

D5.3 SPHINX Security Incident /
Attack Simulator v1
WP5 – Analysis & Decision Making
Version: 1.00

D5.3 SPHINX Security Incident Attack Simulator v1

 2 of 43

Disclaimer

Any dissemination of results reflects only the author's view and the European Commission is not responsible for any
use that may be made of the information it contains.

Copyright message

© SPHINX Consortium, 2020

This deliverable contains original unpublished work except where clearly indicated otherwise. Acknowledgement of

previously published material and of the work of others has been made through appropriate citation, quotation or both.

Reproduction is authorised provided the source is acknowledged.

Document information

Grant Agreement Number 826183 Acronym SPHINX

Full Title A Universal Cyber Security Toolkit for Health-Care Industry

Topic SU-TDS-02-2018 Toolkit for assessing and reducing cyber risks in hospitals

and care centres to protect privacy/data/infrastructures

Funding scheme RIA - Research and Innovation action

Start Date 1stJanuary 2019 Duration 36 months

Project URL http://sphinx-project.eu/

EU Project Officer Reza RAZAVI (CNECT/H/03)

Project Coordinator Dimitris Askounis, National Technical University of Athens - NTUA

Deliverable SPHINX D5.3 - Security Incident - Attack Simulator v1

Work Package WP5 - Analysis and Decision Making

Date of Delivery Contractual M22 Actual 22

Nature R - Report Dissemination Level P - Public

Lead Beneficiary NTUA

Responsible Author Michael Kontoulis Email mkontoulis@epu.ntua.gr

 Phone

Reviewer(s): Ilias Trochidis [ViLabs], Yannis Nikoloudakis [HMU]

Keywords Simulation, cyber-attack vectors

Document History

http://sphinx-project.eu/

D5.3 SPHINX Security Incident Attack Simulator v1

 3 of 43

Version Issue Date Stage Changes Contributor

0.1 16/09/2020 Draft Indicative ToC Sotiris Pelekis (NTUA)

0.2 19/10/2020 Draft Finalised ToC Michael Kontoulis (NTUA) ,

Sotiris Pelekis (NTUA)

0.3 23/9/2020 Draft Content Update Marco Manso (PDMFC)

0.4 05/10/2020 Draft Content Update Waqar Asif (TEC)

0..5 09/10/2020 Draft Content Update Radu Popescu (SIMAVI)

0.6 13/10/2020 Draft Content Update Michael Kontoulis (NTUA),

Sotiris Pelekis (NTUA)

0.7 15/10/2020 Draft Content Consolidation and

submitted for internal review

Michael Kontoulis (NTUA),

Sotiris Pelekis (NTUA)

0.71 18/10/2020 Draft Internal Review 1 Ilias Trochidis (ViLabs)

0.72 27/10/2020 Draft Internal Review 2 Yannis Nikoloudakis (HMU)

0.8 29/10/2020 Pre –

Final

Incorporated Reviewers

Comments

Michael Kontoulis (NTUA),

Sotiris Pelekis (NTUA)

0.9 30/10/2020 Pre -

Final

Quality Control George Doukas (NTUA)

1.00 30/10/2020 Final Final Christos Ntanos (NTUA)

D5.3 SPHINX Security Incident Attack Simulator v1

 4 of 43

Executive Summary
The Security Incident / Attack Simulator constitutes one part of the Attack and Behaviours Simulators (ABS)

component of SPHINX and is responsible for the simulation of the real-life cyber-attacks, described in the use

cases of SPHINX. The purpose of this simulation is to validate the developed functions and evaluate the

effectiveness of the other SPHINX components, by providing an easy way to reproduce these attacks.

This document describes in detail the state-of-the-art of cyber-attack testing, the purpose and the methodology

for the implementation of the Security Incident / Attack Simulator component, and its relation with the other

relative SPHINX deliverables and tasks. In addition, an overview of the currently selected tools that shall be

used for the simulation processes is provided.

The next iteration of this deliverable D5.8: Security Incident/Attack Simulator v2, shall incorporate refinements

and updates of the Attack Simulator component and the actual implementation set-ups of the selected cyber-

attacks.

D5.3 SPHINX Security Incident Attack Simulator v1

 5 of 43

Contents

Executive Summary ... 4

1 Introduction .. 10

1.1 Purpose and Scope .. 10

1.2 Structure of the deliverable .. 10

1.3 Relation to other WPs and Tasks ... 11

2 Overview of Security Testing and Cyber-Attacks .. 12

2.1 Security Testing Methodology ... 12

2.1.1 Penetration Testing ... 12

2.1.2 Red Teaming .. 13

2.1.3 Purple Teaming ... 13

2.1.4 Bug Hunting ... 13

2.1.5 Automated Red Teaming .. 14

2.1.6 Followed approach .. 14

2.2 Usual phases and methods of attacks ... 14

2.2.1 Survey and enumeration ... 15

2.2.2 Delivery ... 16

2.2.3 Exploitation ... 16

2.2.4 Post Exploitation ... 17

2.3 Varieties of Attack vectors... 17

2.3.1 Social Engineering ... 17

2.3.2 Credentials Stuffing ... 18

2.3.3 Network Attacks .. 19

2.3.4 Brute Force Attacks ... 21

2.3.5 Brute Force Attack versus Credential Stuffing .. 21

3 Capability Assessment of SPHINX Modules .. 23

3.1.1 Data Traffic Monitoring ... 23

3.1.2 Anomaly Detection .. 23

3.1.3 SIEM 24

3.1.4 Homomorphic Encryption ... 24

3.1.5 Forensic Data Collection Engine (FDCE) .. 25

4 Overview of Security Incident/Attack Simulator ... 26

4.1 Design Principles .. 26

4.1.1 Stakeholders Requirements .. 26

4.1.2 Conformance with the SPHINX Use Cases .. 26

D5.3 SPHINX Security Incident Attack Simulator v1

 6 of 43

4.2 Experimentation Environment .. 32

4.2.1 Behaviour Simulator .. 33

4.2.2 The SPHINX Sandbox ... 34

4.2.3 Remote Healthcare Monitoring .. 34

4.3 Technical Details .. 36

4.3.1 Flask Application ... 37

4.3.2 Local Malware Execution .. 39

4.3.3 Abnormal Parametrisation of the Behaviour Simulator ... 40

5 Summary & Next Steps .. 42

6 References .. 43

D5.3 SPHINX Security Incident Attack Simulator v1

 7 of 43

Table of Figures

Figure 1: Progression of a SYN flood ... 20

Figure 2 High level experimentation environment architecture ... 33

Figure 3 – Simulated and Emulated Attacks for the Remote Healthcare Environment Scenario 35

Figure 4 ABS Component Diagram .. 36

Figure 5 High level experimentation environment architecture with Attack Simulator Modules 37

Figure 6: The ABS page providing the GUI for DoS deployment ... 38

Figure 7: Example of Docker-based network topology for DoS deployment through the ABS. 38

Figure 8: Overwhelming the resources of a receiving docker container during a UDP flood deployed by the ABS

component .. 39

D5.3 SPHINX Security Incident Attack Simulator v1

 8 of 43

Table of Tables

Table 1 Functional Requirements of ABS module ... 26

Table 2 Possible exploitation of EDGE testbed .. 35

Table 3 List of collected malware .. 40

D5.3 SPHINX Security Incident Attack Simulator v1

 9 of 43

Table of Abbreviations

OSINT Open-source intelligence

ABS Attack and Behaviour Simulator

NFV Network Function Virtualisation

C&C Command and Control

C2C Client to Client

IDS Intrusion Detection System

MFA Multi Factor Authentication

DoS Denial of Service

DDoS Distributed Denial of Service

IT Information Technology

SNMP Simple network management protocol

IP Internet protocol address

ICMP Internet control message protocol

TCP Transmission Control Protocol

SMTP Simple Mail Transfer Protocol

FTP File Transfer Protocol

DNS Domain Name Service

USB Universal Serial Bus

ID Identifier

D5.3 SPHINX Security Incident Attack Simulator v1

 10 of 43

1 Introduction

1.1 Purpose and Scope

This document reports on the work and research conducted throughout the Task 5.3 of the SPHINX project, it

provides an overview of the current state of security testing and explains the chosen methodology with which

the simulation of cyber-attacks shall be performed within SPHINX.

With every passing day the need for protecting networks from cyber-attacks becomes clearer and clearer, even

to the users most unfamiliar with the IT environments. In particular, cyber-attacks in critical infrastructures,

such as hospitals, become highly publicised since they can even result to deaths,. 1 The potential impact from a

cyber-attack in such health-care environments, highlights the necessity for the development of security

systems, tailored to the specific requirements of these environments. The SPHINX project aims to create an

additional defence layer that will work in tandem with existing hospital infrastructures and cyber-security

defences, in order to provide foresight on potential attacks and ways to mitigate them, should they be

successfully realised.

Obviously, SPHINX components cannot be tested in the actual real network of the pilots, since they are critical

systems currently used in a production environment. As such, testing needs to be performed in other simulated

environments that imitate, as realistically as possible, the original ones. This replication takes place in various

other SPHINX modules as explained in the following sections of this document.

Task 5.3 is responsible for creating realistic cyber-attacks that will be used in those emulated environments in

order to assess their efficacy. In this document, we will:

• Explain the different types of security testing and some useful tools for conducting them.

• Describe the nature of cyber-attacks, their phases and the various vectors of attacks used.

• Provide an initial approach of what cyber-attack schemes are needed, to test selected SPHINX use

cases.

At the time of authorship of this document, the experimentation environment is not yet finalised and therefore

the actual implementation of the selected cyber-attacks is not analysed in detail. The majority of such attacks

depend heavily on the architecture of the testing environment, and thus cannot be presented separately.

Consequently, this deliverable focuses mainly on the methodology, and less on the actual implementation,

which will be covered in the next iteration of this deliverable which will include the demonstrator.

1.2 Structure of the deliverable

This document is structured as follows: Section 1 presents the purpose and the scope of the SPHINX Behaviour

Emulation/ Experimentation environment and the relevant submodules of the respective ABS component, as

well as its relation to other tasks; Section 2 presents an overview of security testing, the different ways it can

be implemented and a short description of their strengths and their differences compared to our approach and

a detailed overview of the lifecycle of a cyberattack and the various existing attack vectors; Section 3, describes

which SPHINX modules are assessed by the ABS component and how; Section 4, contains the design principles

of the security incident attack simulator, its architecture and its current state.

1 https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html

D5.3 SPHINX Security Incident Attack Simulator v1

 11 of 43

1.3 Relation to other WPs and Tasks

This document, along with T5.3, is intrinsically linked to WP3 and WP4, as the majority of the components

presented in them, are expected to get tested inside emulated environment provided by the ABS component.

More specifically, it is tightly related to the tasks that partake in network inspections, such as Data Traffic

Monitoring and Anomaly Detection (T4.1) and Homomorphic Encryption (T4.6), as they are the SPHINX

components that should primarily be tested by the attack simulator. Furthermore, D5.3 is also linked to the

SPHINX Sandbox component of T4.2, as it is able to provide the required isolation properties for the safe

implementation of the simulations. Finally, the work described in this deliverable takes advantage of the

foundations established in T5.4, whose technical outcomes also constitute submodules of the ABS component,

which constitutes one of the modules on which cyber-attacks can be run against. This document is also

connected to the SIEM of task Τ4.5, which is also able to detect attacks on the system. Finally, it is linked to the

SPHINX use cases of the deliverables D2.4 and D2.7 which guide the focus of the testing.

D5.3 SPHINX Security Incident Attack Simulator v1

 12 of 43

2 Overview of Security Testing and Cyber-Attacks

2.1 Security Testing Methodology
The usual procedure used to ensure that a feature or a module works correctly usually involves checking that a

specific task outputs the expected results. Such kind of testing is not sufficient for evaluating the integrity of a

system against potential attackers. Attackers utilise cracks in the system, things that inherently go unnoticed

by their creators. This includes using both unknown vulnerabilities and intentionally misusing legitimate

features in ways the creators of the system cannot anticipate. This poses an inherent problem with security

testing because it makes the conventional testing techniques much less effective. While it is still useful and can

definitely protect against the most common misuses and architectural errors, new forms of testing are needed

to cover the holes that conventional testing leaves. This testing aims to examine the behaviour of the system

under conditions that are similar to actual attacks and observe the results. The intensity and exact purpose of

these simulated attacks depend heavily on the type of security testing that is being utilised.

During security testing, testers take on the role of attackers and try to replicate the steps real attackers would

take in order to penetrate the system. Merely asking attackers to gain access to the system, or steal information

is not enough. The task should correspond to what exactly we want to test, whether it is reading encrypted

files, shutting down live systems, impersonating clients etc. Another common purpose of a security testing is

to determine how easy it is to acquire access to a system.

Another factor that needs to be determined before starting a test, is the amount of information given to the

testers. In addition, it cannot be assumed that an attacker will have minimal information about the systems..

As such it is important to know beforehand what information the testing teams needs to have. A common

solution is to simply give as much information as possible to the testing team, however that heavily depends

on the kind of security test that will be conducted.

Similarly, depending on the kind of testing, access can and should be given to the testing team beforehand, if

needed. This can include access to both the physical testing site or even a network. Whether access should be

given at all, will also depend on what exactly is the purpose of the test.

Another choice to be made, is the amount of resources the attackers should have access to. This is correlated

with the type of attack the administrators want to test their system against. If they anticipate that their system

will only be a target for inexperienced attackers who will not have many resources or time and will only have

access to the most common resources, then the testers need to stay within such limited parameters. If, on the

other hand, testing needs to encompass any and all kinds of attackers, testers need more time and more

resources in order to cover all the different scenarios.

This kind of testing produces some issues, including ethical concerns. That is why it is imperative that the testing

team and the administrators, have established clear rules about what is allowed and what is not. This can be

an especially big issue, concerning social engineering attacks. Additionally, security testing, in general, is often

employed at improper stages of the developmental lifecycle, hampering its effectiveness. Implementing

security testing too late in the development lifecycle of a system, may reveal fundamental inconsistencies

within the system itself or/and its design, which may affect critically the implementation of the entire system.

That is why this kind of security testing should not be held as a panacea and should not be the only measure in

place to ensure the security of a system.

2.1.1 Penetration Testing
Penetration testing is one the most common forms of security testing employed in order to ensure the security

of a system or application. It is done with the full knowledge of those responsible of the systems with the testers

D5.3 SPHINX Security Incident Attack Simulator v1

 13 of 43

being in close communication about their activities. This is done both through actual verbal or written

communication and through the manner the testing is concluded. Penetration testing, usually, is done as

“loudly” as possible, without regarding whether the testers actions make them visible to the systems

administrators, since they already know about it [1]. Although the people responsible for the security of the

system, often called blue team, should be aware of most of the actions the testers take, their response, no

matter if it aims to respond or mitigate their actions, isn’t relevant to penetration testing. Their job is to merely

observe the state of the system during the testing, try to ensure that testing does not go out of scope and finally

give the ok for the attacker to conduct some more impactful attacks.[2]

Penetration testing often has a particular scope with specific parameters aiming usually to find specific

networks or applications that are vulnerable to attackers in some way.

2.1.2 Red Teaming
Red teaming is in many ways similar to penetration regarding its scope and objectives, however it differs in

some major ways. Whereas in penetration testing the focus is mainly on the system itself and its vulnerabilities,

red teaming aims to test the response of the organisation as a whole. During a red team exercise, those

responsible for the system, the blue team, may not even be aware of the exercise happening, or they will have

as little information as possible. In addition, the methods and attacks employed by the red team, will aim to be

identical to those used by real life attacks. That means, they will focus a lot more on not being detected and

trying to find gaps in the general defence strategy of the organisation. On the other hand, the blue team will

respond exactly as it would if a real attack took place, since they might not even be able to tell the difference

[3].

After the exercise the blue team should report any indicators of compromise to the read team in order to create

a fleshed-out report. Finally, the red team will share its tactics and techniques along with a complete timeline

with all the events and will explain the techniques of defending against such tactics in the future.

2.1.3 Purple Teaming
The process of purple teaming involves both the aforementioned red teams and blue teams working in close

collaboration and knowledge transfer throughout the whole period of testing, instead of only communicating

at the end [4].

Purple teaming can be conducted as an one off kind of testing with specific targets more similar to red team

exercises or to view purple teaming as a conceptual framework, where cyber-security issues are constantly

tested and solved, potentially solving the issue of using security testing only on the end of a systems

development lifecycle. Additionally, research on the opinions of security professionals has shown that purple

teaming is a generally viewed positively but requires the participation of both experienced red team personnel

and a strong collaborative effort between the managerial personnel of an organization.

2.1.4 Bug Hunting
Another method of conducting security testing in a more ad hoc manner, which has taken off in the last years

is bug hunting. The bug bounty programs, can be run either internally or managed by third parties. These

programs offer monetary rewards, in exchange for detailed reports on issues, bugs or vulnerabilities. The

rewards are lucrative enough that many professionals, choose to take up bug hunting as their occupation.

Programs like that have an edge over other more conventional methods since they attract a large number of

participants each with different knowledge and skillset, which results in high numbers of success. That is

probably why organisations that host or participate in such programs, do not only include small companies, but

also huge technology companies and even federal agencies. [5]

D5.3 SPHINX Security Incident Attack Simulator v1

 14 of 43

Unfortunately, they also have certain issues as research shows. Lack of trust has proven to be a reoccurring

problem that security professionals cite as a major issue. They do not want to report specific bug, for fear of

reprisal and getting tangled up in lengthy legal battles. Such, bugs may include those that are often found to be

out of scope of certain programs. In the case of reporting, issues also appear when multiple participants report

the same bug, leading to valuable effort being wasted since only the first one is rewarded usually, but there are

steps organisation can take to mitigate such instances.

Additionally, some organisations suffer from similar trust issues themselves and prefer to participate and

organise private bug bounty programs. This blurs the difference between a private bug bounty program and a

traditional penetration testing.

Another issue is that experienced security professionals, tend to aggregate their effort to those programs with

the highest monetary compensation, leaving the smaller companies with young professionals who are still

learning their way around the trade, potentially lowering the effectiveness of such a system.

2.1.5 Automated Red Teaming
Extensive research has been done concerning the automation of the aforementioned Red Teaming process.

Caldera2 is an intelligent framework that can be used in order to automate the most basic, routine attacks. This

specific framework does not mean to replace traditional cyber-security techniques but to supplement them by

simplifying the most common and resource intensive tasks. This particular framework depends on two different

systems the Virtual Red Team System and contains the necessary tools in order to simulate an adversary and

the Logic for Advanced Virtual Adversaries, which forms the logical model that chooses the next actions.

2.1.6 Followed approach
The ABS implementation is planned to loosely follow many of the previously methods of security testing. The

main differences arise from the fact that usually security testing targets the defence of the system itself

however in the purpose of this task is to create valid chains of evidence through the use of actual cyber-attacks.

As such, there is no intention of using the exact same means that are deployed in the context of common

security testing. Detailed and technical specifications about out approach can be found in chapter 4.2 of this

deliverable.

Of course, some of the selected tools are similar to the ones used in traditional security testing, such as port

scanning tools (e.g. nmap) or malicious code (e.g. worms), but ABS implementation shall also include some

additional techniques. These techniques shall take advantage of the traffic generation tools used and developed

by the behaviour simulator to either simulate the behaviour of an illegitimate user using a legitimate account

or to simulate the behaviour of malicious code, without actually using the malicious code itself. In addition,

many of the scenarios that the attack simulator will orchestrate, will be designed in such a way that the attack

shall always succeed or always fail.

2.2 Usual phases and methods of attacks
Cyber-attacks can and do take many forms amid different steps in order to reach their eventual goals. While

there exists a general consensus on the various ways each type of cyber-attack can manifest, the exact

explanation of how or what happened does not exist. Every case is unique since every attack focuses on

different things and follows different trails. This diversity renders the whole process of understanding difficult

since different experts interpretate the same things in different ways. The following subsections provide a

generic and clear analysis that outlines the usual process of a cyber-attack [6].

2 https://github.com/mitre/caldera

https://github.com/mitre/caldera

D5.3 SPHINX Security Incident Attack Simulator v1

 15 of 43

2.2.1 Survey and enumeration
Enumeration is often the first step an attacker (real or simulated) will take when targeting a system. It involves

gathering any and all available information about the system, technical information, about its users and

administrators. Enumeration can be split in two different distinct forms. In Passive enumeration - where there

is minimal, if any, interaction with the target system - the information is mainly gathered from an outside source

while in the case of Active enumeration the information is acquired by interacting with the target system.

Passive

An important part of passive enumeration depends on Open-source intelligence (OSINT) [7]. OSINT depends on

data gathered from publicly available sources. Depending on the target system these data can come from the

following sources:

o Traditional Media

This can include newspapers, television and radio.

o Internet

This type includes blogs, forums, social media and other online publications.

o Public Government Data

Publicly available reports, hearings, and websites.

o Academic and professional publications

Publications from journal, conference hearings, academic papers, and dissertations.

o Commercial Data

Assessment from private companies, private datasets, and even commercial imagery. Specifically

information about companies' websites, employees full names, e-mails, compromised accounts, roles

and utilised software, can be found using such tools like haveibeenpwned3, wappalyzer4, theHarvester5

and WhatWeb6.

o Other grey literature

Other forms of grey literature such as whitepapers, technical reports or patents.

While not all those sources will always be available or even useful to attackers, the possibility of useful

information being found always exists. For instance, Satellite imagery can offer valuable information about the

physical space of an organisation to potential attackers. Moreover, information from social media, public or

private dataset with stolen credential can also be used to breach passwords. Finally, technical reports also

provide insight to potential vulnerabilities, especially those regarding older non upgraded systems.

Active

Active enumeration on the other hand is focused more on specific information. That is, information about the

system that imply the existence of one or more potential attack vectors, which can then be used to actually

exploit the system. An important method for active enumeration is port scanning. There are many different

tools that allow the user to automate the port scanning progress, each with different output. Port scanning is

3 https://haveibeenpwned.com/
4 https://www.wappalyzer.com/
5 https://github.com/laramies/theHarvester
6 https://github.com/urbanadventurer/WhatWeb

D5.3 SPHINX Security Incident Attack Simulator v1

 16 of 43

done significantly different in the context of a penetration test and a real red team attack. Some of the

information active enumeration is interested in finding is the following:

o Usernames, Group names

o Hostnames

o IP tables and routing tables

o Open ports and network services

o Hidden directories

o Service settings and Audit configurations

o Application and banners

o SNMP and DNS Details

o Ciphers

o Other vulnerabilities

Advanced scanners, can even with the help of a basic scan, produce extensive reports with many possible

existing vulnerabilities, if they do exist.

There is a large number of different steps, defenders can take to counter and disrupt scans, but care must be

taken since many of those can harm the legitimate use of the network and greatly increase its upkeep and

maintenance.

Some representative and popular scanning tools that are both used for attack (active web and network

scanning) and defence (penetration testing and vulnerability assessments) purposes are NMAP7, Nessus8 and

OpenVAS9 vulnerability scanners, Nikto10 and DirBuster11 tool which comes with the Kali Linux distribution of

Linux.

2.2.2 Delivery
The delivery step involves the method of transferring and installing the malware to the target system.

Depending on the attack the delivery, can differ significantly. The most common cases refer to:

• sending an email with a malware infested attachment and waiting for someone to open it.

• using infected usb sticks.

• using stolen credentials or credentials surfing and gaining some form of “legitimate” access to the

system.

• utilising vulnerabilities found in the system during the previous steps of attack

The delivery step is not applicable to some attacks, such as DoS and DDoS [8] attacks, since the producing

exorbitant amount of traffic is in and by itself the attack.

2.2.3 Exploitation
At exploitation step, the attackers have already acquired some kind of access to the system. Using existing

privileges, the attackers search for vulnerabilities in an effort to escalate the attack and subsequently make

changes to the operation of the system, steal information or simply disrupting the operation of the system. In

most of the cases, acquiring access to a specific system with a specific role is not enough, so they focus on

upgrading their roles or gain access to every other connected system.

7 https://nmap.org/
8 https://www.tenable.com/products/nessus/nessus-essentials
9 https://www.openvas.org/
10 https://github.com/sullo/nikto
11 https://tools.kali.org/web-applications/dirbuster

D5.3 SPHINX Security Incident Attack Simulator v1

 17 of 43

2.2.4 Post Exploitation
At this step, attackers after having completed their immediate objectives either they end the attack or they try

to create a backdoor to the system which shall enable them to regain access at any time. In the latter case, they

try to erase as many traces of the attack as possible by following techniques such as erasing logs, spoofing

information etc. in order to hinder the forensic process and cover their tracks.

2.3 Varieties of Attack vectors

2.3.1 Social Engineering
Social engineering is a non-technical strategy that cyber-attackers use to gain access to information. Attackers

heavily rely on human interaction which is exploited by tricking people into breaking standard security

practices. The success of such attacks depends on the ability of the attacker to manipulate a victim into

performing certain actions that allow her/him to access confidential information. Currently, social engineering

attacks are recognized as one of the greatest security threats faced by organizations. These attacks differ from

conventional hacking tactics in a way that they do not necessarily involve compromising any software or system,

rather they allow attackers to get legitimate and authorized access to confidential information. Social engineers

tend to appeal to vanity, authority and greed. They are known to rely on the natural helpfulness of people or

the personality traits of an individual. They convince people to open email attachments infected with malware,

persuade unsuspecting individuals to divulge sensitive information or even scare people into installing

malwares. There are multiple types of social engineering attacks. The most common ones are being illustrated

in the following sections.

2.3.1.1 Baiting

Baiting relies on a careful analysis and background study of a domain. It involves an attacker leaving a malware

infected device, such as a USB flash drive or CD in a place where someone is likely to find it. The success of

baiting hinges on the notion that the person who finds it will load it into their computer. This will automatically

install a malware into the victim’s system thus allowing the attacker to get control.

2.3.1.2 Phishing

Phishing occurs when an adversary communicates with the victim portraying as a legitimate entity. The victim

is convinced through the fraudulent communication to install malware on their device or share personal,

business and/or financial information. Among various communication mediums, email is the most popular

mode for initiating a phishing attack. Other mediums include, chat applications, social media, phone calls or

spoofed websites. Some attacks also initiate charity pleas after natural disasters or tragedies.

2.3.1.3 Spear phishing

Spear phishing is a targeted type of phishing attack that focuses on specific individuals. An attacker gets hold

of personal information that is specific to an individual and then uses it to gain trust and appear authentic. Most

of the times, this information is taken from social network platforms by inspecting the victim’s accounts. This

personalized attack tactic leads to a higher success rate for tricking victims into granting personal information.

2.3.1.4 Pretexting

Pretexting involves fabrication of false circumstances. These force the victim into providing vital sensitive

information to the attacker. For instance, an attacker pretends to be someone from the IT department and due

to potential issue with a faulty system software, requires remote access of the system.

D5.3 SPHINX Security Incident Attack Simulator v1

 18 of 43

2.3.1.5 Quid pro quo

In such an attack, the attacker requests private information from the victim in exchange for something

desirable. This could include some monitory compensation in return. For instance, an attacker offers a free gift

in exchange of some login credentials.

2.3.1.6 Tailgating

Tailgating is a form of physical social engineering. This entails the occurrence of an event where an unauthorized

individual follows an authorized individual into an otherwise secure location. The goal of tailgating is to obtain

confidential information or valuable property. This can take place in a multitude of ways, by either asking

someone to hold the door open because they forgot their access cards or asking to borrow someone’s phone

or laptop to complete an urgent task and instead install a malware to steal data.

2.3.2 Credentials Stuffing
Credential stuffing refers to an attack methodology where attackers use lists of compromised user credentials.

These attacks are based on the fact that users tend to reuse usernames and passwords across multiple

platforms thus a compromised set of credentials are reused using bots into multiple platforms. It has been

observed that around 0.1%12 of breached credentials would work successfully in other services. Credential

stuffing is known to succeed due to two main reasons. The first is the technological advancement which enables

attackers to use bots for the purpose of attempting simultaneous access to different platforms, using differently

masked IP addresses. The second is the broad availability of massive databases of breached credentials.

Credential stuffing can be avoided with the help of careful monitoring and analysis of the working environment.

A few well-known mitigation approaches include the ones presented in the following sections.

2.3.2.1 Multi-Factor Authentication (MFA)

This approach ensures the identity of an individual with the use of some pre-known contact credentials. MFA

mechanism sends an access token to a registered email address or a mobile phone to authenticate the

legitimacy of the user. Attackers or its bots are unable to provide physical authentication thus rendering the

MFA method a successful way of preventing credential stuffing.

2.3.2.2 CAPTCHA

As mentioned earlier, most credential stuffing approaches rely on the use of bots to ensure the harvested

credentials can be tested onto multiple platforms. The introduction of CAPTCHA forces entities to perform

certain actions that help prove them being human. Unlike MPA, CAPTCHA can be bypassed with the help of

headless browsers.

2.3.2.3 Device Fingerprinting

A device fingerprint involves keeping track of parameters associated with a communication. These involve

keeping logs of the operating system, language, browser, time zone and user agents that are being used to

establish communication. If the same fingerprint is repeatedly being used, then it is likely that a credential

stuffing attack is being exercised.

12 https://owasp.org/www-community/attacks/Credential_stuffing

D5.3 SPHINX Security Incident Attack Simulator v1

 19 of 43

2.3.2.4 IP blacklisting

Attackers tend to have a limited set of IP addresses that are being used to log into multiple systems. If the same

set of IP addresses are being used to login to multiple accounts, then there is a possibility of a credential stuffing

attack thus initiating the need for IP blacklisting.

2.3.2.5 Email addresses and user IDs

Credential stuffing heavily relies on the victim using the same credentials in multiple platforms. This is easily

exploitable if the platforms accept email addresses as account IDs. In order to reduce credential stuffing, a

simple yet affective approach is the use of an account ID different from an email address. This reduces the

possibility of credential stuffing.

2.3.3 Network Attacks
A network attack is an attempt to get unauthorized access to a network. This can be done with either a passive

or an active attack with the intention of stealing data or performing other malicious activities. In case of a

passive attack, the intruder intends to monitor or steal sensitive information without making any changes to

the data that is being relayed through the network. In case of an active attack, the intruder affects the system

by altering the ongoing communication. This is done either by deleting content, encrypting information or

simply by adding noise to the relayed message. In both these cases, attackers force their way into a corporate

network and gain access to internal systems. Once inside, they complement their attack with other attacks for

instance, malware dissemination or vulnerability exploitation. There are multiple types of network attacks

including the ones that are described in the following subsections.

2.3.3.1 Unauthorized access

Unauthorized access refers to attacks which harvest over weak credentials or compromised accounts. An

attacker accesses an account without proper permissions when the victim has used a weak password, the

account lacks protection against social engineering attacks or was compromised at an earlier instance and the

victim is still using the same credentials.

2.3.3.2 Denial-Of-Service Attack (DoS)

A Denial-Of-Service attack is one of the most powerful weapons on the internet. It targets online services and

websites. The aim behind a DDoS attack is to overwhelm the network resources. In a DoS attack, adversaries

exploit the limitation in capability of an online platform for handling user requests. When the service is

overwhelmed with more requests then it can handle, it is consequently brought down. The incoming traffic can

consist of connection requests or fake messages. A DDoS attack is usually combined with an extortion threat of

a more devastating attack unless the company pays a requested ransom.

As already mentioned, a DoS attack requires overwhelming the resources of a system. This is usually achieved

with the help of Botnets. This variation of DoS is also known as Distributed Denial of Service (DDoS). Botnets

comprise of a network of remotely controlled hacked computer bots. Bots are configured to form a network

and they are often referred to as zombie computers. These are used to flood the targeted website, server or

network with more requests/messages than what it can accommodate. Botnets also make use of IP spoofing

[9] in order to mask/ hide the origin of the flood of requests. With the emergence of the Internet of Things,

DDoS attacks have become an even a bigger problem. The possibility of having low end IoT devices that can

communicate over the internet with a minimalistic architecture allows adversaries to exploit these devices and

their security features. These devices allow adversaries to have a set of low-end devices which can all be tuned

to send messages to the target resource. Some of the most common DDoS attack types include:

D5.3 SPHINX Security Incident Attack Simulator v1

 20 of 43

• UDP Flood

A UDP flood targets the incoming buffer of a target service. An attacker floods the target with User Datagram

Protocol (UDP) packets. The goal of the attack is to flood the random ports of a remote host. This forces the

applications running on the victim’s system to repeatedly check the attacked port. As there is no legitimate

message being sent to the target port, the attacker receives a ICMP ‘Destination Unreachable’ packet. As a

result, this overwhelms the system resources and thus renders it unavailable to legitimate users.

• ICMP (Ping) Flood

ICMP flood is similar to a UDP flood. The main difference here is the type of message request. In an ICMP flood,

the attacker overwhelms the target resource with an ICMP Echo request otherwise known as a ping request.

The attacker repeatedly sends ping requests to the victim’s system without waiting for a reply. This is also

possible with the help of Botnets where multiple bots are directed toward the victim system to send messages.

This attack consumes both incoming and outgoing bandwidth since the victim server will often attempt to

respond with an Echo reply packet thus resulting in system slowdown.

• SYN Flood

A SYN Flood [10] exploits the underlying procedures of the commonly utilised TCP protocol. A TCP connection

works with a three way handshake [11] where a SYN request is initiated to show the intent of establishing a

connection. This SYN request needs to be answered with a SYN-ACK response from the host and then confirmed

by an ACK response from the requester. In a SYN Flood, the attacker interrupts this handshake to pretend that

the connection is not being established. In order to achieve this confusion, the attacker sends multiple SYN

requests and then does not respond with an ACK message after receiving the SYN-ACK. To make it more

problematic, the adversary sends multiple SYN messages from a spoofed pool of IP addresses. The victim system

on the other hand, keeps on waiting for an acknowledgement for each of the request until the connection can

time out. During this time, the victim cannot close down the connection by sending an RST packet and therefore

the connection stays open. Before the connection can time out, another SYN packet will arrive. This leaves an

increasingly large number of connections half-open. Eventually, as the victim server’s connection overflow

tables fill, service to legitimate clients will be denied, and the server may even malfunction or crash.

Figure 1: Progression of a SYN flood

• Ping of Death

A Ping Of Death (POD) attack [12] involves an adversary sending multiple ping requests to a victim system. An

IP packet length is limited to 65,535 bytes which includes the header. However, the Data Link Layer is bounded

by the maximum frame size which is far less than the packet length. For instance, an Ethernet network is

bounded by 1500 bytes. In this case, a large IP packet is broken down into smaller data frames which are then

D5.3 SPHINX Security Incident Attack Simulator v1

 21 of 43

combined together at the receiving end. The receiver reassembles all IP fragments to complete the IP packet.

In case of the POD attack the received IP packets are larger than 65,535 bytes and this results in an overflow of

the memory buffer at the receiving end thus causing a denial of service for legitimate packets.

• Slowloris attack

Slowloris13 is a targeted attack. It involves an attacker taking down a particular web service by targeting

messages only to a particular port. The attacker achieves that by holding as many open connections to this

specific port of the targeted web server as possible. The attacker then occupies these connections by sending

only partial requests. Slowloris attacks constantly send more HTTP headers and avoid completing the requests.

The victim keeps these false connections open in the hope of getting messages. This as a result overflows the

connection pool and leads to denial of service for additional requests from legitimate users.

• HTTP Flood

In an HTTP flood, the attacker exploits the HTTP GET and POST mechanism to occupy unnecessary resources

from the victim’s end point. An HTTP flood does not use malformed packets. Instead, the attacker uses less

bandwidth to bring down the system. The attacker forces the victim to allocate maximum resources possible

for the response of a single request. This can be achieved by initiating a small but tedious request.

2.3.4 Brute Force Attacks
A brute force attack refers to the use of a trial and error approach to get the correct login information.

Adversaries tend to use all possible combinations to guess the correct credentials. A brute force attack is

complementary to social engineering which allows adversaries to have an idea of potential credentials that

would work on the targeted platforms. Attackers use brute force attacks for a multitude of reasons including

but not limited to collecting activity data, stealing personal data and valuables, spreading malware, hijacking a

system or ruining a website’s reputation. There are multiple types of brute force attacks including:

• Simple brute force attack

Adversaries try to logically guess user credentials without the aid of any external source. This approach works

on extremely simple scenarios where passwords and pins are as simple as guest12345. Many IoT devices that

are out there use simple login credentials. These are usually id:admin and password:admin. The intention of

manufacturers is that users alter these credentials as soon as they first get the device, however due to lack of

knowledge, the second tend to leave them unchanged. As a result, adversaries use these credentials to launch

a simple brute force attack.

• Dictionary attack

A dictionary attack is the most basic tool for a brute force attack. In such an attack, the adversary uses a list of

possible passwords clearly marked with ranks giving them an idea of what credentials could work. This list

includes the most common passwords along with some information about the environment. Thus, it gives the

attacker a better chance of penetrating the system.

2.3.5 Brute Force Attack versus Credential Stuffing
Brute force attacks are very similar to credential stuffing. However, there are several important differences:

13 https://github.com/gkbrk/slowloris

D5.3 SPHINX Security Incident Attack Simulator v1

 22 of 43

• A brute force attack tries to guess the credentials of an individual without any associated context. The

attacker uses random strings, common passwords or dictionaries of common phrases.

• Brute force attacks heavily depend on the use of simple, guessable passwords. If the user uses long,

complex passwords, then the possibility of a successful attack is lower.

• Credential stuffing relies on having information from previous breaches. This increases the success rate

of credential stuffing.

Well known password dictionaries, that can be used for brute-force attacks and credential stuffing, can be

found as open source software14 15.

14 https://github.com/philipperemy/tensorflow-1.4-billion-password-analysis
15 https://github.com/topics/password-dictionaries

D5.3 SPHINX Security Incident Attack Simulator v1

 23 of 43

3 Capability Assessment of SPHINX Modules
This section provides a brief presentation of the main SPHINX components that are closely linked with the ABS

component and specifically the Incident/Attack Simulations. Within this task, we will create network traffic

abnormalities that will need to be detected by the following components.

3.1.1 Data Traffic Monitoring
DTM is a rule-based intrusion detection system. Following, some representative examples of threats that the

DTM component can detect are listed:

• Connections to and from IPs with poor reputation or that are known to be hostile or compromised (bot

command & control server, spam network).

• DoS & DDoS attacks targeted to hospital network

• DDoS using computers in the hospital network to attack remote targets

• DNS protocol threats (ie DNS Reply Sinkhole, Cache Poisoning Attempts, Non-Compliant DNS traffic on

DNS port, DNS queries for suspect domains)

• Exploits based on known network communication (ie Possible Internet Explorer VBscript failure to

handle error case information disclosure CVE-2014-6332 Common Construct, CVE-2015-0235 Exim

Buffer Overflow Attempt (HELO), D-link DI604 Known Malicious Router DNS Change GET Request,

ossible Firefox PDF.js Same-Origin-Bypass CVE-2015-4495 M2)

• FTP threats (ie PASS overflow attempt, RMDIR overflow attempt, FTP large SYST command, FTP CWD

~root attempt, FTP Outbound Java Downloading jar over FTP)

• IMAP threats (ie IMAP rename overflow attempt, IMAP authenticate overflow attempt, IMAP

unsubscribe overflow attempt)

• Malware based on known network communication (ie Android Trojan MSO.PJApps, Android Trojan

Fake10086, Android/Smspacem CnC, Android.Walkinwat)

• Netbios threats (ie Microsoft Windows NETAPI Stack Overflow Inbound - MS08-067, Microsoft

Windows SMB Client Race Condition Remote Code Execution, Microsoft Windows Server 2003 Active

Directory Pre-Auth BROWSER ELECTION Heap Overflow Attempt, SMB CoGetInstanceFromFile little

endian attempt, DCERPC DCOM ExecuteShellCommand Call - Likely Lateral Movement)

• Usage of torrent download application

• POP3 threats (ie AUTH overflow attempt, LIST overflow attempt, DELE negative argument attempt)

• TCP port scans, UDP port scans

• Database server (MySql, SQL Server, Oracle etc) threats (ie root login attempt from a remote IP, brute

force login attempts, calling sensitive function or procedures from a remote IP)

• Web servers & clients threats (there are rules for IIS, Apache, Tomcat servers for SQL Injection

vulnerabilities and other known vulnerabilities and attacks)

• Worms based on known network communication (ie Rimecud Worm, W32/Njw0rm, Slammer Worm)

3.1.2 Anomaly Detection
The AD component uses anomaly detection algorithms in order to identify suspect variations in the traffic data.

AD can detect:

D5.3 SPHINX Security Incident Attack Simulator v1

 24 of 43

• compromised hosts in the hospital network that send data outside the network. This is detected based

on sudden and persistent increase of the volume of traffic relative to historical values of the volume of

traffic.

• vertical and horizontal port scanning

• spam sending hosts

• hosts suspect of being infected with malware based on change of typical DNS traffic.

Along with the simulations of normal traffic in the context of T5.4, the Attack Simulator is intended to produce

attack traffic inside the emulated network topologies. By sniffing this traffic and using summarisation protocols

such as NetFlow, sflow, the ABS component is planned to be used for producing appropriate datasets for

training the Anomaly Detection Component.

3.1.3 SIEM
The main objective behind the SPHINX Security Information and Event Management component is to provide

a solid log management tool, for security-related events that the security administrators can rely on for

responding to security incidents as early as possible. Thus, the SIEM component will encompass log collection

and normalization, data correlation, alert management and reporting, to guarantee near real-time analysis of

security alerts, which have been generated by network hardware and applications.

The SIEM can detect quite a few different threats, some of the most prominent ones are the following

• Brute force attacks

By monitoring events where there are a certain number of failed login attempts. When this specific event

occurs, it should trigger an alert and send an email to the security team. In the case of brute force attacks the

SIEM can detect with the help logs gathered from the user authentication system.

• Portscan detection

In the case of portscans, the SIEM is going to be watching for access attempts on different ports from the same

source IP in a very short timeframe.

3.1.4 Homomorphic Encryption
The Homomorphic Encryption (HE) tool developed for the SPHINX project comprises of multiple modules. These

include, search within the encrypted domain, double-sided blinded search, and data anonymization. The tool

makes use of the state-of-art homomorphic encryption to ensure that user data is safe from adversarial attacks.

The search in the encrypted domain module, is built around the concept that healthcare data is of high interest

to adversaries, due to the nature of inferences that can be made from such data. To get access to such

information, intruders tend to attack various interfaces including the platform that hosts all the information.

Healthcare databases which host such information store it in plain text, thus a database penetration attack will

give them access to all stored information. The search in the encrypted domain module overcomes this

limitation by encrypting all information stored in the healthcare database. Intruders will only find encrypted

data when they try to access information being relayed through the network or when they get illegitimate

access to the healthcare database. In case legitimate users want to access any information stored on the

database, they can use the HE tool to send an encrypted query, to receive a filename that contains the desired

content.

The double-sided blinded search tool makes use of the capabilities of the “search in the encrypted domain”

tool to geographically distant healthcare institutes, to share information. Sharing healthcare information is

crucial and it is necessary to have this as secure as possible. The double-sided blinded search tool allows

D5.3 SPHINX Security Incident Attack Simulator v1

 25 of 43

healthcare professionals to search in each other’s databases. The searching entity sends an encrypted request

to the database where they want to execute the search. This is then executed and a response is generated that

contains the name of the file that contains the search query. Details of the encryption and search tool can be

found in D4.6 Homomorphic encryption embedded engine v1.

The data anonymization tool is another important component that ensures the privacy of user data. It takes

network traffic meta-data as input and anonymizes all user-related information. This involves anonymization

of source and destination IP addresses. The tool replaces legitimate IP addresses with surrogate IP addresses

and maintains a homomorphically encrypted map between the actual IP and the surrogate addresses. This map

comprises of a one-way cipher, thus allowing the tool to maintain homogeneous mapping. The tool maps the

same original IP to the same surrogate IP with the help of this one-way cipher. As a result, the SPHINX toolkit

can carefully monitor the necessary traffic patterns that are being generated by the same IP address.

In this simulation, the homomorphic encryption will be tested indirectly. In many use cases the encrypted and

anonymised data are stolen by the attackers. To test the effectiveness of the homomorphic module, the

attacker will try to decrypt the stolen data.

3.1.5 Forensic Data Collection Engine (FDCE)
These Forensic Data Collection Engine provides the basis required for supporting the processing and storage of

data gathered from the various SPHINX modules into a unified structure, in order to discover the relationships

between devices and the related evidence, and produce a timeline of cyber-security incidents, including a map

of affected devices and a set of meaningful chain of evidence (linked evidence).

The FDCE is a data aggregator and will therefore not be directly observing the simulated cyber-attacks. Instead,

it will be relying on the observation of the previously presented tools, and through them produce the observed

chain of evidence. Ideally, the FDCE, if provided with the necessary data, shall be able to capture the nature of

the simulated attack and its impact on the system, for each different simulated scenario .

D5.3 SPHINX Security Incident Attack Simulator v1

 26 of 43

4 Overview of Security Incident/Attack Simulator

4.1 Design Principles
The security incident/attack simulator is an essential part of the ABS component that cannot operate as a

standalone application. The attack simulator itself comprises three different sub-components, each responsible

for simulating a different attack. The component is designed to fulfil the stakeholders requirements, as laid out

in deliverable D2.6, the use cases, as laid out in deliverable D2.4 and will be updated according to their next

iterations, to ensure smooth interoperability with the other parts of the ABS module and the experimentation

environment.

4.1.1 Stakeholders Requirements
According to deliverable D2.6, the ABS component has four (4) basic functional requirements ABS-F-10, ABS -

F-20, ABS -F-30, and ABS -F-40. These requirements fulfil some of the functional requirements provided by the

stakeholders. The table below illustrates the functional requirement fulfilment between the ABS and the

stakeholders. (Table 1: Functional Requirements of ABS module).

Requirement Dependency Description Fulfilled by task

ABS-F-010 STA-F-010 Produce normal behaviour

datasets

5.4

ABS-F-020 STA-F-010 Evaluate the produced

datasets compared to

original datasets

5.3, 5.4

ABS-F-030 STA-F-010 Produce datasets

incorporating cyber-attacks

5.3

ABS-F-040 STA-F-010 Use the output in the

experimentation

environment

5.3, 5.4

Table 1 Functional Requirements of ABS module

The architecture requirements consider the ABS component as the common outcome of T5.3 and T5.4. In the

last column of table 1 this co-operation is provided. Specifically, task T5.3 is not expected to produce datasets

representing normal behaviour from the users but is involved in all the other requirements of the ABS

component.

4.1.2 Conformance with the SPHINX Use Cases
As already mentioned, the main purpose of the ABS component, is to validate the capabilities of the other

SPHINX components. To achieve this, it would not be efficient to solely develop and test cyber-attacks at

random. The attacks must be similar to the ones that the real systems of the pilot hospitals are expected to

face. The best point of reference that guides the nature of these attacks is found in deliverable “D2.4 Use Cases

definition and requirements document v1”, which describes the applicable use cases. While these use cases

provide a very good initial view of the work that needs to be done, since D2.4 was developed early during the

first phase of the SPHINX project. This has led to changes that will be addressed in deliverable D2.7 “Use Cases

definition and requirements document v2” due in M32. This evolving process heavily affects the design of

D5.3 SPHINX Security Incident Attack Simulator v1

 27 of 43

simulated attacks, as in most of the cases adjustment is needed to better address the new parameters. As such,

this deliverable will present a more general overview of the possible attacks that are related to the SPHINX use

cases along with some relevant tools in order to achieve them in a safe environment.

4.1.2.1 UC1 / UC3 / UC4 / UC6 / UC9

All these use cases are grouped together since they all have in common one of the most popular and effective

attack vectors, which is users downloading and running a malicious executable themselves. One of the biggest

problems to prevent this attack, is the fact that the initiators of the attack are the legitimate users themselves,

taking actions they are allowed to take in the confines of the system. Even if it is ensured that only the minimum

necessary permissions are given to each user, often those trusted users can fall victims to such attacks.

4.1.2.1.1 UC1: Attacking Obsolete Operating Systems in Hospital

The first use case describes a hospital using old and vulnerable software, which have well-known vulnerabilities

that can be exploited by an attacker. This use case describes legacy equipment being used that should not be

in use anymore, and due to lack of critical updates are now vulnerable to known attacks. The user downloads

some software from a web site that leverages social engineering techniques to target users in the hospital.

The ABS implementation

To implement this attack, more than simple attack scripts are required. In the simulated environment of ABS

component, a node with outdated software shall be deployed. The node shall have known vulnerabilities, that

can be exploited by an external attacker, something that the attack will be able to detect using port scanning

before realising the attack itself. Ideally, this software will be either one currently used in the pilot environment,

or if such outdated software does not exist, a relevant software program with known vulnerabilities will be

installed on a virtual node. The attack will attempt to establish a connection with an outside server, from where

the attacker shall download malicious software and run it on the system. In this particular use case, the attack

will turn the hospitals devices into botnets, that can be used to conduct DDoS attacks, to the hospital itself and

to any target on the internet. SPHINX should be able to detect both accessing known flagged websites,

connection attempts to C&C server, the botnet behaviour and generally unusual traffic. It should also be able

to detect any known vulnerabilities.

Some common bot programs that were easily found online and have been used for the creation of well-known

malware datasets, such as the CTU-13 dataset [13] are Rbot, Neris, Virut, DonBot, Murlo, Nsis.ay, Ares16and

Conficker, which is described in D2.4. After such malwares are installed, communication with the attacker is

essential by means of a remote shell or automated Client to Client(C2C). The malware is usually going to send

out a keep alive signal periodically to let the server know it is still active and to see if there is anything it should

do. When the server is ready, it will execute the next step of the attack on the infected host machine. Some

common C2C communication mechanisms are the following:

• Common Types — Bind Shell/Reverse Shell/Web Shell

• Standard Protocols — HTTP/HTTPS, DNS, SMTP, SSH, ICMP, Telnet, SMB, FTP, IRC, Torrent

• Various Techniques — Encryption, Circumvention [TOR (The Onion Router) & I2P (Invisible Internet

Project)], Port Evasion, Fast Flux (Dynamic DNS)]

4.1.2.1.2 UC3: Rootkit Malware Attack in a Cancer Treatment Institute

16 https://github.com/sweetsoftware/Ares

https://github.com/sweetsoftware/Ares

D5.3 SPHINX Security Incident Attack Simulator v1

 28 of 43

In UC3, the user downloads the malicious malware from an email attachment which uses insecure protocols,

indicating its fraudulent origin. These emails are not sent to a specific user but to several users in the network.

The particular malware attached shall be a rootkit, which will communicate information back to the attacker.

The ABS implementation

Firstly, the replication of the email traffic directed to the users of the network shall be performed, with different

intervals and volumes in different tests, to cover different techniques utilized by the attackers. Then the

attached rootkits will be installed. For the testing, multiple different types of rootkits will be considered that

behave differently and use different protocols to communicate back to the attacker. The SPHINX components

are expected to detect the usage of email on an unencrypted channel (without TLS), detect the high number of

emails in a short interval from the same sender, recognise a suspicious external remote connection.

In the case of infected email being sent to the user, an effective tool that can be used is the social engineering

toolkit17, which is included in Kali Linux and can fulfill all the different requirements as described in the use

cases. Additionally, there are common rootkit software, available as open source software18.

4.1.2.1.3 UC4: Theft of Health Data by Exploiting Vulnerable Software

Similar to the previous use case, in UC4 the method of delivering the malware to the system is the same,

through a file sent by email. The major difference is that the malware delivered, contains a remote access

trojan, which behaves as a key logger and steals information such as user passwords.

The ABS implementation

Firstly, the malware will be propagated as email attachments. The trojan will be installed and send data to

external IPs. SPHINX should be able to detect the connection if they are aimed to IPs with low reputation, by

recognising a suspicious external remote connection and the raise in traffic volume when the stolen data is sent

away and finally by ensuring that the file are encrypted using homomorphic encryption making them useless

to an attacker.

As already mentioned, a tool to send phishing emails is the social engineering toolkit, which is described

previously. Common Trojan software are also found as open source tools19. Zeus20 is one of the most popular

and has been used in the creation of the famous IDS-2018 dataset [14].

4.1.2.1.4 UC6: Ransomware Attack to Healthcare Data

In UC6 the systems are infected through an email attachment, downloaded by the users. In this attack the

infected files contain a ransomware, which will encrypt all the files it has access to.

The ABS implementation

The initial stages of the attack, with emails containing malware will also be replicated in this use case. In

addition, we will attempt to replicate the behaviour of a ransomware attack, which spreads to other devices

and encrypts all the files. SPHINX should detect suspicious network activity caused by the cryptoworm

propagation, identifying the source devices, in addition to email relevant activity that was previously

mentioned. SPHINX may also utilise system logs to detect the mass encryption of files before the attack is fully

completed.

17 https://github.com/trustedsec/social-engineer-toolkit
18 https://github.com/milabs/awesome-linux-rootkits, https://github.com/d30sa1/RootKits-List-Download
19https://github.com/threatland/TL-TROJAN
20 https://github.com/Visgean/Zeus

https://github.com/trustedsec/social-engineer-toolkit
https://github.com/milabs/awesome-linux-rootkits
https://github.com/d30sa1/RootKits-List-Download
https://github.com/threatland/TL-TROJAN
https://github.com/Visgean/Zeus

D5.3 SPHINX Security Incident Attack Simulator v1

 29 of 43

As already mentioned, a tool to send phishing emails is the social engineering toolkit, which is described

previously. Ransomware payloads are available as open source software meant for testing purposes21.

4.1.2.1.5 UC9: Compromised BYOD Enables Stealing of Patient Data

In this use case, a legitimate user has his/her device infected through the use of email. The difference in this

case, is that the user gets his/her device infected by using a different network, which is unmonitored from the

SPHINX modules. The malware in this case is a keylogger that transmits data when the device connects to the

internet.

The ABS implementation

Similar to the other use cases, there is no initial precursor to the attack, since it takes place in a unmonitored

network, therefore SPHINX cannot detect it. But if the device connects to the internet at a later date through

the monitored network, SPHINX will be able to detect the anomalous traffic and the connection to unreliable

low reputation IPs.

As already mentioned, a tool to send phishing emails is the social engineering toolkit, which is described

previously.

4.1.2.2 UC2: Hijacking Access to National Healthcare Databases

Use Case 2, essentially describes an attacker scanning the networking and enumerating the system and using

brute force techniques using common user passwords combinations or stolen credentials from well-known

datasets. After acquiring access with a stolen admin account, the attacker then changes the settings of a device

in order to take down a service.

The ABS implementation

Like in UC1, scanning tools shall be used to perform external scans to the network. The scanning will be initiated

by an address which is commonly used in the network, instead of a different one. In addition, brute force

techniques using dictionaries of common user – password combinations and datasets of known stolen

combinations shall be employed. SPHINX components should be able to detect the scanning activities and the

brute force attack to our system.

As already mentioned in a previous section, some scanning tools that are going to be used are NMAP, Nessus

and OpenVAS vulnerability scanners, Nikto and DirBuster.

4.1.2.3 UC5: Tampering with Medical Devices

In UC5 the vector of attack used is a physical medium, specifically a usb stick that contains the malware, which

infects a device immediately. While the use case does not specify the exact nature of the malware, its behaviour

resembles of that a worm attack.

The ABS implementation

The malware will be installed directly to a specific VM in the network, without any precursor since there is none,

that SPHINX can detect, since SPHINX does not have immediate feedback about the physical security of the

organization. The malware installed will commence a worm style attack that will attempt to spread to

connected device. This traffic, contaminating other devices should be identified by the SPHINX components.

21 https://github.com/mauri870/ransomware, https://github.com/leonv024/RAASNet

https://github.com/mauri870/ransomware
https://github.com/leonv024/RAASNet

D5.3 SPHINX Security Incident Attack Simulator v1

 30 of 43

There are plenty examples of worm malware on the internet, but at this point NetWorm is the selected

candidate (GitHub.22).

4.1.2.4 UC7: Distributed Denial-of-Service Attack in Regional Hospital

UC7 describes a botnet DDoS attack that targets both the main system of the organisation and the remote

services servers in particular. In the use case, that hospital is not aware of the attack for a long period of time

since they lack the means to easily detect the system availability.

The ABS implementation

We will realise several types of DDoS attacks towards the services of the network. If possible, the attack will

originate from many different hosts simulating a botnet behaviour as best as possible and not from a single

host. The attack will also target the remote health service server in particular. SPHINX should be able to detect

the DDoS based on high number of requests / second and detect the DDoS based on sudden change of volume

usage relative to previous volume usage.

There exist a large number of DDoS tools that target different parts of a system. At this point slowloris23, golden

eye24 and hulk25 are considered the most appropriate candidates.

4.1.2.5 UC8: Compromising Health Services through Cryptocurrency
Mining

UC8 describes a user with administrator privileges, using them to install a crypto-currency mining software that

uses the resources of the existing computer systems and causes issues for all the users of the systems.

The ABS implementation

Mining software shall be installed directly to a node, since there are no precursors in this use case. SPHINX

components should be able to detect the typical connections used by the mining software.

Many different open source implementations of crypto currency miners exist, especially for popular crypto

currencies such as Bitcoin26.

4.1.2.6 UC10: Taking Control of Connected Medical Devices

In UC10, the attacker uses network scans to detect existing vulnerabilities in various devices connected to the

network. The attacker proceeds to steal the patients’ data and alter the ones in the database. The changed data

should go unnoticed since only one patient’s data were altered.

The ABS implementation

Standard network scanning shall be performed that the SPHINX platform should be able to detect. Afterwards

it shall be attempted to alter some database data. These changes are expected to be picked up in the logs,

which SPHINX should be able to detect. In addition, the data generated by the external connection are also

expected to be picked up.

The selected scanning tools that are going to be used are NMAP, Nessus and OpenVAS vulnerability scanners,

Nikto and DirBuster.

22 https://github.com/pylyf/NetWorm
23 https://github.com/gkbrk/slowloris
24 https://github.com/jseidl/GoldenEye
25 https://github.com/Mr4FX/Hulk-ddos-attack
26 https://github.com/topics/bitcoin-mining

https://github.com/topics/bitcoin-mining

D5.3 SPHINX Security Incident Attack Simulator v1

 31 of 43

4.1.2.7 UC11: Intrusion in the Clinical Centre’s Wireless Network

The attacker in UC11, uses a brute force attack on vulnerable Wi-Fi routers, by taking advantage the weak

encryption of outdated protocols which severely limits the possible combination passwords making a brute

force attack possible. In addition, he concludes a network scan from the internal network.

The ABS implementation

A brute force attack shall be implemented against the system like in the previous use cases along with a network

scan. The major difference in this use case is that the scan and the attack are done internally. The SPHINX

platform will be able to identify the brute force attack used to access the WIFI router and detect the network

scan.

For the brute force attack Patator27 tool is selected, which utilises a variety of protocols, including smtp,

ftp database end points, etc. Hydra 28, Medusa 29 are also under consideration.

4.1.2.8 UC12: Hacking Health IT Systems

UC12 essentially describes a patient, taking on the role of a traditional pen tester, with internal access to the

network, with the major difference that she/ he is never asked for permission, like a proper penetration tester

would do.

The ABS implementation

Traditional penetration test shall be implemented first using scanning tools and as a second step it will try to

use any detected vulnerabilities and weaknesses of the system. In this case, SPHINX will detect a new

unauthorised device trying to enter the care unit’s network. It will also detect suspicious network activity

caused by the network scanning.

As already mentioned in a previous section, some scanning tools that can be used, and are traditionally used in

the process of penetration testing are NMAP, Nessus and OpenVAS vulnerability scanners, Nikto and DirBuster.

4.1.2.9 UC13: Exploiting Remote Patient Monitoring Services

In this use case, the attack is done through a malware called VPNFilter. The issue is that this malware in the use

case does not infect the hospital’s infrastructure but the equipment in the patient’s home where the remote

equipment is located. This means that the neither the hospital staff nor the SPHINX platform will have access

to the data and traffic that traverse the network of the remote patient. The only data SPHINX will be able to

digest is those sent by the remote app eCare of the edge platform.

The ABS implementation

In this use case the implementation is constrained to the data sent by the edge, eCare testbed client. In that

case in order to simulate this attack, the contents of the client application shall be altered before these are sent

back to the server. Data shall contain structurally correct data, e.g. data that will be accepted normally by the

server but they will be different from the data the client was supposed to send. In another scenario, the data

shall contain malicious code aiming to breach the defences of the server. An example of that would be code for

an SQL injection. SPHINX should be able to continuously monitor the end-to-end communication in the network

and identifies the absence of encrypted end-to-end communication.

For this use case custom scripts embedded in the communication of eCare clients shall be executed.

27 https://github.com/lanjelot/patator
28 https://redteamtutorials.com/2018/10/25/hydra-brute-force-https/
29 https://github.com/jmk-foofus/medusa

https://github.com/lanjelot/patator
https://redteamtutorials.com/2018/10/25/hydra-brute-force-https/
https://github.com/jmk-foofus/medusa

D5.3 SPHINX Security Incident Attack Simulator v1

 32 of 43

4.1.2.10 UC14: Zero Day Attack to eHealth Services

UC14 describes attackers finding a zero day vulnerability. Since it is a zero day attack, there would be no

information that would enable the SPHINX platform to notice the vulnerability beforehand. The attacker

proceeds to install a malware through the vulnerability and to steal data and sell them back to the hospital

along with information about the vulnerability itself.

The ABS implementation

Zero-day attack shall be simulated as a simple attack against a known vulnerability giving access to a terminal

from where the attacker gains access to the database. SPHINX should protect the stolen data with

homomorphic encryption not allowing access to them even if stolen and should be able to detect the

anomalous behaviour in the network, like the communication with the malware command and control centre.

Since no specific attack is specified by the use case one of the aforementioned attacks shall be reused.

4.1.2.11 UC15: Theft of Hospital Equipment

UC15 presents a different approach than all the rest. Here the real vulnerability exploited, is that of the physical

security of the hospital and the management of its electronic devices. The attack uses the “normal” actions

allowed to the user of the stolen account. In this case the detection of this attack is extremely difficult because

it can start instantaneously without any precursor and it uses the legit capabilities already assigned to users.

The ABS implementation

In this case the attack will not actually use, any hacking scripts or scanning software. The attack will simply use

existing legitimate capabilities. The difference is that these functions may not correspond exactly to the usual

traffic, by being used in different times and different frequencies. SPHINX will be able to understand these

differences in the use of an equipment.

We will not use any dedicated tools and rely on the improper use of existing functions, that legitimate users

can already do in our environment.

4.1.2.12 UC16: Intercepting Cross-border Healthcare Data Exchange

UC16 describes the cross-border communication protocol between two different hospitals and how they

exchange data on patients. Users fail to confirm the digital signature of the attackers’ email, and sends a link to

them that gives them access. In addition, this protocol is using untrusted technologies such as unencrypted

email without TLS, that allows the attacker to gain access to their data.

The ABS implementation

In this use case again, there is no actual malware injected to the system. Instead the attack will involve sending

unsecured smtp traffic. The other part of the attack simulation will involve accessing a service on the system

with proper credentials, something that should be detected by the SPHINX system, since the connection is done

by an untrusted and unusual address.

As already mentioned, a tool to send phishing emails is the social engineering toolkit, which is described

previously, besides that we will not use any dedicated tools and rely on the improper use of existing functions,

that legitimate users can already do inside the emulated environment.

4.2 Experimentation Environment
In general, security testing, while effective, has a few inherent issues closely related to the environment where

such testing takes place. The first approach mandates that the target system is usually live in a production

environment. The testing needs to be conducted while the system operates normally. While this is a standard

D5.3 SPHINX Security Incident Attack Simulator v1

 33 of 43

practise in certain areas of the industry, like bug bounty programs, this usually requires organisations with

enough resources to fix issues quickly. In addition, this poses an issue with testing on critical systems. Critical

systems, especially those found in hospitals, cannot afford any downtime.

The other major method of conducting security testing is by constructing a virtual environment e.g. a sandbox,

isolated from the main system, which replicates the main system. This method comes with its own problems,

namely the difficulty in accurately emulating the real network, which may necessitate generalisations..

Additionally, creating datasets that represent real traffic in simulated environments causes its own issues, in

terms of actual realism. Nonetheless, this approach is beneficial in the Attack Simulator case, because it

prevents the experiments’ interaction with real critical systems. In addition, it allows for the utilisation of mock

data, adhering to privacy and data protection regulations, and this is why this approach will be mostly followed

during the experimental stages of T5.3.

Figure 2 High level experimentation environment architecture

The experimentation environment shall be hosted in the premises of the pilots and it shall include virtual

machines (VM) imitating all the major services that currently run on their real network. These services shall

include services such LIS servers, databases, and firewalls. In conjunction with these VMs, several other SPHINX

software components shall be used to emulate the rest of the hospitals systems and simulate their behaviour.

These components are briefly described in the following sections.

4.2.1 Behaviour Simulator
The deliverable D5.4 describes the efforts of SPHINX project, to recreate some of the systems that compose

the pilot’s ecosystem, and most importantly the behaviour of the users in them. Those systems are mainly

hospital networks that include medical devices, various staff workstations and machines, IoT networks and

relevant servers, and a large number of medical lab subnets that need to be simulated. The behaviour simulator

will be able to simulate arbitrary network topologies through NFV technologies and these networks are

D5.3 SPHINX Security Incident Attack Simulator v1

 34 of 43

expected to be similar to the real hospital networks in terms of infrastructure and the network traffic that flows

in between those networks and between themselves and the internet.

4.2.2 The SPHINX Sandbox
The SPHINX Sandbox will be a security mechanism for separating running programs, usually to run software

that can harm the general network. The proposed shared environment will be often used to execute untested

or untrusted programs or code, from unverified or untrusted third parties, suppliers, users or websites, without

risking harm to the host machine or operating system. The proposed sandbox will provide a tightly controlled

set of resources for guest programs to run in, hosted in SPHINX Cloud Backend. The attack simulation and

network emulations will take place in the testbed environments created within T5.4 while the whole system is

planned to be hosted inside the Sandbox for isolation and security purposes.

4.2.3 Remote Healthcare Monitoring

4.2.3.1 The eCare Platform

Remote medical and health devices allow healthcare professionals to closely follow patients outside of the

office, either through telehealth (video consultation) or remote patient monitoring, the latter involving

connected devices, Apps and/or web-applications. Since remote healthcare provision involves interaction with

outside networks and systems (e.g., the patient’s home environment), it also brings a number of challenges in

what regards cyber-security since it creates new, often insecure, entry points for hackers and rising data

security and liability risks. For example, Users of mobile devices are increasingly subjected to malicious activity

that is pushing malware apps to their phones, tablets and other devices running Android and iOS [D2.1 (1.5.2)].

Since these devices are outside the healthcare organisation’s control, there is also a lack of visibility and control

over personal devices, as well as the absence of awareness of these devices’ vulnerabilities that attackers could

take advantage of.

SPHINX addresses use-cases involving remote patient monitoring, aiming to prevent and detect suspicious and

illicit activity. For this purpose, SPHINX partner EDGE brings the eCare Platform Testbed (see D5.4 for a detailed

description), which is a simulation environment that allows generating requests and interactions between

patients (i.e., simulated eCare Platform users), devices (i.e., simulated healthcare IoT equipment) and

healthcare services.

In order to evaluate the SPHINX effectiveness in a remote healthcare environment scenario, the eCare Platform

Testbed is adapted to general abnormal and malicious user behaviour.

4.2.3.2 Possible simulation of Attack Vectors in eCare platform

The types of attacks that can be simulated and emulated in the context of the eCare Platform are numbered in

Error! Reference source not found. and are described next.

D5.3 SPHINX Security Incident Attack Simulator v1

 35 of 43

Figure 3 – Simulated and Emulated Attacks for the Remote Healthcare Environment Scenario

- Number 1: An opportunist hacker is able to crack the password of the patient Wi-Fi network. By

monitoring the web-traffic, the attacker is able to steal the patient’s access to the healthcare portal

(eCare).

- Number 2: Unknowingly, the eCare user installs a malicious App that allows an opportunist hacker to

gain access to the user smartphone, including gaining access the eCare App.

- Number 3: An eCare user starts to interact with the system with malicious intent.

- Number 4: An opportunist hacker gains access to an eCare device.

The several attack vectors may provide to the attacker remote access to the eCare server. Possible exploitations

and causes include.

Exploitation Effect

Attempt to retrieve large amounts of

data related to the user.

Abnormal increase of traffic related with a user.

Attempt to access records that the user

is not authorised to access.

Abnormal high number of requests received from a user.

Generation of several errors and warnings on the server related

with non-authorised access operations from a user or device.

Attempt to insert fake/garbage

healthcare data.

Generation of several errors and warnings on the server related

with abnormal data, lack of data integrity or illegal operations

performed by a user or device.

Attempt to affect service availability. A very high number of requests is made to the portal,

overwhelming its network connections and impeding other users

from accessing it.

Table 2 Possible exploitation of EDGE testbed

Expected response from SPHINX: SPHINX should detect the presence of an abnormal behaviour between a

user (malicious hacker) and the eCare healthcare portal. Collected information should include origin of the

attack (e.g., IP address, traceroute and respective geolocation if available), time of the attach (start and stop)

and related events (e.g., system logs, traffic).

SPHINX should detect the following abnormal behaviour:

D5.3 SPHINX Security Incident Attack Simulator v1

 36 of 43

- Abnormal high number of access requests

- Abnormal increase in the portal inbound and outbound traffic (from a single user or device)

- Abnormal data insert/modification operations from a single user or device, including failed attempts

generating a high number of errors.

- Attempt to access a high number of non-authorised records.

4.3 Technical Details
Being a subcomponent of the ABS module, the security incident attack simulator uses the interfaces for its

communication with the internet and the sandbox as outlined in the architecture. In addition, it provides the

operational data for the CIP interface.

Figure 4 ABS Component Diagram

As demonstrated, the security incident attack simulator itself is a complex tool that is intrinsically linked with

the behaviour simulator and the experimentation environment. It is essentially composed by three different

sub-components the Flask application, the Local Malware Execution, and the Abnormal Parametrisation of the

Behaviour Simulator.

D5.3 SPHINX Security Incident Attack Simulator v1

 37 of 43

Figure 5 High level experimentation environment architecture with Attack Simulator Modules

4.3.1 Flask Application
The first subcomponent of the attack simulator aims to simulate all the traditional attacks that are made by

either external or internal attackers. These attacks include all steps of a traditional cyber-attack, such as port

scanning and actual exploitation attacks.

The working environment of this sub-component includes an application, developed using the Flask 30

framework. This application, which is under development, works as a front-end for the coordination of the

Docker containers of the back-bone environment (either created manually or through Containernet 31 as

described in D5.4) and potentially as a coordinator for some of the functions needed for the execution of the

attack scenarios. This application is described in more detail in D5.4 focusing more on traffic generation issues.

However, additionally to the traffic generation capabilities that are provided by this GUI, cyber-attack-oriented

submodules and functionalities are also being added to this initial architecture. In this context, there has already

been implemented a user menu that allows the user to create and deploy DoS attacks. This kind of attacks are

discussed in section 2.3.3.2 of this document. The page, depicted in Figure 6, works as a front end, orchestrating

the docker containers that are running in the background to exchange DoS flows between each other using the

hping32 linux tool.

30 https://palletsprojects.com/p/flask/
31 https://containernet.github.io/#overview
32 http://www.hping.org/

https://palletsprojects.com/p/flask/
https://containernet.github.io/#overview
http://www.hping.org/

D5.3 SPHINX Security Incident Attack Simulator v1

 38 of 43

Figure 6: The ABS page providing the GUI for DoS deployment

More specifically an already implemented attack scenario, which has also been presented during the SPHINX

review meeting in July 2020, consists of a network setting where two containers act as TCP or UDP client and

server, exchanging normal network traffic while an attacking container, in this case based on the Kali

distribution of Linux is performing DoS attacks as visualized in Figure 7. The user can use the abovementioned

menu select amongst different DoS attacks such as TCP SYN and UDP floods as well as the targeted port of the

victim node of the network.

Figure 7: Example of Docker-based network topology for DoS deployment through the ABS.

D5.3 SPHINX Security Incident Attack Simulator v1

 39 of 43

In Figure 8 the a terminal of the sniffing results at the victim node are presented (using the tcpdump33 sniffer)

along with an overview of the Docker resources usage (docker stats) during a UDP flood. It is obvious that the

victim node receives overwhelming UDP traffic from spoofed IP addresses resulting to a congestion of the

Network I/O resources of the Docker Engine which leads to a system slowdown and eventually to denial-of-

service.

Figure 8: Overwhelming the resources of a receiving docker container during a UDP flood deployed by

the ABS component

Until now, the ABS Attack Simulation implements a simulation of TCP floods and UDP floods that have been

previously described in the context of DoS Attacks. In parallel, these attacks fall in the scope of UC7 that was

presented in section 4.1.2.4. Of course, this is an early phase implementation which will be further be expanded

after the creation and finalization of the experimentation platform.

Use cases that exhibit similar characteristics and can be executed similarly in the ABS component include: UC2,

UC5, UC7, UC10, UC11, UC12.

4.3.2 Local Malware Execution
Stemming from the design principles of ABS component, the second of its parts is essentially a malware that

relies on the immediate and direct actions of the users themselves in order to infect the system.

To implement these attacks, a list of executables shall be drawn tailored to each different example, which are

going to be installed in a target virtual machine during the recreation of each scenarios. The installation will be

done manually to better reflect the reality of the scenarios. If in a later stage it is deemed necessary, scripts

shall be used to utilise a semi automate process.

33 https://www.tcpdump.org/

D5.3 SPHINX Security Incident Attack Simulator v1

 40 of 43

Following is an initial list of gathered malware that fulfils the needs outlines by the use cases. This is a live list

of malware, that will continue to evolve along with the experimentation environment and the updated use

cases deliverable.

Name Source Description

Bitcoin Miner https://github.com/topics/bitcoin-mining CPU based, basic bitcoin miner.

Sasser Worm Metasploit Name:

exploit/name/ftp/sasser_ftpd_port

Worm that infects computers

running vulnerable versions of

windows xp

Netcat https://nc110.sourceforge.io/ Tool to open external tcp or upd

connections

Diamoprhine

Rootkit

Metasploit Name:

exploit/linux/localdiamorphine_rootkit_signal_priv

_esc

Elevate the privileges of arbitrary

processes to UID 0 (root)

Capture: HTTP

Javascript

Keylogger

Metasploit Name:

auxiliary/server/capture/http_javascript_keylogger

Web server that demonstrates

keystroke logging through

Javascript

Table 3 List of collected malware

Use cases with this type of method include: UC1, UC3, UC4, UC6, UC8, UC9

4.3.3 Abnormal Parametrisation of the Behaviour Simulator
The third and final part of ABS component is responsible for simulating the behaviour of malicious users who

do not use any kind of malware. Instead these users, rely on actions allowed to them by the system to achieve

their malicious goals.

In such cases, the implementation relies on the capabilities of the ABS component and the experimentation

environment in order to produce this ‘malicious’ traffic and not actual malware. These actions will be replicated

manually in the experimentation environment, but if it is needed, these can also be automated using scripts.

Of course, this automated generated traffic will be different from the one normally generated by the behaviour

simulator.

The replicated user actions will include:

• Browsing unusual websites

• Accessing the system’s databases

• Uploading large amounts of data

• Downloading large amounts of data

• Deleting records

• Other functions allowed by the systems that can be exploited

A secondary use of the abnormal parametrisation of the behaviour simulator subcomponent, which may have

some limited application, is the simulation of behaviour of malware in cases where it will not be possible to

actually run the malware. In these cases, simulation its actions should produce enough evidence for their

detection by the SPHINX modules. Currently, this secondary function is planned to be used in the replication of

a single use case, but if required this function can be also used elsewhere.

https://github.com/topics/bitcoin-mining
https://nc110.sourceforge.io/

D5.3 SPHINX Security Incident Attack Simulator v1

 41 of 43

No actual implementation of this subcomponent currently exists since it requires some finalisation of the

experimentation environment and the behaviour simulator.

Use cases with this type of method include: UC13, UC14, UC15, UC16.

D5.3 SPHINX Security Incident Attack Simulator v1

 42 of 43

5 Summary & Next Steps
This deliverable presented the level of research conducted throughout Task 5.3 of the SPHINX H2020 project,
along with the overall development status of the respective submodules of the ABS component on M22 of the
project’s lifetime. Within this first research and development phase, the following accomplishments have been
achieved:

• Identification of the methodologies typically employed to test and assess systems against cyber-attacks
in the industry and their utilisation in order to form the unique methodology to be utilised by the
Security Incident Attack Simulator.

• Identification of the SPHINX modules to be trained and tested, for their well-functioning, before
entering the SPHINX final solution along with the methodological steps to achieve that.

• Identification of the SPHINX Use Cases requirements which result to a methodological plan of future
design and development for the further steps of the Attack Simulator features, capabilities and back-
bone attack simulation tools.

• Development of a user-friendly preliminary front-end application capable of creating network attacks
and deploying them inside an simulated environment.

The final iteration of the security incident attack simulator will be presented in the demonstrator D5.8. This

final iteration will evolve according to all the future iterations of the documents previously mentioned such

D2.7 Use Cases definition and Pilot Overview document v2, D2.8 SPHINX requirements and guidelines v2, D2.9

Use Cases definition and Pilot Overview document v3 and D2.10 SPHINX requirements and guidelines v3.

D5.3 SPHINX Security Incident Attack Simulator v1

 43 of 43

6 References
[1] “Software penetration testing - IEEE Journals & Magazine.”

https://ieeexplore.ieee.org/abstract/document/1392709 (accessed Oct. 30, 2020).

[2] “The Basics of Hacking and Penetration Testing - 1st Edition.” https://www.elsevier.com/books/the-basics-
of-hacking-and-penetration-testing/engebretson/978-1-59749-655-1 (accessed Oct. 30, 2020).

[3] “What is purple teaming and how can it strengthen your security?,” Redscan, Jul. 12, 2018.
https://www.redscan.com/news/purple-teaming-can-strengthen-cyber-security/ (accessed Oct. 30, 2020).

[4] S. Chowdhury, “PERCEPTIONS OF PURPLE TEAMS AMONG CYBERSECURITY PROFESSIONALS,” thesis,
Purdue University Graduate School, 2019.

[5] N. Alomar and E. Qiu, “Bug Bounty Hunter, Red Teamer, or Pen tester? A Closer Look at the Roles of Security
Teams in Vulnerability Discovery,” p. 5.

[6] “7 Steps of a Cyber Attack and What You Can Do to Protect Your Windows Privileged | BeyondTrust.”
https://www.beyondtrust.com/blog/entry/7-steps-cyber-attack-can-protect-windows-privileged-
accounts (accessed Oct. 30, 2020).

[7] “The U.S. Intelligence Community,” Routledge & CRC Press. https://www.routledge.com/The-US-
Intelligence-Community/Richelson/p/book/9780813349183 (accessed Oct. 30, 2020).

[8] S. Behal, K. Kumar, and M. Sachdeva, “Characterizing DDoS attacks and flash events: Review, research gaps
and future directions,” Comput. Sci. Rev., vol. 25, pp. 101–114, Aug. 2017, doi:
10.1016/j.cosrev.2017.07.003.

[9] W. Chen and D.-Y. Yeung, “Defending against TCP SYN flooding attacks under different types of IP spoofing,”
in International Conference on Networking, International Conference on Systems and International
Conference on Mobile Communications and Learning Technologies (ICNICONSMCL’06), 2006, pp. 38–38.

[10] M. Bogdanoski, T. Suminoski, and A. Risteski, “Analysis of the SYN Flood DoS Attack,” Int. J. Comput. Netw.
Inf. Secur. IJCNIS, vol. 5, no. 8, Art. no. 8, Jun. 2013.

[11] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a Handshake: Abusing {TCP} for Reflective
Amplification DDoS Attacks,” presented at the 8th {USENIX} Workshop on Offensive Technologies ({WOOT}
14), 2014, Accessed: Oct. 13, 2020. [Online]. Available:
https://www.usenix.org/conference/woot14/workshop-program/presentation/kuhrer.

[12] M. Kenney, “Ping of death,” Insecure Org, vol. 2, 1996.

[13] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical comparison of botnet detection methods,”
Comput. Secur., vol. 45, pp. 100–123, 2014.

[14] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion detection dataset
and intrusion traffic characterization.,” in ICISSP, 2018, pp. 108–116.

