
CloudVaults: Integrating Trust Extensions into
System Integrity Verification for Cloud-based

Environments

Benjamin Larsen, Heini Bergsson Debes, Thanassis Giannetsos

Cyber Security, Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kgs. Lyngby, 2800, Denmark

{benlar,heib,atgi}@dtu.dk

Abstract. While the rapid evolution of container-based virtualization
technologies, emerging as an integral part of cloud-based environments,
brings forth several new opportunities for enabling the provision of dis-
tributed, mixed-criticality services, it also raises significant concerns for
their security, resilience, and configuration correctness. In this paper, we
present CloudVaults for coping with these challenges: a multi-level secu-
rity verification framework that supports trust aware service graph chains
with verifiable evidence on the integrity assurance and correctness of the
comprised containers. It is a first step towards a new frontier of security
mechanisms to enable the provision of Configuration Integrity Verifica-
tion (CIV), during both load- and run-time, by providing fine-grained
measurements in supporting container trust decisions, thus, allowing for
a much more effective verification towards building a global picture of the
entire service graph integrity. We additionally provide and benchmark an
open-source implementation of the enhanced attestation schemes.

Keywords: Cloud-Based Environments · Container-based Microservices
· Configuration Integrity Verification · Privacy-Oriented Attestation

1 Introduction

The vision of cloud-based Smart Connectivity Networks (SCNs), comprising mul-
tiple edge and fog computing node deployments, is seen today as a key enabler
for evolving sectors like automotive, smart factories, smart grids, or health-
care [8, 25]. Simultaneously, their number is expected to increase significantly
with the advent of new mixed-criticality services. To this end, the cloud com-
munity is already embracing recent well-known technologies, like Network Func-
tions Virtualization (NFV) and Mobile Edge Computing (MEC) [21] intelligent
orchestration. These frameworks are based on the unrestrainable “softwariza-
tion” process, which will transform physical infrastructures into distributed data
centers with advanced virtualization and software-driven capabilities. They are
considered the two key enablers for intelligent edge computing and the cloud to
operate in tandem; Virtual Functions (VFs) allow for flexibly customizing cloud-
based networks to the needs and peculiarities of mixed-criticality applications
and expose them as Service Graph Chains (SGCs) and network slices.

Furthermore, with the advent of the Internet of Things (IoT), we have just
begun reaping the benefits of this evolution that, however, also brings several new

challenges (or rather makes old unsolved challenges urgent to be tackled with);
with security, resilience and configuration correctness being some of the major
concerns at both logical extremes of a network. While virtualization offers some
security advantages (such as isolation and sandboxing), it has issues such as inse-
cure production system configuration, vulnerabilities inside the images, and vul-
nerabilities directly linked to various container-based technologies (e.g., Docker,
LXC, rkt) [7]. The primary existing mechanisms to alleviate such issues leverage
the concept of trusted computing [4,5,7,18,23], which addresses the need for ver-
ifiable evidence about a system and the integrity of its trusted computing base
and, to this end, related specifications provide the foundational concepts such as
measured boot and remote attestation. A key component in building such trusted
computing systems is a highly secure anchor (either software- or hardware-based)
that serves as a Root-of-Trust (RoT) towards providing cryptographic functions,
measuring, and reporting the behavior of running software, and storing data se-
curely. Prominent examples include Trusted Execution Environments (TEEs,
e.g., TrustZone) [22] and Trusted Platform Modules (TPMs) [13].

Despite recent intensive research efforts towards trust aware containers [7,18],
none of the existing mechanisms are sufficient to deal with the security challenges
of container-based VFs. Firstly, there is the perceived aspect of the incomplete-
ness of integrity measurements or guarantees, due to the traditional focus of
trusted computing on the system boot time or, at most, the load-time of appli-
cations, without covering system integrity beyond these stages, during system
execution, which is especially crucial for high-availability cloud-based environ-
ments. After a VF is deployed, the integrity of its loaded components is ignored.
Indeed, while a containerized VF should work correctly (as constructed by the
orchestrator) just after it has been deployed, it could start behaving unexpect-
edly (e.g., modify data in an unauthorized way) if it receives a malformed input
from a corrupted module acting on the VF. The assurance that a VF works
correctly after loading is known as load-time integrity, while run-time integrity
refers to the whole process life-cycle. Secondly, it is imperative to ensure the pri-
vacy of the VF (and the underlying host) configuration. One overarching theme
of building trust for containers is to leverage IBM’s Integrity Measurement Ar-
chitecture (IMA) [23] that measures the integrity of a designated platform. Since
IMA measures all components and records them into a single log, each verifier
(Vrf) with access to this log (when validating the integrity of a VF) will also get
all configuration information of the prover (Prv). Adversaries benefit from such
artifacts and are capable of stealing the information of other users’ containers.

Compounding these issues sets the challenge ahead: Can we identify suffi-
cient Configuration Integrity Verification (CIV) schemes that can capture the
chains-of-trust, needed for the correct execution of a VF during both load- and
run-time, and that allow for inter- and intra-VF attestation without disclosing
any information that can infer identifiable characteristics about individual VF
configurations? Solutions will, in turn, enable the provision of adequate trust
models for assessing the trustworthiness and soundness of the overall SGC.

Contributions: In this paper, we design and implement CloudVaults, a se-
curity verification framework for supporting privacy- and trust-aware SGCs, in
lightweight cloud-based environments, with verifiable evidence of the integrity
and correctness of the VFs. The solution can be either applied separately to each
deployed VF, equipped with a virtual TPM (vTPM) security anchor, or the entire
SGC, and it enables CIV of the constructed container(s). Key features provided
that extend the state-of-the-art include the: (i) possibility to distinguish which
container is compromised, (ii) the possibility for low-level fine-grained tracing
capability (Attestation by Quote), and (iii) Secure Zero Touch Provisioning
(S-ZTP) capability which allows for inter- and intra-VF attestation without dis-
closing any VF configuration information (Attestation by Proof). Our proposed
solution is scalable, (partially) decentralized, and capable of withstanding even
a prolonged siege by a pre-determined attacker as the system can dynamically
adapt to its security and trust state. We make an open-source reference imple-
mentation of all CloudVaults schemes and protocols and benchmark their per-
formance for VFs that are equipped with either a software- or hardware-TPM1.
The implementation can be used to develop enhanced attestation schemes fur-
ther using TPM 2.0 and comparative benchmarking. It should also lower entry
barriers for other researchers who want to explore TPM-based Configuration
Integrity Verification solutions. Overall, our approach is viable for remedying
limitations of existing attestation techniques; nonetheless, there is still a need to
overcome other open issues towards a holistic end-to-end security approach.

2 Towards Trust-Aware Service Graph Chains (SGCs)

Leveraging cryptographic techniques and Trusted Components (T Cs) towards
protecting and proving the authenticity and integrity of computing platforms has
been extensively researched. Both integrity and authenticity are two indispens-
able enablers of trust. Whereas integrity provides evidence about correctness,
authenticity provides evidence of provenance. There are two possible avenues
towards achieving configuration integrity: either make the configurations them-
selves immutable or make the hashes of the configurations immutable. The latter
approach follows the Trusted Computing Group’s (TCG) open integrity stan-
dards [24], which recommends the utilization of hardware TPMs for storing an
accumulated hash over its Platform Configuration Registers (PCRs). TPMs also
inherently provide indisputable evidence of authenticity in the form of signatures
over data using securely stored keys (Section 2.1).

As aforementioned, IMA accumulates measurements in a TPM. It extends
the principle of measured boot, where components are measured in the order in
which they are loaded into the Operating System (OS) using Linux OS kernel
functionality. By default, IMA measures the load-time integrity of user-space
applications and files read by the root user during runtime. It is based on the
Binary-Based Attestation (BBA) scheme proposed by TCG, where measure-
ments and attestation consider hashes of binaries. However, even the smallest
change in a binary dramatically changes its hash, making IMA measurements

1 The CloudVaults C reference implementation is available at [16].

susceptible to grow unwieldy as the number of measured objects increases. Fur-
thermore, the temporal order in which files are accessed or applications are
loaded can be highly unpredictable, making it difficult to verify the accumulated
measurements. The inherent disadvantage of BBA paradigms is the disclosure
of the platform’s software and hardware configuration, which is a legitimate pri-
vacy concern since an intermediate adversary Adv (or a malicious Vrf) can use
this information to infer identifiable characteristics about the platform.

Further, the variety and mutability of software and their configurations make
it difficult to evaluate the platform’s configuration integrity [4] during runtime.
Several architectures extend upon the IMA-BBA paradigm [7, 18] to provide
integrity verification. DIVE [7] and Container-IMA [18] both incorporate IMA
for virtualized Docker containers to enable orchestrators (remotely) determine
the runtime integrity of containers in cloud-based environments. DIVE distills
the measurements to only present configuration information related to containers
of interest, while Container-IMA proposes xor-ing measurements belonging to
distinct containers with container secrets to preserve their privacy. Irrespectively,
both solutions necessitate the exchange of some identifiable information.

In the same line of research, Property-Based Attestation (PBA) [4,5] schemes
map the platform configurations to attestable properties in order to avoid the
disclosure of the host configurations altogether. Attesting properties has the
advantage that different platforms with different components may have different
configurations but still yield the same fulfillment of properties. In particular,
PBA gives more flexibility for handling system patches and updates [5], but
with the deficiency of detail. [26] presents a PBA-BBA hybrid to the cloud
environment where an attestation proxy mediates attestation requests between
the prover (Prv) platform and Vrf, such that only the proxy can be aware of
the correct configurations of a Prv. It then presents to Vrf only the security
property of Prv as the attestation proof, thus, preventing exposure of platform
configuration information. The inherent limitation of PBA, however, is that it is
only applicable to specific properties (which require accurate identification) and
is not directly transferable to reflect changes of mutable configurations.

2.1 Solidifying the VFs: Inter-Trustability of Service Function Slices

A combination of these concepts is of great interest to the secure composability of
SGCs, encompassing a broad array of mixed-criticality services and applications.
In particular, CloudVaults strives to enable orchestration of heterogeneous VFs
containing mutable configurations by leveraging the profoundness of BBA while
retaining the privacy-centered approach of PBA. In what follows, we elaborate
on the inherent functionalities of a TPM that are leveraged by CloudVaults.

Monotonic Counters for Trusted Measurements. Internally, each TPM
has several PCRs that can be used for recording irreversible measurements
through accumulation, e.g., extending PCR slot i with measurement m, the
TPM accumulates: PCRi = hash(PCRi||m). This is an indispensable property
towards the creation of strong and transitive CoT. For instance, to enforce and
regulate trustworthiness of the system boot sequence we can require that all

components measure and verify their successors by the following recurrence con-
struct [22]: I0 = true; Ii+1 = Ii ∧ Vi(Li+1), where i ≤ n ∧ n ∈ N∗, Ii denotes
the integrity of layer i and Vi is the corresponding verification function which
compares the hash of its successor with a trusted reference value. For example,
as in [6], let us assume that we require the boot sequence: seq〈sinit, BL(m),
OS(m), V S(m), V M(m), APP (m)〉, where sinit is the value that the PCR is
reset to. If we know that the sequence will yield PCR extensions with the values
v1, . . . , vn, and all components extend PCR j, then we will trust the chain if and
only if (iff) PCRj = hash(. . . (hash(sinit||hash(v1))||hash(v2)) . . . ||hash(vn)).

Attestation & Policy-Based Sealing/Binding. Attestation can be either
local or remote. Local attestation is based on Attestation Keys (AKs), which are
asymmetric key pairs AK = {AKpub, AKpriv }. To perform local attestation, we
enforce usage restrictions (authorization policies) onto AKpriv, such as requir-
ing that PCRs must be in a certain state to permit signing operations, e.g.,
PCRj (from the example above) actually reflects the accumulation of v1, . . . , vn.
Thus, using AKpriv to sign a nonce chosen by Vrf provides indisputable evidence
that the machine state is correct. Remote attestation is delegating the verifica-
tion of PCRj to Vrf, through TPM quotes comprising a signed data structure
of the nonce and the contents of a specified choice of PCRs, which Vrf veri-
fies against trusted reference values. Regardless of the attestation method, Prv
must also prove authenticity to Vrf. The TPM contains several key hierarchies,
but authenticity is founded specifically in the endorsement hierarchy. The root
endorsement seed, from which Endorsement Keys (EKs) are generated, passes
irrefutable evidence to the EK in a transitive manner. The credibility of the seed,
and hence loaded EKs, is usually based on the trustworthiness of the Original
Equipment Provider (OEP), which during manufacturing signs, loads, and later
vouches that the seed corresponds to a valid TPM [25].

3 System and (Adv)ersarial Model

System Model. The considered system (Figure 1) is composed of a virtualized
network infrastructure in which the application orchestrator (Orc) spawns and
governs a set of heterogeneous VF instances as part of dedicated service graph
chains. Each graph is composed of the ordered set of VFs that the service runs to
manage better the correct execution of the onboarded (safety-critical) applica-
tion workloads and guarantee its offered attributes (e.g., reliability, availability,
performance). As aforementioned, state-of-the-art software engineering trends
are based on the VF microservice concept for achieving high scalability and ad-
equate agility levels [14]. In our model, we assume the integration of lightweight
virtualization techniques, namely containerization [2], where applications are de-
composed into a mesh of cloud-native containerized VFs, each one with specific
and “small-scope”-stateless processing objectives, packaged on independent vir-
tual execution environments equipped with highly secure anchors (i.e., vTPMs)
that serve as our RoTs. Each deployed VF contains workload configurations,
such as its software image, platform configuration information, and other bina-
ries (see Definition 1), which are measured and securely accumulated into the
PCRs of the loaded vTPM.

Table 1: Notation used

Symbol Description

VF A Virtual Function VF
Adv An adversary resident in a VF
T C Trusted Component
EK Endorsement Key containing a public and private

part (EKpub and EKpriv) and a protected symmet-
ric key used for encrypting child keys (EKsk

priv)
AK Attestation Key
σ Cryptographic signature
KH Key handle to a loaded key in the T C
I Selection of PCR identifiers
n Randomly generated nonce
S Internal session digest in T C
Atmp Key template

hConf
† Expected configuration (PCR hash)

hPol Policy digest based on hConf
hCreate Key creation hash, w. T C state and parent key

T † Creation ticket proving origin of creation hash
Acert Key creation certificate
QCert Quote Certificate

hβ
† Hash of a binary

†We further use a prime to denote a reference, e.g., h′Conf is a
calculated reference to the actual hash of the PCR contents.

id vPCR state EKpub AKpub

1 {. . .} trusted
2 {. . .} untrusted

· · ·
n {. . .} trusted

• • •

Config <

Config <

Config <

vTPM ï
µ

vTPM ï
µ

vTPM ï
µ

Tracer ü
µ

Tracer ü
µ

Tracer ü
µ

®

a

®

é

w

ID : 1

ID : 2

ID : n

Orc

Fig. 1: Orchestration of
Segregated VFs

Definition 1 (Configurations). The configuration set of a VF encompasses
all objects (blobs of binary data) accessible through unique file identifiers.

More formally, the Orc maintains a Service Forwarding Graph (SG), of func-
tion chains, defined as SG = {s1, s2, . . . , sn}, where n ∈ N∗. Each service chain
comprises a set of deployed VFs, si = {vf1, vf2, . . . , vfm}, where m ∈ N∗ and
si ∈ SG, deployed over the substrate virtualized network. The ownership of the
physical resources, over which the secure deployment and placement of these

SGs take place, is not of interest. Each vfi ∈
{⋃n

j=1 SGj
}

is defined as a tu-

ple of the initial form: vfi = (id, vPCR, state, EKpub, AKpub), where id is the
unique VF identifier, vPCR refers to an artificial set of PCRs that reflect the
obligatory policy (measurements) that must be enforced in the actual PCRs of
the target VF, state denotes whether the VF is considered trusted or not (policy-
conformant), EKpub and AKpub are the public parts of the EK and AK of the
vTPM that is uniquely associated with vfi.

In addition, each VF is equipped with a Runtime Tracer (T rce) for record-
ing the current state of the loaded software binary data (during both boot-up
time and system execution) to be then securely accumulated into the PCRs of
the hosted vTPM. Tracing techniques are used to collect statistical information,
performance analysis, dynamic kernel or application debug information, and
general system audits. In dynamic tracing, this can take place without the need
for recompilation or reboot. In the context of CloudVaults, a detailed dynamic

tracing of the kernel shared libraries, low-level code, etc., and an in-depth inves-
tigation of the VF’s configuration is performed to detect any cheating attempts
or integrity violations. Such a T rce can be realized either as: (i) a static binary
analyzer for extracting hashed binary data measurements (i.e., digests) [1], or
(ii) a general, lightweight tracer with kernel-based code monitoring capabilities
based on the use of “execution hooks” (e.g., extended Berkeley Filters) [15].

This process builds on top of the IMA feature [23] and records measurements
of the VF’s software binary images of interest (as specified in the deployed se-
curity/attestation policy) that reflect its state/integrity: these can span from
hardware-related properties related to the BIOS/UEFI and kernel information,
to dynamic properties such as executable code, structured data and temporary
application data (e.g., configuration files, file accesses, kernel module loading).
When a measurement is extracted (Section 5.2), a register of the TPM accumu-
lates the digest of the captured event data to protect the integrity and constitutes
the basis of the subsequent verification of a VF’s trusted state: The trust state is
the result of the remote attestation functionalities of CloudVaults (Section 5.2),
in which the measurements of the software loaded on a VF is verified either locally
(Attestation by Proof) or by the Orc (Attestation by Quote) against reference
values that characterize known (and, thus, trusted) software configurations.

Definition 2 (Tracer, T rce). Given an object identifier (see Definition 1),
the T rce utility returns (in a secure way) the corresponding object’s binary data.

(Adv)ersarial Model. Our in-scope threats include both external attackers
who exploit existing vulnerabilities in the VF stack, and insiders such as cloud
users and tenant administrators who cause security breaches either by mistake
or with malicious intentions. Like most security verification solutions, we trust
the Orc responsible for the provision, management, and deployment of the VF
Forwarding Graphs. The focus is on detecting threats that can lead to the vio-
lation of the specified integrity properties, and attacks by those adversaries who
can remove or tamper with dynamic data (e.g., configuration files, logged events,
etc.) as these can also be inferred from our integrity analysis: the only cause,
a verifier would be aware of, whereby an application can get compromised at
run-time is the reading of a malformed datum previously written by a malicious
process. Unlike existing schemes, our solution can also cope with adversaries that
try to manipulate such dynamic, unstructured data which, together with regu-
lar configuration files and network sockets, represent the majority of processes
interfaces and, thus, can allow a verifier to determine the integrity and trusted
state of a VF with a high degree of confidence.

We assume an Adv that has unrestricted virtual access to the user space
of a VF, including oracle access to its attached vTPM. Similar to other at-
testation architectures, we do not consider availability threats, such as Denial
of Service (DoS). Further, the computational capabilities of Adv are restricted
to the Dolev-Yao model [9], where Adv cannot break cryptographic primitives
(e.g., forging signatures without possessing the correct credentials), but can,
nonetheless, perform protocol-level attacks. Note also, that we do not consider
a sophisticated Adv that can perform stateless attacks that target a program’s

control flow [11, 20] where the measurement of a binary can remain unchanged
even though the software’s behavior has been altered. In particular, a residential
Adv has the following Capabilities:

C-1 Unrestricted passive and active oracle access to the attached vTPM: (pas-
sive) Adv can monitor the exchange of commands and responses between
the TSS and the vTPM; (active) Adv can unilaterally craft and exchange
illicit commands to the vTPM trying to manipulate the CIV process. How-
ever, as with any oracle, Adv cannot access the underpinnings and secure
structures (e.g., PCRs) of the vTPM.

C-2 Unrestricted ability to Create, Read, Update, and Delete (CRUD) VF soft-
ware binary configurations (by Definition 1). Note that we do not consider
attestation of memory contents (objects without a unique system identi-
fier); thus, we do not audit direct accesses to the disks and the memory.

4 High-Level Security Properties of CIV

In this section, we provide an intuitive description of the security properties our
CIV scheme is designed to provide and extract the corresponding axioms (Ta-
ble 5 in Appendix C) representing the trust properties that must be satisfied
by the various components (i.e., VF, vTPM, Orc) involved in the creation and
management of SGCs. Such end-to-end definitions for VF soundness and security
are then analyzed in Section 6, where we prove how CloudVault’s design satis-
fies them in their entirety. Recall that the focus is on trust-aware SGCs with
verifiable evidence on the integrity assurance and correctness of the comprised
VFs. Verification of the host Virtual Machine (VM), its kernel, and the entire
virtualization infrastructure (NFVI) [17] is beyond the scope of this paper.

Trust is evaluated by (securely) measuring the state (and configuration be-
havior) of a VF at any given point in time, and then comparing the measured
state with the reference (expected) state. Note that the vTPM component of
a VF is the trusted element that generates the signatures, certified attestation
keys, and quoted PCR values in conjunction with the (potentially untrusted)
host. Thus, the Properties that must be achieved are:

P-1 VF Configuration Correctness. Both load-time and run-time configu-
rations of a VF (by Definition 1) must adhere to the attestation policies
issued by Orc (thus, ensuring load-time and run-time VF integrity).

P-2 SGC Trustworthiness. It must, at all times, be possible for the Orc to
determine the trustworthiness of the entire SGC. An SGC is trusted if all
VFs are attested correctly and have shown verifiable evidence that their
configurations comply with the enforced attestation policies. This transfers
and extends the sound statements on the configuration security properties
of single VFs (by P-1) to statements on the security properties of hierar-
chical compositions of VFs and SGCs.

P-3 Attestation Key Protection. To retain trust in a VF, despite mutable
configurations, it must be possible to deploy, during run-time, new (certi-
fied) AKs that reflect updates to the configuration policies deployed (i.e., an
updated set of vPCRs about the VF’s expected configuration). The VF, by

leveraging the vTPM, must securely create AKs such that AKpriv is never
leaked to an Adv so that she cannot forge valid CIV messages (thus, ensur-
ing unforgeability), and must present verifiable evidence that the created
AK is “bound” to the newly deployed attestation/configuration policies.

P-4 Immutability. The measurement process must be immutable, such that
T rce (by Definition 1) always returns the correct (actual) measurements.

P-5 Liveness & Controlled Invocation. It is assumed that attestation in-
quiries reach the local VF attestation agent and that the agent responds
with an attestation response within a specified time limit. If a VF fails to
respond within the specified time limit, this can be considered as evidence
of compromise and, thus, the VF is deemed as untrusted.

Besides the aforementioned core security properties, in some settings, Prv
might need to authenticate Vrf ′s integrity verification requests in order to mit-
igate potential DoS attacks; e.g., an Adv impersonating the Orc might send a
“bogus” configuration policy to a VF representing an incorrect (reference) state.
This functionality can be easily provided (and verified) by CloudVaults: In a case
where the Orc acts as the Vrf, the respective request (reflecting either a new pol-
icy digest or an update measurements request - Section 5), can be signed with its
(trusted) certificate so that the target VF can verify its authenticity (note that
VFs are employed with Orc’s certificate when constructed and deployed over the
substrate network). On the other hand, for achieving inter-trusted VF communi-
cation, where a VF (acting as the Vrf) tries to attest the correctness of another
VF, handling a potential forged request will not have any impact on the state
measured by the Prv since this cannot result in the update of the configuration
policy (can only be initiated by the Orc). Such a malevolent act will impose
some additional performance overhead due to the verification process that will
be performed. However, this is negligible as will be seen in Section 7.

Our work provides the missing fine-grained details of the already standardized
IMA [23] and fills the perceived gaps of dynamic and runtime remote attestation
and configuration integrity verification in a complex software stack as the one
met in emerging virtualized environments; from the trusted launch and config-
uration to the runtime attestation of low-level configuration properties about a
VF’s integrity and correctness. In Section 6, we provide game-based models for
our enhanced CIV scheme satisfying all the above properties.

5 An Architectural Blueprint Towards Unified CIV

5.1 High-Level Overview

Our schema provides two specific functionalities, Attestation by Proof and At-
testation by Quote (see Figure 2), for enabling the automatic and secure estab-
lishment of trust between deployed VFs of a service graph. The attached vTPM
authenticates the evidence of the integrity state of the service binary images run-
ning inside such containers. Key features provided include the: (i) possibility to
distinguish which container is compromised, (ii) the possibility for low-level fine-
grained tracing capability (Attestation by Quote), and (iii) S-ZTP capability for
privacy-preserving attestation (Attestation by Proof). The former is a significant

Fig. 2: CloudVaults Work Flow of VF Configuration Integrity Verification: At-
testation by Proof (Left) and Attestation by Quote (Right).

feature because, once a VF is compromised, it can be immediately retracted and
replaced by the Orc without affecting the entire SGC, thus, catering to efficient
SGC management and flexible slicing [3] making CloudVaults viable for practical
cloud-based applications. The latter enables the integrity verification of a desig-
nated VF without conveying other VF’s information (or unnecessary information
of the underlying host) to a remote VF (acting as the Vrf), in case of a malicious
Vrf being aware of which components the underlying host and other containers
have. This is of paramount importance in emerging smart connectivity networks,
leveraging cloud-based capabilities to support safety-critical services with strict
security, trust, and privacy requirements [10].

The offered CIV allows to assess and preserve the integrity of the deployed
VF’s Trusted Computing Base (TCB), at load and during system execution, by
leveraging the capabilities of vTPMs while ensuring predictability of the internal
vTPM PCR values regardless of the order of loading of applications/processes
(inside the VF) and reducing performance impact by minimizing the necessary
interactions with the host trusted component. It supports complete, configurable
attestation that acquires binary signature chains from different unique registers,
enabling advanced tracing capabilities to localize areas of compromise. Both
schemes rely on the VF to access a T C (e.g., vTPM) with irreversible PCRs.
The privacy-enhanced feature builds on the use of an AK within the T C that
can only execute a cryptographic operation if a set of PCRs is in a particular
(trusted) state, inferring the correctness of the component. Integration of our
Enhanced RA protocols in cloud-based environments, comprising dispersed VFs,
is convenient since the exchange of messages can piggyback conventional TLS
protocols. CloudVaults also introduces the concept of digest lists to limit the
reporting of measured software only to the case of unknown software (not added
to the digest list deployed by the Orc). This approach ensures predictable PCR
values and reduces the usage of the T C, therefore also the performance impact.

Following a similar workflow to the most prominent IMA-based architectures,
Figure 2 presents the information flow of CloudVaults between a Prv and a Vrf:
In a nutshell, CloudVaults detects offline and online attacks on mutable files by

verifying their hashed digest with a trusted reference measurement extracted
from a corresponding virtual PCR on the Orc. Attestation reports produced by
CloudVaults can include as much information as required based on the already
defined attestation policies (including the configuration properties to be traced).

Attestation policies must be expressive and enforceable and can be dynam-
ically updated by the Orc. After defining proper policies, the Orc can proceed
to periodically (or on-demand) attest to the modeled configuration properties
representing the current state of the target VF. A VF is trusted if its state (at
that time) matches the (already measured) reference state. As each VF is a soft-
ware component, its hashed digest defines its state. By comparing the hashed
digest (at any given time) to the reference (expected) hashed digest of the VF,
provided by the Orc, we can determine the VF trustworthiness.

5.2 CloudVaults Building Blocks

The core of our schemes (Figure 2) is the manageability of mutable configu-
rations throughout the lifespan of a VF and is accomplished by having the Orc
mediating any security-critical updates towards the deployed VFs. Whenever the
Orc invokes a periodical or scheduled update, either to determine the trustwor-
thiness of a VF or due to changes in configurations, it proactively determines the
update’s expected implication by accumulating the artificial vPCR construct of
the corresponding VF (Step 1R). The Orc then requests the VF to similarly
accumulate its PCRs to reflect potential changes (Steps 2R-3R). This update
request contains only the PCR index i that must be updated and a configura-
tion file identifier, βID, to measure. Upon receiving such update requests, the VF
then invokes the T rce to measure the requested file(s) and subsequently invokes
T C to extend PCR i with the new measurement. The simple update protocol
is depicted in Figure 7 (see Appendix A). Recall that an Adv must not be able
to tamper with the measurement process, or the trustworthiness of the entire
process will be compromised (Section 3).

Furthermore, as mentioned in Section 2.1, the privacy-preserving attestation
(i.e., local attestation) requires the use of specialized signing keys, called attes-
tation keys (AKs), which can be bound to specific PCR contents, hence making
an AK operable iff the PCRs reflect the particular PCR state in which the AK
is bound to. However, to retain the viability and correctness of such an attes-
tation (despite mutable PCRs), we must create and bind a new attestation key
whenever a VF is updated. Since the key creation process is best achieved locally,
the Orc requests a VF to create a new attestation key based on the trusted mea-
surements that were artificially accumulated before requesting the VF to update
its PCRs. First, the Orc computes an Extended Authorization (EA) policy di-
gest based on the trusted measurements (Step 1L), denoted hPol, which reflects
the trusted state in which the AK must be bound to. The policy digest is then
deployed together with a subset of PCRs, I, to which the policy applies. Upon
receiving such a request, the VF is responsible for creating the attestation key
on the T C (Step 2L). To trust that the policy is enforced and that the state of
the VF is conformant to the policy, the VF must present indisputable evidence

T C

 VF

 Orc

EK, Proof vPCR, I ⊆ {1, 2...24}, EKpub

hConf′ := hash(vPCRi, ∀ i ∈ I)

hPol := hash(CCPolicyPCR ||I
|| hConf′)

I, hPol

Atmp:= CreateTemplate(hPol)

LoadEK

KHEK := LoadEK

KHEK

TC Create(Atmp, KHEK)

{AKpriv, AKpub} := CreateKey(Atmp,

KHEK)

AK := {Enc(AKpriv, EKsk
priv), AKpub}

hCreate := hash(TPM STATE || EK)

T := HMAC(Proof, hCreate, AK)
AK, hCreate, T

TC Load(AK, KHEK)

AK,KHAK := {Dec(AKpriv, EK
sk
priv),

AKpub}
KHAK

TC CertifyCreation(KHEK ,
KHAK , hCreate, T)

T
′

:= HMAC(Proof, hCreate, AK)

Acert := FillAttestInfo(hCreate, AK)

σcert := sign(Acert, KHEK) ⇐⇒

T
′

== T
σcert, Acert

σcert, Acert, AK

V F.AKpub := AKpub ⇐⇒
VerifySignature(EKpub, σcert, Acert) ∧
VerifyCreationCertificate(Acert, hPol,

AKpub)

Fig. 3: Create new Attestation Key

towards the: (i) creation of AK happened inside the T C, (ii) provided policy
digest governs the key, and (iii) proof originates from a distinct T C.

Fig. 3 presents the underpinnings of the protocol for AK creation, where a VF
initiates the process by constructing a “key template” based on the received pol-
icy digest. This template dictates the key’s fundamental properties, i.e., whether
it is a signing key, decryption key, or both, and whether it is restricted (oper-
ates solely on TPM-generated objects). The template is passed to T C, which
creates an AK as a child key of EK. This process outputs a creation hash hCreate
and a ticket T , where T is computed with the inclusion of a secret value (Proof)
known only by T C, which proves that T C created the AK (Step 2L). The ticket
is subsequently passed as an argument to the certifyCreation functionality of
the T C, together with AK, to enable AK’s certification using EK, which, due to
being restricted, requires such indisputable evidence about the provenance of an
object. The certificate and its signature are then sent to the Orc for verification
(Step 3L-4L). The generated AK is trusted iff the signature over the certifi-
cate is verified to be authentic, based on the VF’s EKpub. The certificate reflects
that the AK was created to require the correct attestation policy to be used
for signing operations and that the certificate includes a (public) value called

T C

 VF

 Orc

PCR,EK,AK I ⊆ {1, 2 . . . , 24} AKpub

n ←$ {0, 1}η

n

LoadEK

KHEK := LoadEK
KHEK

TC Load(AK,KHEK)

AK,KHAK := {

Dec(AKpriv, EK
sk
priv), AKpub}

KHAK

TC StartAuthSession

fresh S

TC PolicyPCR(I)

hConf := hash(

PCRi, ∀ i ∈ I)

S := hash(CCPolicyPCR

|| I || hConf)

sign(n,KHAK)

hPol := GetPolicy(KHAK)

σa := sign(n,KHAK)

⇐⇒ S == hPol
σa

V F.state := Trusted ⇐⇒
VerifySignature(n, σa, AKpub)

Fig. 4: Attestation by Proof

the “magic header” whose presence proves that the signed object was created
internally on T C.

Attestation by Quote. The protocol for remote attestation using the TPM
quote structure is presented in Fig. 8 (Appendix A). In this protocol, the Orc
sends a nonce n (to enforce freshness and prevent replay attacks) and a selection
of PCRs to attest, I (Step 4R). The VF subsequently passes these arguments
to T C which constructs a quote structure comprising the current values of the
chosen PCRs, and signs it with its EK (Step 5R), which as with AK creation,
proves that the quote structure is internal to the T C. The quote certificate and
signature are then sent to the Orc (Step 6R). The quote and its signature are
successfully verified by the Orc (Step 7R) iff they are valid, and if the PCR
values correspond to the artificial reference values (vPCR) managed by the Orc.

Attestation by Proof. In the Attestation by Proof protocol (Fig. 4), Orc
only sends a fresh nonce n to a VF (Step 5L). If VF presents Sign(n,AKpriv)
(Step 6L), where AK is a fresh and verified AK, then this is indisputable
evidence that VF is in a trusted state (Step 7L). Note, that both the Attestation
by Proof and Quote can only attest to the last known measurement. Thus, both
attestation schemes are tightly coupled to run in conjunction with the update
of measurements protocol for achieving run-time VF integrity.

6 Security Analysis

We define four core security games where an Adv (defined in Section 3) tries to
manipulate the protocol’s building blocks in order to diminish the provided secu-
rity guarantees on a VF’s soundness and integrity. Our models aim to correctly
detect alterations made to configurations (see Definition 1) by intermittently
attesting their adherence to the reference values (vPCRs) in Orc. We describe

the circumstances and constraints required for Adv to win and show why this,
in some cases, is impossible under the current set of assumptions.

Game 1 (Update Measurements).
Notation:

– βID is a non-empty set of unique file identi-
fiers (see Definition 1) provided by Orc

– hβ denotes the Orc-conformant hash of βID
– h′

β denotes the actual hash of βID, i.e., hβ =

hash(T rce(βID))
– i denotes the PCR that must be accumu-

lated with the new measurement(s)
– φ denotes theOrc-conformant value of PCRi

after remeasuring βID; φ = hash(PCRi||hβ)

The Game:
1. Goal: Adv conceals non-conformant configura-

tions by deceiving the remeasurement process.
2. Setup: Adv in VF with C-1 and C-2.
3. Challenge: An update request, ReqOrc

upd, con-

taining the pair {βID, i} is received from Orc
and is accessible by Adv, where βID identifies a
file object blemished by Adv.

4. Response: N/A.
5. Win condition: Adv wins the game iff PCRi

= φ, although h′
β 6= hβ .

Game 2 (Create new Attestation Key).
Notation:

– I identifies a set of PCRs
– hPol denotes the policy for using the key
– Acert denotes the creation certificate
– σcert denotes the signature over Acert
– AK is public part of the key created
– EKpriv denotes the secret endorsement key

The Game:
1. Goal: Adv returns a verifiable key that Adv

can use at own discretion.
2. Setup: Adv in VF with C-1 and C-2.
3. Challenge: Orc provides Adv with PCR Selec-

tion I and a policy digest hPol.
4. Response: Adv responds with creation certifi-

cate Acert, signature σcert, and the certified
public key AK, constructed by Adv or T C.

5. Win condition:Adv wins the game iff the key
created inside the T C contains a different pol-
icy digest than provided, while simultaneously
providing a valid and verifiable certificate, pub-
lic key, and signature from the restricted sign-
ing key EKpriv.

Fig. 5: Adv present during updates (Game 1) and AK creation (Game 2).

When the Orc requests a VF to remeasure specific configurations (Game 1
in Figure 5), an Adv must deceive the Orc about non-conformant configurations
to hide her presence. Such misleading, requires the Adv to manipulate the lo-
cal measuring process to extend the T C PCRs with expected (bogus) “good”
measurements instead of the actual configurations. Obviously, if T rce is com-
promised, or the PCR extension of the (correct) measurement (conducted by
T rce) is disrupted and never reaches T C but Adv instead manages to feed T C
with hashes that reflect “bogus” measurements, then Adv wins Game 1. How-
ever, if this were to be possible, then we could never trust the measurements
in T C. The enforcement of P-4 and P-5 on a VF overcomes such attacks. P-4
ensures that Adv cannot tamper with the execution of T rce, and can in practice
be achieved using more complicated (and resource-heavy) attestation methods,
such as Control Flow Attestation (CFA) [15]. The latter, P-5, requires that a
VF always enforces the LTL invariant given in Eq. (1). This invariant states that
when a VF receives a measurement update request, ReqOrc

upd, then the VF must

not process further requests that create new attestation keys, ReqOrc
createAK, since

they rely on the correctness of the PCRs. Only when ReqOrc
upd has been properly

processed and the PCRs have been extended with the new measurements as
requested by ReqOrc

upd, then a VF may proceed to process ReqOrc
createAK requests.

Together, these properties guarantees prohibit Adv from ever winning Game 1.

G :

{[
received

(
ReqOrc

upd

)
∧ process

(
ReqOrc

upd

)]
→
[(
¬process

(
ReqOrc

createAK

))
U (PCRi = hash (PCRi, hash (T rce(βID))))

]}
,where i, βID ∈ ReqOrc

upd

(1)

In Game 2, an Adv tries to exploit the AK creation and certification process in
such a way that Orc believes that the created key can only be used when the PCR
values reflect the correct attestation policy, but Adv can use it at her discretion. This
win condition is inherently difficult for Adv to achieve since the Orc requires a fresh
and verifiable certificate and a signature over this certificate (Fig. 3). The signature
cannot be forged by the Adv since it originates from the T C’s secret EK. Furthermore,
as described in Section 5.2, the certificate object must be generated by the T C in order
to be signable by the restricted EK, evident through the inclusion of the magic header
in the certificate. The only option for the Adv is to alter the policy digest during key
creation, which will inevitably be discovered by the Orc, either through the actual
policy digest in the returned key or if the hash of the key is not the certified name
in the certificate. Since the policy digest is unique and strongly linked to the PCR
contents, the magic header, and the fact that the EK is secret and restricted, Adv
cannot win this game (under current assumptions).

Game 3 (Attestation by Quote).
Notation:

– σa denotes the signature over the certificate
– QCert denotes the quote certificate
– n denotes the challenge (random number)
– EKpriv is the secret endorsement key
– I identifies a set of PCRs.

The Game:
1. Goal: Adv presents valid signature and certifi-

cate with PCR values that hide Adv presence.
2. Setup: Adv in VF with C-1 and C-2.
3. Challenge: Orc challenges Adv with n and

PCR Selection I.
4. Response: Adv responds with certificate QCert

and signature σa, constructed by Adv or T C.
5. Win condition: Adv wins iff Orc can verify
σa over QCert (containing n) signed by EKpriv
and the accumulated digest in QCert matches
Orc’s accumulated digest from vPCR.

Game 4 (Attestation by Proof).
Notation:

– σa denotes the challenge signature
– n denotes the challenge (random number)
– AKpriv is the private attestation key

The Game:
1. Goal: Adv provides verifiable signature over

challenge, despite of modified binaries.
2. Setup: Adv in VF with C-1 and C-2 (see Sec-

tion 3), and AK has been deployed.
3. Challenge: Orc (or secondary VF) challenges
Adv with n.

4. Response: Adv responds with σa, either con-
structed by Adv or T C.

5. Win condition:Adv wins the game iff Orc (or
secondary VF) can verify σa being a signature
over n signed by AKpriv.

Fig. 6: Adv present during Attestation by Quote (Game 3) and Proof (Game 4).

In Game 3, an Adv tries to falsely convince the Orc that binaries have not been ma-
nipulated by exploiting either the quoting process or building a fraudulent certificate.
The certificate comprises the current PCR values and the nonce from Orc. Assuming
the accumulated PCRs reflect the Adv’s presence, she can try to tamper with the cer-
tificate creation process to reflect a forged PCR digest. Unfortunately for the Adv, T C
will be reluctant to sign the forged certificate since it did not create it.

Note that the PCRs will only reflect malicious alterations to configurations if an
update of the measurements is requested and executed after the Adv has tampered
with the configurations. We denote the time of an update as tup, time of compro-
mise as tAdv and time of attestation as tatt. Our assumption (that PCRs reflect Adv’s
presence) holds (and Adv loses) if tatt > tup > tAdv. If Adv can precisely time the
manipulation of binaries such that tup < tAdv < tatt, then the PCRs will not reflect her
presence, and Adv will win the game (although will be detected in the next measure-
ments update). This attack is called a Time-of-check to Time-of-use (TOCTOU) [19],
which is a disadvantage in the proposed protocol and is discussed in more detail in
Appendix B. However, as tup(n) − tup(n + 1) 0 (approaches 0), the disadvantage

becomes insignificant since Adv’s time window for malevolent behavior becomes very
small, but will have an impact on the overall resource consumption of the system.

Game 4 shows how an Adv can try to exploit the signing process in order to pro-
vide a valid signature over the challenge n using the issued attestation key while having
modified binaries. The overall goal is to convince the verifier that no manipulation of
binaries has happened. Recall that usage of the key is bound to certain contents of the
PCRs. The PCRs reflect the binary states; hence the Adv cannot execute the crypto-
graphic signing operation while having modified the binaries, assuming the registers
indeed reflect such modifications. This, of course, is also affected by the TOCTOU
attack mentioned earlier, and in this case, with a more severe impact. After every
update, a new attestation key has to be deployed, and local reference values have to
be updated, taking essential resources from the primary operations of the system. We
provide a more thorough analysis of this issue in Appendix B.

7 Experimental Performance Evaluation

Experimental Setup. Our testbed is deployed on a computer equipped with an In-
tel(R) Core(TM) i7-8665U CPU @ 1.90-2.11GHz running the Windows 10 OS. The
main goal of this setup is to evaluate the potential overhead of using a T C that will, in
turn, allow us to assess the overall protocol scalability towards providing verifiable VF
integrity evidence. Therefore, we have opted out of creating a true scale test environ-
ment with separate entities but consider a single binary file containing all components.
To evaluate the performance of CloudVaults, we constructed the protocols and tested
them against IBM’s software TPM V1628 using the IBM TSS [12] V1.5.0. Each exper-
iment (protocol) is performed 1,000 times. Note that since we rely on a software TPM
as the RoT, of a VF, we chose to create an attestation primary-key as an alternative to
the EK for key storage, which adds a small overhead each time the AK is used. Also,
we chose to use an ECC key as the EK instead of an RSA-based EK.

Table 2: Timings of CloudVault’s protocols (time in ms). Note that the hashing
is done without any secure hashing schemes and might be slower in practice.

Command Activity Mean 95% (low) 95% (high) Description

CreateAK Prepare 0.01 <0.01 0.01 Compute expected vPCR
Create 15.92 15.80 16.05 Create AK in T C
Verify 1.03 1.01 1.05 Verify certificate and key
Total 16.96 16.81 17.11

Update Prepare <0.01 <0.01 <0.01 Extend vPCR
Hash/Extend 1.42 1.35 1.49 Hash file(s) and extend PCR
Total 1.42 1.35 1.49

Quote Prepare 0.02 0.01 0.03 Create a nonce
Quote 8.67 8.56 8.78 Sign PCRs with EK
Verify 0.83 0.80 0.85 Verify quote and certificate
Total 9.51 9.37 9.65

Proof Prepare 0.01 <0.01 0.02 Create a nonce
Sign 10.83 10.76 10.89 Sign nonce
Verify 0.84 0.79 0.88 Verify signature
Total 11.67 11.56 11.79

Performance Results. Our experiments (Table 2) highlight the efficiency of our
protocols. The entire process of creating an AK takes no more than ≈ 17 ms (on av-
erage), while including the update of binary measurements still requires less than 20

ms (see Appendix B for more details and a comparison to an HW-based TPM imple-
mentation). The enhanced attestation schemes are also efficient (< 12 ms); however,
without considering any possible network delay that may be present when communi-
cating the attestation data between the Prv and Vrf. With both supporting routines
and attestation schemes being extremely lightweight, we can achieve low-cost, rapid
attestation capabilities and provide advanced trust assurance services without consum-
ing many computational resources. Such capabilities ensure trust from the perspec-
tive of the Orc and further facilitate bilateral trust assurance (even) between service
graphs. As described in Section 6, higher levels of trustworthiness result in the need
for more resources. That is why it is imperative for the attestation protocols to be
lightweight enough without, however, impeding on their accuracy and correctness. To
better demonstrate the achieved effectiveness, we use Eq. (2) (Appendix B) to deter-
mine how fast we can detect binary manipulation. In the worst-case scenario, where
an Adv tampers with a binary just after an update, she will remain undetected for at
most 293.40 ms, if we utilize as little as 20% of the CPU time.

The ease of operating CloudVault’s protocols, including their efficiency, makes the
framework highly applicable to be integrated into large-scale networks. While we did
not take processing- or network-delay into consideration and only use the AK once,
the experiments show that the time of detection is in the order of seconds. In Fig. 10
(Appendix B), we further see that even with 10% utilization, we can still detect a change
after ≈ 1 second, making it extremely difficult for an Adv to manipulate CloudVaults.

8 Conclusions
In this paper, we proposed CloudVaults, a multi-level security verification framework
for supporting trust aware SGCs with verifiable evidence on the integrity assurance and
correctness of the comprised containers: from the trusted launch and configuration to
the run-time attestation of low-level configuration properties. Based on our analysis, we
described how a VF achieves privacy-preserving integrity correctness and how to utilize
vPCRs for binary data integrity with a virtual-based RoT. Our prototype and the
evaluation results demonstrate that our architecture can satisfy the privacy, security,
and efficiency requirements. Furthermore, by considering the salient characteristics of
remote attestation, we identified several open research challenges. We believe that if
these challenges are tackled now while container-based CIV is still at an early stage,
this emerging security mechanism can reach its full potential.

9 Acknowledgment

This work was supported by the European Commission, under the ASTRID, RAIN-
BOW, and FutureTPM projects; Grant Agreements no. 786922, 871403, and 779391.

Appendices

A Configuration Integrity Verification Sub-Protocols
(Extended)

In this section, we present the remaining protocols, Update Measurements (Fig. 7)
and Attestation by Quote (Fig. 8). To initiate the re-measurement process of a
VF, the Orc sends an Update Measurements request detailing which file object
should be re-measured (using T rce) and into which PCR registers it should be
registered. Note that the Orc knows what the correct PCR values should be
since it also accumulates the artificial PCR registers (vPCRs), as part of the

attestation policy, corresponding to the target VF. To perform a verifiable as-
sessment of the current state of a VF’s PCRs, the Orc sends an Attestation by
Quote request detailing which PCR registers should be included in the quote,
denoted I, and a nonce n to enforce freshness and prevent replay attacks. After
the VF has securely instructed its T C to construct the necessary quote certificate
and signature (over the certificate), it forwards them to the Orc. If the signature
over the quote is deemed correct (signed by the VF’s EKpriv), the certificate can
the be verified for determining whether it contains the “magic header” (proving
that it was generated inside the T C, as detailed in Section 5.2) and whether the
PCR values correspond to the trusted PCR values (vPCR) that were artificially
accumulated on the Orc when the VF was last updated.

T C

 VF

 Orc

PCR vPCR, βID, h
′
β

i ←$ {1, 2, . . . , 24}

vPCRi := hash(vPCRi || h′
β)

i, βID

β := Tracer(βID)

hβ := hash(β)

PCR Extend(i, hβ)

PCRi := hash(PCRi, hβ)

Fig. 7: Update PCR Measurements

B Timings and Benchmarks

Based on our adversarial model (Section 3), we do not consider Adv that can
perform transient attacks whereby alterations to binaries are only detectable for
a short time. Thus, any alterations to binaries by an Adv will be detected when
the VF is re-measured and attested, as shown in Fig. 9. The advantage of an Adv
is defined as the time that she can remain undetected. If, for instance, the Update
of Measurements and Attestation by Quote protocols are executed immediately
after the attack, then we will be able to detect any incompliant configurations
from the quote structure. However, Attestation by Proof will inevitably take
longer to complete since the creation of a new AK must occur in-between the
Update of Measurements and Attestation by Proof protocols. Let td denote the
time of detection (hence, a large td is desirable to Adv), u the time to execute
the update routine, c the time to execute the creation of a new AK, a the time to
execute the attestation routine, and n the number of Vrf’s that, in consecutive
order, conduct Attestation by Proof on a specific VF using a shared and verified
AKpub of that VF, respectively. We further use the variable tCPU to specify
the amount of CPU resources allocated to execute these routines, e.g., for 20%
utilization we have tCPU = 0.20. Using Eq. (2) we calculate the time until the
Adv is detected (td) (Figure 10). As we can see, the detection time (td) increases
linearly with n (a) but decreases as we allocate more resources, tcpu (b).

td =
2c+ a(1 + n) + u

tCPU
(2)

T C

 VF

 Orc

PCR,EK EKpub, I ⊆ {1, 2...24}, vPCR

hConf′ := hash(vPCRi, ∀ i ∈ I)

n ←$ {0, 1}η

n, I

LoadEK

KHEK := LoadEK
KHEK

TC Quote(KHEK , n, I)

hConf := hash(PCRi, ∀ i ∈ I)

QCert := {hConf, I, n}
σa := sign(QCert, KHEK)

σa, QCert

V F.state := Trusted ⇐⇒
VerifySignature(EKpub, σa, QCert) ∧
VerifyQuoteCertificate(QCert, n, hConf′)

Fig. 8: Attestation by Quote

Fig. 9: Visual representation of how long an Adv can go undetected.

Implementation Note. Writing protocols in terms of TPM calls requires
reading and understanding the TPM 2.0 specification and this makes TPM de-
velopment challenging and causes a high-barrier of entry. While the TPM 2.0
specification was designed to be easily maintainable, it is nevertheless challeng-
ing to read mainly due to its sheer size. It consists of over 1400 pages split into
four parts which not only cover the core specifications, but also numerous er-
rata covering the continuous development of the TPM specification. Therefore,
a particular TPM will be based on the core specification and all of the relevant
errata which it implements.

5 10 15 20 25

400

600

800

1000

1200

1400

1600

t d
[m

s]

n

(a)

0.2 0.4 0.6 0.8 1

200

400

600

800

1000

1200

1400

t d
[m

s]

tcpu

(b)

Fig. 10: (a) Changing the number of attestations each key has to do and its
impact on the time of detection (20% utilization) and (b) shows how different
utilization of resources impact the time of detection with one AK use.

HW-based TPM Timings. The timings for executing the individual TPM
commands of the CIV protocols are presented in Tables 3 and 4, and are per-
formed using IBM’s software (SW) TPM V1628 and the Infineon (HW) TPM
2.0 chip. The mean time is calculated from repeating all experiments 1,000 times
for the SW-TPM and 100 times for the HW-TPM. The values reflect the time
between executing a command in the IBM TSS [12] V1.5.0 and until receiving
a response. The SW-TPM timings are much faster than those when using the
HW-TPM. Even though a hardware TPM has some degree of hardware acceler-
ated cryptography, it still cannot measure itself with a modern CPU, and is not
designed to do so. Applying Eq. (2) on the HW-TPM yields a time of detection
as td = (2 · 734.89 ms + 417.49 ms (1 + 1) + 6.09 ms)/0.20 = 11.5 s, which is
indeed larger than that for the SW-TPM. However, these values are somewhat
misleading since the host CPU’s utilization does not have any effect on the HW-
TPM as it executes the operations on the hardware chip itself. By evaluating
the TPM command execution and application timings, we can see that the most
time-consuming operations are those executed on the TPM, which is why the
impact of the CPU utilization using an HW-TPM is significantly lower. Remov-
ing this constraint from Eq. (2) gives us td = 2.310 s (excluding the host times,
such as verification, nonce generation, etc.). Additionally, the “create primary
key” function is extremely time-consuming, which is why it might be useful to
load this AK from NV storage.

Table 3: Mean time (in ms) of using
SW- and HW-TPM for updating mea-
surements and creating a new AK.

Command SW HW

Update
TPM2 PCR Extend 0.44 6.09
Total 0.44 6.09

Create
TPM2 CreatePrimary 0.92 238.35
TPM2 Create 0.98 243.75
TPM2 Load 0.44 58.04
TPM2 Load 0.33 59.83
TPM2 CertifyCreation 5.18 123.13
TPM2 FlushContext 1.64 4.10
TPM2 FlushContext 1.60 3.69
TPM2 FlushContext 2.21 4.00
Total 13.3 734.89

Table 4: Mean time (in ms) of using
SW- and HW-TPM for Attestation by
Quote and Proof.

Command SW HW

Quote
TPM2 CreatePrimary 3.36 244.96
TPM2 Load 1.57 51.69
TPM2 Quote 2.16 112.71
TPM2 FlushContext 0.93 3.71
TPM2 FlushContext 0.89 3.77
Total 8.91 416.84

Proof
TPM2 CreatePrimary 3.33 241.38
TPM2 Load 1.70 54.17
TPM2 StartAuthSession 1.38 6.72
TPM2 PolicyPCR 0.37 10.71
TPM2 Sign 3.06 95.36
TPM2 FlushContext 0.97 4.12
TPM2 FlushContext 0.91 4.98
Total 11.72 417.44

Table 5: Formalized enablers (axioms) to achieve the CIV security properties.

Ax1

∀vf ∈
σ|σ ∈

n⋃
j=1

SGj


[
∃! vtpm

]
: TrustedV TPM (vtpm) ∧ Bound(vtpm, vf)∧

HasInv(vtpm, vf.EKpub) ∧ Signed(vtpm.pcr[idx], vtpm.EKpriv) ∧ Equals(vtpm.pcr[idx],

vf.vpcr[idx]) ≡ Conformantconfig(vf.vpcr), ∀ idx ∈ indices(vf.vpcr)

(Ax1 for P-1): Any VF, with a unique and proper vTPM, has conformant con-
figurations iff it proves through signing its PCRs with EKpriv that its PCRs are
conformant to the policy (vPCR) issued by Orc, where EKpriv = VF.EK−1

pub and
EKpub is trusted by Orc.

Ax2

@vf ∈

σ|σ ∈
n⋃
j=1

SGj


 : ¬Conformantconfig(vf.vpcr) ≡ TrustedSGC(SG)

(Ax2 for P-2): The entire SGC (SG) is considered trusted iff all of its VFs are at-
tested correctly, such that all configurations are conformant to their respective at-
testation policies.

Ax3

[
∀vf, vtpm, pol

]
: TrustedV TPM (vtpm) ∧ Bound(vtpm, vf) ∧ CreatedAK(vtpm.ak, pol)∧

Signed(vtpm.ak, vtpm.EKpriv) ∧Haspolicy(vtpm.ak, pol) ≡ TrustedAK(vtpm.ak)

(Ax3 for P-3): An attestation key ak is trusted iff it is created on a trusted
vTPM and contains the appropriate policy pol, which reflects the appropriate at-
testation policy (vPCR).

C CloudVaults Formal Trust Models

Table 5 presents the axioms (with descriptions) that must be satisfied by the var-
ious components (i.e., VF, vTPM, Orc) involved in the creation and management
of SGCs to ensure the CIV security properties (Section 4).

References

1. Abera, T., et al.: C-FLAT: Control-Flow Attestation for Embedded Systems Soft-
ware. In: Proceedings of the 2016 ACM SIGSAC CCS Conf. pp. 743–754

2. Bailey, K.A., Smith, S.W.: Trusted virtual containers on demand. In: 5th ACM
Workshop on Scalable Trusted Computing. p. 63–72. STC ’10 (2010)

3. Beck, M.T., Botero, J.F.: Scalable and Coordinated Allocation of Service Function
Chains. Comput. Commun. 102 (2017)

4. Chen, L., et al.: A protocol for property-based attestation. In: 1st ACM workshop
on Scalable trusted computing (2006)

5. Chen, L., et al.: Property-based attestation without a trusted third party. In:
International Conference on Information Security. pp. 31–46. Springer (2008)

6. Datta, A., et al.: A logic of secure systems and its application to trusted computing.
In: 30th IEEE Symposium on S&P. pp. 221–236. IEEE (2009)

7. De Benedictis, M., Lioy, A.: Integrity verification of Docker containers for a
lightweight cloud environment. Future Generation Computer Systems 97, 236–246

8. Dimitriou, T., Giannetsos, T., Chen, L.: REWARDS: Privacy-preserving rewarding
and incentive schemes for the smart electricity grid and other loyalty systems.
Computer Communications 137, 1 – 14 (2019)

9. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
information theory 29(2), 198–208 (1983)

10. Giannetsos, T., Krontiris, I.: Securing V2X Communications for the Future: Can
PKI Systems Offer the Answer? In: 14th Int. ARES Conf (2019)

11. Giannetsos, T., et al.: Arbitrary Code Injection Through Self-propagating Worms
in Von Neumann Architecture Devices. Comput. J. 53(10), 1576–1593

12. Goldman, Ken: IBM’s Software TPM 2.0 and TSS, https://sourceforge.net/
projects/ibmswtpm2/,https://sourceforge.net/projects/ibmtpm20tss

13. Ibrahim, F.A., Hemayed, E.E.: Trusted cloud computing architectures for infras-
tructure as a service: Survey and systematic literature review. Computers & Secu-
rity 82, 196–226 (2019)

14. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: The
journey so far and challenges ahead. IEEE Software 35(3), 24–35 (2018)

15. Koutroumpouchos, N., et al.: Secure edge computing with lightweight control-flow
property-based attestation. In: 2019 IEEE Conf. on Network Softwarization

16. Larsen, B., Debes, H.B., Giannetsos, T.: Cloudvaults C implementation. In:
https://github.com/astrid-project/Configuration-Integrity-Verification (2020)

17. Lauer, H., et al.: Bootstrapping Trust in a “Trusted” Virtualized Platform. In: 1st
ACM Workshop on Workshop on Cyber-Security Arms Race (2019)

18. Luo, W., Shen, Q., Xia, Y., Wu, Z.: Container-IMA: A privacy-preserving Integrity
Measurement Architecture for Containers. In: 22nd International Symposium on
Research in Attacks, Intrusions and Defenses ({RAID} 2019). pp. 487–500 (2019)

19. Nunes, I.D.O., Jakkamsetti, S., Rattanavipanon, N., Tsudik, G.: On the TOCTOU
Problem in Remote Attestation. arXiv preprint arXiv:2005.03873 (2020)

20. Roemer, R., et al.: Return-Oriented Programming: Systems, Languages, and Ap-
plications. ACM Trans. Inf. Syst. Secur. 15(1), 2:1–2:34 (Mar 2012)

21. Sabella, D., et al.: Mobile-Edge Computing Architecture: The role of MEC in the
Internet of Things. IEEE Electronics Magazine (2016)

22. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what it
is, and what it is not. In: 2015 IEEE Trustcom. pp. 57–64. IEEE (2015)

23. Sailer, R., et al.: Design and Implementation of a TCG-based Integrity Measure-
ment Architecture. In: USENIX Security symposium. pp. 223–238 (2004)

24. TCG: TCG Guidance for Securing Network Equipment Using TCG Technol-
ogy Version 1.0 Revision 29 (jan 2018), https://trustedcomputinggroup.org/
wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf

25. Whitefield, J., et al.: Privacy-enhanced capabilities for VANETs using direct anony-
mous attestation. In: IEEE Vehicular Networking Conference

26. Xin, S., Zhao, Y., Li, Y.: Property-based remote attestation oriented to cloud
computing. In: IEEE Conf. on Computational Intl. and Security (2011)

