therefore, a study of which perspectives are there, which
are the needs of each user, and how to adapt the tool for them.

6.5 Proof-of-Concept

To give a complete answer to the previous questions, we have created the proof-of-concept tool to calculate
the metrics of the model for an entire dependency tree, given a client library. The tool works with Maven
libraries, obtaining the .jar files from the Maven Central Repository. This decision restricts the type
of software product which can be analyzed. Moreover, it excludes the testing dependencies from the
analysis since the tests are not included in the sources that can be obtained from Maven. However, using
libraries available in Maven made possible the comparison with the results of the paper by Soto-Valero
et al. [7].

Another decision was to do bytecode analysis, which, as has been already discussed, can be obtained
more often from the Maven Central Repository than source-code. However, bytecode analysis has its
limitations. The main one that we have encountered while developing the proof-of-concept is that the
declaration of variables cannot be found in the bytecode. Declaration of variables is one of the types
of connections defined by Briand et al. [11], and therefore should be considered in the calculation of
the coverage metric Percentage of reachable classes. Nevertheless, the possible usages of a variable can
be detected using bytecode. For example, if a method is called on the variable, the variable is declared
based on the return of a method call, or if the variable is sent as a parameter on a method call. All these
usages are detected by the bytecode and included in the calculation of the metric. Since the coverage
metrics do not consider how many times a class or a method has been reached, if a local variable is used
in any way, the type of the variable is counted as reached.

6.6 Limitations

The metrics The metrics we created in this thesis have been validated theoretically, with the properties
and the clarity and actionability evaluated during the interviews, and empirically with the experiments.
However, the empirical validation should not be considered as a complete validation of the metrics since
an evaluation of how the metrics correlate with other aspects such as the maintainability is not conducted.
This is because the data collection was not feasible in the context of this thesis, as has been explained
in section 5.2. Nevertheless, we conducted other types of empirical validation to make it as complete as
possible.

The coupling metrics we have defined in this thesis focus on two different types of connections:
the method invocations and the field declarations. For the transitive dependencies, the metrics consider
chains of these two types of connections and not chains of combined connections. Therefore, the coupling
created by mixed connections is not considered. This is because the impact of the coupling created by
each type of connection might be different, and we decided to focus on these two. Nevertheless, the
combination of different types of connections is considered for the coverage metrics. For the coverage, it
is not relevant how much of the coverage was created by each type of connection.

The dataset For the experiments conducted in this research, we have analyzed the dependency tree
of Maven libraries and obtained the files from the Maven Central Repository. We have to consider that
the results obtained in this research might be affected by these decisions. The files obtained from Maven
contain production code only. It might be interesting to see the results if the non-production code was
also included in the analysis, not only testing code but also any other code that is not included in the
final product. However, the need to include non-production code in the analysis depends on the goal
of the analysis; if the goal is to understand the impact a certain vulnerability might have, maybe non-
production code might be directly excluded [8]. In addition, the results of the experiments (e.g., the
benchmarking) could be different if proprietary software was analyzed, as well as using applications or
other systems as clients instead of libraries. We think it could be valuable to use the tool with a different
type of dataset to understand the differences.

84

Chapter 7

Related Work

In this chapter, we present the work related to the topic of this thesis. As far as we have been able
to find, there are no papers that propose a way to model dependencies between two software products.
However, there is related work in the area of dependency management and software ecosystem modeling,
as well as in the topic of coupling metrics. We present the related work divided into two sections. For
each topic, we discuss the papers and summarize the comparison of all the papers at the end of the
section.

7.1 Software dependencies

In Dependencies We Trust: How vulnerable are dependencies in software modules? [41]
The thesis investigates how the vulnerabilities in npm packages create a cascading-effect in the JavaScript
ecosystem and how the vulnerabilities are fixed. This is done by studying the vulnerable packages’
dependency chain through the packages that depend on these. One of the main contributions of this
research is the tool used to find the dependencies between the packages, to determine the impact of the
vulnerabilities in the ecosystem, Rastogi.js1. The research determined that although only a 1% of the
modules are vulnerable, and that the dependency chain increased the number of vulnerable modules a
39.36%.

However, in contrast with the dependency metrics developed in this thesis, determining whether a
package is affected by a vulnerability with Rastorgy.js is binary evaluation, performed by looking if
the package is included as a dependency or not. Therefore, there is no confirmation of whether the
dependency is used, or if the part containing the vulnerability is being exploited, since there is no fine-
grained evaluation of the dependency. In the conclusions, Hejderup states ”On the other hand, reports
of a vulnerable dependency are not an immediate sign of a security weakness in a module. There are
several factors to this: the module is used in a development environment, the vulnerable functionality of
the dependency is not used, or there is a little risk that the vulnerability can be triggered.”. This sentence
points out the need for a more detailed analysis of the usage of the dependencies.

Impact Assessment for Vulnerabilities in Open-Source Software Libraries [42] Plate et al.
create an approach to analyze whether an application, depending on a library that contains a vulnerabil-
ity, is affected by it or not. Their methodology is meant to help assess the need to update the application
with a version that does not use the library’s vulnerable version.

The methodology consists of comparing the parts of the library used by the application with the
parts updated in the library patch that fixes the vulnerability. It is assumed that those are the parts of
the library containing the vulnerable code. The parts of the library used by the application are defined
based on a dynamic analysis of the application and the bundled libraries.

In this work, the authors refer to application in the same way we have been using client library. Again,
this work focuses only on the impact of vulnerabilities and how to fix them, while this thesis measures
the degree of dependency. Moreover, instead of focusing on static analysis as in this thesis, they combine
it with dynamic analysis to determine if the application uses the part of the library containing the
vulnerability. Nevertheless, these two approaches can be combined to obtain more information about
the dependency: while static analysis indicates how the code of the client uses the dependency, the

1https://github.com/jhejderup/rastogi.js

85

https://github.com/jhejderup/rastogi.js

CHAPTER 7. RELATED WORK

dynamic analysis shows the actual execution, as well as how many times is each part of the application,
and the dependency is executed. Just as in this thesis, Plate et al. use Javassist for the analysis, since
for their proof-of-concept, they focus on Java.

Modeling Library Dependencies and Updates in Large Software Repository Universes [43]
In this paper, a model for library dependencies is created. The model is classified as a graph-based
Software Universe Graph. It is focused on the updates of the dependencies and shows metrics such
as the wisdom-of-the-crowd. In addition, it is extended to describe the adoption-diffusion and the co-
dependency. The adoption-diffusion studies how the migrations to newer versions of a library are done.
The co-dependencies are libraries which are usually employed together in an application. This last metric
is used to compare different super repositories, Github, and Maven.

In contrast with this thesis, the model is not meant to give information about a particular dependency,
but rather indicate the most popular libraries and versions, and how it changes. Therefore, the analysis
done to determine whether there is a dependency is not fine-grained but binary. Just as in this thesis,
Kula et al. focus on Java, particularly the Maven ecosystem.

PRÄZI: From Package-based to Precise Call-based Dependency Network Analyses [5]
Hejderup et al. create an approach to generate fine-grained call-level dependency networks: Präzi.
This approach evaluates more precisely the dependencies between software products than a package-
level approach. As part of their work, the authors create an implementation of Präzi for the Rust’s
Crates.io ecosystem, called RustPräzi.

With RustPräzi, and to demonstrate how effective the approach is, they perform two case studies.
First, a case study that focuses on the propagation of the vulnerabilities across software products, in
which they prove the higher accuracy of their approach in comparison to a package-level dependency
network. The second case study looks at the impact of deprecation in a library. In this case, with Präzi,
they can perform an impact analysis of cleaning up deprecated functions.

Hejderup et al. use the word package in the same way we use library in this thesis. Moreover, instead
of using the Maven ecosystem for their research, as we have done, and most of the other papers of the
domain, they use Rust and Crates.io. Furthermore, to create the call-graph of each package, instead of
doing a custom analysis, they use a previously existing tool (LLVM 2).

Software ecosystem call graph for dependency management [44] In this paper, Hejderup et al.
propose extending dependency networks with a versioned call-graph. The authors describe the algorithms
used to create the network and how to perform an impact analysis of the changes in a library. Their
technique uses the commit time of the products to resolve the dependencies’ version ranges, aiming not
to miss dependencies with previous library versions. The authors evaluate their dependency network by
generating an impact analysis of a particular security bug. The output of the analysis is the part of the
dependency network that is impacted by the bug.

Therefore, in this work, Hejderup et al. propose a different approach to create call-level dependency
networks, which considers each library’s historical data. The focus of the research is an impact analysis
of changes and bugs. Nevertheless, the dependency network could also have other applications, such as
calculating the metrics proposed in this thesis. The prototype created by Hejderup et al. is focused on
JavaScript and the npm ecosystem. In this case, to create the call-graph, they used Jalangi3, which uses
dynamic analysis.

A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem [7] Soto-Valero
et al. conducted a study of the unused dependencies included in other libraries’ dependency tree in the
Maven ecosystem. The research includes every type of dependency: direct, transitive, and inherited from
the parent module.

To conduct this research, Soto-Valero et al. implemented DepClean4. The tool analyses the depen-
dencies of an artifact by creating a call graph with the libraries involved to define if a dependency is
used or not; it is done through bytecode analysis.

Just as this thesis, Soto-Valero et al. focus on Java and the ecosystem of Maven Central. The paper
includes a comprehensive study of the unused dependencies in the Maven ecosystem, reported that 75.1%

2https://github.com/llvm/llvm-project
3https://github.com/Samsung/jalangi2
4https://github.com/castor-software/depclean

86

https://github.com/llvm/llvm-project
https://github.com/Samsung/jalangi2
https://github.com/castor-software/depclean

CHAPTER 7. RELATED WORK

of the analyzed dependencies were unused dependencies. Nevertheless, the evaluation of the dependencies
is still binary, but the strategy used to determine the existence of the dependency is fine-grained. This
fine-grained analysis uses bytecode-analysis, just as the proof-of-concept developed in this thesis.

7.1.1 Summary

In Table 7.1, one can find a summary of the comparison between the different papers previously discussed
in this section. The papers are first compared according to the terminology they use: library, package,
artifact, or application. Then, according to the language and ecosystem used in their prototypes. Next,
depending on the type of evaluation done of the dependencies, either binary or fine-grained, and which
type of analysis was done. Finally, we also compare the goal, which was the main focus of the paper.

[41] [42] [43] [5] [44] [7]

Terminology

Library x x x

Package x x

Artifact x

Application x

Ecosystem

Java (Maven) x x x

JavaScript (npm) x x

Rust (Crates.io) x

Evaluation
Binary x x

Fine-grained x x x x

Analysis

Source-code

Bytecode x x x

Dynamic x x

Dependencies file x x

Goal

Dependency model x x

Impact vulnerabilities x x x

Impact deprecation x

Impact changes x

Unused dependencies x

Library popularity x

Table 7.1: Summary comparison, software dependencies related work

As one can see in Table 7.1, the basic terminology, when researching about software dependencies,
changes from paper to paper. The reason is that the terms Library, Package, and Artifact, can be used
more or less with the same meaning. The difference is that some of these terms are specific for certain
software ecosystems (e.g., Maven has artifacts). And the term Application is used to denote the software
product that uses a library. In the context of this thesis, we have used client library and server library
instead. The most used software ecosystems are npm for JavaScript and Maven for Java. This might be
because these are two of the largest package repositories. This is precisely the reason for which Hejderup
et al. [5] decided not to use these two and use Crates.io instead.

In evaluating the dependencies, we can see that there is interest in making it more precise. The
papers that do a binary evaluation do it by parsing the file where the dependencies are declared and
perform the same evaluation as the package manager does. The fine-grained evaluation is done with
bytecode analysis or dynamic analysis. In the goals of the papers, we can see that there is interest in
determining via a fine-grained evaluation, whether a vulnerability in a library is affecting the client that
depends on this library. The same happens for deprecation and changes in a library.

87

CHAPTER 7. RELATED WORK

7.2 Coupling metrics

Defining metrics for software components [45] Vernazza et al. create a set of metrics for software
components. In the paper, software component is defined as a set of classes, similar to how we treat a
library as a set of classes to define the coupling metrics. The set of metrics defined in the paper is based
on the set of metrics by Chidamber and Kemerer, which include the coupling metrics CBO and RFC. To
validate the metrics created, they use a theoretical approach by using the properties defined by Briand
et al. [23], just as we did for our coupling metrics. In addition, the authors manually calculate the value
of the metrics for various architecture patterns to illustrate their usage.

Detecting Indirect Coupling [25] Yang and Berrigan propose a way to measure indirect coupling,
which is different from the one suggested by Briand et al. [11], which consists of a transitive closure of
the direct coupling. Consider transitive coupling created by more than one type of connection, which
differs from the transitive coupling metrics defined in this thesis, focusing on a kind of connection. The
authors describe the concept of use-def indirect coupling, which is used to identify coupling between the
definitions of variables (def) and the place where these variables are used (use).

Although there is no theoretical validation of the use-def indirect coupling, a tool is created to measure
this type of coupling in Java projects using source-code analysis. The tool is used to measure the use-def
indirect coupling in several projects, including the tool itself. With the tool, the authors validate the
actionability of use-def indirect coupling by relating it to design issues and problems encountered during
development.

Measuring Indirect Coupling [46] This thesis by Yang continues with the work done in the last
paper [25]. In the thesis, Yang defines a set of indirect coupling metrics based on the use-def indirect
coupling. In addition, the relation between the metrics and the maintenance effort is also modeled.

The metrics and their relation with maintenance are empirically validated by using a tool developed
for this thesis. The tool uses static-code analysis to calculate the set of metrics. First, they calculate the
metrics for a corpus of Java projects to see their distribution. The results obtained are similar to those
obtained by us in the coupling metrics benchmarking: many loose coupled cases and a few with higher
coupling.

The second part of the empirical validation consists of experiments to compare the value of the
metrics for different software products and the time the participants needed to resolve certain tasks.

Deriving Coupling Metrics from Call Graphs [47] In this paper, Allier et al. use call-graphs to
measure existing coupling metrics. Using call-graphs helps to improve the precision of the measurement
since dynamic features used by a system can be accounted for. In particular, they focus on how are
polymorphy and dynamic class loading accounted for. Allier et al. use the coupling metrics CBO
and RFC (see Section 2.3), and modify them to account for the dynamic features. The metrics are
calculated using call-graphs generated with different techniques. The results show that the call-graph
used to calculate the metrics has an important impact on the values.

In this thesis, we have also created our own strategy to account for polymorphy in our coupling
metrics. However, we have not included the detection of reflection constructs in the analysis. Us-
ing call-graphs to calculate the metrics designed in this thesis could help improve the precision of the
measurement. Nevertheless, we would need to generate call-graphs for the entire dependency tree and
combine them to create a general call graph. This is not currently available since it is a work in progress
within the FASTEN project, but it is part of the future work.

Using indirect coupling metrics to predict package maintainability and testability [48] In
this paper, Almugrin et al. calculated and validated the new indirect coupling metrics they defined
in previous work [49], which are based on the metrics by Martin [50]. The metrics are empirically
validated by showing their relationship with maintainability and testability. The experiments done for
this validation used previously defined maintainability and testing metrics to compare these metrics’
values with the values of the indirect coupling metrics. To run the experiments, they used a set of
existing tools and one custom tool to obtain all the necessary data and calculate the values of all the
metrics for the seven systems involved in their experiment. The authors calculate the linear regression
and correlation between coupling metrics and the maintainability and testability metrics. The results
show that the lower values of the coupling metrics tend to have better results for maintainability and
testability.

88

CHAPTER 7. RELATED WORK

7.2.1 Summary

The summary of the comparison of the papers included in the coupling metrics related work can be found
in Table 7.2. The papers are compared according to whether there are new metrics defined or not and if
these metrics account for indirect coupling, and the type of coupling measured. Then, we compare the
technique used to measure the metrics and the type of validation conducted in the paper.

[45] [25] [46] [47] [48]

Defined new metric(s)
Yes x x x x

No x

Indirect coupling
Yes x x x

No x x

Type of coupling

Method invocation x x

Field access x x

use-def x x

N/A x

Measurement technique

Source-code analysis x x x

Call-graph analysis x

Manual calculation x

Validation
Theoretical x

Empirical x x x x

Table 7.2: Summary comparison, coupling metrics related work

In Table 7.2, it is possible to see that most of the papers included in the related work create new
coupling metrics, two of them by adapting previously existing metrics [45, 48] and the other two are
focused on a type of coupling which has not been measured before: use-def [25, 46]. Allier et al. [47],
instead of creating new metrics, evaluate how much the value of the metrics change, depending on which
technique is used to calculate them, they compare different call-graph generators based on how they deal
with inheritance. There is source-code analysis in the related work about coupling metrics, which was
not used in any of the papers related to software dependencies. This seems to be because the papers
about coupling metrics analyze only one software product at a time. In contrast, the papers about
software dependencies analyze dependency trees or even entire ecosystems, making other options such
as bytecode or dynamic analysis a better option. Four out of the five papers do an empirical validation
of their work. Two of the papers validate their metrics by looking at the effect these have in terms of
maintainability [46, 48]. Yang and Berrigan [25], compare the places of their tool with use-def coupling,
with the places where they had issues during development, and finally, Allier et al. [47] compare the
results obtained with different call-graphs generators.

89

Chapter 8

Conclusion

In this work, we have created a model for the dependencies created when using a library. The model
contains three types of metrics. The first one, to measure the degree of code dependency, is the cou-
pling metrics. We have defined coupling metrics for direct and transitive dependencies, considering the
coupling’s reachability and propagation. Then, we have created coverage metrics to measure how much
of a library is used, at the method and class level. Finally, we defined usage per class metrics to see
which classes of the client are using the library and how much. We have provided a formal definition of
each metric and conducted a theoretical validation of the metrics by proving the properties the metrics
should have. These properties have been obtained from the literature.

To provide empirical validation of the metrics, we have created a proof-of-concept tool, which cal-
culates the metrics for every dependency of a given client. The tool uses libraries available in the
Maven Central Repository, which allowed us to validate the implementation by comparing the results
with the literature. This comparison indicated some possible improvements, such as changing the way
the bytecode is obtained, to be able to include testing dependencies, and avoid issues with shadowed
dependencies.

Furthermore, we have conducted an experiment to evaluate the significance of the coupling metrics.
This experiment indicated that the current metrics are sufficient to indicate whether there is coupling
with a dependency in about 95% of the cases. Additionally, it also indicated that annotations are a
special case in the context of software dependencies, which would need a specific metric to be measured.

We have also conducted a sensitivity analysis of the propagation factor used in the coupling metrics
for transitive dependencies. The propagation factor represents the mitigation done by the libraries
between the client and the server library. Our results indicate that the value of the metrics for transitive
dependencies is highly sensitive to the propagation factor. Furthermore, we have created a benchmark
of the coupling metrics to define a scale and risk evaluation of these metrics. We have found that all the
coupling metrics’ distribution is similar; most of the cases have low values, but there are a few with very
high values.

Finally, the proof-of-concept includes three visualizations of the model. These visualizations have
been validated with expert interviews. During the interviews, the experts evaluated the tool and its vi-
sualizations positively and made some suggestions for improvement. Moreover, the model’s actionability
and clarity were also assessed during the interviews, with a positive response to both aspects.

8.1 Future work

This section presents the future work that could be done based on the research done in this thesis. There
are many other topics to be researched in the domain of software dependencies, but we focus on the
model and the proof-of-concept we developed.

8.1.1 The model

The current model has had positive reactions from the professional developers interviewed during the
thesis. Nevertheless, some improvements could be made. First, the coupling metrics of the model
currently measure method invocation coupling and aggregation coupling. However, there are other
types of connections that could be added to the set. In particular, as discovered with the significance

90

CHAPTER 8. CONCLUSION

experiment results, the first type of connection to be considered is the usage of annotations. A metric
to measure the coupling created by the usage of annotations could be used in combination with the
current coupling metrics for a more precise measurement of all types of dependencies. A second step
to improve the coupling metrics is to improve the benchmarking. Analyzing new client libraries to
extend the benchmark data and add types of clients other than libraries could improve the quality of the
benchmark and the risk evaluation of the metrics. A comparison of the results obtained from analyzing
libraries and analyzing other types of software products is also possible.

In addition, during the interviews, it was suggested to create a general metric, combining the values of
the current model’s metrics. The general metric could give an overview of the state of the dependencies
and indicate the developers which dependency needs more focused. However, the model would still
contain all the other metrics to give more detailed information with the perspective of each metric.

Finally, as explained at the beginning of the thesis, another possibility is to add metrics based on
dynamic analysis. Adding dynamic analysis could give more information on the actual usage of the
client and the server libraries. It would allow us to validate the findings of the static coupling metrics.
Dynamic analysis has already been used to evaluate if a client is affected or not by a vulnerability [42].

8.1.2 The proof-of-concept

The proof-of-concept developed for this thesis can calculate the metrics of the model for all the depen-
dencies of the dependency tree of a given client library. The client and the server libraries have to be
available in the Maven Central Repository. The main limitation of the PoC is that it does not include
testing dependencies and cannot detect shaded dependencies. The first point could be fixed by changing
the process to obtain both the client and the server library sources. Obtaining .jar files from Maven
makes it impossible to include the tests in the analysis and adds issues with shaded dependencies within
the .jar file of the client. Therefore, an initial step would be to add the possibility of obtaining the client
and server libraries from a different repository, including the tests in the .jar file. Another option would
be to change the type of analysis to source-code analysis, but this would require changing the analy-
sis completely. Moreover, the issues with the parent module’s inherited dependencies could be solved
by changing the strategy to resolve the dependency tree and include the inherited dependencies in the
analysis. Moreover, in the future, it could also be valuable to calculate the metrics by using previously
generated call-graphs instead of bytecode analysis. Generating merged call-graphs of different libraries
is a work in progress within the FASTEN project. Finally, since the model is meant to be language-
agnostic, it would be good to look at other languages apart from Java for the implementation. It would
be an interesting exercise to see which characteristics and edge cases other languages have and make
both the implementation and the model more complete.

91

Acknowledgements

Firstly, I want to thank my family and friends for their support during all my studies, including the
experience of this master thesis. In particular, to Jakob Löhnertz, for the discussions we have had about
the topic, which gave me ideas to continue my work. Also, to Mar Badias, for always being there to
listen to me when I needed it, working side-by-side during quarantine weeks really helped me.

I want to thank my supervisor from the University of Amsterdam, Ana Oprescu, and my supervisors
within SIG Lodewijk Bergmans and Miroslav Živković. The weekly discussions we have had during the
entire process and their feedback were crucial for the success of this thesis.

To the entire research team of SIG, thank you for having me during these last months, for the help
offered during the weekly standups, and for the feedback received after my presentation.

Many thanks to all the participants in the interviews about the tool I developed during the thesis.
The feedback and discussions during the interviews were truly interesting and provided valuable insights.

Finally, I would like to thank the members of the organization of the Seminar Series on Advanced
Techniques & Tools for Software Evolution 2020, who allowed me to participate in the seminar. Being
able to participate and organize SATToSE 2020 was a great experience. Thanks again to Ana Oprescu
and Miroslav Živković for co-authoring the paper with me; your contribution was truly valuable.

92

Bibliography

[1] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and evolution of package dependency
networks”, in Proceedings of the 14th International Conference on Mining Software Repositories,
IEEE press, 2017, pp. 102–112.

[2] A. Benelallam, N. Harrand, C. Soto-Valero, B. Baudry, and O. Barais, “The maven dependency
graph: A temporal graph-based representation of maven central”, IEEE International Working
Conference on Mining Software Repositories, vol. 2019-May, pp. 344–348, 2019, issn: 21601860.
doi: 10.1109/MSR.2019.00060. arXiv: arXiv:1901.05392v1.

[3] R. G. Kula, C. De Roover, D. German, T. Ishio, and K. Inoue, “Visualizing the evolution of
systems and their library dependencies”, in 2014 Second IEEE Working Conference on Software
Visualization, IEEE, 2014, pp. 127–136.

[4] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning and impact of breaking changes
in the Maven repository”, Journal of Systems and Software, vol. 129, pp. 140–158, Jul. 2017, issn:
01641212. doi: 10.1016/j.jss.2016.04.008.

[5] J. Hejderup, M. Beller, and G. Gousios, Prazi: From package-based to precise call-based dependency
network analyses, 2018.

[6] R. Wieringa and A. Moralı, “Technical action research as a validation method in information
systems design science”, in International Conference on Design Science Research in Information
Systems, Springer, 2012, pp. 220–238.

[7] C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry, “A comprehensive study of bloated
dependencies in the maven ecosystem”, arXiv preprint arXiv:2001.07808, 2020.

[8] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci, “Vulnerable open source de-
pendencies: Counting those that matter”, in Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ACM, 2018, p. 42.

[9] C. Gao, L. Bergmans, and X. Schrijen, A survey of property propagation and aggregation, FASTEN
(825328) - Fine-Grained Analysis of Software Ecosystems as Networks, 2019.

[10] D. Poshyvanyk and A. Marcus, “The conceptual coupling metrics for object-oriented systems”, in
2006 22nd IEEE International Conference on Software Maintenance, IEEE, 2006, pp. 469–478.

[11] L. C. Briand, J. W. Daly, and J. K. Wust, “A unified framework for coupling measurement in
object-oriented systems”, IEEE Transactions on software Engineering, vol. 25, no. 1, pp. 91–121,
1999.

[12] L. Briand, P. Devanbu, and W. Melo, “An investigation into coupling measures for c++”, in
Proceedings of the 19th international conference on Software engineering, 1997, pp. 412–421.

[13] J. Eder, G. Kappel, and M. Schrefl, “Coupling and cohesion in object-oriented systems”, Citeseer,
Tech. Rep., 1994.

[14] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version histories to guide software
changes”, IEEE Transactions on Software Engineering, vol. 31, no. 6, pp. 429–445, 2005.

[15] E. B. Allen and T. M. Khoshgoftaar, “Measuring coupling and cohesion: An information-theory
approach”, in Proceedings Sixth International Software Metrics Symposium (Cat. No. PR00403),
IEEE, 1999, pp. 119–127.

[16] M. Hitz and B. Montazeri, Measuring coupling and cohesion in object-oriented systems. Citeseer,
1995.

93

https://doi.org/10.1109/MSR.2019.00060
https://arxiv.org/abs/arXiv:1901.05392v1
https://doi.org/10.1016/j.jss.2016.04.008

BIBLIOGRAPHY

[17] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design”, IEEE Transac-
tions on software engineering, vol. 20, no. 6, pp. 476–493, 1994.

[18] N. I. Churcher and M. J. Shepperd, “Towards a conceptual framework for object oriented software
metrics”, ACM SIGSOFT Software Engineering Notes, vol. 20, no. 2, pp. 69–75, 1995.

[19] W. Li and S. M. Henry, Object-oriented metrics which predict maintainability, 1993.

[20] F. B. Abreu, M. Goulão, and R. Esteves, “Toward the design quality evaluation of object-oriented
software systems”, in Proceedings of the 5th International Conference on Software Quality, Austin,
Texas, USA, 1995, pp. 44–57.

[21] K. Srinivasan and T. Devi, “Software metrics validation methodologies in software engineering”,
International Journal of Software Engineering & Applications, vol. 5, no. 6, p. 87, 2014.

[22] A. Meneely, B. Smith, and L. Williams, “Validating software metrics: A spectrum of philosophies”,
ACM Transactions on Software Engineering and Methodology, vol. 21, no. 4, 2012, issn: 1049331X.
doi: 10.1145/2377656.2377661.

[23] L. C. Briand, S. Morasca, and V. R. Basili, “Property-based software engineering measurement”,
IEEE transactions on software Engineering, vol. 22, no. 1, pp. 68–86, 1996.

[24] F. G. Wilkie and B. A. Kitchenham, “Coupling measures and change ripples in c++ application
software”, Journal of Systems and Software, vol. 52, no. 2-3, pp. 157–164, 2000.

[25] H. Y. Yang, E. Tempero, and R. Berrigan, “Detecting indirect coupling”, in 2005 Australian Soft-
ware Engineering Conference, IEEE, 2005, pp. 212–221.

[26] G. Gui and P. D. Scott, “Ranking reusability of software components using coupling metrics”,
Journal of Systems and Software, vol. 80, no. 9, pp. 1450–1459, 2007.

[27] V. Gupta and J. K. Chhabra, “Package coupling measurement in object-oriented software”, Journal
of computer science and technology, vol. 24, no. 2, pp. 273–283, 2009.

[28] R. Harrison, S. Counsell, and R. Nithi, “Coupling metrics for object-oriented design”, in Proceedings
Fifth International Software Metrics Symposium. Metrics (Cat. No. 98TB100262), IEEE, 1998,
pp. 150–157.

[29] B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring-improving coupling and cohesion of existing
code”, in 11th working conference on reverse engineering, IEEE, 2004, pp. 144–151.

[30] F. Koetter, M. Kochanowski, M. Kintz, B. Kersjes, I. Bogicevic, and S. Wagner, “Assessing soft-
ware quality of agile student projects by data-mining software repositories”, in Proceedings of the
11th International Conference on Computer Supported Education-Volume 2: CSEDU, INSTICC,
SciTePress, 2019, pp. 244–251.

[31] J. Zhao, “Measuring coupling in aspect-oriented systems”, in 10th International Software Metrics
Symposium (Metrics 04), 2004.

[32] C. Gao, L. Bergmans, and X. Schrijen, A survey of property propagation and aggregation, FASTEN
(825328) - Fine-Grained Analysis of Software Ecosystems as Networks, 2019.

[33] E. J. Weyuker, “Evaluating software complexity measures”, IEEE Transactions on Software Engi-
neering, vol. 14, no. 9, pp. 1357–1365, 1988.

[34] S. Raemaekers, A. Van Deursen, and J. Visser, “The maven repository dataset of metrics, changes,
and dependencies”, in IEEE International Working Conference on Mining Software Repositories,
2013, pp. 221–224, isbn: 9781467329361. doi: 10.1109/MSR.2013.6624031.

[35] A. Brito, L. Xavier, A. Hora, and M. T. Valente, “Why and how Java developers break APIs”, 25th
IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER 2018
- Proceedings, vol. 2018-March, no. Dcc, pp. 255–265, 2018. doi: 10.1109/SANER.2018.8330214.
arXiv: 1801.05198.

[36] N. Harrand, A. Benelallam, C. Soto-Valero, O. Barais, and B. Baudry, “Analyzing 2.3 Million
Maven Dependencies to Reveal an Essential Core in APIs”, no. August, 2019. arXiv: 1908.09757.
[Online]. Available: http://arxiv.org/abs/1908.09757.

[37] B. Iooss and A. Saltelli, “Handbook of Uncertainty Quantification”, Handbook of Uncertainty Quan-
tification, pp. 1–20, 2016. doi: 10.1007/978-3-319-11259-6.

[38] B. Everitt and A. Skrondal, The Cambridge dictionary of statistics. Cambridge University Press
Cambridge, 2002, vol. 106.

94

https://doi.org/10.1145/2377656.2377661
https://doi.org/10.1109/MSR.2013.6624031
https://doi.org/10.1109/SANER.2018.8330214
https://arxiv.org/abs/1801.05198
https://arxiv.org/abs/1908.09757
http://arxiv.org/abs/1908.09757
https://doi.org/10.1007/978-3-319-11259-6

BIBLIOGRAPHY

[39] T. Munzner, “A nested model for visualization design and validation”, IEEE Transactions on
Visualization and Computer Graphics, vol. 15, no. 6, pp. 921–928, 2009, issn: 10772626. doi:
10.1109/TVCG.2009.111.

[40] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from benchmark data”, in 2010
IEEE International Conference on Software Maintenance, IEEE, 2010, pp. 1–10.

[41] J. Hejderup, In dependencies we trust: How vulnerable are dependencies in software modules?,
2015.

[42] H. Plate, S. E. Ponta, and A. Sabetta, “Impact assessment for vulnerabilities in open-source soft-
ware libraries”, in 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME), IEEE, 2015, pp. 411–420.

[43] R. G. Kula, C. De Roover, D. M. German, T. Ishio, and K. Inoue, “Modeling Library Dependen-
cies and Updates in Large Software Repository Universes”, 2017. arXiv: 1709.04626. [Online].
Available: http://arxiv.org/abs/1709.04626.

[44] J. Hejderup, A. van Deursen, and G. Gousios, “Software ecosystem call graph for dependency
management”, in 2018 IEEE/ACM 40th International Conference on Software Engineering: New
Ideas and Emerging Technologies Results (ICSE-NIER), IEEE, 2018, pp. 101–104.

[45] T. Vernazza, G. Succi, and G. Granatella, “Defining Metrics for Software Components”, submitted
to ECOOP’2000, vol. XI, no. July 2000, pp. 1–11, 2000.

[46] H. Y. Yang, “Measuring Indirect Coupling”, p. 160, 2010. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.153.4609.

[47] S. Allier, S. Vaucher, B. Dufour, and H. Sahraoui, “Deriving coupling metrics from call graphs”,
Proceedings - 10th IEEE International Working Conference on Source Code Analysis and Manip-
ulation, SCAM 2010, pp. 43–52, 2010. doi: 10.1109/SCAM.2010.25.

[48] S. Almugrin, W. Albattah, and A. Melton, “Using indirect coupling metrics to predict package
maintainability and testability”, Journal of Systems and Software, vol. 121, pp. 298–310, 2016,
issn: 01641212. doi: 10.1016/j.jss.2016.02.024. [Online]. Available: http://dx.doi.org/10.
1016/j.jss.2016.02.024.

[49] S. Almugrin and A. Melton, “Indirect package coupling based on responsibility in an agile, object-
oriented environment”, in 2015 Second International Conference on Trustworthy Systems and Their
Applications, 2015, pp. 110–119. doi: 10.1109/TSA.2015.26.

[50] R. C. Martin, Agile software development: principles, patterns, and practices. Prentice Hall, 2002.

95

https://doi.org/10.1109/TVCG.2009.111
https://arxiv.org/abs/1709.04626
http://arxiv.org/abs/1709.04626
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.4609
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.4609
https://doi.org/10.1109/SCAM.2010.25
https://doi.org/10.1016/j.jss.2016.02.024
http://dx.doi.org/10.1016/j.jss.2016.02.024
http://dx.doi.org/10.1016/j.jss.2016.02.024
https://doi.org/10.1109/TSA.2015.26

Appendix A

Data set

The data set used for the experiments Coupling metrics significance and Benchmarking is displayed in
Table A.1.

Group Id Artifact Id Version

org.apache.flink flink-core 1.11.2

com.puppycrawl.tools checkstyle 8.36.2

com.google.auto auto-common 0.11

edu.stanford.nlp stanford-corenlp 4.0.0

com.squareup.moshi moshi-kotlin 1.10.0

org.neo4j neo4j-collections 4.1.2

org.asynchttpclient async-http-client 2.12.1

org.alluxio alluxio-core-transport 2.3.0

com.github.javaparser javaparser-symbol-solver-logic 3.15.15

io.undertow undertow-benchmarks 2.2.0.Final

org.teavm teavm-core 0.6.1

com.github.jknack handlebars-markdown 4.2.0

ma.glasnost.orika orika-eclipse-tools 1.5.4

fr.inria.gforge.spoon spoon-core 8.2.0

org.jacop jacop 4.7.0

com.google.guava guava 29.0-jre

com.fasterxml.jackson.core jackson-databind 2.11.2

org.clojure clojure 1.10.1

org.apache.logging.log4j log4j-core 2.13.3

javax.servlet javax.servlet-api 4.0.1

org.mockito mockito-core 3.5.11

org.apache.httpcomponents httpclient 4.5.12

org.slf4j slf4j-simple 1.7.30

org.junit.jupiter junit-jupiter-api 5.7.0

org.slf4j slf4j-log4j12 1.7.30

joda-time joda-time 2.10.6

com.squareup.okhttp3 okhttp 4.9.0

mysql mysql-connector-java 8.0.21

org.easymock easymock 4.2

org.hamcrest hamcrest-core 2.2

commons-beanutils commons-beanutils 1.9.4

org.apache.logging.log4j log4j-slf4j-impl 2.13.3

org.springframework spring-core 5.2.9.RELEASE

96

APPENDIX A. DATA SET

org.slf4j jul-to-slf4j 2.0.0-alpha1

org.eclipse.jetty jetty-server 11.0.0.beta1

com.sun.xml.bind jaxb-impl 3.0.0-M4

org.jetbrains.kotlin kotlin-stdlib 1.4.10

org.apache.maven maven-project 3.0-alpha-2

org.apache.maven maven-artifact 3.6.3

org.apache.camel camel-core 3.5.0

org.slf4j jcl-over-slf4j 2.0.0-alpha1

org.reflections reflections 0.9.12

org.apache.ant ant 1.10.8

xerces xercesImpl 2.12.0

org.slf4j log4j-over-slf4j 2.0.0-alpha1

com.sun.xml.bind jaxb-core 3.0.0-M4

org.scala-js scalajs-library 2.12 1.2.0

commons-logging commons-logging 1.2

commons-fileupload commons-fileupload 1.4

org.springframework.boot spring-boot-autoconfigure 2.3.4.RELEASE

org.springframework spring-jdbc 5.2.9.RELEASE

org.springframework spring-webmvc 5.2.9.RELEASE

org.springframework spring-aop 5.2.9.RELEASE

org.springframework spring-orm 5.2.9.RELEASE

org.springframework spring-tx 5.2.9.RELEASE

org.springframework spring-web 5.2.9.RELEASE

org.springframework spring-beans 5.2.9.RELEASE

org.springframework spring-context 5.2.9.RELEASE

org.springframework spring-context-support 5.2.9.RELEASE

com.google.inject guice 4.2.3

com.google.guava guava 29.0-jre

com.google.code.findbugs annotations 3.0.1

ch.qos.logback logback-core 1.3.0-alpha5

ch.qos.logback logback-classic 1.3.0-alpha5

Table A.1: List of libraries from Maven Central used in experiments 2 and 5.

97

	Introduction
	Research questions
	Research method
	Contributions
	Outline

	Background
	Terminology
	Dependency management
	Maven Dependencies

	Coupling
	Metrics validation

	Dependency evaluation model
	Measuring the degree of dependency
	Definition of coupling
	Metrics for direct dependencies
	Metrics for transitive dependencies

	Measuring coverage of the dependency
	Definition of coverage
	Formal definition of the metrics
	Theoretical validation

	Measuring usage per class
	Definition of usage per class
	Formal definition of the metrics
	Theoretical validation

	Proof of Concept
	Analysis technique
	Architecture
	Model of the dependency tree

	Calculating coupling metrics
	Method Invocation Coupling
	Aggregation Coupling
	Transitive Method Invocation Coupling
	Transitive Aggregation Coupling
	Propagation Formula

	Calculating coverage metrics
	Step 1
	Step 2

	Calculating usage per class metrics
	Visualization
	Technologies
	Dependency Tree
	Dependency Table
	Distribution per class

	Experiments
	Experiment 1: Comparison
	Experimental setup
	Results
	Discussion

	Experiment 2: Coupling metrics significance
	Experimental set up
	Results
	Discussion

	Experiment 3: Sensitivity Analysis
	Experimental set up
	Results
	Discussion

	Experiment 4: Expert Interviews
	Experimental set up
	Results
	Discussion

	Experiment 5: Benchmarking
	Experimental set up
	Results
	Discussion

	Discussion
	RQ1: How can we measure the degree of code dependency between two software products with a direct dependency?
	RQ2: How can we measure the degree of code dependency between two software products with a transitive dependency?
	RQ3: How can we measure how much of a dependency is used by a software product?
	RQ4: How can we visualize the metrics designed to model the software dependencies?
	Proof-of-Concept
	Limitations

	Related Work
	Software dependencies
	Summary

	Coupling metrics
	Summary

	Conclusion
	Future work
	The model
	The proof-of-concept

	Bibliography
	Appendix Data set

