To appear in an IEEE VizSec 2020

Malware vs Anti-Malware Battle - Gotta Evade ‘em All!

Emily J. Chaffey*

Daniele Sgandurra’

Royal Holloway, University of London

ABSTRACT

The landscape of malware development is ever-changing,
creating a constant catch-up contest between the defend-
ers and the adversaries. One of the methodologies that
has the potential to pose a significant threat to systems is
malware evasion. This is where malware tries to deter-
mine whether it is run in a controlled environment, such
as a sandbox. Similarly, a malware can also learn how an
Anti-Malware System (AMS) decides whether an input
program is a malware or in fact benign with the goal of
bypassing it. On the other hand, the AMS tries to detect
whether a malware sample is performing such evasive
checks, e.g. by evaluating the results of Reverse-Turing
Test (RTT). This learning process can be viewed as a
‘battle’ between the AMS and the malware, due to the
malware attempting to defeat the AMS, where a success-
ful win for the malware would be to evade detection by
the AMS and, conversely, a win for the AMS would be to
correctly detect the malware and its evasive actions. We
propose a visualisation-based system, called Gotta Evade
‘em All, that allows cyber-security analysts to clearly see
the evasive and anti-evasive actions performed by the
malware and the AMS during the battle.

1 INTRODUCTION

The amount of new malware samples released every day
requires cyber-security analysts to resort to automated
processes to analyse malware, relying on the virtue of
isolated test environments (sandboxes) [15]. Although
this speeds up the analysis of malware, it also introduces
additional weakness as the malware may attempt to detect
it is being analysed in a sandbox and, if so, it behaves
benignly — the so called sandbox evasion. This might
result in the misclassification of the sample and a po-
tentially harmful program could be allowed to execute.
Sandbox evasion can be done via fingerprinting the sys-
tem via sandbox artefacts (registry keys, loaded libraries,
etc.) [14] [8], discrepancy in time among a real and a vir-
tual system [9] and Reverse-Turing Tests [7] [1] [4]. We

*e-mail: Emily.Chaffey.2016 @live.rhul.ac.uk
"e-mail: daniele.sgandurra@rhul.ac.uk

believe that future malware could use a combination of
the previous features and feed them to an embedded ML
algorithm to classify the AMS as running on a real host
or not [21]. Similarly, the AMS can detect discrepancy
among a malware using evasive techniques and a malware
not using them [12] [11].

This paper revolves specifically around RTTs, explor-
ing the potential for malware to detect false human in-
teraction by the anti-malware system and respond in a
benign manner so that it can avoid being detected. To
enable a more visual-oriented representation of the inter-
action among the malware and the anti-malware system,
we propose a system (Gotta Evade ‘em All) that displays
the ‘battle’ between the machine learning component of
the malware-evasion and of the anti-malware program. To
this end, Gotta Evade ‘em All analyses a malware sample,
generates a report and feeds it back to a set of back-end
tools to create a visualisation of the battle. If the eva-
sive component of the malware successfully deceives the
detection system, it means that it has successfully learnt
which features are used by the detection system to deter-
mine whether a sample is malicious or not. The status of
each battle is visually displayed to the user viewing the
program and, once the condition of either the malware
successfully evading the AMS, or the AMS detecting the
malware, or a set number of battles has occurred, the pro-
gram terminates by showing the outcome of the battle.

2 BACKGROUND

The paper [2] discusses an approach based on OpenAl
Gym to teach an agent how to bypass an Anti-Malware
System (AMS) based on reinforcement learning. The con-
cept of using visualisation (using a breakout-styled game,
as seen in Gym-Malware'), to demonstrate the ongoing
battle occurring in the background between the malware
and the anti-malware system stood out as a really interest-
ing method to explain what is occurring to those with less
knowledge surrounding malware evasion. The simplicity
of the breakout-styled game gave a clear indication of the
progress of one side of the battle. However, the game does
not provide enough information to the user for them to
obtain a solid understanding of what it is trying to explain
to them. This is due to the fact that, if a user viewed the

Thttps://github.com/endgameinc/gym-
malware/blob/master/README.md

To appear in an IEEE VizSec 2020

visualisation aspect of the program in isolation, the user
would lack insight into the processes taking place. They
could perceive it solely as a game the computer is playing
against itself, not comprehending the processes occurring
or their complexity.

2.1 RTTs For Sandbox Evasion

The ever-evolving landscape of malware detection means
that, in order for a malware to be successful, it needs to be
able to evade the detection system. In this context, a RTT
has the purpose of using a computer to determine whether
an input is made by a human, or simulated by another
machine — hence, the reverse of a Turing Test [18]. Whilst
this can be beneficial to organisations to prevent the re-
ceipt of mass automated spam, it can also be exploited by
an adversary when designing their malware. By using the
theory of RTTs, an adversary can enhance their malware
to be able to determine whether it is running in a sandbox
or a virtual machine and then act benign if it is suspi-
cious it is being evaluated by an anti-malware system. In
the following, we briefly recall some the major different
types of RTTs that a malware could use to determine if it
is running in a sandbox.

Mouse Pointer Movement. The movement of a
mouse cursor can provide important details to a malware
evasion system as to whether it is being evaluated in a
sandbox. This means that a malware that is tracking
mouse movements, in particular their speed, and how al-
gorithmic the movements are, can act benign if it deems
that the movements are that of an AMS.

Movement Speed. In a sandbox, simulated mouse
movements can be faster than humanly possible [16] due
to the algorithm and the speed of the computer. Hence,
by calling a method such as GetCursorPos repeatedly,
at different intervals, interspersed with other instructions,
the evasion system can calculate the difference between
the mouse position over less than a second. If the differ-
ence is above a certain threshold, the system will deem
the movement speed too fast to have been made by a
human and, therefore, must be simulated behaviour by
another computer. The malware evasion system can then
take appropriate steps to act benign and avoid detection
by the anti-malware system.

Movement Pattern. When a sandbox is emulating
the movements of a mouse cursor, it may use an algo-
rithm to generate a path for the cursor to follow. Thus,
a malware evasion system could analyse the coordinates
of the cursor to determine how ‘human’ it is, as when a
user is using a mouse the cursor is not going to perfectly
follow an equation. If it seems unrealistic that the pattern
is generated by a human, for example too straight, the
evasion system would flag its concerns and the system
would begin acting benign, as it would deem that it was
being monitored by an anti-malware system.

Mouse Clicks. Sometimes a malware will monitor
the number of clicks made within a certain period of time.
If certain criteria are met, for example there are no mouse
movements yet occasional clicking, the malware evasion
system may be able to come to the conclusion that a sand-
box is simply sending the command for a mouse click
event to occur, without a mouse movement. Equally, if
there are seemingly too many clicks within the time frame,
the system could determine that it was being monitored.
With this conclusion, it can decide whether it should con-
tinue executing the malware or perform a benign task to
avoid detection. Note that malware can also send mouse
“click” to the AMS to deactivate its protection [10].

Scrolling Detection. Some malware use scrolling
detection to start execution, this is used to perform a RTT
as “simulating human interaction with random or prepro-
grammed mouse movements is not enough to activate its
malicious behavior” [17]. In order for the malware to
activate, the user would have to scroll to a certain page
of a document. This means that if the user never scrolls
to that point in the document the malware will never be
activated. Whilst this could be viewed as a good tech-
nique, it may not be the most effective way of performing
a RTT, as it could significantly reduce the number of in-
fected machines and similarly, if the anti-malware system
is developed to combat that sort of evasion technique, it
may result in an increased number of detections.

CAPTCHA. A CAPTCHA, for “Completely Auto-
mated Public Turing Test To Tell Computers and Humans
Apart” [13], is a term to describes a RTT used to auto-
matically determine whether the user is in fact human by
producing tests that only a human could pass [19]. Such
tests consist of distorted text within an image, where the
user would have to determine what is being displayed. A
CAPTCHA could aid a malware to evade detection by an
AMS as, if the CAPTCHA was used before the execution
of the malware, the malware would be able to test whether
there is a human using the computer or a computer sim-
ulating a user in a virtual machine or sandbox [7]. This
would enable the malware to evade detection as, if it
determines that the user is not human, it can execute a
benign task, so that the AMS does not perceive it as a
threat. Additionally, depending on how the malware is
programmed, it may result in the AMS being unable to
evaluate the threat level of the malware, due to not being
able to pass the CAPTCHA [3]. There has also been re-
search into using ML to extract the correct information
from the CAPTCHA s to bypass it [5] [20], but there has
seemingly been little research in using CAPTCHA solvers
in anti-malware systems. This could be very beneficial
to the malware-evasion system, as the sandbox may not
know how to interact with a CAPTCHA so it could pro-
vide a straightforward method for the system to determine
whether to act benign or to execute the malware.

To appear in an IEEE VizSec 2020

3 GOTTA EVADE ‘EM ALL

We have designed and implemented a game-styled ‘battle’
visualisation system, called Gotta Evade ‘em All, where
the different ‘moves’ made by the malware evasion and
the Anti-Malware System (AMS) are displayed to the
user and each move is explained with a short description.
We specifically focus on a hypothetical battle among two
competing evasion and anti-evasion-based systems, one
employed by the AMS to classify a sample as malicious or
benign, and the other employed by the malware to classify
the host as a sandbox or a ‘real’ system. The main goal
of the battle visualisation style is to enable users who are
less knowledgeable about malware evasion / detection
to understand what is occurring in real-time. There are
multiple ‘rounds’ during the battle, where each round is
the next ‘move’ the malware performs in an attempt to
evade detection, and when the battle ends, the system
displays the ‘winner’ of the battle.

3.1 Concept Design

The original design inspiration comes from Pokémon. In
fact, although the game may seem a little out of place
with regards to malware evasion, from a visualisation
perspective, it provides a very clear and simple concept
to the viewer as to what is occurring. The use of different
option screens, as seen in Figure la, allows players to
choose whether to: (i) ‘fight’, and are then met with a
further option screen to determine which move they wish
to use (as shown in Figure 1b), (ii) ‘switch’ Pokémon,
which enables them to change the Pokémon they are using
during the battle, (iii) ‘access their bag’, so that they can
use a special item, such as a potion to heal their Pokémon,
or (iv) ‘run’ (which ends the battle).

SOUTRTLE L& LOTAD: wi?
L ———y)

@

TREEKD: [t
12/ 36

POLKD LEER
FBSORE AUTCK ATTACK |

(a) Pokémon Choice Screen -
Pokémon FireRed/LeafGreen
Versions

(b) Pokémon Fight Screen -
Pokémon Sapphire Version

Figure 1: Examples of Pokémon Screens

3.2 Malware Battle Visualisation

Using the Pokémon ‘fight’ and ‘run’ features as inspi-
ration, Gotta Evade ‘em All provides similarly-styled
options for displaying the choices made by the malware
evasion system using animations. In particular, the ‘fight’
option has been translated to a list of different techniques
the malware evasion system could use to evade detection

(using each ‘move’ when appropriate). Similarly, if the
malware evasion system decides that it is being assessed
by an anti-malware system, it could ‘run’, where it would
proceed executing a benign process. The same concepts
have been used for the other side of the battle (i.e., the
anti-malware system). Gotta Evade ‘em All provides a
more advanced and intuitive way to display to the user
what the malware is doing to potentially evade detection
and makes the process a lot clearer.

Figures 2a and 2b show an overview of how the visu-
alisation part of the program that displays the malware-
evasion system performing an evasion action works. An
animation occurs to show the user that the malware has
decided to evade (Figure 2a), followed by another ani-
mation showing which of the evasion techniques it has
chosen (2b) and then the malware ‘performs’ the action
(Figure 3) in addition to an animation. On the other hand,
if the malware decided to act benign, it would animate
the selection of the benign move and perform the relevant
animation.

|

= .\ -]
(E— %

®
=N

(a) Design for Malware Decision
Making Screen

(b) Design for Malware Action
Choice Screen

Figure 2: Malware Decision Making Screen Designs

Malware used Clicks! :l

Figure 3: Design for Malware Performing Action Screen

Figures 4a and 4b show a basic plan of how the vi-
sualisation part of the program would display the AMS
performing a detect action. An animation occurs to show
the user that the AMS has decided to detect (Figure 4a)
followed by the ‘performance’ of the action (Figure 4b)
in an additional animation.

To appear in an IEEE VizSec 2020

e @5

{ O =

(a) Design for AMS Decision
Screen

(b) Design of AMS Action Screen

Figure 4: AMS Screen Designs

Figures 5a and 5b show the different screens for each
final outcome. An animation occurs to show the user that
the AMS has won (Figure 5a), where winning consists
of the anti-malware determining that the program it has
analysed is in fact a malware. Instead, if the malware-
evasion system wins, an animation displays to show the
user (Figure 5b), where winning is the malware-evasion
system successfully evading detection from the AMS.

s
Wi SEe
ﬁ q\ .>7\!’- L‘J ‘ﬂ b‘

It managed to evade detection!

‘The anti-malware system won!
It correctly identified the malware

(a) AMS Winner Screen Design (b) Malware Winner Screen Design

Figure 5: Winner Screen Designs

Gotta Evade ‘em All demonstrates to users how an
AMS analyses potentially malicious samples. It achieves
this in an engaging and familiar manner, by being based
upon easily recognisable franchises and having a clean
and simple functionality. The ability to run the system
without having too much technical knowledge must also
be highlighted, as the user only needs to execute one
command. Figure 6 shows some screenshots from the
start to the end of a real battle.

(a) Start Screen for the Animation (b) AMS Move Screens and the
Winner Screen

and the Encounter View, Followed
by the Malware Move Screens

Figure 6: Screenshots of the Battle Occurring in the
Visualisation Program

There is a high degree of automation as the user sim-
ply needs to click on a Python script, which starts the
virtual environment (an Ubuntu VM) which then automat-
ically opens a Windows 7 VM, takes a snapshot and then
closes the VM. This then opens a Cuckoo sandbox [6]
and submits the sample executable. Once the analysis
has finished and the report has been moved to a shared
guest-to-host folder, a parser engine is run and then the
visualisation software begins. The code for Gotta Evade
‘em All and full instructions to run it and use it are available
at: https://github.com/EmilyChaffey/GottaEvadeEmAII.

4 DISCUSSION

The Gotta Evade ‘em All system is a useful tool to edu-
cate and explain how an AMS can detect signatures and
behaviours of a submitted malware sample. The tool is
primarily aimed at security analysts, due to its automation
capabilities, however, the visualisation aspects of the tool
can be used to inform individuals who have less under-
standing of the cyber-security aspects. In particular, in an
education setting, a knowledgeable instructor could use
this as a teaching aid aimed at undergraduate and post-
graduate level students to introduce advanced topics such
as malware evasion. Similarly, by using a familiar con-
cept based on Pokémon, the proposed system allows the
understanding of malware behaviour to be more accessi-
ble to college level students. The system can similarly be
extended to be used in cyber-security competitions, such
as capture-the-flag (CTF) events, to display the status of
an ongoing battle, especially in attack-defence CTFs. Fi-
nally, this form of malware visualisation can also inspire
researchers to address the identified evasive issues using
novel and creative anti-malware techniques that in stan-
dard settings (e.g., based on program analysis) would be
difficult to come up with.

5 CONCLUDING REMARKS

This paper has a unique take on a complex and ever-
changing subject area, which can provide individuals
with the foundations of an understanding of how an Anti-
Malware System (AMS) functions, as well as highlighting
the potential areas an adversary could exploit. The Gotta
Evade ‘em All system provides security analysts with a
tool to aid research, due to its automation capabilities for
submitting a malware sample for evasion analysis. Addi-
tionally, the system makes the concepts of malware and
AMS more accessible to those with less knowledge in
those areas and acts as an educational tool which displays
the steps taken for analysis and evasion in an abstracted
and recognisable format of a battle. It also uses simple-to-
understand concepts to enable users to conclude whether
evasion was successful or not. Future extensions would
be aimed at integrating machine learnings algorithms into
Gotta Evade ‘em All system to improve the analysis and
classification of malware based on evasive features.

To appear in an IEEE VizSec 2020

CREDITS

There are a few images that were externally sourced, and
the credits are: (i) Figure 1a source: Pokémon FireRed
and LeafGreen Versions; (ii) Figure 1b source: Pokemon
Sapphire; (iii) Malware vector - macrovector; (iv) Con-
fetti background - Ylanite Koppens; (v) Shield vector -
freepik; (vi) Starry Sky background - Francesco Ungaro.

ACKNOWLEDGEMENTS

Daniele Sgandurra’s work was partially funded by the
European Union’s Horizon 2020 research and innova-
tion programme under grant agreement No 779391 (Fu-
tureTPM).

REFERENCES

(1]

[2]

[3]

(4]

[3]

(6]

(71

(8]

[

[10]

A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Bap-
tiste. Malware dynamic analysis evasion techniques: A
survey. ACM Comput. Surv., 52(6), Nov. 2019. doi: 10.
1145/3365001

H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and
P. Roth. Learning to evade static pe machine learning mal-
ware models via reinforcement learning. arXiv preprint
arXiv:1801.08917, January 2018.

R. Bhatia. How captcha is being used to by-
pass anti malware security scans and firewalls.
https://www.securitynewspaper.com/2019/09/12/how-
captcha-is-being-used-to-bypass-anti-malware-security-
scans-and-firewalls/, 09 2019. URL Access Date:
21/10/2019.

A. Bulazel and B. Yener. A survey on automated dynamic
malware analysis evasion and counter-evasion: Pc, mo-
bile, and web. In Proceedings of the 1st Reversing and
Olffensive-Oriented Trends Symposium, ROOTS. Associa-
tion for Computing Machinery, New York, NY, USA, 2017.
doi: 10.1145/3150376.3150378

E. Bursztein, J. Aigrain, A. Moscicki, and J. Mitchell. The
end is nigh: Generic solving of text-based captchas. In The
End is Nigh: Generic Solving of Text-based CAPTCHAs,
08 2014.

C. T. Claudio Guarnieri, Alessandro Tanasi, Jurri-
aan Bremer, Mark Schloesser, Koen Houtman, Ri-
cardo van Zutphen, Ben de Graaff. Cuckoo sand-
box. https://cuckoosandbox.org/. URL Access Date:
01/07/2020.

B. Dolan-gavitt and Y. Nadji. See no evil: Evasions in
honeymonkey systems. Technical report, Technical Report,
May 2010.

O. Ferrand. How to detect the cuckoo sandbox and to
strengthen it? J. Comput. Virol. Hacking Tech., 11(1):51-
58, 2015. doi: 10.1007/s11416-014-0224-9

T. Garfinkel and M. Rosenblum. When virtual is harder
than real: Security challenges in virtual machine based
computing environments. In Proceedings of the 10th Con-
ference on Hot Topics in Operating Systems - Volume 10,
HOTOS’05, p. 20. USENIX Association, USA, 2005.

Z. A. Geng, G. Lenzini, and D. Sgandurra. A game of "cut
and mouse”: Bypassing antivirus by simulating user in-

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

puts. In Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC ’19, p. 456-465. Asso-
ciation for Computing Machinery, New York, NY, USA,
2019. doi: 10.1145/3359789.3359844

D. Kirat, G. Vigna, and C. Kruegel. Barebox: Efficient
malware analysis on bare-metal. In Proceedings of the
27th Annual Computer Security Applications Conference,
ACSAC 11, p. 403—-412. Association for Computing Ma-
chinery, New York, NY, USA, 2011. doi: 10.1145/2076732
2076790

M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. De-
tecting environment-sensitive malware. In R. Sommer,
D. Balzarotti, and G. Maier, eds., Recent Advances in Intru-
sion Detection, pp. 338-357. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

N. J. H. Luis von Ahn, Manuel Blum and J. Langford. The
captcha web page: http://www.captcha.net. URL Access
Date: 01/07/2020.

N. Miramirkhani, M. P. Appini, N. Nikiforakis, and
M. Polychronakis. Spotless sandboxes: Evading malware
analysis systems using wear-and-tear artifacts. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 1009—
1024, 2017.

D. Sgandurra, L. Mufioz-Gonzélez, R. Mohsen, and E. C.
Lupu. Automated dynamic analysis of ransomware:
Benefits, limitations and use for detection. CoRR,
abs/1609.03020, 2016.

A. Singh and Z. Bu. Hot knives
butter - evading file-based
https://www.fireeye.com/content/dam/fireeye-
www/current-threats/pdfs/pf/file/fireeye-hot-knives-
through-butter.pdf, 2014. URL Access Date: 01/07/2020.
A. Singh and S. O. Vashisht. Threat research - turing
test in reverse: New sandbox-evasion techniques seek
human interaction. https://www.fireeye.com/blog/threat-
research/2014/06/turing-test-in-reverse-new-sandbox-
evasion-techniques-seek-human-interaction.html, June
2014. URL Access Date: 01/07/2020.

A. M. Turing. I. - computing machinery and intelligence.
Mind, LIX(236):433-460, 10 1950. doi: 10.1093/mind/
LIX.236.433

L. von Ahn, M. Blum, N. Hopper, and J. Langford.
Captcha: Using hard ai problems for security. In EU-
ROCRYPT, 2003.

G. Ye, Z. Tang, D. Fang, Z. Zhu, Y. Feng, P. Xu, X. Chen,
and Z. Wang. Yet another text captcha solver: A generative
adversarial network based approach. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS *18, pp. 332-348. ACM, New
York, NY, USA, 2018. doi: 10.1145/3243734.3243754
A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yosh-
ioka, T. Matsumoto, T. Kasama, D. Inoue, M. Brengel,
M. Backes, and C. Rossow. Sandprint: Fingerprinting mal-
ware sandboxes to provide intelligence for sandbox evasion.
In F. Monrose, M. Dacier, G. Blanc, and J. Garcia-Alfaro,
eds., Research in Attacks, Intrusions, and Defenses, pp.
165-187. Springer International Publishing, Cham, 2016.

through
sandboxes.

