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Abstract—During the last decades, massive amounts of satellite
images are becoming available that can be enriched with semantic
annotations for the creation of value-added Earth Observation
products. One challenge is to extract knowledge from the raw
satellite data in an automated way and to effectively manage
the extracted information in a semantic way, to allow fast
and accurate decisions of spatio-temporal nature in a real
operational scenario. In this work we present a framework
that combines supervised learning for crop type classification on
satellite imagery time-series with Semantic Web and Linked Data
technologies to assist in the implementation of rule sets by the
European Common Agricultural Policy (CAP). The framework
collects georeferenced data that are available online and satellite
images from the Sentinel-2 mission. We analyze image time-series
that cover the entire cultivation period and link each parcel with
a specific crop. On top of that, we introduce a semantic layer
to facilitate a knowledge-driven management of the available
information, capitalizing on ontologies for knowledge represen-
tation and semantic rules, to identify possible farmers non-
compliance according to the Greening 1 (Crop Diversification)
and SMR 1 rule (protection of waters against pollution caused by
nitrates) rules of the CAP. Experiments show the effectiveness of
the proposed integrated approach in three different scenarios
for crop type monitoring and consistency-checking for non-
compliance to the CAP rules; the smart sampling of on-the-
spot-checks; the automatic detection of CAP’s Greening 1 rule;
and the automatic detection of susceptible parcels according to
the CAP’s SMR 1 rule.

Index Terms—semantic enrichment, linking EO data and
Web content, crop type classification, EU CAP non-compliance
checking, data fusion for decision-making.

I. INTRODUCTION

IN recent years, a massive quantity of georeferenced data is
generated from many different sources like human activity

and Earth Observation (EO), in-situ sensors, satellite missions
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(e.g. Copernicus) and mobile phones. The semantic enrich-
ment and linking of these free and open data of this scale,
frequency, and quality constitute a fundamental challenge for
interoperability and automation in decision-making. EO data
become useful only when analyzed together with other sources
of data (e.g. geospatial data, in-situ data) and turned into
actionable information and knowledge for decision making.
In this context, linked data1 is a data paradigm that studies
how one can make Resource Description Framework (RDF)
[1], [2] data available on the web and interconnect it with other
data with the aim to increase its value. In the last few years,
linked geospatial data has received attention as researchers
have started tapping the wealth of geospatial information
available on the web using semantic web technologies [3],
[4]. Nevertheless, there are only a handful of applications that
showcase the semantic integration of linked EO and non-EO
products. The scalability to accommodate big linked EO data
also remains an open issue [5].

One of the domains that is already heavily dependent on
the effective and efficient knowledge extraction from EO data
is the control of the Common Agricultural Policy (CAP) [6].
The European Union (EU), through the CAP, aims at increas-
ing the European agricultural productivity under sustainable
practices, while at the same time making sure that the farmers
maintain a decent standard of living2. It is the EU’s aim to
reinforce the competitiveness of European agriculture, whilst
maintaining and strengthening its sustainability. This manifests
as a major priority, with CAP’s annual budget amounting to
approximately 59 billion Euros. The Integrated Administration
and Control System (IACS) of the CAP, consumes the majority
of its annual budget. The IACS functions as the management
system for the CAP payments; and is implemented by the
national paying agency of each EU Member State (MS)3.
The CAP legal framework is transitioning to its new form,
the post-2020 CAP reform, which aims to modernize and
simplify the current operating model4. Based on the post-
2020 CAP ambitions and towards the direction of the so-called
monitoring approach for the implementation of IACS, Earth

1https://www.w3.org/standards/semanticweb/data
2http://esa-sen4cap.org/
3https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-

agricultural-policy/financing-cap/controls-and-transparency/managing-
payments en

4https://www.consilium.europa.eu/el/policies/cap-future-2020/
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Observation has been identified as a key enabler.
Multiple EC funded projects have employed Copernicus

data, using advanced ICT and Artificial Intelligence (AI)
technologies, to address the monitoring of the CAP. The
RECAP project5 has been one of the first to develop Coper-
nicus based machine learning pipelines to assist the Paying
Agencies in reducing the costs and increasing the efficiency
of the control of CAP’s Cross-Compliance. Additionally, the
Sen4CAP project6, building on the legacy of RECAP, has
focused on reducing the costs of IACS towards the post-2020
CAP objectives; exploring the applicability of an evidence-
based monitoring approach. To the best of our knowledge,
none of the existing approaches are able to support the
following CAP scenarios to deliver true business value. The
selected scenarios require significant human resources, with
On-The-Spot Checks (OTSCs) on only a small sample of the
farmers’ applications.

a) Smart Sampling of on-the-spot-checks (OTSCs):
Farmers declare the cultivated crop type for their arable land
each year, around the months of May and June. Paying agen-
cies are responsible for validating the declarations to then grant
the requested subsidy to the farmer. The MSs randomly sample
and inspect 1-5% of the total number of declarations. It is
necessary to automatically monitor the farmers’ declarations,
using and linking additional and online available data, in
order to create an targeted, instead of random, sample set that
requires OTSC.

b) Automatic detection of CAP’s Greening 1 rule: This
rule seeks to improve biodiversity and reduce soil erosion
by imposing limits in the size and number of the different
cultivations in a farm. Specifically, the farmers that own 10
to 30 ha of arable farm should grow at least two different
crop types, while farmers that own more than 30 ha should
grow at least three different crop types. In the first case, the
main crop should not cover more than 75% of the land, while
for the latter case the two main crops should additionally not
exceed 95% of the total land 7. This rule requires accurate
and semantically enriched geospatial data, so as to both detect
correctly the crop types and perform semantic reasoning to
infer the consistency between the farmers’ declaration and the
Greening 1 rule.

c) Automatic detection of susceptible parcels according
to CAP’s SMR 1 rule: This particular CAP requirement
expects from the farmers, among other things, to perform
a risk assessment on the susceptibility of their parcel to
contribute nitrate-rich soil to nearby surface waters. The farmer
should account for the slope of land, the ground cover, the
proximity to surface water, weather conditions, soil type and
conditions and the presence of land drains8. The SMR 1
requirement defines buffer zones, which shall be respected
in terms of fertilizer spreading. Specifically, i) manufactured
fertilizer spreading should be at least 2 m from surface water

5https://www.recap-h2020.eu/
6http://esa-sen4cap.org/
7https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-

agricultural-policy/income-support/greening en
8GCCE 2017 v1.0, ”The guide to cross compliance in England 2017”,

produced by the Department for Environment, Food and Rural Affairs

and ii) organic manure spreading should be at least 10 m
from surface water9. Therefore, measuring the proximity of
the parcel boundaries to the nearest surface water is of great
significance both for the inspections of the paying agency,
but also for the farmer who wishes to better comply with the
requirement. To that end, the semantic data fusion of Sentinel
images and other linked open geospatial data, would lead to
a more efficient monitoring of SMR 1.

In this work we adopt and extend the linked open EO data
life cycle paradigm [3], and provide for the first time an
end-to-end implementation to address operational needs of the
CAP. Motivated by the above mentioned use cases and their
inherent requirements to effectively and intelligently com-
bine and interlink various geospatial data sources (e.g. Land
Parcel Identification System (LPIS), hydrographic network,
Natura2000 zones etc.), we instantiate the linked open EO
data life cycle in the domain of CAP. To this end, we propose
a hybrid data- and knowledge-driven framework, developing
concrete CAP-related scenarios and demonstrate automatic
pipelines for satellite data processing, content extraction, se-
mantic annotation and transformation to RDF, interlinking
layer, validation and querying of Linked Open spatio-temporal
data.

Our contributions are summarized as follows:

• We propose the use of semantic reasoning in the context
of CAP monitoring, to check compliance with Greening-1
requirements, taking into account satellite derived prod-
ucts and ancillary geospatial data.

• We demonstrate the use of spatial relationships in LOD
(GeoSPARQL) towards assessing vulnerable parcels ac-
cording to CAP SMR-1 specifications.

• We propose the Smart Sampling Scheme, i.e. the use of
spatiotemporal queries to define a new, educated sampling
of parcels that need to be checked for compliance with
CAP rules with in-field visits.

• We evaluate our framework under the light of national
scale application, in line with post-2020 CAP monitoring
needs. Therefore, we discuss scalability implications for
both the knowledge extraction from satellite imagery
module and the semantic reasoning framework.

The rest of the paper is structured as follows. Section
II presents related technologies considering both the Earth
Observation based CAP monitoring and semantic web tech-
nologies. The technologies are grouped under a common
framework, aiming to cover the whole life-cycle of the linked
EO data for the control of the CAP. Section III describes our
proposed semantically enriched crop type classification model
for checking the compliance of farmers’ declarations to the
CAP regulations. Section IV presents experiments and results
regarding our proposed methodology, along with the area of
interest, the considered CAP scenarios, their implementations
and results regarding the effectiveness and efficiency of our
pipeline. Section V concludes our paper.

9https://www.gov.uk/guidance/using-nitrogen-fertilisers-in-nitrate-
vulnerable-zones
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II. LIFE-CYCLE OF LINKED EO DATA FOR THE CONTROL
OF THE CAP

Existing works for the monitoring of CAP mainly focus
on knowledge extraction technologies, while the semantic
technologies cover more generic agricultural needs. However,
our main objective is to cover the complete life cycle of
linked open EO data paradigm, as originally discussed in
[3], following a multi-disciplinary approach. The stages of
the life-cycle of linked EO data for the control of the CAP
are presented in Figure 1. The first step covers the content
extraction machine learning methodologies so as to get new
information layers out of the large streams of raw satellite
data. The second step involves the standardized data represen-
tation and ontological modeling for semantic annotation. The
semantic annotation is based on semantic Web technologies
which are being adapted and developed under the EO and
Agricultural domains. The next step of the life-cycle regards
the transformation of the extracted content into RDF, allowing
the population of the knowledge base (triplestore) to perform
semantic queries that offer a better knowledge of the data
(Storage/Querying). Applying useful interconnections in the
semantic data using external datasets can additionally enrich
the content and extract hidden knowledge (Interlinking).

Fig. 1: The main stages of the complete life-cycle of linked
open EO data for the monitoring of the CAP

A. Content and Knowledge Extraction: Crop Classification

Over the last decades there have been multiple studies that
have utilized EO data to extract high level thematic knowledge
for the agricultural land. Recently and since the introduction of
the Sentinel missions, there have been a plethora of scientific
publications that have exploited either Sentinel-1 or Sentinel-2
imagery, or in certain cases both, to classify crop types. The
high spatial and temporal resolution of the Sentinel missions
makes them ideal for constructing dense image time-series
of high quality that capture all the phenological stages of
the different crop types and thus allowing for their accurate
discrimination.

The state-of-the-art in EO-based and specifically the
Sentinel-based crop classification has advanced significantly
over the last years, with the majority of publications reaching
optimal accuracy levels (>85%) for multi-class problems. The
relative differences in the published approaches are based on
the nature and level of specificity of the investigated crop
classes, the computational complexity restrictions, the scale of
application and the ground truth information that is available
for training and validation.

In order to reduce the computational complexity of crop
classification and develop scalable solutions, multiple stud-
ies have followed Object-based Image Analysis (OBIA) ap-
proaches. For instance, in [7] the authors have segmented
their image stack into objects using spectral segmentation
techniques on Very High Resolution imagery, while in [8] the
authors made use of the LPIS to partition their feature space
into parcel objects.

Synthetic Aperture Radar (SAR) and optical imagery, re-
trieved from Sentinel-1 and Sentinel-2 missions respectively,
have been used either individually or combined. In [9] a
combination of both Sentinel-1 and Sentinel-2 is used in order
to create very dense time-series, thus alleviating the cloud cov-
erage limitations. In [10], the authors employ solely Sentinel-
1 data, suggesting a weather independent crop classification
scheme for the monitoring of the CAP, hence accounting for
northern European countries that suffer from year round cloud
coverage. Other studies focus on generating multiple diverse
features from Sentinel imagery, beyond the most common
spectral bands and vegetation indices. In [11] and [12], the
authors create deep feature spaces, additionally including vari-
ations of vegetation indices, texture and phenology parameters.
Such methods are shown to be particularly useful in classifying
spectrally heterogeneous crop classes, i.e. vegetables.

With respect to the classification methods employed, both
supervised and semi-supervised learning approaches can be
found in literature. In [13], for example, the authors have
combined a hierarchical correlation clustering with an artificial
neural network. The vast majority of studies, however, make
use of supervised learners, such as Support Vector Machines
(SVM) and Random Forest (RF) ( [8], [7], [11] , [12], [9], [14],
[15]). Their effectiveness stems from their ability to accurately
describe the nonlinear relationships between crops’ physical
condition and their spectral characteristics, while being par-
ticularly insensitive to noise and overfitting. Finally, there
are important studies that have used Convolutional Neural
Networks (CNN) or Recurrent Neural Networks (RNN) or a
combination of both [16], which allow the learning of time and
space correlation over the Sentinel time-series, thus reducing
manual feature engineering.

In [8], the authors have developed a scalable crop iden-
tification scheme, employing a 2nd order polynomial SVM
on a time-series of Sentinel-2 data. The authors of [8] have
additionally performed an extensive comparison between SVM
and RF, them being the most widely used classifiers for crop
mapping problems. The results showcased the superiority of
SVM over RF for the classification of multiple and spectrally
similar classes. This conclusion is additionally supported by
[17].
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This study builds on the methods and results that were
published in [8], following the state-of-the-art in crop classifi-
cation as described earlier. The crop classification method of
this study, however, has been applied to three different areas
of interest, of diverse characteristics, thus proving its trans-
ferability. Finally, we perform multiple crop classifications,
starting from very early in the year; therefore with truncated
feature spaces. Nonetheless, the results, even early in the year,
are satisfactory for the purposes of smart sampling the CAP
OTSCs.

B. Semantic Web Technologies

Web Ontology Language (OWL) [18] is an ontology lan-
guage that provides classes, properties and individuals under
the semantic web aspect. Ontologies offer the taxonomy of
semantic objects and the relationship between them. RDF
[19] [20] is the W3C recommendation standard that offers
data representation under subject–predicate–object standard,
which is known as triples. Each subject is a resource and
each object can be either a resource, a value or an empty
node. Predicates or properties express the relationship between
a specific subject and object. Data expressed in this format are
saved into RDF triplestores, named Knowledge Graphs.

SPARQL Protocol and RDF Query Language (SPARQL)
[21] is the most popular querying language for the retrieval and
manipulation of data in RDF format. SPARQL offers a wide
range of query forms and operators to access and retrieve the
data. stSPARQL [22] [23] is a SPARQL version that applies
semantic queries into data in stRDF format. Such formats offer
representation and querying of thematic and spatial data which
contain a temporal dimension. GeoSPARQL [23] focuses
more on geospatial data querying, by providing a wide list of
functions to support semantic queries execution over geometry
and feature objects. Topological relationships are also taken
into account.

Reasoning [24] is the procedure of infering logical conse-
quences based on asserted facts or axioms. In RDF graphs,
reasoning takes advantage of data triples using in many
cases different data sources to specify the rules that can
lead to useful knowledge extraction. Reasoning with rules
is usually based on Description Logics (DLs). Description
Logics [25] constitute a family of logic-based representation
formalisms and are usually used to represent well-structured
knowledge over the application domain. Its name comes from
a combination of descriptions, which are the expressions
namely predicates, and the fact that they support logic-based
semantics. DLs are strongly associated with structuring on-
tology languages such as OWL, but are also widely used in
application domain.

The vision of linked data is associated with the transforma-
tion of data into RDF formats. Data in this format can be pub-
lished on the web and linked with other existing data that come
from different sources [20]. Linked data are easily accessible
using semantic queries. The main advantage of semantics is
that they have the means to create intelligent interconnections
over objects that come from heterogeneous sources as they
support better information management, complexity limitation

and useful inferences extraction [26]. In this work we provide
a list of functions and semantic queries, using semantic
web technologies, to support three CAP-related scenarios in
real operational problems, that require content extraction and
semantic linking of data for compliance checking.

C. Semantic Annotation under the Earth Observation and
Agriculture domains

Building appropriate ontologies to describe the different
aspects of earth observation and agriculture are presented in
this section. Earth observation ontologies focus more on the
environmental monitoring domain.

The ontology presented in [27] deals with hydrological
monitoring issues and captures the main components of hy-
drological monitoring which are the events, the sensors and
the observations. Sensors and observations are divided into
many subcategories such as physical and meteorological, while
events are associated with any hydrological cycle change.
Modular Environmental Monitoring Ontology (MEMOn) [28]
extends the abovementioned ontology as, except from sensor
and observation data, it provides a structure to model a
plethora of different aspects that are identified on an emer-
gency situation under the environmental monitoring domain.
The ontology provides the structures to represent environ-
mental features (procedure and material), physical conditions
(disaster) and spatiotemporal information (geolocation and
time).

An agricultural ontology representation method is described
in [29]. The suggested model contains information such
as cultivation and processing practices, storage, pests con-
trol, genetic attributes etc. OntoCrop ontology [30] offers
knowledge representation for common cultivation practices,
pests control and in general the crops physiology. Each plant
is characterized by properties such as name, growth stage,
type of infection, infected part, information about disorders.
Agriculture ontology for the purpose of agriculture internet
of things (AgOnt) [31] presents a more product-oriented
view of agricultural products containing information related to
the product, the seeding procedures, the physical conditions,
the phase, the location and temporal dimensions. The main
purpose of this ontology is supporting healthy food man-
agement. The ontology presented in [32] offers a uniform
representation of text classification and concepts extraction
results. The ontology matches specific concepts into ontology
classes which include many different types of products such
as agricultural, planting, livestock, fishery and agricultural
material.

Most works that have been previously mentioned describe
either earth observation or agricultural data. What is actually
missing is a combination of both describing information from
earth observation with information from the agricultural do-
main. In this work we reuse and extend the ontology found in
[8] that describes the relationship among crop types, families
and season, and create a combination with GeoSPARQL vo-
cabulary that represents geospatial-related data such as points
in polygon geometry.
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D. Transformation into RDF

Another widely investigated issue is combining semantics
with earth observation data to discover hidden knowledge.
This section describes some frameworks that deal with data
transformation into semantic format, integration and searching.

Intelligent Interactive Image Knowledge Retrieval (I3KR)
[33] is a framework that utilizes EO data archives and applies
image segmentation (PCA kernel approach) and classification
techniques (SVM learning method). From the semantic aspect,
the system achieves high-level query processing into context
information from distributed data archives. Domain-specific
ontologies provide the appropriate structures to integrate het-
erogeneous data sources in order to support complex semantic
queries. A hybrid ontology approach has been used to integrate
data coming from different ontologies. Semantic restrictions
have been applied using DL reasoning to determine the
conditions under which an instance will belong to a class.

GeoTriples [23] is a tool that deals with the geospatial data
transformation into semantic RDF format. The system gets
as an input a file in various formats and creates a mapping
which is based on GeoSPARQL vocabulary, using RML and
R2RML rules (mapping generator). Users have the opportunity
to define the rules if needed. Initial data are transformed into
RDF graph format using the RML rules defined in previous
phase (mapping processor). Various RDF syntax formats are
supported. Querying is also available in a relational database
using R2RML mapping (stSPARQL/GeoSPARQL evaluator).

In this study, we use the GeoTriples tool as a basis in
order to transform shapefile data into RDF format under the
GeoSPARQL standard for semantic representation.

E. Storage and querying

In this work, we choose to handle the three different CAP
scenarios using semantic technologies. The problem could
have been solved using relational databases, though this se-
lection would be accompanied with an inflexible data schema
and higher execution times [34]. Additionally, the relationships
between the entities handled in this work are quite complex to
be represented using SQL keys10. Information is coming from
three layers and, with the usage of semantics, are combined
in the most effective way, while OWL 2 RL rules are used to
enrich the data [35].

RDF triplestores are semantic databases that offer data
saving in semantic graph format. Strabon [36] is a geospa-
tial–oriented RDF triplestore that offers a broad amount of
querying functions over georeferenced information, supporting
both stSPARQL and GeoSPARQL. GraphDB11 [37] is also
a popular triplestore that supports saving and querying over
georeferenced and non-georeferenced semantic data, support-
ing native OWL 2 reasoning. It is considered as one of
the best triplestores available in terms of storage, supported
functionalities, performance and execution time [38]. Other
RDF triple stores that provide geospatial support include

10https://www.sqlshack.com/understanding-benefits-of-graph-databases-
over-relational-databases-through-self-joins-in-sql-server/

11http://graphdb.ontotext.com/

RDF4J12, Virtuoso13 [39], OntopSpatial14 [40], Oracle spa-
tial and Graph15, AllegroGraph16, Stardog17, uSeekM18 and
Parliament19.

The storage and query capabilities of our framework cap-
italise on an existing RDF triple store, on top of which
SPARQL and GeoSPARQL standards are used to form the
queries that support the rules of agriculture policies. The
current implementation uses the GraphDB semantic graph
database, taking full advantage of the provided dashboard
to explore and manage the RDF repositories. It also sup-
ports different reasoning profiles, such as OWL 2 Rule (RL)
reasoning, allowing us to use off-the-shelf reasoning on top
of our domain ontology. It is worth mentioning, however,
that since our framework capitalises on existing, well-known
standards (RDF, OWL, SPARQL, etc.), it is interoperable and
it does not depend on specific implementations. For example,
it requires minor updates to migrate to different triple stores,
according to the application requirements, such as Strabon and
AllegroGraph, or to use different SPARQL query engines.

F. Interlinking
To exploit the wealth of data, there comes the need of gen-

erating intelligent interconnections between different datasets.
In literature, many systems have been implemented dealing
with this issue but due to the vast heterogeneity of data,
using existing systems into new datasets does not work in
most cases. Interlinking is achieved based on geospatial data
characteristics in some cases [4], while in others specific
mechanisms have been developed to meet the needs of the
data [41].

The system that is presented in [4] receives data from
heterogeneous sources such as meteorological, health and
earth observation. It creates an appropriate RDF representa-
tion and associations between specific characteristics. Data
interlinking is achieved by calculating the similarity between
different datasets. In [41] a system that integrates earth
observation data to support data management is introduced.
The system receives data from different data sources and has
two different functionalities. For data that are related with
China multiple components have been developed to adapt
in different interfaces, while for international data the GEO
DAB agent is used. PREDICAT [28] is a system that focuses
on natural catastrophes prediction. PREDICAT uses different
ontologies to semantically represent the data that are pertinent
to the system (semantic layer). The system overcomes data
heterogeneity and provides a common structure of intercon-
nected objects containing spatiotemporal information (data
integration layer), while a reasoner and a decision maker
are implemented to provide the appropriate responses to the
user (data processing layer). In CANDELA project20 semantic

12https://rdf4j.org/
13https://virtuoso.openlinksw.com/
14http://ontop-spatial.di.uoa.gr/
15https://www.oracle.com/database/technologies/spatialandgraph.html
16https://allegrograph.com/
17https://www.stardog.com/
18https://www.openhub.net/p/useekm
19https://github.com/SemWebCentral/parliament
20http://candela-h2020.eu/
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search is supported on EO images and other associated meta-
data, using existing technologies, namely GeoSPARQL, OWL-
Time, SOSA, DCAT and PROV-O. These technologies support
a monitoring use case in agriculture, where the impact of a
storm on vineyards is measured by first extracting knowledge
from Sentinel images and then semantically fusing them with
weather reports in the same area of interest21. However, the
semantic search targets mainly to offer a mature solution for
insurance companies, while it is not straightforward to monitor
CAP-related regulations that require to be checked in terms of
the farmers’ compliance to CAP rules.

G. The complete life-cycle for CAP monitoring using semantic
technologies and linked open EO data

Despite the fact that a lot of progress has been achieved
in different aspects of the individual components mentioned
above (e.g. Semantic annotation has been implemented under
the environmental monitoring domain [27] [28] [42], data
integration has been widely investigated (Interlinking) [33]
[43] [44] [45] [28] [46]), not much effort has been achieved
in implementing a system that supports the complete life-
cycle. The major challenge, which we address in this paper,
is mostly related with interlinking phase and dealing with the
heterogeneity of data (e.g. sensors [46], aerial and satellite
imagery [43], OpenStreetMap data [43] [45], Google Earth
imagery [45]) and defining the ways to exploit these data and
enhance knowledge discovery [33].

Contrary to the presented approaches in this Section, in this
work we focus on the linked open EO data life cycle paradigm
proposed in [3], aiming to support impactful use cases in
CAP. To the best of our knowledge, this is the first attempt
to reuse and adapt the proposed architecture to the domain
of CAP monitoring. The proposed framework implements a
hybrid scheme of data analysis and annotation: the results of
a data-driven crop classification framework are semantically
annotated and interlinked in order to foster advanced inter-
pretation, such as improving classification accuracy through
domain knowledge, and querying solutions. We demonstrate
the added value and feasibility of our approach in a number
of challenging use cases in CAP monitoring.

III. METHODOLOGY

The overall framework of our proposed methodology is
presented in Figure 2. The layers are the image analysis layer,
the mapping layer, the data ingestion and reasoning layer and
the query processing layer. The knowledge extraction phase of
the life-cycle, which was presented in Section II, consists of
the image analysis layer using machine learning techniques
for the content extraction. The semantic web technologies
in the context of EO and Agriculture domains involve also
the semantic annotation and transformation into RDF of
the Mapping layer. The data ingestion and reasoning layer
populates the knowledge base with the extracted knowledge,
for storage and querying in a standard data representation
model. Finally, the interlinking is done as part of the query

21http://candela-h2020.eu/content/semantic-search-v2

processing layer that allows for checking the compliance of
the farmers’ declarations to the CAP regulations under the
reasoning mechanism of the previous layers, using the open
linked data paradigm. These layers are presented in detail in
the following sections.

Fig. 2: System architecture overview

A. Satellite image analysis for the monitoring of the CAP

Paying agencies of EU Member States, usually receive
the annual subsidy applications in May or June. The paying
agency inspectors require the information of the cultivated
crop type, even as early as May. This way, inspectors can select
and organize their OTSCs, which follow in the coming months.
Additionally, crop classification results, received prior to the
annual farmer declarations, can assist as an alerting mechanism
during the application process. The image analysis layer is
the first layer of our proposed pipeline (Figure 2), where a
Sentinel-based crop classification system for the monitoring
of the CAP is developed.
The Area of Interest (AOI) is located in northeastern Spain and
specifically the district of Navarra. The AOI covers the agricul-
tural land surrounding the city of Pamplona, capital of Navarra.
In detail, the dataset includes 9,052 parcels and amounts to
approximately 215 km2 of total land area. The Northern part
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of Navarra is surrounded by the Pyrenees Mountains, as they
stretch southward from France. The landscape of the district is
a mixture of forested mountains and watered valleys, while the
agricultural land is characterized by substantial fragmentation
[47]. This study builds upon the crop classification results
of [8], as described in section II. SVM based crop maps
are produced, including the crop types of soft wheat (50%),
barley (26%), oats (8.4%), maize (1.4%), sunflower (3.2%),
vineyards (1.3%), broad beans (4.5%), rapeseed (5.4%) and
cherry trees (0.2%). The aforementioned crop types are the
lowest level of ontology, as shown in Figure 5.

Fig. 3: Study area located in northeastern Spain and specifi-
cally in the Navarra district.The parcels of interest are shown
in light blue color.

The dataset for training the SVM classifier is based on the
Land Parcel Identification System (LPIS), which includes the
parcel polygons in vector format and the associated farmer
declaration for the 2018 CAP subsidy applications. The par-
cel polygons are used for segmenting the stack of Sentinel
imagery to objects. The LPIS was provided by INTIA22, a
public company, part of the Department of Rural Development,
Environment and Local Administration of Spain. INTIA serves
the role of paying agency for the district of Navarra, perform-
ing all CAP compliance inspections for the area. INTIA has
additionally provided the timeline of growth for the major
crops of the area. Figure 4 illustrates the acquisitions of
Sentinel-2 images, spanning over the entirety of the various
crop cycles. The feature space used for the crop classification
includes the Sentinel-2 images for the acquisitions depicted in
Figure 4. The acquisitions have been selected to have minimal
cloud coverage over the AOI. All spectral bands, except B09
and B10, were used, along with the Vegetation Indices (VI)
Normalized Difference Vegetation Index (NDVI), Normalized
Difference Water Index (NDWI) and Plant Senescence Re-
flectance Index (PSRI). In this study, NDWI is used as defined
by Gao (1996) [48]. Sentinel-2 images are atmospherically
corrected to Bottom Of Atmosphere (BOA) reflectances using
the Sen2Cor tool, and all bands are resampled to 10 m spatial
resolution.The feature space comprises of parcel entities de-

22https://www.intiasa.es/en/

Fig. 4: Timeline of the growth cycle of major crops in Navarra,
reworked from [8], together with the acquisition dates of the
Sentinel-2 images.

scribed by the mean value, for all features, of the pixels that
fall within their LPIS boundaries.

The proposed methodology is based on a traffic light system
approach. Specifically, each parcel is categorized into four
groups, each offering different levels of confidence. These
categories comprise of the green, yellow, red and unreliable
classes, indicating high to low levels of confidence, in that
order. The categorization of each parcel is based on the differ-
ence between the two highest SVM scores. This study focuses
predominantly on the green category, namely the decision of
highest confidence. It is on those most confident samples that
we then record the mismatches of model predictions and the
farmer declarations. An alarm mechanism is then introduced,
identifying the green parcels that have been systematically
misclassified (mismatch of declaration and prediction) during
the cultivating season.
In the proposed algorithm (Algorithm 1), the alarms of po-
tential false declarations are detected for any time instance
throughout the year, with variable accuracy considering the
satellite imagery available to date. The Xtrain and Xtest are
the training and test feature spaces, respectively. The feature
spaces are dynamically populated with all new acquisitions.
Therefore, when the algorithm is executed (currentDate), it
uses the up to date feature spaces as input; containing imagery
until the latest available acquisition (Equation 1).

acqDate = acqDatek, k = 1, . . . , λ, . . . , A (1)

where A is the index to the latest acquisition prior to
currentDate and λ is the index to the acquisition that defines
the starting feature space, early in the year.

The algorithm iterates A-λ times, each time recording the
misclassifications (mis). Misclassifications, in this context and
as previously stated, refer to the mismatch between the SVM
model’s prediction and the farmers’ declaration. For each iter-
ation, a 2nd order polynomial Support Vector Machine (SVM)
model is trained based on Xtrain(t) (Equation 2) and the
SVM scores are computed after applying the model to Xtest(t)
(Equation 3). Xtrain(t) and Xtest(t) are the training and test
data for each iteration, and f is the number of individual
features for each acquisition. The farmer declarations, as part
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Algorithm 1 Smart Sampling
Input: Xtrain = {(xi, di), xi ∈ Rl, di ∈ {1, 2, . . . ,m}, i =
1, . . . N}, Xtest = {(xi, di), xi ∈ Rl, di ∈ {1, 2, . . . ,m}, i =
1, . . . ,M}, acqDate = {acqDatek, k = 1, . . . , λ, . . . , A},
number of iterations t = 0, the acquisition number that bounds
that starting feature space λ, the date the algorithm is executed
currentDate, persistence threshold for each iteration Pt = 0,
number of misclassifications mis ={misi, i = 1, ...M}

Output: Alarms for potential breaches of compliance

while acqDatet ≤ currentDate do
Xtrain(t) = {(xi, di), xi ∈ R(acqDate(t+λ)·f), di ∈
{1, 2, ..m}, i = 1, ...N}
Xtest(t) = {(xi, di), xi ∈ R(acqDate(t+λ)·f), di ∈
{1, 2, ..m}, i = 1, ...M}

h(−→x ) =
∑
αiyi(

−→xi · −→x + b)2 + b (Train SVM)

πd = P (d|Xtest(τ)) = 1
(1+e(A∗f(Xtest(t))+B)

(Calculate
SVM Scores)

score = maxπd −max(πd −maxπd)

if t mod 2 = 1 then
Pt = Pt + 1

end if
alarms = {}
for i =1 to M do

if not score ≥ threshold then
continue (Bypass unreliable decisions)

end if
if parcel is misclassfied then
misi = misi + 1

end if
if misi ≥ Pt and misi > 0 then
alarms = alarms ∪ i

end if
end for
t = t+ 1

end while

of the annual subsidy application for the CAP, are used for
labeling the parcels and thus training the model. A stratified
random split was performed to split the samples into 30%
and 70% subsets for Xtrain(t) and Xtest(t) respectively. This
amounts to 2,716 parcels, which have been used for training.
All classification metrics that are presented in later sections
have been averaged for 20 random splits of different seeds.The
percentage of training samples was ultimately set to 30% after
experimenting with larger datasets, which have provided only
a marginal increase in performance.

Xtrain(t) = {(xi, di), xi ∈ R(acqDate(t+λ)·f), di ∈ {1, 2, ..m},
(2)

i = 1, ...N}

Xtest(t) = {(xi, di), xi ∈ R(acqDate(t+λ)·f), di ∈ {1, 2, ..m},
(3)

i = 1, ...M}

where xi is the feature representation of the i-th out of
N parcels, belonging to R(acqDate(t+λ)·f). The superscript
represents the dimensionality of the feature space. In each
iteration, starting with t = 0, the feature space comprises of
the starting feature space, i.e. the one including all features,
f , of all acquisitions until acqDateλ, plus all features, f , of
acquisitions acqDateλ+t ; di is the label for each parcel,
ranging from 1 to m (=10), representing the different crop
types.

The difference between the two highest per class scores
P (d|Xtest(t)) for each sample is recorded as the overall score
value (Equation 4) for the selection of the most confident deci-
sions against a threshold. These parcels constitute the green
labels in the aforementioned defined traffic light system. We
denote by πd the difference scores, i.e.: πd = P (d|Xtest(t)),
so the overall score is given by:

score = maxπd −max(πd −maxπd) (4)

The algorithm returns the misclassifications of the last itera-
tion, namely the confident decisions of mismatch between the
prediction and the declaration, which are classified as alarms.
alarms are the samples that have been found misclassified at
least Pt times, in all previous iterations. Pt is varying based on
the time within the year the algorithm is executed (Equation
5).

Pt =

A−λ∑
t=1

t mod 2 (5)

Early classifications are characterized by limited reliability,
as the imagery included the training datasets does not cover
the entirety of crops’ growth cycle. For this reason Algorithm
2 can be optionally used to further refine the selected alarms.

Algorithm 2 Smart Sampling Fine Tuning
Input: alarms from Algorithm 1, Ytest = {(yi ∈ 1, 2, ..m} the
actual estimations of the classifier, Dtest = {(di ∈ 1, 2, ..m}
the declared labels
Output: Updated alarms for potential breaches of compliance

updatedAlarms = {}
i = 1
n = size(alarms)
while i ≤ n do

if season of yi 6= season of di then
updatedAlarms = updatedAlarms ∪ i

end if
i = i+ 1

end while

Algorithm 2 uses the alarms of Algorithm 1 as input and
returns an updated set of alarms. In order to increase the
reliability of the smart sampling algorithm, we select alarms
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for which the crops are classified to a type of a completely
different crop season class that then one of the type declared.

B. Mapping layer for semantic representation

An important aspect of the framework is the representation
of the available information, e.g. crop classification results, as
well as capturing of domain knowledge needed to further cor-
related results. For the former, we use GeoTriples to transform
data into the RDF format, while for the later we developed
a domain-specific ontology. The metadata and analysis results
are integrated using geotagged information and analyzed using
semantic queries.

As far as the domain ontology is concerned, it consists of
three layers:

I Data, which describe crop land taxonomy. Figure 5 shows
the relationship between period, crop family, crop type
and crop code classes. More specifically, each crop type
(crop type classes) has a unique crop code (crop code
property) and belongs to a specific crop family (family
classes). Crop families are connected with the season that
each crop thrives (period classes). Each crop thrives in a
different season, while some crops seem to thrive in year-
round basis. Same crop families may belong to different
seasons when they represent different crop types.

II The crop type classification data that contain a linking
of metadata which describe field information like parcel
identifier, geometry, slope, aspect and classification scores
for all different crop types.

III Data collected from OpenStreetMap, containing water
and waterways information in geospatial format i.e. the
geometries of hydrographic network objects.

Figure 5 depicts the relationship between crop fields, pe-
riods, families, types and codes. Crop field is a class that
corresponds to the crop fields that have been identified in a
classification run. Each crop type is a subclass of a specific
family and related to a specific crop code. All periods, families
and types are different classes in the ontology. Crop codes
are the main interconnection point between the crop fields
and the characteristics of each crop type. OWL property
restrictions have been identified to automatically detect the
period of the crop code declaration or classification using the
value of the crop code. These relationships are useful for
extending the dataset described in layer II of the ontology
(crop type classification data). For instance, in the example
presented in Listing 2 the crop code that has been identified
by classification is 1082 and the crop field is associated
with the classification period winter. The crop code that the
farmer declared is 1334, whose classification period is year-
round. OWL2 RL is used to make useful inferences and apply
reasoning rules into crop type classification data.
: Sof tWeat

a owl : C l a s s ;
r d f s : s u b C l a s s O f : C e r e a l s ;
r d f s : s u b C l a s s O f [

a owl : R e s t r i c t i o n ;
owl : hasVa lue : w i n t e r ;
owl : o n P r o p e r t y : h a s C l a s s i f i c a t i o n P e r i o d ;

] ;
owl : e q u i v a l e n t C l a s s [

a owl : R e s t r i c t i o n ;

owl : hasVa lue ”1082” ;
owl : o n P r o p e r t y vocab : has CROPTYPE ;

] ;
.

Listing 1: Example OWL2 RL

In the example presented in Listing 1, the classification
period and hyperclass have been automatically assigned to
the crop field, taking advantage of the dynamics of OWL2
RL. T-Box reasoning (in the form of OWL 2 RL entailment
rules supported by the GraphDB implementation) is applied to
infer that soft wheat is a cereal, crop type “1082” corresponds
to soft wheat and classification period “winter”, etc. More
specifically, the rdfs:subClassOf has been used to assign the
crop family values, while owl:Restrictions have been used to
assign the value “winter” on the property hasClassificationPe-
riod when the value of the property vocab:has CROPTYPE is
“1082”.
@pref ix : <h t t p : / / mklab . i t i . g r / o n t o l o g i e s / c r o p t y p e s /> .
@pref ix owl : <h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl#> .
@pref ix xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#> .
@pref ix vocab : <h t t p : / / example . com / o n t o l o g y#> .
@pref ix r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#> .
@pref ix f a : <h t t p : / / example . com / f a r m e r o n t o l o g y#> .
@pref ix map : <h t t p : / / example . com/#> .
@pref ix geo : <h t t p : / / www. o p e n g i s . n e t / o n t / g e o s p a r q l#> .

<h t t p : / / example . com / p a r c e l s c l a s s i f i c a t i o n w s c o r e s v 3 / Geometry /14356>
a geo : Geometry ;
geo : asWKT

”<h t t p : / / www. o p e n g i s . n e t / d e f / c r s / EPSG/0/4326>
MULTIPOLYGON (((−1.6927107344688275 42 .649935712372795 ,
. . . , −1.692387508984902 42 .65003808978244 ,
−1.692421288894873 42 .65001269177615 ,
−1.6925231315390605 42 .649985701208124 ,
−1.6927107344688275 42 .649935712372795) )
) ” ˆ ˆ geo : w k t L i t e r a l .

<h t t p : / / example . com / p a r c e l s c l a s s i f i c a t i o n w s c o r e s v 3 / i d /14356>
a vocab : p a r c e l s c l a s s i f i c a t i o n w s c o r e s v 3 ;
f a : hasOwner f a : f a r m i d 5 ;
vocab : has ASPECT 5.33798 E1 ;
vocab : has CROPTYPE ”1082” ;
vocab : has CROP CODE 1334 ;
vocab : has ID 773280 ;
vocab : has SLOPE 5 .0291 E0 ;
vocab : h a s s c o r e s t 1 7 .511E−3 ;
vocab : h a s s c o r e s t 2 4 .33932E−1 ;
vocab : h a s s c o r e s t 3 5 .4892E−2 ;
vocab : h a s s c o r e s t 4 1 . 4 1 E−2 ;
vocab : h a s s c o r e s t 5 4 .9191E−2 ;
vocab : h a s s c o r e s t 6 3 .6199E−2 ;
vocab : h a s s c o r e s t 7 2 .17041E−1 ;
vocab : h a s s c o r e s t 8 2 .802E−2 ;
vocab : h a s s c o r e s t 9 3 .8657E−2 ;
vocab : h a s s c o r e s t y p 1 .20457E−1 ;
: h a s C l a s s i f i c a t i o n P e r i o d : w i n t e r ;
: h a s D e c l a r a t i o n P e r i o d : year−round ;
geo : hasGeometry

<h t t p : / / example . com / p a r c e l s c l a s s i f i c a t i o n w s c o r e s v 3 / Geometry /14356> .

Listing 2: Example of crop field information as described in
RDF combining the crop type ontology (I) and the results of
crop type classification (II)

The transformation of crop type classification data and data
collected from OpenStreetMap into the RDF model has been
supported by GeoTriples. The tool accepts data in shapefile
format and automatically produces an RDF Mapping Lan-
guage (RML) file containing the rules that the RDF file should
satisfy. Then, it produces the RDF serialisation that satisfies
the RML rules. The Well-Known Text (WKT) representation
of coordinate reference systems standard has been reused to
capture location-related information.

For the classification results, GeoTriples tool is used mul-
tiple times to convert the results of each run into RDF
format. Each file has a unique name and because of that, new
instances are created in the Knowledge Base. In the end of
this procedure, the Knowledge Base contains many different
instances of the same parcel having in common the parcel
identifier. In such way we keep crop type classification data
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Fig. 5: Crop type ontology (knowledge extracted from [8]).

of past runs in the Knowledge Base, which can be aligned
with new classification data.

C. Data ingestion and querying layer for storage and seman-
tic enrichment

Semantic enrichment aims at interconnecting and further
enriching the contents of the generated knowledge graphs,
applying semantic rules. The focus is given on improving the
smart sampling methodology, executing a set of queries (rules)
to improve the selection process of OTSCs. In the following,
we describe the specifics of the approach, presenting the
defined rules.

With every new image acquisition a new crop classification
is performed and the classification results are dynamically
populating the knowledge base. Procedural code is used
to run semantic queries in sequence and pass the needed
values from past queries (parcel, value1, value2) into
next ones (Listings 3 to 8). The reason for this decision
is that SPARQL lacks in terms of arguments saving or
passing into next queries and these calculations are better
expressed using many SPARQL queries, improving the
execution time. The queries that are presented in this
section are running for each parcel instance. The parcel
instances are retrieved by the query depicted in Listing 3. A
parcel instance (described as < parcel >) may be for example:
http://example.com/parcels classification wscores v8/id/1109.
The first step (Listing 4) is to retrieve the two highest
classification scores among the 10 different crop types, as
these are defined in the ontology (Figure 5). This is done in
order to compute the score value in Algorithm 1. This process
takes place for each of the different classification instances in
the knowledge base. In this query, typical SPARQL functions
are used, such as BIND, to group different type results under
the same variable, and ORDER BY to arrange the results in
descending order.
PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
SELECT ∗ WHERE {

? p a r c e l a vocab : p a r c e l s c l a s s i f i c a t i o n w s c o r e s v 8 .
}

Listing 3: Semantic query to retrieve all parcel instances for
the latest classification run

PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
s e l e c t ? max types where {

<p a r c e l> vocab : h a s s c o r e s t 1 ? t yp e 1 .
<p a r c e l> vocab : h a s s c o r e s t 2 ? t yp e 2 .
<p a r c e l> vocab : h a s s c o r e s t 3 ? t yp e 3 .
<p a r c e l> vocab : h a s s c o r e s t 4 ? t yp e 4 .
<p a r c e l> vocab : h a s s c o r e s t 5 ? t yp e 5 .
<p a r c e l> vocab : h a s s c o r e s t 6 ? t yp e 6 .
<p a r c e l> vocab : h a s s c o r e s t 7 ? t yp e 7 .
<p a r c e l> vocab : h a s s c o r e s t 8 ? t yp e 8 .
<p a r c e l> vocab : h a s s c o r e s t 9 ? t yp e 9 .
<p a r c e l> vocab : h a s s c o r e s t y p ? type 10 .
{BIND ( ? t yp e 1 as ? max types )}
un ion
{BIND ( ? t yp e 2 as ? max types )}
un ion
{BIND ( ? t yp e 3 as ? max types )}
un ion
{BIND ( ? t yp e 4 as ? max types )}
un ion
{BIND ( ? t yp e 5 as ? max types )}
un ion
{BIND ( ? t yp e 6 as ? max types )}
un ion
{BIND ( ? t yp e 7 as ? max types )}
un ion
{BIND ( ? t yp e 8 as ? max types )}
un ion
{BIND ( ? t yp e 9 as ? max types )}
un ion
{BIND ( ? type 10 as ? max types )}

}
ORDER BY DESC ( ? max types )
LIMIT 2

Listing 4: Semantic query to retrieve the two highest classi-
fication score values per parcel

The difference between the two largest values (Listing 5)
is calculated using the results of the previous query (value1,
value2). If the difference is bigger than a specific threshold,
the query in Listing 6 is used to mark the parcel as “green”, i.e.
parcels with a high confidence that the prediction is correct.
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
SELECT ∗ where {

BIND ( xsd : d ou b l e ( v a l u e 1 )−xsd : do ub l e ( v a l u e 2 )
AS ? r e s u l t )

FILTER ( ? r e s u l t >”0 .5” ˆ ˆ xsd : d ou b l e )
}

Listing 5: Semantic query to detect the parcels that the
difference from the two highest score values is above threshold

PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
PREFIX map : <h t t p : / / example . com/#>
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INSERT {
<p a r c e l> map : r i s k ” g r e e n p a r c e l ” .

} WHERE {
<p a r c e l> ? p ? o .

}

Listing 6: Semantic query to mark green parcels that satisfy
the conditions of the two previous queries

In addition, each time a green parcel is identified, the query
in Listing 7 marks the parcels that have been incorrectly
classified. In the end, the query in Listing 8 marks the parcels
that the season of the declaration does not agree with the
season of the classification, based on the domain ontology
(Figure 5). SPARQL INSERT function is used to enrich the
parcels with “misclassification”, “green parcel” and “same
season” information. All in all, semantic enrichment tries
to enrich smart sampling, taking into account the provided
classification results and domain knowledge about crop types,
so as to detect parcels that have a high probability to have a
false crop type declaration by the farmers.
PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
PREFIX map : <h t t p : / / example . com/#>
INSERT {

<p a r c e l> map : m i s c l a s s i f i c a t i o n ” m i s c l a s s i f i c a t i o n ” .
} WHERE {

<p a r c e l> map : r i s k ” g r e e n p a r c e l ” .
<p a r c e l> vocab : has CROP CODE ? d e c l .
<p a r c e l> vocab : has CROPTYPE ? c l a s s .
FILTER ( ? d e c l != xsd : i n t e g e r ( ? c l a s s ) )

}

Listing 7: Semantic query to mark parcels as misclassified
when parcels have been marked as green and declaration does
not agree with classification

PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
PREFIX map : <h t t p : / / example . com/#>
PREFIX owl : <h t t p : / / www. w3 . org / 2 0 0 2 / 0 7 / owl#>
PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>
PREFIX : <h t t p : / / mklab . i t i . g r / o n t o l o g i e s / c r o p t y p e s />
INSERT {

<p a r c e l> map : same season ” f a l s e ” .
} WHERE {

<p a r c e l> vocab : has ID ? i d .
<p a r c e l> vocab : has CROP CODE ? d e c l .
<p a r c e l> vocab : has CROPTYPE ? c l a s s .

? t y p e a owl : C l a s s .
? t y p e r d f s : s u b C l a s s O f ? o b j e c t 1 .
? o b j e c t 1 owl : hasVa lue ? code .
? t y p e r d f s : s u b C l a s s O f ? o b j e c t 2 .
? o b j e c t 2 owl : hasVa lue ? p e r i o d 1 .
? p e r i o d 1 a : P e r i o d .
FILTER r e g e x ( s t r ( ? code ) , s t r ( ? d e c l ) )

? t y p e 2 a owl : C l a s s .
? t y p e 2 r d f s : s u b C l a s s O f ? o b j e c t 3 .
? o b j e c t 3 owl : hasVa lue ? code2 .
? t y p e 2 r d f s : s u b C l a s s O f ? o b j e c t 4 .
? o b j e c t 4 owl : hasVa lue ? p e r i o d 2 .
? p e r i o d 2 a : P e r i o d .
FILTER r e g e x ( s t r ( ? code2 ) , ? c l a s s )
FILTER ( ? p e r i o d 1 !=? p e r i o d 2 )

}

Listing 8: Marking parcels where declaration and classifica-
tion belong to different seasons

D. Query processing layer for interlinking spatial data

By capturing data in the RDF model space, we enable
spatial relationships-based querying and easy integration with

other data sources, such as Linked Data. We demonstrate the
query answering capabilities of the framework, as well as the
ability to integrate external datasets, by defining queries to
detect possible non-compliance of the farmers according to
the specified rules.

1) Greening 1 requirement: The query in Listing 9 calcu-
lates the number of different crop types that a farmer cultivates
and the total area of their farm. More specifically, the query
detects a breach of compliance when the farmers own a total
farm area between 10 and 30 hectares and cultivate at least
two different crop types, but the dominant one is more than
75% of the total farm area. The crop type as it is calculated
in the SVM classification is expressed in the mapping via
the vocab:has CROPTYPE property. In the RDF space, we
use count(distinct ?ctype) as ?count to detect the number
of the different crop type values that are detected for each
farmer (GROUP BY ?owner). Additional queries are applied
to also check, for instance, the farmers that have less than
three different crop types cultivated in a total farm area of
more than 30 hectares if: {sum > 300000} ∧ {count <
3} ∧ {maxcroptype[1] +maxcroptype[2] > 0.95 ∗ sum} as it
has been described in Section I. The query (Listing 10) further
supports the greening 1 requirement by detecting the farmers
that grow less than 3 different crop types in a total area of more
than 30 hectares and farmers that grow less than 2 different
crop types in a total area of 10 to 30 hectares.
PREFIX geo : <h t t p : / / www. o p e n g i s . n e t / o n t / g e o s p a r q l#>
PREFIX e x t : <h t t p : / / r d f . useekm . com / e x t#>
PREFIX f a : <h t t p : / / example . com / f a r m e r o n t o l o g y#>
PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
s e l e c t ∗ where {
{

s e l e c t ? owner ( sum ( ? a r e a ) a s ?max ) ?sum where {
{ s e l e c t ? owner ( c o u n t ( d i s t i n c t ? c t y p e ) a s ? c o u n t )
( sum ( ? a r e a ) a s ?sum ) where {

? f i e l d f a : hasOwner ? owner .
? f i e l d vocab : has CROPTYPE ? c t y p e .
? f i e l d geo : hasGeometry ? geo .
? geo geo : asWKT ? polygon .
BIND( e x t : a r e a ( ? po lygon ) a s ? a r e a ) .
? owner a f a : Farmer .

}
GROUP BY ? owner
HAVING ( ? sum > 100000 && ?sum <= 300000 && ? count>=2)

}
? f i e l d f a : hasOwner ? owner .
? f i e l d vocab : has CROPTYPE ? c t y p e .
? f i e l d geo : hasGeometry ? geo .
? geo geo : asWKT ? polygon .
BIND( e x t : a r e a ( ? po lygon ) a s ? a r e a ) .
? owner a f a : Farmer .
}
GROUP BY ? owner ? c t y p e ?sum
ORDER BY DESC ( ? max )
}
FILTER ( ? max>0.75∗?sum )

}

Listing 9: Semantic query to extract possible non-compliance
in the Greening 1 requirement for the farmers owning a total
farm area between 10 and 30 hectares and cultivating at least
two different crop types, where the dominant one is more than
75% of the total farm area

PREFIX geo : <h t t p : / / www. o p e n g i s . n e t / o n t / g e o s p a r q l#>
PREFIX e x t : <h t t p : / / r d f . useekm . com / e x t#>
PREFIX f a : <h t t p : / / example . com / f a r m e r o n t o l o g y#>
PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
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s e l e c t ? owner ( c o u n t ( d i s t i n c t ? c t y p e ) a s ? c o u n t )
( sum ( ? a r e a ) a s ?sum ) where {

? f i e l d f a : hasOwner ? owner .
? f i e l d vocab : has CROPTYPE ? c t y p e .
? f i e l d geo : hasGeometry ? geo .
? geo geo : asWKT ? polygon .
BIND( e x t : a r e a ( ? po lygon ) a s ? a r e a ) .
? owner a f a : Farmer .

}
GROUP BY ? owner
HAVING ( ( ? sum > 300000 && ? count<3) | |

( ? sum > 100000 && ?sum <= 300000 && ? count <2))

Listing 10: Semantic query to extract possible non-compliance
in the Greening 1 requirement for the farmers that grow less
than 3 different crop types in a total area of more than 30
hectares and farmers that grow less than 2 different crop types
in a total area of 10 to 30 hectares

The area of the fields is calculated using GeoSPARQL
ext:area function, taking advantage of the polygon points
coordinates. The number of different crop types is calculated
using the result of the SVM classification prediction of crop
type on the field, while the sum of the fields area using the
results of GeoSPARQL area calculations. All operations are
implemented using SPARQL functions such as count, distinct
and sum.

2) SMR 1 requirement: Another important information for
the end users is the distance of the parcels from the hy-
drographic network objects. This is in accordance with the
requirements of SMR1, as described in Section I. In order to
effectively identify the parcels susceptible to contribute nitrate-
rich soil to nearby surface water, a filtering mechanism takes
place, accounting for the slope and aspect of the parcel. Results
are important for both farmers and paying agencies that want
to check the compliance according to SMR 1 requirement.

Listing 11 presents the query that lists the parcel instances
where the distance from surface waters is lower than 10
meters, which is the buffer for organic manure application.
Since both parcel (LPIS) and hydrographic network data23

(data from OpenStreetMap) contain geospatial information
(e.g. multipolygon, polygon etc.), the distance is calculated
using geof:distance function of GeoSPARQL. The function
accepts two geometries and calculates the shortest distance
between any two points of the specified geometries. A filter-
ing mechanism selects the fields according to their distance
from the hydrographic network objects, slope and aspect
as described in section IV-C3. The GeoSPARQL function
ext:closestPoint is used to compute the closest points of
each geometry compared to the other geometry. A string
replacement pattern is used in order to retrieve the coordinates
of the two points, which are utilized to compute the angle of
the two points in degrees. GraphDB math functions are used
to achieve such computations.
PREFIX geof : <h t t p : / / www. o p e n g i s . n e t / d e f / f u n c t i o n / g e o s p a r q l />
PREFIX geo : <h t t p : / / www. o p e n g i s . n e t / o n t / g e o s p a r q l#>
PREFIX uom : <h t t p : / / www. o p e n g i s . n e t / d e f / uom /OGC/1.0/>
PREFIX map : <h t t p : / / example . com/#>
PREFIX ogc : <h t t p : / / www. o p e n g i s . n e t / o n t / g e o s p a r q l#>
PREFIX ofn : <h t t p : / / www. o n t o t e x t . com / s p a r q l / f u n c t i o n s />
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
PREFIX e x t : <h t t p : / / r d f . useekm . com / e x t#>
PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
s e l e c t ? p a r c e l ? d i s t a n c e where {

BIND(<p a r c e l> AS ? p a r c e l ) .
? p a r c e l a vocab : p a r c e l s c l a s s i f i c a t i o n w s c o r e s v 8 .
? a vocab : has ID ? i d .

23https://download.geofabrik.de/europe/spain.html

? p a r c e l vocab : has SLOPE ? s l o p e .
FILTER ( ? s l o p e>12)
? p a r c e l ogc : hasGeometry ? s .

? s geo : asWKT ? o .
? fGeom geo : asWKT ?fWKT .
?fGeom map : c o n t a i n s W a t e r ? b .
FILTER ( ? fGeom != ? s ) .
FILTER NOT EXISTS {

? s map : c o n t a i n s W a t e r ?wa .
}
BIND( geo f : d i s t a n c e ( ? o , ?fWKT) as ? d i s t a n c e ) .

FILTER ( ? d i s t a n c e <=0.1)
BIND ( e x t : c l o s e s t P o i n t ( ? o , ?fWKT) as ? c l p o i n t 1 )
BIND ( e x t : c l o s e s t P o i n t ( ?fWKT, ? o ) a s ? c l p o i n t 2 )

BIND( r e p l a c e ( s t r ( ? c l p o i n t 1 ) , ”ˆ[ˆ0−9\\.−]∗([−]?[0−9\\.]+)
.∗$ ” , ” $1 ” ) a s ? long )

BIND( r e p l a c e ( s t r ( ? c l p o i n t 1 ) , ” ˆ .∗
([−]?[0−9\\.]+)[ˆ0−9\\.]∗$ ” , ” $1 ” ) AS ? l a t )

BIND( r e p l a c e ( s t r ( ? c l p o i n t 2 ) , ”ˆ[ˆ0−9\\.−]∗([−]?[0−9\\.]+)
.∗$ ” , ” $1 ” ) AS ? long2 )

BIND( r e p l a c e ( s t r ( ? c l p o i n t 2 ) , ” ˆ .∗
([−]?[0−9\\.]+)[ˆ0−9\\.]∗$ ” , ” $1 ” ) AS ? l a t 2 )

BIND ( xsd : d ou b l e ( ? l a t )−xsd : do ub l e ( ? l a t 2 ) AS ? x )
BIND ( xsd : d ou b l e ( ? long)−xsd : do ub l e ( ? long2 ) AS ? y )

BIND ( ofn : a t a n 2 ( ? x , ? y ) AS ? a t a n 2 )
? p a r c e l vocab : has ASPECT ? a s p e c t .
BIND( IF ( ofn : t o D e g r e e s ( ? a t a n 2 )>”0”ˆˆ xsd : double ,

o fn : t o D e g r e e s ( ? a t a n 2 ) , o fn : t o D e g r e e s ( ? a t a n 2 )+
” 3 6 0 ” ˆ ˆ xsd : d ou b l e ) AS ? t o D e g r e e s )

BIND( IF ( ? a s p e c t−45>0, ? a s p e c t−45, ? a s p e c t +360−45) AS ? min )
BIND( IF ( ? a s p e c t +45>360, ? a s p e c t−360+45, ? a s p e c t +45) AS ?max )

FILTER ( ? min<?t o D e g r e e s && ? toDegrees<?max )
}
LIMIT 1

Listing 11: Semantic query to detect susceptible parcels
according to the SMR 1 requirement taking into account the
slope, the aspect, the angle and the distance of the parcel from
hydrographic network objects

3) Smart sampling: The query in Listing 13 supports the
retrieval of the results of section III-C. When querying for the
parcels to be inspected through OTSC, at any given time in the
year, all past classification instances until that point are used.
More specifically, the query takes advantage of all past classifi-
cation decisions for each parcel to ensure that the prediction is
indeed a misclassification. The threshold, above which a parcel
is considered to be persistently misclassified, is defined in List-
ing 12 and is dynamically updated given the different parcel
classes, that correspond to different times of the year, which
exist in the triple store. The different classification runs are
saved as instances of vocab:parcels classification wscores v1
for the first run, vocab:parcels classification wscores v2 for
the second, etc. In such way, using the FILTER function,
we select the number of different runs that currently exist in
the triple store by detecting the number of different classes
that contain the word “parcels”. The query in Listing 13
retrieves all the parcels that have been misclassified in past
classifications more times than the defined threshold. Then
the associated season for the crop type prediction of the latest
available classification is compared with the associated season
type of the declarations using the results of Listing 8. If there is
a disagreement, the parcel is selected as an alert and candidate
for OTSC. This query further narrows the smart sampling
filter and is recommended for query executions early in the
year (months before July), when the classification results are
less trustworthy. More information about this functionality is
described in Algorithm 2.
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
PREFIX ofn : <h t t p : / / www. o n t o t e x t . com / s p a r q l / f u n c t i o n s />

SELECT ? f i n a l t h r e s h o l d WHERE {
{

SELECT ( c o u n t ( d i s t i n c t ? p a r c e l c l a s s ) a s ? c o u n t )
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WHERE {
? p a r c e l i n s t a n c e a ? p a r c e l c l a s s .
FILTER c o n t a i n s ( s t r ( ? p a r c e l c l a s s ) , ” p a r c e l s ” )

}
}
BIND( IF ( ofn : f loorMod ( ? count , 2 ) = ” 1 ” ˆ ˆ xsd : i n t ,

( ( ? c o u n t + ” 1 ” ˆ ˆ xsd : i n t ) / 2 ) − ” 1 ” ˆ ˆ xsd : i n t ,
? c o u n t / 2 ) AS ? t h r e s h o l d )

BIND( IF ( ? c o u n t = ” 1 ” ˆ ˆ xsd : double , ” 0 ” ˆ ˆ xsd : i n t ,
? t h r e s h o l d ) AS ? t h r e s h o l d )

BIND( IF ( ? t h r e s h o l d >”5”ˆˆ xsd : double , ” 5 ” ˆ ˆ xsd : i n t ,
? t h r e s h o l d ) AS ? f i n a l t h r e s h o l d )

}

Listing 12: Semantic query to calculate the smart sampling
threshold according to the number of different parcel classes,
that correspond to different times of the year, which exist in
the triplestore

PREFIX map : <h t t p : / / example . com/#>
PREFIX vocab : <h t t p : / / example . com / o n t o l o g y#>
PREFIX xsd : <h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#>
SELECT ? i d ( c o u n t ( d i s t i n c t ? p a r c e l ) a s ? c o u n t ) WHERE {

? p a r c e l vocab : has ID ? i d .
? p a r c e l map : m i s c l a s s i f i c a t i o n ? o .

? l a t e s t p a r c e l a vocab : p a r c e l s c l a s s i f i c a t i o n w s c o r e s v 8 .
? l a t e s t p a r c e l vocab : has ID ? i d .
? l a t e s t p a r c e l map : same season ” f a l s e ” .

}
GROUP BY ? i d
HAVING ( ? count>f i n a l t h r e s h o l d )
ORDER BY desc ( ? c o u n t )

Listing 13: Semantic query to check persistent misclassifi-
cations using the smart sampling threshold and the number
of past classification instances that have been misclassified
provided that in the latest classification run the period of
the farmer declaration does not agree with the period of
classification

IV. EXPERIMENTS AND RESULTS

A. Hyperparameter optimization and performance of the SVM
classifier

The crop classification model was built using the SVC
function from the scikit-learn library24 of Python. The hyper-
parameters were optimized using grid search over a range of
values for each parameter, using 5-fold cross-validation. The
hyperparameter combination that was selected was the one
that produced the highest overall accuracy. For the penalty
parameter of the error term, C, we tested values within the
range [2−2, . . . , 29]. For the kernel coefficient, namely the
gamma parameter, the optimal value was examined within the
range [10−4, . . . , 101]; while for the independent term of the
kernel function, coef0, we searched the range [10−3, . . . , 102].
The best combination consisted of C = 4, γ = 0.001 and
coef0 = 10.

Finally, the SVC function includes a parameter called
class weight, which was set to “balanced”. Its impact is that
it sets the parameter C of each class i to class weight[i]∗C,
where class weight[i] is inversely proportional to class fre-
quencies of the input data. This way the negative effects of
an unbalanced dataset, such as the one used for this study, are
ameliorated.

24https://scikit-learn.org/

We evaluated our core classification model [8] for three
different agricultural areas, in Greece, Lithuania and Spain,
for which we had independent in-situ validation data. These
areas present various challenges. In the case of Greece, the
agricultural landscape is significantly fragmented, resulting
in small and narrow parcels, occupied by mixed pixels. In
Lithuania, there is extended cloud coverage throughout most
of the season, resulting in sparse time-series of cloud free
Sentinel-2 imagery. Ten, eleven and fourteen crop classes have
been classified in the Spanish, Greek and Lithuanian cases,
respectively.

Validated results were consolidated based on OTSCs that
were performed by the respective paying agencies of the three
AOIs, during the 2018 subsidy applications. In the case of
the Spanish AOI, out of the 107 randomly selected parcels for
inspection, 105 were classified correctly. In Greece, inspectors
visited only parcels classified with high confidence, namely
of high posterior probability for the classification decision,
to crop types other than the one declared. These instances
are considered as potential breaches of compliance. It was
shown that 76 out of 85 inspected parcels were indeed wrongly
declared and correctly classified by our model. Finally, in
Lithuania, the validated dataset acquired through the inspec-
tions resulted in an overall accuracy of 76.2% in late June
and 80% in late August out of 3,319 parcels inspected. The
results revealed the dependencies of the crop classification
model performance, on the percentage of truthful declarations,
the cloud coverage and the parcel shape and size.

In the Spanish AOI for which we focus in this work all these
dependencies were optimal, i.e. more than 97% of truthful
declarations, limited cloud coverage, and an average parcel
size of 2 ha. Hence more than 90% classification accuracy
was achieved.

Our model evaluation analysis also revealed that classifi-
cation decisions for larger parcels and parcels with straighter
borders tend to have higher accuracy than smaller parcels or
parcels with more irregularly-shaped boundaries. The parcel
area is important since accuracy depends on the number of
image pixels that fall within the parcel boundaries. Sentinel-
2’s 10 m pixel size equates to 50 image pixels in 0.5 ha of
land. Our analysis shows that having 50 pixels of information
provides accurate results, whereas for smaller parcels the
decision is both less confident, namely of lower SVM score,
and less accurate (Tables I and II).

TABLE I Accuracy of crop type classification for different
parcel area ranges

Spain
Accuracy % parcels

Large >1ha 96.70 44.85
Medium 0.35ha<x<1ha 94.44 23.85

Small <0.35ha 87.02 31.30

In Table II is observed that there is a strong correlation
between the SVM score and accuracy. Indeed, the subset of
parcels with an SVM score larger than 0.85, achieves an
overall accuracy of more than 97%. On the other hand, the
subset of parcels with SVM scores less than 0.7, achieves an
overall accuracy of 66%.
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TABLE II Relationship between SVM scores and overall
accuracy

Spain
SVM score Accuracy % parcels

>0.85 97.88 77.43
0.7<x<0.85 89.46 10.27

<0.7 66.32 11.30

B. Scenarios for the control of the CAP

1) Scenario 1: Smart Sampling of OTSCs: The paying
agency inspectors search for parcels of farmers that have po-
tentially falsely declared the cultivated crop type. The parcels
prone to noncompliance are dynamically provided, starting
from late June until the end of the cultivation period, to allow
the inspectors to better target their inspections.

Farmer profile: Dan is a farmer. He has into his possession
a field containing barley, while he has declared that the field’s
crop type is maize.

Analysis results: His field has been selected for OTSC
because the crop classification has classified the cultivated
crop type as barley, with high confidence. Even though the
classification is not particularly trustworthy, being performed
in early June, the parcel is marked as high risk by the smart
sampling algorithm, as the prediction belongs to a different
season class, namely winter.

Decision: The paying agency inspector needs to check the
field, as there is a strong possibility that the farmer has
wrongly declared the cultivated crop type.

2) Scenario 2: Greening 1: Crop Diversification: As pre-
viously stated, paying agencies need an automated system to
detect non-complying farmers with respect to the Greening 1
requirement.

Farmer profile: Bob is a farmer. He has three fields in his
possession covering an area of 27.4066 hectares. The total area
of the fields that contain soft wheat is 27.1058 hectares, while
for the crops that contain rapeseed the total area is 0.3008
hectares.

Analysis results: According to our analysis there seem to
be two fields with soft wheat and one with rapeseed. The
farmer does not comply with the rule because even though he
cultivates two different crops, the total area of the soft wheat
parcels exceeds the 75% of the total area of the fields that the
farmer has into his possession.

Decision: The paying agency inspectors need to check these
fields because there is a strong possibility that the farmer is
not complying with the Greening 1 requirement.

3) Scenario 3: detecting parcels prone to non-compliance to
the SMR-1 requirement: The paying agency inspectors need to
establish the compliance to the SMR 1 defined buffer zones. In
order to do that the distance from the parcels to nearby surface
waters is calculated. The slope and aspect of the parcels are
also taken into account in order to establish if there is an actual
risk for runoff.

Farmer profile: Lucy is a farmer. She has into her posses-
sion a field whose distance from surface waters is almost 3
meters. The slope of the field is 15◦, therefore of high runoff
risk, and the aspect 251◦, namely of western orientation. The
aspect of the proximity line is 267◦.

Analysis results: Since the parcel appears to be very close
to surface waters, within the SMR-1 buffer, and the difference
of the parcel and proximity line aspects is within the range of
potential runoff, the analysis marks it as high risk.

Decision: The paying agency inspectors need to monitor
this parcel because there is a strong risk for nitrate-rich runoff
to surface waters.

C. Implementation of the CAP scenarios

1) Implementation of Scenario 1: Smart Sampling: In this
scenario, the potential of better targeted, smart OTSCs is
explored, exploiting accurate crop classification results, early
in the year. This is achieved through the proposed semantic
enrichment of classification results and the pertinent smart
sampling query. The idea is to provide alarms, starting from
early summer, when declarations are usually received, and
dynamically update those using progressively larger feature
spaces that include new Sentinel-2 acquisitions.

Table III shows the Producer’s Accuracy (PA) and User’s
Accuracy (UA) for the predictions of all crop classes. PA is
the percentage of correctly classified parcels against the total
number of parcels of a given class. On the other hand, UA is
the percentage of correctly classified parcels for a given class
against the total number of parcels classified to that class. The
metrics in Table III refer to the classification results produced
using the entirety of acquisitions, 24/01/2018 to 21/10/2018,
and have been averaged over 20 iterations of random training
dataset splits. Additionally, the PA and UA results address the
lowest level of crop taxonomy, as shown in Figure 5.

TABLE III PA and UA for the classification of 10 crops
types using the full season time-series of Sentinel imagery

Class UA (%) PA (%)
Soft wheat 94.00 95.42

Maize 94.98 94.36
Barley 93.09 93.69
Oats 92.52 88.40

Sunflower 94.87 92.85
Rapeseed 95.34 92.08

Broad beans 94.84 89.40
Shrub grass 84.15 80.70
Vineyards 85.50 87.76

Cherry trees 83.22 81.98

Table III shows excellent classification performance for
most of the crop types. Specifically, it is observed that the
classifier achieves PA and UA values of more than 80%
for all crop classes; while reaching values as high as 95%.
It is also worth noting the excellent performance for the
classes oats, soft wheat and barley. These crop types belong
to both the cereals and winter superclasses, having similar
spectral and phenological characteristics. Nontheless, the clas-
sifier appears to discriminate among them easily. Finally, the
weakest performances are observed for the classes of shrub
grass, vineyards and cherry trees. These are all year-long crop
types, with no significant phenological characteristics to assist
the classifier. Additionally, the shrub grass class, which is
an ambiguous crop description, is characterized by diverse
spectral characteristics from parcel to parcel.
The metrics shown in Table III theoretically allow for the
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effective sampling of OTSCs. However, the results presented
have been produced using images until the end of October,
when the notion of smart sampling becomes obsolete, as the
inspections would have preceded. For this reason, the crop
classification is performed at multiple instances throughout
the year, starting as early as May 4. As it would be ex-
pected, the classification results of reduced feature spaces,
when executed early in the year, would achieve suboptimal
results of low reliability. In this regard, per class scores are
computed for each sample, using class membership probability
estimates [49]. Therefore each sample is associated with ten
different membership probabilities, as many as the crop classes
involved. In order to select the most reliable decisions, the
difference between the two highest scores for each sample
is recorded (score in Algorithm 1). This is achieved via the
semantic enrichment mechanism, as described in figures 4 and
5. The following figure illustrates those differences in the form
of a histogram, using 100 bins, for the entire dataset. The
algorithm classifies most of the data with high reliability. The
ones that are classified with low score are most likely crops
that belong to the same family and some of them with similar
spectral signatures are expected to be misclassified at some
level.

Fig. 6: Histogram of differences between the two highest
scores of each sample decision. The closer is the difference to
1.0 the lower the classification uncertainty.

The SVM algorithm is trained and tested for progressively
larger feature spaces, whose classification results populate
the knowledge base. The evolution of accuracy is shown in
Figure 7, using the F1-score metric [50]. F1-score, defined
as 2 × (PA×UAPA+UA ), providing an overall accuracy metric that
accounts for both PA and UA. The first point on the x-axis
of Figure 7 refers to the F1-score for the classification that
uses images until the 4th of May. For each next run onward,
features keep on populating the feature space, with every new
acquisition. It is observed that the larger feature spaces result
in better classification results. Specifically, feature spaces that
include the July 23rd acquisition, appear to approach optimal
F1-scores for most crop classes, creating a plateau on the
evolution curve. The majority of these crops are harvested
from late June to early July, and thus our model can separate

the classes more comfortably, when features that cover this
period are added to the feature space.

Fig. 7: Evolution of F1-score for crop type classification with
progressively larger feature spaces

Accurate crop classification enables the monitoring of the
CAP rules and allows for efficient decision making on the
farmers’ compliance. Towards this direction, the inspected
parcels were assorted based on the previously described traffic
light system.Two highest prediction probabilities, or SVM
scores (Figure 8) are taken into consideration to pinpoint the
parcels of the highest probability of noncompliance, for which
the algorithm is assumed to predict with high reliability.

At first, for each run with a different feature space in the
knowledge base, the set of green misclassifications is recorded,
namely the reliable instances for which the prediction does
not match the declaration. Then, the set of persistent green
misclassifications is computed using the semantic query in
Figure 13. Persistence refers to the number of times a sample
has been found misclassified in the different classification
iterations. In this study, there are two different thresholds of
persistence. First, if a sample has been misclassified more than
five times, in all different runs, from May to late October,
then it is considered to be a validated alert. This is called
constant persistent misclassification, as shown in Figure 9, and
is assumed to function as the validation dataset, against which
performance metrics are computed.

Figure 8 presents the number of constant persistent mis-
classifications relative to the increasing number of features,
for different threshold values of what is considered a green
parcel. The latter translates to varying values of the difference
between the two highest scores for each sample. As expected,
lower thresholds lead to higher number of misclassifications.
It can also be observed that for each threshold that was
tested, the pattern of the plot line is the same. The number of
misclassifications is constant during May, then it presents an
increase at the start of June, which begins to stabilize towards
the start of August. It can be concluded that it is difficult for
the algorithm to identify truly mislabeled data, really early in
the year, but it seems to perform better with an increasing
number of features. This improvement, which starts around
June, is justified because most of the crops that were examined,
are harvested at June, after which our model can classify the
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data with higher confidence.

Fig. 8: Evolution of the number of constant persistent mis-
classifications for a varying threshold of the green category

However, in order to calculate the persistence of a parcel as
mentioned above, a full Sentinel-2 series, for any given year
of inspection, is required. Therefore, the constant persistent
misclassifications are merely used as validation dataset of
truly wrongly declared parcels, and are not part of the smart
sampling algorithm. Thus, in order to be able to identify
wrongly declared samples, in real scenarios, the total number
of times that a green parcel has been misclassified, until the
current run, is calculated. Then, we set a different threshold for
each iteration (Pt in Algorithm 1) which is calculated using the
semantic query in Figure 12. This is referred to as threshold
of varying persistent misclassifications.

Figure 9 displays the number of misclassified parcels using
both constant and varying persistence thresholds and a constant
green threshold equal to 0.5. The threshold value was defined
based on the a priori knowledge of the percentage of false
declarations, annually. INTIA has stated that usually no more
than 3% of the agricultural parcels in Navarra are falsely
declared. Additionally, INTIA, as acting paying agency for
the Navarra region, is obligated to conduct randomly selected
inspections for at least 1% of applications. Therefore, using 0.5
as the threshold for the green category, provides 267 constant
persistent misclassifications, which amount to 3.1% of the
dataset; satisfying both the expected false declarations percent-
age and the minimum number of mandated OTSCs. Inspecting
Figure 9, each point, of both curves, is associated with the
peristence number that is used to count the misclassifications.

2) Implementation of Scenario 2: Crop Diversification:
Table IV contains a list of farmers that seem to not comply
with the rule described in Figure 9 and Figure 10. The first
column contains the farmer identifier that corresponds to a
specific farmer, the second contains the count of different crop
types that the specific farmer cultivates in the fields that he
has into his possession and the third the sum area of the
parcels that the farmer has into his possession. The fourth
column contains the area of the main crop for the cases that
the farmer cultivates more than 2 crop types in an area of 10
to 30 hectares but the main crop exceeds the 75% of the total
area. It also contains the sum of the two main crops for the

Fig. 9: The evolution of the number of misclassifications
under constant (blue line) and varying thresholds (orange
line). The varying threshold increases by one every two image
acquisitions. The thresholds define which parcels are the
misclassifications for each classification instance looking at
the number of times they were found misclassified in previous
runs.

cases that the farmer cultivates more than 3 crop types in an
area of more than 30 hectares but the sum of two main crops
exceeds the 95% of total area. The last column contains the
crop types that the farmer is cultivating in their farm.

TABLE IV List of farmers that seem to be non-compliant to
the Crop diversification requirement and information about
their crop fields

Farmer id crop types sum area main crop(s) crop types
count of parcels area

37 1 245008 Soft Wheat
1005 2 309458 Soft Wheat, Barley
1007 1 191124 Soft Wheat
1133 2 274066 271058 Soft Wheat, Rape
1229 2 407609 Soft Wheat, Barley
1319 1 103471 Barley
1306 1 302232 Soft Wheat
1860 2 287242 278455 Soft Wheat, Rape
2677 3 577902 576071 Rape, Soft Wheat,

Vinification vineyard
3131 3 614529 586915 Soft Wheat, Rape, Barley

Figure 10 presents the percentage of farmers that seem to be
complying and non-complying to the Greening 1 requirement.
The number of farmers that there is no need to be checked is
2610 (82%), while the number of potentially non-complying
farmers is 703 (18%). More specifically, 506 (13%) farmers
own 10 to 30 hectares of arable farm from which 54 (1%) grow
less than two different crop types and 452 (14%) grow two or
more different crop types but the main crop covers more than
75% of the land. On the other hand, 189 (5%) farmers own
more than 30 hectares of arable farm from which 68 (2%)
grow less than three different crop types and 121 (3%) grow
three or more different crop types but the two main crops cover
more than 95% of the land. To perform these calculations we
used the data of the classification run from early July (jul08).
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Fig. 10: Farmers distribution under Greening 1 requirement
according to their compliance and total arable farm area that
have under their possession

3) Implementation of Scenario 3: SMR 1: In the SMR 1
requirement we select the parcels that their distances from
surface is under 10 meters based on the organic manure
spreading buffer. From these only parcels with slope higher
than 12◦ are recorded, according to the SMR1 specifications.
Additionally, in order to select only parcels with an actual risk
for runoff, the aspect of the proximity line (αdegrees), namely
the orientation of the line connecting the parcel to the water
object, needs to fulfill the relationship:

aspect− 45 < αdegrees < aspect+ 45 (6)

where the aspect is given per parcel and the proximity line
aspect is calculated using the following formula:

αradians = atan2(x1 − x2, y1 − y2) (7)
αdegrees = αradians × 180◦/π (8)

Figure 11 shows the visual representation of the parcel that
was mentioned in section IV-B3. According to the aforemen-
tioned rules this parcel is of high risk.

Figure 12 presents the percentage of parcels that seem to
be of low and high risk based on the SMR 1 requirement. The
number of low risk parcels that there is no need to be checked
is 14407 (96%), while the number of high risk parcels is 630
(4%).

D. Smart Sampling Accuracy

Table V presents the PA and UA of the misclassified green
parcels, for varying and constant (5) persistence, with the
latter functioning as the ground truth. To calculate the PA,
the number of correctly misclassified green parcels of varying
persistence (Pt) is divided by the total number of misclassified
parcels in the validation dataset (267), while for the UA it is
divided by the total number of misclassified green parcels of
varying persistence.

Table V shows that suboptimal PAs and UAs are achieved
for classifications early in the year. This indicates that the
smart sampling algorithm will select erroneously a significant
percentage of the suggested OTSCs. Nevertheless, the smart

Fig. 11: Example of parcel that is susceptible to runoff
according to the SMR 1 requirement. The parcel slope aspect
(arrow) and the location of the nearby Regata de Larrea river
are also shown.

Fig. 12: Distribution of low risk and high risk parcels accord-
ing to the SMR1 specifications

TABLE V PA and UA evolution of the smart sampling
algorithm

Date PA (%) UA (%)
May04 56.18 32.82
May19 50.19 39.88
May24 52.81 39.50
Jun03 48.69 50.98
Jun23 50.94 70.10
Jul08 53.93 97.96
Jul23 56.93 100.00

Aug02 54.68 100.00
Aug27 71.54 98.96
Sep11 69.29 100.00
Sep16 79.40 100.00
Oct16 83.15 100.00
Oct21 85.77 100.00

sampling precision, indicated by the UA, reaches near perfect
values, from early July08 onward.
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In an attempt to further filter the OTSCs selection of the
suboptimal smart sampling results, found early in the year,
we exploit the season type of the crop taxonomy, as described
in Figure 5. Each of the crops that were examined belongs to
one of the three season types and that is summer, winter, and
year-round. Based on that, a false declaration would be more
likely, if the prediction of the algorithm belongs to a different
season class as compared to the corresponding season class
of the declaration. Table VI presents the number of the green
misclassifications that come from each of the different season
types as well as the total sum of them, along with the number
of green misclassifications for which the predicted crop season
differs from the declared one, identified as an alarm. Finally,
the last column indicates the percentage of those alarms that
belong to the validation dataset of more than five persistent
misclassifications.

TABLE VI Percentages of green misclassifications for each
season class and UA of persistent alarms filtered through
Algorithm

Date Total Winter Summer All Year Alarms Persistent Alarms UA (%)
May04 457 418 3 1 35 57.14
May19 336 302 3 1 30 63.33
May24 357 321 4 2 30 60.00
Jun03 255 226 4 1 24 70.83
Jun23 194 167 4 1 22 68.18
Jul08 147 125 3 1 18 94.44
Jul23 152 133 2 1 16 100.00

Aug02 146 128 1 1 16 100.00
Aug27 193 168 0 2 23 91.30
Sep11 185 164 0 2 19 100.00
Sep16 212 182 0 2 28 100.00
Oct16 222 186 1 2 33 100.00
Oct21 229 190 1 2 36 100.00

2

Comparing the “Persistent Alarms UA” column of Table
VI and the “UA” column of Table III reveals increase in
the precision of smart sampling for runs that take place as
early as May. Special attention is given to UA instead of
PA, as it demonstrates the reliability of the system. Since,
the inspections are not exhaustive but rather sampled based, it
is more important to ensure that most alerts are indeed wrong
declarations. In Figure 13 is displayed the evolution of the
smart sampling alerts for different classifications throughout
the year. It can be observed that for runs until June 23, the
alerts are only few as they are passed through the Algorithm 2
filter. It can be seen that even though some alerts only appear
early in the year, the critical mass of them can be identified
from as early as July.

E. Scalability

Table VII presents the execution time for each one of rules
that are described in this work. The execution time for each
rule is calculated as the mean time of each scenario of the
queries presented in section III-D. Results show that the query
that takes the most time to run is the SMR 1 requirement,
taking into account that this query runs per parcel, compared to
the other queries which run for the whole dataset. The reason is
that this query requires multiple calculations between polygons
such as distance and aspect which are very time-consuming.
The second column presents the execution time in seconds

Fig. 13: Smart sampling alerts at different instances through-
out the year of inspection. The red parcels indicate to the
paying agency inspector where to target their inspections.
Early in the year the alerts are fewer, stemming from less
reliable classifications. With more images as we move along
in time, classifications become more reliable and thus more
alerts are identified.

for the actual size of the dataset, while the last presents the
execution time in a reduced dataset size in order to further
understand the scalability.

TABLE VII Mean execution time of each scenario
according to the semantic queries described in section III-D

Query Execution time (sec) Execution time (sec)
actual size reduced size

Smart Sampling 0.4 0.4
Greening 1 requirement 7.35 0.023

SMR 1 requirement 1.16 0.016
Number of triples 7.369.055 1.260.600

Fig. 14: SMR 1 requirement mean execution time for each
parcel according to the risk type (low, high) compared with
total mean execution time

Figure 14 presents the mean execution time of SMR 1
requirement for each parcel according to the risk type (low,
high). The execution time is extremely low when the parcel
does not satisfy the filters (aspect, distance, slope), while when
the parcel satisfies the filters the execution time is significantly
higher. Despite this fact, the mean execution time of all parcels
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is significantly low, taking into account the large number of
low-risk parcels.

F. CAP monitoring in practice

The results in Section IV-C described the implementation
of the practical applications of the proposed system, which
have been showcased in the form of the three scenarios of
Section IV-B. Scenario 2 on Greening 1, and Scenario 3
on SMR-1 requirements respectively, are performed once for
every year of inspection. Therefore, these two scenarios infer
a single cycle of execution, with reference to Figure 1. On the
other hand, the Smart Sampling application (Scenario 1) is
an iterative process. The first crop classification is performed
in early May, coinciding with the CAP subsidies applica-
tions commencement, with subsequent iterations producing
progressively more accurate crop type maps with every new
Sentinel-2 acquisition. Hence, there is a full cycle execution
(Figure 1) with every newly acquired image, from ingestion
to interlinking.
According to the results in Table VI, the issued alarms are
adequately trustworthy to suggest potential OTSCs from as
early as July, with a user’s accuracy of more than 94%.
From then on, the paying agency inspectors can have targeted
OTSCs that increase in number with every new iteration,
following their summer-long inspection process. Alternatively,
the results from May until early July can be used in assistance
of the farmer application process. The applicants and the
paying agencies can have an indication of potential non-
compliance even at the application stage; thus allowing the
farmer to make timely changes to their application.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a semantic-oriented framework
for knowledge discovery using supervised classification in the
CAP domain. The main focus is given on the detection of
possible violations according to the declaration of the farmers,
the Greening 1 requirement and SMR 1 requirement. The
framework can strongly assist in decision making issues by
providing helpful information to paying agency inspectors
and environmental consultant to detect possible breaches of
compliance. The proposed solution relies on data coming from
sentinel images and open data (e.g. OpenStreetMap). Common
denominator between the two datasets is the provision of
georeferenced information. Data refer to a region in northeast-
ern Spain. The SVM classification method has been applied
to classify the cultivated crop types for multiple instances
throughout the cultivation season. The data, which are in
Shapefile format, are converted into Turtle RDF format using
the GeoTriples tool. Results are saved in GraphDB triplestore.
Semantic queries are executed to enrich the data with infor-
mation about possible farmers non-compliance according to
agricultural policies.

In this work we have shown how the paying agencies of the
CAP can benefit from the exploitation of big Copernicus data.
We showcased how with only freely available satellite data
and ancillary LOD one can provide actionable information.
Combining the state-of-the-art in EO-based crop classification,

semantic enrichment and linking free and open data has
facilitated the development of an end-to-end system, from data
acquisition to CAP related decision making. The main innova-
tions of the presented methodology include its re-usability and
transferability, using predominantly open data and requiring
minimal fine-tuning when applied to other regions, and scala-
bility, accounting for all big data considerations and choosing
the computationally efficient alternative every step of the way,
towards the monitoring approach of the new CAP.

Future work includes the investigation of similar datasets
that correspond to other regions to apply the agricultural
policies rules. The proposed framework can also be extended
to similar problems, beyond the control of the EU Common
Agricultural Policy, using semantic enrichment and reasoning
to support farmers in monitoring their crops, insurance com-
panies to assess the risk in a specific area of interest, and
public agencies that monitor the sustainability of rural areas
as a consequence of climate change.
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Garraza Zurbano. Scalable parcel-based crop identification scheme using
sentinel-2 data time-series for the monitoring of the common agricultural
policy. Remote Sensing, 10(6):911, 2018.

[9] James Brinkhoff, Justin Vardanega, and Andrew J Robson. Land cover
classification of nine perennial crops using sentinel-1 and-2 data. Remote
Sensing, 12(1):96, 2020.



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. XX, NO. X, MAY 2020 20

[10] Marı́a Arias, MA Campo-Bescós, and Jesús Álvarez-Mozos. Crop type
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syntax and rdf semantics. In Proceedings of the 11th international
conference on World Wide Web, pages 443–453, 2002.

[20] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The
story so far. In Semantic services, interoperability and web applications:
emerging concepts, pages 205–227. IGI Global, 2011.
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