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Were it not for it, were it not for the mirage, [he] would not continue the journey

in search for water. . .

Mahmoud darwish
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1. Introduction

This report deals with some aspects about the joint measurability of quantum

observables. Since W. Heisenberg reviewed the concepts of momentum and posi-

tion, it has been known that Quantum Mechanics furnishes the impossibility of

measuring them together, i.e., it is not possible to measure the one without dis-

turbing the other. This fact holds for many other sets of observables, and it is

commonly known by the name of complementarity.

Some of the examples taught regularly in introductory Quantum Mechanics courses

also deal with these constraints in the quantum measurement, however they are

rarely presented in its most generality. The mathematical model describing ob-

servables in these courses has severe limitations concerning both theoretical and

experimental aspects. Even at the beginning of Quantum Mechanics there were

doubts whether or not when measuring the position of some quantum particle the

outcome or probability distribution was really that of the model, or otherwise some

other fuzzy version of it. It is looking for a complete Theory of Measurement that

many aspects discussed in this report arose for the first time. One of these new

properties in the Theory of Measurement is the concept of noise, which we will see

plays an important rôle in questions of measurement.

In this project we have put our focus on two outcome observables, i.e., physical

measurable properties that may have as an outcome one given value or another.

We have developed geometrical methods (joint measurability graphs) to visualize

and characterize the joint measurability of any set of two outcome observables, to-

gether with constraints for noise which must be added to the system in order to

make them jointly measurable.

In section 2 we will define exactly what we understand by a general observable. We

have devoted section 3 to introduce shortly the mathematical idea of joint measur-

ability. Section 4 constitutes the corpus of the project. There we discuss in full

length properties for two outcome observables based on the work in [8]. We have

corrected a claim appearing in [8] and we have provided refinements and possible

solutions to issues caused by problems arising from the mistake.
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2. Positive operator valued measures

2.1. Projective measurements. It has been pointed out that the best way to

describe the measurement process in the quantum theory is by considering a class

of positive operators. Let us illustrate some features as a way of introduction.

Let H be a n-dimensional Hilbert space. Suppose we have a physical observable

represented by an hermitian operator A1. Suppose that the operator is discrete,

finite and is not degenerated. Then we can find a spectral decomposition given by

(1) A =

n∑
i=1

αi |αi〉〈αi| ,

where {|α1〉 , . . . , |αn〉} is an orthonormal basis of H. The outcome space of a

measurement of observable A is given by the set Ω = {α1, . . . , αn}, this is, these

are the values that one can measure considering the observable A. The axioms of

quantum mechanics say that if a measure appartus happens to measure αi on a

state |ψ〉, then the state immediately after the measurement is |αi〉. It is also stated

that the probability of measuring αi on a state |ψ〉 is

p(αi) = | 〈αi|ψ〉 |2 = 〈ψ|αi〉 〈αi|ψ〉 = tr {|αi〉〈αi| |ψ〉〈ψ|} .

If we use the formulation considering statistical mixtures then we would have a

trace one positive operator ρ ∈ L(H) as the state of the system and the probability

of measuring αi would then be

p(αi) = tr {|αi〉〈αi| ρ} .

Analogously, the probability of measuring αi or αj , i.e., the probability that the

measurement lies within the set {αi, αj}, provided that i 6= j is

p({αi, αj}) = tr {(|αi〉〈αi|+ |αj〉〈αj |) ρ} = p(αi) + p(αj).

By considering these last equations, one can see that in fact we have defined a

probability measure on 2Ω, this being the set of the parts of Ω. Therefore, for every

element X of 2Ω we can assign the probability p(X) as before.

1For simplicity’s sake we do not differentiate between an observable or physical property and its
assigned operator.
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Altogether we actually see that as far as the measurement is concerned, given

a Hilbert space H, all the information of the observable’s measurement is encoded

in the outcome space Ω and the set of operators {|αi〉〈αi| | i ∈ {1, . . . , n}}. So the

observable is an association of a subset of Ω (or an element of 2Ω) with some

operators acting on H, which in this case it would translate into

{αi1 , . . . , αir} 7−→ |αi1〉〈αi1 |+ · · ·+ |αir 〉〈αir | .

It is also worth noticing that for the measurement of probabilities only a certain kind

of operators are needed. Indeed operators needn’t be projectors but just positive,

so that the expected value is always positive and it makes sense to extract from

every operator a probability value.

2.2. POVM. We will define what we understand by an observable following the

footsteps and hints of section 2.1. So let H be a Hilbert space and let ρ ∈ L(H) be

a state, i.e., a linear operator acting on H having trace one. From now on, Ω will be

an outcome space associated with an observable and F the possible combinations of

elements of this Ω we can calculate probabilities of, i.e., F is a σ-Algebra attached

to Ω.

Definition 2.1. Let (Ω,F) be as above. A map A : F → L(H) is an operator

valued measure if and only if the following statements are true:

(1) A(∅) = 0.

(2) Let {Xi | i ∈ N} be a countable subset of F . If Xi ∩Xj = ∅ for i 6= j and

i, j ∈ N then

tr

{
A

(⋃
i∈N

Xi

)
ρ

}
=
∑
i∈N

tr {A(Xi)ρ} .

Note that for the case that the dimension of the Hilbert space is 1, the above

definition is just the definition of a measure.

Definition 2.2. Inside the framework of definition 2.1:

(1) an operator valued measure A : F → L(H) is called an observable if and

only if A(X) is positive semi-definite for all X ∈ F and A(Ω) = 1. We

refer to them also as positive operator valued measure or in short POVM.

(2) an observable is called sharp if and only if A(X) is a projector for every

X ∈ F , i.e., A(X)2 = A(X).
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These last definitions are quite general, maybe even they are too general for the

purposes of this report, however in proposition 4.10 we make use of this general

framework to prove a proposition. Let show this definition in the simple case of a

discrete and finite outcome space Ω. In this case Ω = {α1, . . . , αn} and since the

nature of αk is not important for the purpose of measuring, we may as well call

αk simply k, so that Ω = {1, . . . , n}. In this case we have for every element of

Ω a positive operator Ai
def
= A(i). So we have a set of positive operators {Ai, i ∈

{1, . . . , n}} which fulfill the condition∑
i

Ai = 1

for being A and observable. In the case of a sharp observable, every Ai is of the

form |i〉〈i| for some |i〉 ∈ H.

Sharp observables of course are meant to be the self-adjoint operators repre-

senting observables that are commonly introduced in Quantum Mechanics courses.

Returning to the example of last section with the operator A in equation 1, we made

the case that for every possible outcome αj we had the projector |αj〉〈αj | that would
give us the propability of measuring αj in the sate |φ〉 by tr{|αj〉〈αj | |φ〉〈φ|}. The-

oretically this class of observables has a very important property, which has to do

with the name sharp. Let us suppose we are measuring A on a system which is

in the state |φ〉 = |αj〉, since A is sharp, it is composed from projectors and we

suppose that all projectors are orthogonal, then we have the following condition on

the probability of |φ〉

(2) ∀i tr{A(αi) |φ〉〈φ|} = δij .

In this case, for this particular state |φ〉 the distribution is as sharp as a dis-

tribution can get. In general sharp observables can get arbitrarily sharp, like the

position observable, where we can perform experiments to lessen the uncertainty σx.

However imagine we do not know the start state |φ〉 or this state is in a statistical

mixture ρ such that ρ2 6= ρ, i.e., such that ρ 6= |ψ〉〈ψ| for any |ψ〉. In this case it is

not anymore possible to find a ρ such that ρ2 6= ρ having the property of equation 2.

In this way POVM’s act as real measurements [5] since they do not have the

sharpness property. Of course if we consider Quantum mechanics to be a complete
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theory of measurement, taking into consideration the dimension d of the Hilber

Space H, if we were to content ourselves with sharp observables we would not be

able to consider measurements with more than d outcomes, which in the framework

of experimentation would be a dramatic hindrance.

POVM’s give therefore the idea that we should be able to consider any probabilistic-

valid distribution we want. They are indeed objects that cater an infinity of prob-

ability distributions by definition. This means, more concretely, if (A,ΩA,FA) is

a POVM, that for every ρ we get a probability distribution over FA. Indeed, we

consider the function that to every U ∈ FA assigns the number tr{A(U)ρ}. This

function is by definition of A a probability distribution over FA.

2.3. Neumark’s theorem. POVM arise naturally from bipartite systems. In

essence, the measurement process is a coupling between the system to be mea-

sured A and the system measuring B [5]. The reading process takes place in B,

and it is an irreversible process. This means conceptually that reading the informa-

tion in B after the coupling may cease to be a sharp reading, i.e., when one looks

at the probability distribution of the readings in B, the structure does not comply

with the one of a sharp observable.

However, there is a way around, which is known as Neumark’s theorem at it is

stated below [1].

Theorem 2.1. Let A be a POVM over a given Hilbert space H. Then there exists

a sharp observable A+ on an extended Hilbert space H+ such that if P : H+ → H is

the projection from the extended Hilbert space to the former then for every |ψ〉 ∈ H

A |ψ〉 = PA+ |ψ〉 .

In simple words what the theorem states is that every POVM can actually be

thought as a sharp observable on a bigger Hilbert space. Therefore the nature of

POVM’s gets clarified by it, since any POVM is either sharp or is a partial trace

of a bigger sharp observable.
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3. Join-mesurability of POVM’s

3.1. Definition and properties.

Definition 3.1 (joint measurability). Let {Ai | i ∈ N = {1, . . . , n}} be a set of

POVM’s with outcome spaces ΩAi and σ-algebras FAi . We say that they are jointly

measurable if there exists a POVM R with outcome space ΩA1
× · · · × ΩAn

and

σ-algebra FA1
⊗ · · · ⊗ FAn

such that every Ai is a marginal of R, i.e., for every

i ∈ N and every U ∈ FAi

Ai(U) = Z(ΩA1
× · · ·ΩAi−1

× U × ΩAi+1
× · · · × ΩAn

)

Let us illustrate this somewhat general definition with an example of sharp ob-

servables. Suppose therefore that

Â =
∑
i

αi |αi〉〈αi| , B̂ =
∑
i

βj |βi〉〈βi|

are two self-adjoint operators. To build the POVM’s out of the two self-adjoint

operators we consider the outcome spaces ΩA = {αi} and ΩB = {βi} and secondly

we consider the map

A : {αi1 , . . . , αin} 7→ |αi1〉〈αi1 |+ · · ·+ |αin〉〈αin | .

Let us call this map A (resp. B). As it is known from Quantum Mechanics, Â and

B̂ are called jointly measurable if and only if they commute since only then we can

find a common eigenbasis for both operators. Therefore we could find vectors |αiβj〉
such that Â |αiβj〉 = αi |αiβj〉 and B̂ |αiβj〉 = βj |αiβj〉, which it is interpreted as

that the state |αiβj〉 has both the property αi and βj at the same time.In this sense,

only considering commutativity it is meaningful to consider both properties at the

same time.

Consider now a pure state |ψ〉, the probability of measuring αi is of course given

by | 〈αi|ψ〉 |2 = tr{|αi〉〈αi| |ψ〉〈ψ|} and after having measured αi, the state ψ col-

lapses irreversibly to αi. If we perform another measurement B and we measure

βj , the probability for it is tr{|αi〉〈αi| |βj〉〈βj |}.
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If we consider therefore the POVM Z = A ·B having as outcome space ΩA×ΩB

and as σ-algebra FA ⊗FB , it fulfills the following relations:

A(αi) = Z(αi,ΩB) =
∑
β∈ΩB

Z(αi, β), B(βj) = Z(ΩA, β) =
∑
α∈ΩA

Z(α, βj)

so we could think that we have found the joint measure for A and B. But, notice

that we have not used anywhere the fact that Â and B̂ are commute. So we could

be falsely led to think that everything is jointly measurable! However, that is not

the case. In general nothing ensures the semidefinite positivity of

Z(α, β) = |α〉〈α| |β〉〈β|

even though both |α〉〈α| and |β〉〈β| are positive. It is a theorem of the functional

analysis [6] that the product of positive operators is ensured to be positive only if

they commute. Therefore Z would be a joint measure if all projectors commute

which implies the commutation of Â and B̂.

3.2. Adding noise. Given two non-jointly measurable POVM’s A and B, it is

possible to make them joint measurable by adding noise into them? What do we

understand by noise? Let us illustrate what is meant by it through an example.

Suppose the outcome space of A is {a1, . . . , an} and suppose we perform an exper-

iment to measure A several times, say M times where M should be big enough.

Suppose the measurement gets each time states ρ which are assumed to be equally

prepared. Then considering the relative frequencies of every ai ∈ ΩA, i.e. the

times we have measured ai divided by M , if M is big enough we could identify this

relative frequency f(ai) with the probability, i.e.,

f(ai) ≈ tr{ρA(ai)}

and we could have a graph such as in figure 1 in blue.

In practice however we never get such a distribution, or we are not sure to have

the real distribution, so one says that there is noise in the system. The measuring

process is a macroscopic process between some quantum system and a bigger one,

where a thermodynamic irreversible process takes action (see [4] or [5]). In this

process many effects may take place leading to mistakes in the reading of some

sensor. These factors are noise sources, and we can mathematically model this

influence by taking a convex combination of POVM’s, in the case of A for example

we could take another POVM E having too as outcome space ΩA and representing
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a0 an

ΩA

0

0.1
p

Pure distribution
Noisy distribution with η=0.5 

Figure 1. Graphical representation of the distribution of a given
observable A (in blue) compared with some noisy distribution of
the same A(in red). The lines have been added to give also a feeling
of how a noisy distribution in the case of a continuous observable
would look like.

the noise. A convex combination is provided taking a parameter η ∈ [0, 1] and

considering the new POVM

Aη = (1− η)A + ηE.

In figure 1 we can see a representation of how some results would look like if we

were to note down the results of the measurements on some random state ρ and

if we could compare the noisy distribution with the pure one. We see that as an

overall effect what this tells us is that we actually make gradually less sharp the

information until all the information that is left is the unusable information from

E, which again might be a random noise POVM . Therefore it is not strange to

assume that considering some η we could make Aη and Bη joint measurable, since

we lose more and more information as η increases. Let us stress that such convex

combinations are not a full description of the noise, but a model. For example note

that we can never attain from a positive operator A(ai) to make it zero using such

a combination, since Aη(ai) > 0 if A(ai) > 0.
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4. Joint measurablility of two-outcome observables

Nomenclature: Throughout this section we will call two outcome observables ef-

fects interchangeably, although in the literature we find different uses for the word

effect. Also, given a positive operator P , we may refer to it as an observable, mean-

ing the two outcome observable P = {P, 11−P}, it is assumed that P ≤ 11. Both P

and 11−P are called POVM elements, since they conform together the two outcome

POVM or observable P. We will normally note the outcome space of two outcome

observables as Ω = {+,−}, so that for example P(+) = P and P(−) = 11 − P , or
otherwise. The association of + to P or 11 − P is but a matter of preference and

language, the physical significance is encoded in P.

4.1. Introduction. Some conditions for the joint measurability of effects have al-

ready been found in the literature in the form of inequalities of a certain set of

operators (see [8]). In what follows we will attempt to present a generalization and

correction of some aspects of these results.

The description of the process needs of an explanation of the framework. In the

case of n = 2, one can find quite straightforward methods to check and find condi-

tions for their joint measurability. Let {P, 11 − P}, {Q, 11 − Q} be two observables

having both the outcome space ΩP,Q = {+,−}. If they are jointly measurable, a

set of operators exists R(i, j), i, j ∈ {+,−}, for which the coarse-graining condition

is satisfied, i.e.

P = R(+,+) +R(+,−), Q = R(+,+) +R(−,+)

11− P = R(−,+) +R(−,−), 11−Q = R(−,+) +R(−,−)

The condition proven in [8] states that P and Q are jointly measurable if and only if

there exists a positive operator S such that the following requirements are satisfied,

(3) P +Q− 11 ≤ S, S ≤ P,Q.

It is a matter of calculation to check the necessity of the condition, simply take an

operator of the R-representation which is common to both P and Q, and this will

do the trick (i.e., take R(+,+)). The sufficiency condition hides some interesting

steps; given such an S, the conditions S ≤ P,Q allow us to define R(+,−)
def
= P −S

and R(−,+)
def
= Q−S, which by hypothesis are positive. The condition on the left

allows us to define both R(−,−)
def
= 11−P −Q+S ≥ 0 (which will be positive) and
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to establish the validity of the partition of unity condition of R, i.e., 1 =
∑
i,j R(i, j)

where i, j ∈ {−,+}. Therefore by calling S = R(+,+) we encounter the desired

joint-measure.

In [8], the general conditions for n two outcome observables are written down in

terms of the joint measure R directly. However it is of our opinion that to research

some properties of n observables, this method is quite opaque in the reading. We

have developed a general method using a generalization of the operator S rather

than R directly. However, as dimension increases the number of S’s increases as

well and the huge number of inequalities ceases to have the helpful factor it had in

the latter simpler case. It is therefore difficult to see properties or possible solutions

to problems arising from the joint measurability through the pure inequality frame-

work. Therefore, we have thought of these inequalities as conforming a directed

graph with several floors or levels, and we have derived some general properties of

these graphs relevant to physical problems. The direction of the graph is intended

to give us some hint about the underlying inequalities.

We will discuss the structure of the graph defined for the case of n = 2 later

on, when we prove the equivalence theorem in the following sections (theorem

4.1). There we prove that the considerations above for two observables and for

n observables in [8] are equivalent to considering the graph schema:

0 11

}} !!
1 P

  

Q

~~
2 S(1, 2) = S

��
0

Figure 2. Directed graph for two effects.

The fact that for higher dimension (i.e., more than two effects) we do not only

have an operator S to determine, makes complicated to parametrize these operators.

We have to be able to write them in an operational and ordered way so that we can

identify exactly each operator and we can eventually write algorithms to solve the
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problems. We use a subset approach to the problem, i.e., every operator and the

inequalities are defined in terms of subset properties as it will be seen in definition

4.1, where we define formally the properties of the graphs and we call them joint

measurability graphs for the sake of readability of the report.
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4.2. Definition of the graph. From now on let us define N = {1, . . . , n}.

Definition 4.1 (Joint measurability graph). Let G = (V,A) be a directed graph.

The graph G is called a joint measurability graph of dimension n iff the following

conditions are met:

(1) V is a set of operators acting on a Hilbert space.

(2) If (S1, S2) ∈ A then S1 ≥ S2.

(3) There exists a bijection

S : 2{1,...,n} → V

(4) The bijection defines the elements in A,

A = {(S(Ω1), S(Ω2)) | Ω1 ⊂ Ω2 and |Ω2\Ω1| = 1}

(5) For every Ω, Ω ⊆ N the following defining inequality is satisfied:

(4) R(Ω)
def
=

∑
A⊆N\Ω

(−1)|A|S(Ω ∪A) ≥ 0

Please note that point 2 is a consequence of point 5 although this can not be seen

easily directly. However it is desirable to include point 2 in the definition to make it

more transparent and readable. Equation 4 may seem a little bit difficult to read at

first. Despite this fact, it will become clear as we show the necessity of such a graph

in theorem 4.1. For now let us write an example with dimension 3. In this case

we have N = {1, 2, 3} and 2N = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
We write for simplicity S(1, 3) instead of S({1, 3}). Let us write equation 4 for

Ω = {1, 2, 3}, since in this case Ω = N the only possible A ⊂ N\Ω will be A = ∅,
so in this case it reads:

R(N )
def
= (−1)0S(N ∪ ∅) = S(N ) ≥ 0.

For Ω = {1, 3} for example, N\Ω = {2}, so A can be ∅ and {1}, let us write it:

R(1, 3) = (−1)0S({1, 3} ∪ ∅) + (−1)1S({1, 3} ∪ {2}) = S(1, 3)− S(N ) ≥ 0

and of course the same is valid for {1, 2} and {2, 3}. From here we get therefore

that S(A2) ≥ S(1, 2, 3) ≥ 0 where of course A2 is a subset of N of cardinality

two. Now suppose Ω = {1}, then A can be {2}, {3}, {2, 3} or ∅, equation 4 turns

therefore into

S(1)− S(1, 3)− S(1, 2) + S(N ) ≥ 0
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where we can write the same (but slightly different) for S(2) and S(3). Finally for

Ω = ∅ we can write

S(∅)−
3∑
i=1

S(i) + S(1, 2) + S(1, 3) + S(2, 3)− S(1, 2, 3) ≥ 0.

All these inequalities can be represented in form of a graph. In figure 3 we can see

the representation of such a directed graph.

0 S(∅)

}} !!��
1 S(1)

!!��

S(2)

}} !!

S(3)

��}}
2 S(1, 2)

!!

S(1, 3)

��

S(2, 3)

}}
3 S(1, 2, 3)

��
0

Figure 3. Joint measurability graph for n = 3.

We can find a thumb-rule to find the inequalities without having to look at the

subsets (compare also with section 4.1). Just take any element S(Ω) and look at the

storey it is in, i.e., 0,1,2 or 3. Then substract everything connected to S(Ω) lying

in the storey immediately beneath, then add everything connected to the elements

substracted of the next storey to them, etc. . . Let us illustrate through an example;

take for instance S(2) which is in the storey 1 (because {2} has one element),

connected to it beneath are S(1, 2) and S(2, 3), so we have to substract them, i.e.,

S(2) − S(1, 2) − S(2, 3). We are not yet quiet there, we have to add the element

connected to S(1, 2) and S(2, 3), which is only S(1, 2, 3) = S(N ). Furthermore

being a joint measurability means that the result must be greater or equal zero, so

S(2)− S(1, 2)− S(2, 3) + S(1, 2, 3) ≥ 0.

For the following considerations the following lemma will prove to be useful.
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Lemma 4.1. Let N = {1, . . . , n} and Ω ⊆ N . Let S,R : 2N → R be two functions

taking values in any C ring R. The two functions fulfill the relation

R(Ω) =
∑

A⊆N\Ω
(−1)|A|S(Ω ∪A)(5)

if and only if they also fulfill

S(Ω) =
∑

A⊆N\Ω
R(Ω ∪A)(6)

which can be understood as a coarse-grain property.

Proof. We begin by showing that equation 5 implies 6. Let us denote the right-hand

side of equation 6 by Γ. By definition, every term appearing in the summation of

Γ is

R(Ω ∪A) =
∑

A′⊆N\(Ω∪A)

(−1)|A
′|S(Ω ∪A ∪A′)

and with it we can write for Γ

Γ =
∑

A⊆N\Ω

∑
A′⊆N\(Ω∪A)

(−1)|A
′|S(Ω ∪A ∪A′)

=
∑

A′⊆N\Ω
(−1)|A

′|S(Ω ∪A′) +
∑

A⊆N\Ω
|A|6=0

∑
A′⊆N\(Ω∪A)

(−1)|A
′|S(Ω ∪A ∪A′)

= R(Ω) +
∑

A⊆N\Ω
|A|6=0

∑
A′⊆N\(Ω∪A)

(−1)|A
′|S(Ω ∪A ∪A′)

where we have separated the summation by taking A = ∅ on one and A 6= ∅ on
the other, we have used the definition of R(Ω). The second last summation depends

therefore on A and A′, where A′ has in its turn also a dependence on A. We will

change of variable for the summation by taking

Z = A ∪A′

and finding a summation over Z. Let us note however what are the ranges of |A|,
|A′| and |Z| all together:

|A| ∈ {1, . . . , n− |Ω|}
|A′| ∈ {0, . . . , n− |Ω| − |A|}

⇒ |Z| ∈ {1, . . . , n− |Ω|}
From the latter consideration it follows that Z can be any subset of N\Ω with

cardinality greater or equal than 1. Let us consider a given Z, there are several
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forms of obtaining it from sets A and A′. For example if |A| = 1, A′ is automatically

determined by Z\A and there are
(|Z|

1

)
ways of doing it, which correspond of course

to the possible subsets of Z of length 1. Writing the possibilities in dependence of

the cardinality of A there are therefore

|Z|∑
i=1

(|Z|
i

)
= 2|Z| − 1

possible ways of producing Z = A∪A′, what means that S(Ω∪Z) appears 2|Z|− 1

times in Γ − R(Ω). In order to sum up all these terms we have to consider the

change of sign according to the cardinality of A′, which is |Z| − |A| or in the sum

above |Z| − i. We can therefore write

|Z|∑
i=1

(−1)|Z|−i
(|Z|
i

)
S(Ω ∪ Z) = [(1− 1)|Z| − (−1)|Z|]S(Ω ∪ Z) = −(−1)|Z|S(Ω ∪ Z)

This means however that we can rewrite Γ simply in terms of Z in the following

way

Γ = R(Ω) +
∑

Z⊆N\Ω
|Z|6=0

(−1)(−1)|Z|S(Ω ∪ Z)

= R(Ω)−
∑

Z⊆N\Ω
|Z|6=0

(−1)|Z|S(Ω ∪ Z) = S(Ω)

which is the exactly S(Ω) by definition on equation 4.

Implication of equation 5 from equation 6 is shown similarly. We denote as

before the right-hand side of equation 5 as Γ and express every term of the sum in

function of the assumption:

Γ =
∑

A⊆N\Ω

∑
A′⊆N\(Ω∪A)

(−1)AR(Ω ∪A ∪A′)

= R(Ω) +
∑

A⊆N\Ω

∑
A′⊆N\(Ω∪A)

|A|+|A′|6=0

(−1)AR(Ω ∪A ∪A′)

where of course we have put out of the summation the pair (A,A′) where both of

them where the emptyset. Now the only constraint on the sets Z = A ∪A′, A and

A′ is that A and A′ can not be the empty set at the same time. Following the

reasoning of before and for given Z = A ∪A′ we find that the sum of the elements
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R(Ω ∪ Z) is

(−1)0

(|Z|
0

)
+ (−1)1

(|Z|
1

)
+ . . .+ (−1)|Z|

(|Z|
|Z|

)
= (1− 1)|Z| = 0.

As before, writing the equation changing variables with Z we find that Γ = R(Ω)

as desired.

�
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4.3. Graph equivalence. We set out to prove the equivalence of joint measura-

bility graphs and joint measurable effects. For that we prove the following main

theorem:

Theorem 4.1. Let {P1, . . . , Pn} be a set of effects. These effects are jointly-

measurable if and only if there exists an n-dimensional joint measurability graph

(V,A, S) such that S(i) = Pi for every i ∈ {1, . . . , n} and S(∅) = 11.

Proof. Let us begin by showing the necessity. Let us suppose the effects take

values on {+,−}, so that Pi is the operator related to +. If they are joint measurable

then there exists a POVM R : {+,−}n → L(H) fulfilling

Pi =
∑
ti=+

tk∈{+,−}

R(t1, . . . , ti, . . . , tn).

For the sake of readability let us denote, R(t1, . . . , tn), where some of the tk are

equal to +, by this subset of indexes, i.e., we do not write the indexes for which

tk = −, e.g. :

R(+,−,+,−, . . . ,
k
+,−, . . . ,+) =: R({1, 3, k, n}) = R(1, 3, k, n).

Let N = {1, . . . , n} and S be a function over 2N defined as

S(Ω) =
∑

A⊂N\Ω
R(Ω ∪A), ∀Ω ⊆ N .

Since N is finite and R(A) is well-defined for every A ⊂ N , S is well-defined and

finite. Let us remark that this is in fact a mere general coarse-graining property

since as a consequence of the definition S(i) = Pi
2 and S(∅) = 11. Consider V =

{S(Ω) | Ω ⊆ N} and A = {(S(Ω1), S(Ω2)) | Ω1 ⊆ Ω2, |Ω2\Ω1| = 1}, we claim that

with it (A, V, S) is a joint measurability graph. Since we have defined A and V

through S there are only two conditions left to be shown, i.e.:

• (S(Ω1), S(Ω2)) ∈ V ⇒ S(Ω1) ≥ S(Ω2): This is the case since every term

appearing in definition of S(Ω2) appears also on the definition of S(Ω1) due

to Ω1 ⊆ Ω2.

• That

R(Ω) =
∑

A⊆N\Ω
(−1)|A|S(Ω ∪A)

is a consequence of lemma 4.1. Moreover, the expression is positive semi-

definite for all Ω ⊆ N by hypothesis.

2For simplicity we write S(i1, . . . , it) instead of S({i1, . . . , it})



18 ALEJANDRO AGUSTÍ MARTÍNEZ-SORIA GALLO

Not we proceed to show the sufficiency. Suppose therefore that there exists

a joint measurability graph (V,A, S) meeting the requirements of the hypothesis.

The joint measurablility of the effects follows directly from the definition of the

graph. Let us define R : {+,−}n → L(H) as before, namely from R(Ω) of the

graph we define R(+,−,−, . . .) with + in the positions determined by the elements

of Ω. They are positive semi-definite and from lemma 4.1 we have

Pi =
∑

A⊂N\{i}
R({i} ∪A) =

∑
ti=+

tk∈{+,−}

R(i1, . . . , ti−1,+, ti+1, . . . , tn)

which gives us the coarse graining condition. The σ-additivity of R is automatic

since {+,−}n is finite and R is defined through single elements of the set.

�

We apply the theorem 4.1 to the case n = 2 as an example. Let us therefore

consider two jointly measurable effects {P1, 11− P1} and {P2, 11− P2}. In this case

we have the function S : 2{1,2} → V where S(∅) = 11 and S(i) = Pi. We have

therefore a S(1, 2) such that the following graph is satisfied:

0 11

�� ��
1 P1

��

P2

��
2 S(1, 2)

��
0

As expressed in the theorem, if Pi is associated with the value + and 11− Pi with
−, then for instance R(1, 2) means R(++). In this case 0 ≤ R(++) = S(1, 2) and

R(1) = P1 − S(1, 2) = P1 −R(++) = R(+−) ≥ 0, P2 −R(++) = R(−+) ≥ 0

and finally

R(∅) = 11− P1 − P2 +R(++) = R(−−) ≥ 0.

These R(i, j) ≥ 0 form indeed a joint-measure of P1 and P2, which is exactly the

result explained in section 4.1. In this way, theorem 4.1 can be thought of as a

generalization of Proposition 1 in [8].
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4.4. Graphs as semidefinite programs. As shown in [8] the joint measurablil-

ity problem of observables can be cast in the form of a semidefinite program. We

show this same process making use of the graph structure. This is helpful when

there is the need of performing a simulation of the joint measurablility of effects or

to specify graphically and clearly some properties of these so created semidefinite

programs.

The primal problem of a semidefinite program (SDP) (see [7]) consists in mini-

mizing a linear function of a vector ~x ∈ Rm subjected to a linear matrix inequality

constraint, i.e.

(7) min
~x

{
cTx

∣∣∣∣∣F0 +

m∑
i=1

xiFi ≥ 0

}

where Fi are n-dimensional symmetric matrices. The data of the problem is

therefore c ∈ Rm and {Fi | i ∈ {0, . . . ,m}} ⊂ Mn(R). This kind of optimization

problems is efficiently solvable using methods like interior-point methods which are

generally used also for linear programs.

Let {P1, . . . , Pn} be n effects and G = (V,A, S) a potential joint measurability

graph that would be associated to the set of effects if these were jointly measurable.

Let N = {1, . . . , n} and {Qi | i ∈ {1, . . . , d}} be a hermitian basis for the space

where the effects are in. Then for every S(A) where A ⊂ N and |A| ≥ 2 we write

S(A) =

d∑
i=1

xAi Qi.

In this way we define variables xAi for every A such that |A| ≥ 2. To refer generally

to all of them it is important, specially when programming an algorithm, to define

any bijection like

ϕ : {1, . . . , 2n − n− 1} −→ {A ⊂ N | |A| ≥ 2}

which exists since the cardinality of the set on the right is exactly 2n − n− 1. Let

us define ~x = (~x1, . . . , ~x2n−n−1) where every ~xi is associated by the bijection ϕ to

an element ϕ(i) = A such that

~xi = (x
ϕ(i)
1 , . . . , xϕ(i)

m ).
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For every element S(Ω) with |Ω| ≥ 2 we write the graph condition as

∑
A⊆N\Ω

(−1)|A|S(Ω ∪A) =
∑

A⊆N\Ω

d∑
i=1

xΩ∪A
i (−1)|A|Qi ≥ 0

If Ω = {k} then we may write

Pk +
∑

A⊆N\{k}

d∑
i=1

x
{k}∪A
i (−1)|A|Qi ≥ 0

and finally if Ω = ∅ we change slightly the property of the graph (i.e. S(∅) = 11)

and set instead S(∅) = λ11, where λ ∈ R+, thus

λ11−
∑
i∈N

Pi +
∑
A⊆N
|A|≥2

d∑
i=1

xΩ∪A
i (−1)|A|Qi ≥ 0.

11

? ?
��
λ11

|| ""��
P1

!!��

P2

}} !!

P3

��}}
S(1, 2)

!!

S(1, 3)

��

S(2, 3)

}}
S(1, 2, 3)

��
0

Figure 4. joint measurability graph representation for minimiza-
tion of SDP-parameter λ.

These inequalities have the following form

R(Ω) = F0(Ω) +

d(2n−n−1)∑
i=0

Fi(Ω)xi ≥ 0, ~x = (x0, x1, . . . , xd(2n−n−1))

which is a constraint of the form of the ones appearing in the definition of semi-

definite programs in equation 7 and where we have added to the former vector ~x a

real variable x0 = λ which accounts for the fine-tunning of the parameter λ.
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To create a single matrix inequality we can direct sum all terms of the inequalities

so as to have a large block matrix with all terms of all inequalities.

Fi =
⊕
Ω⊂N

Fi(Ω),

and in this way we can write the equivalent inequality

F0 +

d(2n−n−1)∑
i=0

xiFi ≥ 0

The problem of finding a joint measurability graph, so that the effects will be joint

measurable is equivalent to minimizing λ subjected to the constraint above, or sub-

jected to the set of all individual constraints mentioned before In this semidefinite

program therefore c will be equal to c = (1, 0, . . . , 0) ∈ Rd(2n−n−1)+1

min
~x

cT~x = λ

∣∣∣∣∣∣F0 +

d(2n−n−1)∑
i=0

xiFi ≥ 0

 .

• If λ ≤ 1 is the minimum then the effects are joint measurable since the

graph can be extended to the unity as shown in figure 4 with a dashed

arrow.

• If however λ > 1 then the effects {Pi} are not joint measurable, there exists

no joint measure since if it existed we would be able to create a graph such

as in figure 4 with λ = 1, so at least λ should have a value less or equal than

1. It is worth noticing that the set of operators even if λ > 1 still build a

joint measurability graph, with the only change from theorem 4.1 consisting

in considering S(∅) = λ11 instead of 11 .

The last point will be important from now on, so we find convincing building a

proposition out of it:

Proposition 4.1. To every set of two outcome observables {P1, . . . , Pn} we can

assign a joint measurability graph built up out of the solutions for the SDP composed

by them.

Up to now we had seen in theorem 4.1 that we could assign JM-graphs to jointly

measurable observables, now we can assign them to any set of effects. In principle we

could make them joint measurable by adding noise to the system, like for example

considering the convex transformation

Pi → (1− η)Pi + ηE
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where 0 ≤ E ≤ 11 is some other effect and η ∈ [0, 1] (see section 3.2). The problem

is of course to know how much noise must be added to the system in order to make

the effects joint measurable. In other words, we would like to find constraints for

η such that α ≤ η ≤ β for certain α, β ∈ [0, 1]. These constraints should tell us

at least how much noise we have to add and if this amount of noise is enough to

ensure the joint measurablility of the observables.

In this very sense it has been claimed in [8] that it is possible to define for the case

n = 2 a distance between the effects accounting for their joint measurablility and

amount of noise altogether. Let us therefore consider {P1, P2} a set of two effects. If

λ(P1, P2) ≤ 1 these effects would represent the same point, so the distance will have

to be 0. Consequently, if we want a distance based on the idea of joint measurability,

we represent it by

µ({Pi | i ∈ {1, 2}}) = 0, whenever λ ≤ 1

If however λ > 1 then is this extra amount that could be taken in consideration

to find a necessary (and also sufficient) noise constraint. This amount of noise is

0 < µ = 1− λ−1 < 1. Therefore the distance the distance in this case is defined to

be:

µ({Pi | i ∈ {1, 2}}) = max{0, 1− λ−1}.

This was claimed however only for the case of two effects. Regrettably, as it turns

out, that the above consideration is inconsistent, because it presupposes that λ

is the same performing the SDP with {P1, P2}, {P1, 11 − P2} etc. . . For otherwise

there can not be a consistent definition of distance. We we will see that this is

the case, λ depends on the combination of POVM elements. We provide later on

a correction and a generalization of this fact. For some coming results the idea

of joint measurability subgraphs will prove to be useful (e.g. Corollary 4.1). We

devote next section to their definition and to the prove that they exist.



ABOUT THE JOINT MEASURABILITY OF OBSERVABLES 23

4.5. Existence of subgraphs. In order to use the graph structure to study some

aspects about the joint measurability of observables and present them in a graphical

and clear way, it has been thought of use to look for substructures in the graph, for

example in order to express the joint measurability of a subset of the effects being

studied. For that we see that the joint measurability graphs have associated in a

straightforward way smaller structures having the same properties and therefore

representing subgraphs.

Proposition 4.2. Let G = (V,A, S) be a n-dimensional joint measurability graph

and N = {1, . . . , n}. Then for every Ω ⊆ N we can define a joint measurability

subgraph G̃ = (Ṽ , Ã, S̃) of G in the following way:

(1) (S̃ : Ω→ Ṽ ) = (S |N∩Ω: N ∩ Ω→ V )

(2) Ã ⊆ A

Proof. Let us first check the basic properties. From point one we get that S̃ =

S |N∩Ω and therefore

Ṽ = {S(A) | A ⊆ Ω} ⊆ V.

which ensures point 1 in definition 4.1. The second point implies,

Ã = {(S1, S2) | ((S1, S2) ∈ A) ∧ (S1, S2 ∈ Ṽ )}.

which implies points 2 and 4 in the definition of JM-graph. If G̃ is to be a joint

measurability subgraph then the condition

R̃(Ω̃)
def
=

∑
A⊆Ω\Ω̃

(−1)|A|S̃(Ω̃ ∪A) ≥ 0

must be satisfied for every Ω̃ ⊂ Ω. This is indeed the case, to prove it let us make

use of the fact that Ṽ is a subset of V , then by lemma 4.1 we know that

S̃(Ω̃ ∪A) = S(Ω̃ ∪A) =
∑

A′⊆N\(Ω̃∪A)

R(Ω̃ ∪A ∪A′).

Let us then rewrite the expression for R̃(Ω̃) as

R̃(Ω̃) =
∑

A⊆Ω\Ω̃

∑
A′⊆N\(Ω̃∪A)

(−1)|A|R(Ω̃ ∪A ∪A′).

We need some framework to prove the result. Firstly let us decompose N\(Ω̃ ∪A)

into two disjoint sets,

N\(Ω̃ ∪A) = (N\Ω) ∪ (Ω\(Ω̃ ∪A))
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so since A′ is a subset of the first, we can also decompose A′ into two subsets,

A′ = I ∪ O, which we think as inside Ω and outside Ω (compare with figure 5 for

clarification). We will study the terms of the sum R̃(Ω̃) in function of the cardinality

of A, where of course |A| ∈ {0, . . . , ω − ω̃} where ω̃ = |Ω̃| and ω = |Ω|.

N

O
I

A

Ω
Ω′

Figure 5. Representation of the sets appearing in the proof of
proposition 4.2.

Let us take a set Ak ⊂ Ω\Ω̃ with |Ak| = k. Then for this set we have in the sum

elements of the form

R(Ω̃ ∪Ak ∪ Ik ∪O)

where Ik ⊆ Ω\(Ω̃∪Ak). Consider terms using Ik = ∅ and let us find A ⊂ Ω\Ω̃ and

I ⊂ Ω\(Ω̃ ∪A) such that

(8) R(Ω̃ ∪Ak ∪ ∅ ∪O) = R(Ω̃ ∪A ∪ I ∪O′).

Note that if this is the case then Ω̃ ∪ Ak ∪ ∅ ∪ O = Ω̃ ∪ A ∪ I ∪ O′ and since

O ∩ Ω = ∅ and O′ ∩ Ω = ∅ it must follow Ak ∪ ∅ = A ∪ I and O′ = O, where we

write everywhere ∅ to express the lack of the I-term in the case of Ak. If we look

for candidates on the level of Ak or higher, i.e., we consider A to have k elements

or more, the search will fail. Let us suppose that this is indeed the case and there

are (A, I) with |A| ≥ k such that A ∪ I = Ak. This can not be the case since

|A∪ I| = |A|+ |I| ≥ |Ak| = k, we can only have equality if |I| = 0 and |A| = k, but

then A = Ak.
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Let us look now for candidates (A, I) with |A| = j < k, in this case the equality

8 leads to

|A|+ |I| = |Ak| ⇒ |I| = k − j.

Since A ∪ I = Ak then A is a subset of Ak of j elements, once the subset A is

fixed then I is automatically determined via Ak\A. Therefore there are inside the

set of A with j elements exactly
(
k
j

)
possibilities of finding a decomposition like

A ∪ I = Ak, moreover the relation

Ak ←→ Cj(Ak)
def
= {(A, I) | |A| = j, A ∪ I = Ak}

is a bijection. Let us sum now all

(−1)|A|R(Ω̃ ∪A ∪ I ∪O), (A, I) ∈ Cj(Ak)

where j ∈ {0, . . . , k} and O ⊂ N\Ω. Since the R-term is the same for all, we will

have a coefficient multiplying R(Ω̃∪A∪ I ∪O), let us call this coefficient c(Ak, O),

this coefficient will be

c(Ak, O) = (−1)k|Ck(Ak)|+ (−1)k−1|Ck−1(Ak)|+ . . .+ (−1)0|C0(Ak)|

and since we said that |Cj(Ak)| =
(
k
j

)
then c(Ak, O) = 0 for k ≥ 1.

The only case where we have c(Ak, O) 6= 0 is when k = 0, i.e., A = ∅, in this

case we have

C0(∅) = {(∅, ∅)}, c(∅, O) = 1

and therefore we have

R̃(Ω̃) =

ω−ω̃∑
k=0

∑
A⊂Ω\Ω̃
|A|=k

∑
O⊂N\Ω

c(A,O)R(Ω̃ ∪A ∪O) =
∑

O⊂N\Ω
R(Ω̃ ∪O) ≥ 0

�

Let us illustrate the result with an example. Suppose {P1, P2, P3} are joint mea-

surable and letN = {1, 2, 3}. Then by theorem 4.1 we can find a joint measurability

graph G = (V,A, S) such that figure 6 holds.

Suppose now Ω = {1, 3} and we want to follow the definition of subgraph to

construct it. Following the definition we only need to take the effects P1 and P3

and all the elements they have in common up to S(A) where |A| = 2. In figure 6 we
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11

|| ""��
P1

!!��

P2

}} !!

P3

��}}
S(1, 2)

!!

S(1, 3)

��

S(2, 3)

}}
S(1, 2, 3)

��
0

Figure 6. Joint measurability subgraph with n = 3 and Ω = {1, 3}.

have drawn too in solid lines the subgraph. By proposition 4.2 we know that this

is a joint measurability subgraph, i.e., we know from the properties of the graph G

that 11 − P1 − P3 + S(1, 3), P1 − S(1, 3), P3 − S(1, 3), S(1, 3) ≥ 0. Physically this

means two things:

(1) As it is well known any subset of a set of jointly measurable effects is jointly

measurable.

(2) In the graph G for the joint measurability of the effects we have the joint

measurability graph for all combinations of the effects.
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4.6. Joint measurability for n = 2. Consider the two-outcome observables {P, 11−
P} and {Q, 11 − Q}, we could build a graph using any combination of elements,

{P,Q}, {11− P,Q} etc. . . Are the parameters coming from the SDP equivalent for

every choice of operators? As it may be seen, they are not in general. Take the triv-

ial case where P = Q = 11 and perform the SDP using {11, 11} and {0, 0}. Since they
are trivially sharp, the joint measure is unique so that we know exactly the S ele-

ments we must write on the graphs. You would have the following representations

of the graph:

α11

~~   
11

  

11

~~
11

��
0

β11

�� ��
0

  

0

~~
0

��
0

Of course the infimum value of α so that the graph holds is one and the infimum

value of β is 0. Despite this fact, notice that both values are less or equal than 1,

which in terms of the information about the joint measurability gives no additional

information. However, as a mathematical problem, this last example hints to the

fact that in general an invariance of the SDP parameter depending on the choice

of POVM elements is not to be expected. We will see through an example that

this is indeed too the case for non jointly measurable observables, and we use this

fact to discuss a claim provided in [8], which unfortunately we have found to be false.

Claim: [8] Let {P, 11 − P} and {Q, 11 − Q} be two observables and let λ0 be the

solution to the SDP constructed by P and Q. Then η = max{0, 1−λ−1
0 } is the least

number such that the two 2-outcome observables induced by the POVM elements

(1−η)P+ηE and (1−η)Q+ηE are jointly measurable for all E such that 0 ≤ E ≤ 11.

This claim is inconsistent with the fact that there might a dependence of the

λ SDP parameter on the POVM element choice. Indeed, let us suppose that the

parameter λ for (P,Q) is different from the parameter λ′ for (11− P, 11−Q). This
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means therefore according to the claim that

(1− η)P + ηE, (1− η)Q+ ηE, ∀E(0 ≤ E ≤ 11)

are jointly measurable, exactly like

(1− η′)(11− P ) + η′E′, (1− η′)(11−Q) + η′E′, ∀E′(0 ≤ E′ ≤ 11)

are. Here η = max{0, 1−λ−1} and accordingly for η′. However that the observables

directly above are jointly measurable for every choice of E′ means that

(1− η′)P + η′(11− E′), (1− η′)Q+ η′(11− E′), ∀E′(0 ≤ E′ ≤ 11)

are jointly measurable by definition. Taking 11−E′ = E we have the same condition

as before leading to a contradiction, since by hypothesis either η < η′ or η′ < η.

An example of this behavior, and therefore the proof for this fact, is given in the

following example:

Example. Consider P = α |0〉〈0| and Q = 11−β |φ〉〈φ| where |φ〉 is such that 〈0|φ〉 6=
0, α, β ∈ (0, 1) and |ψ〉 = u |0〉+v |1〉. Of course we are considering qubits with basis

|0〉 and |1〉. To consider the reciprocal SDP, i.e., P̃ = 11− α |0〉〈0| and Q̃ = β |φ〉〈φ|
notice that the description is exactly the same changing α → β and β → α since

|0〉 = u |φ〉+ ṽ
∣∣φ⊥〉.

Let us therefore consider the SDP with P and Q. From here it is very easy to see

which will be the general form of S in the SDP. The condition for P and S is

P − S ≥ 0⇒ α |0〉〈0| ≥ S

S can not have any projection on |1〉 since 0 ≤ 〈1|S |1〉 ≤ α 〈1| |0〉〈0| |1〉 = 0. Since

S is a complex positive semidefinite operator, it must be also hermitian. From these

two points we deduce that S = t |0〉〈0| where α− t ≥ 0.

Since |φ〉 = u |0〉+ v |1〉 and Q = 11− β |φ〉〈φ|, we can write Q as

Q =

1− β|u|2 −uv∗

−u∗v 1− β|v|2


For the condition of Q we want

S ≤ Q = 11− β |φ〉〈φ| ⇒ t |0〉〈0|+ β |φ〉〈φ| ≤ 11
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so the maximum eigenvalue λq(t) of t |0〉〈0|+ β |φ〉〈φ| can be at most 1,

λq(t) =

√
(t− β)2 + 4βt|u|2 + t+ β

2
≤ 1.

Since λq(t) is monotonous increasing, we can find t1 such that λq(t1) = 1 and then

consider the inequality t ≤ t1. It is a matter of checking that

t1(β) =
1− β

1− β + β|u|2 .

Therefore we have on the one hand 0 ≤ t ≤ α and on the other 0 ≤ t ≤ t1(β).

The SDP parameter inequality, λ11− P −Q+ S ≥ 0 says that

λ11 ≥ P +Q− S

where λ is the infimum of the parameters that fulfill this inequality. Therefore for

every t, λ must be the norm of P +Q− S. We can write P +Q− S as a matrix,

P +Q− S =

1− β|u|2 + α− t −βuv∗

−βu∗v 1− β|v|2


The maximum eigenvalue of this matrix (the norm) is

λ(t;α, β, u) =
α− t+ 2− β +

√
(β + α− t)2 − 4β(α− t)|u|2

2

Therefore this example works by finding an optimal t, which must fulfill t ≤ α

and t ≤ t1(β). Of course if α ≤ t1(β) then the optimal choice for t would be α, and

otherwise t1(β). On [0, 1] t1(x) is a monotonous decreasing function, and there is

no point x0 ∈ (0, 1) for which t1(x0) = 0 since t1(0) = 1 and t1(1) = 0.

There exists therefore a point c ∈ [0, 1] for which c = t1(c), this point is given as a

function of u by

c(u) =
1

1 + u
.

Therefore, if α < c(u) we have that α < t1(x) for all x < c(u) (compare with

figure 7). This is important since we can choose α and β such that α ≤ t1(β) and

β ≤ t1(α), therefore we would know which is the optimal value of t. This is, in the

SDP formed by P and Q, t would be α since α ≤ t1(β), we write that as tαβ = α.

However, in the SDP formed by P̃ and Q̃, t would be β since β ≤ t1(α), we note it

as tβα = β. However, in this cases we have

λαβ = λ(tαβ ;α, β, u) =
2− β +

√
β2

2
= 1,
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Figure 7. Representation of the functions x 7→ x and t1(x;u) for
u ∈ {1, 0.7, 0.3, 0.1}. The intersection point c(u) has been drawn
too for each u.

and the same for λβα. Therefore, the set of points

M<< = {(α, β) | α < t1(β), β < t1(β)}

lead to a SDP parameter invariant (from P,Q to P̃ , Q̃) and equal to 1. It is clear

that whenever α = β, the equation for λ(t, α, β, u) is symmetrical and we have

invariance too. There are two sets left to consider, i.e.

M<> = {(α, β) | α < t1(β), β > t1(α), α 6= β}

and

M>> = {(α, β) | α > t1(β), β > t1(α), α 6= β}.

For these two sets we make two conjectures. The first is that M<> = ∅. The

second is that the set of points for which λ(t, α, β, u) is not invariant under the

change α ↔ β is M>>. These conjectures are backed by numerical calculations

performed using the algorithm found in the appendix A.

Some points where the SDP parameters are not invariant are presented in table

1.
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Table 1. Some suitable points where the SDP parameters λαβ
and λβα are not equal.

α β t1(α) t2(β) u λαβ λβα ∈M>>?

1.0 0.2 0.0 0.83 0.9 1.06574 1.04497 yes
0.9 0.7 0.18 0.47 0.7 1.28205 1.33054 yes
0.8 0.9 0.28 0.15 0.8 1.3521 1.34139 yes
0.7 0.6 0.54 0.65 0.6 1.03338 1.0372 yes
0.5 0.9 0.74 0.24 0.6 1.18529 1.11663 yes
0.4 0.9 0.86 0.31 0.5 1.07092 1.03296 yes
0.3 0.9 0.87 0.24 0.6 1.04209 1.02238 yes
0.2 0.9 0.86 0.15 0.8 1.01945 1.01539 yes

Refinement. A suitable refinement of the claim we have found to be the following

proposition:

Proposition 4.3. Let {P1, 11 −P1} and {P2, 11 −P2} be two observables. Consider

the SDP parameter λ0 coming from considering the SDP for {P1, P2}. Then the

parameter η given by

η = max{0, 1− λ−1
0 }

is the least number such that {(1−η)P1, (1−η)(11 −P1) +η11} and {(1−η)P2, (1−
η)(11 − P2) + η11} are jointly measurable. Furthermore, if

λ011 − P1 − P2 + S0 6= 0

where S0 is a solution to the SDP, there exist some operators E with 0 < E < 11

such that the observables {(1−η)Pi+ηE, (1−η)Pi+η(11−E)} are jointly measurables

for i ∈ {1, 2}.

Proof. Let us suppose that λ0 > 1, for otherwise the claim is automatic since

the observables are jointly measurable and η = 0. The structure of JM-graphs is

invariant under multiplication by a positive scalar. Indeed, for every element we

have an inequality the sign of which is not changed by the product. Therefore
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taking 1− η = λ−1
0 ∈ (0, 1) we have the following representation:

λ011

�� ��
P1

��

P2

��
S0

��
0

ks
×(1−η)

+3

11

�� ��
(1− η)P1

��

(1− η)P2

��
(1− η)S0

��
0

For the SDP composed by (1−η)P1 and (1−η)P2, 1 is the minimum SDP parameter,

since λ0 was the minimum for P1 and P2. Now consider the SDP for (1−η)Pi+ηE,

11− (1− η)P1 − (1− η)P2 − 2ηE + S ≥ 0

(1− η)Pi + ηE − S ≥ 0

S ≥ 0

If we prove the feasibility of this system for some S and E then they will be jointly

measurable. Indeed take S = (1− η)S0, and E such that

(9) 11 ≥311− (1− η)P1 − (1− η)P2 + (1− η)S0 ≥ 2ηE ≥ 0

If λ011 − P1 − P2 + S0 6= 0 equation 9 allow us to find some 0 < E < 11 (near 0)

such that with this choice of E and S the system’s feasibility is fulfilled, i.e.:

11− (1− η)P1 − (1− η)P2 − 2ηE + (1− η)S0 ≥ 0

(1− η)Pi − (1− η)S0 + ηE ≥ (1− η)Pi − (1− η)S0 ≥ 0

S0 ≥ 0

�

This proposition is a first step towards a full characterization of the problem.

Firstly, the parameter η is still dependent on the choice of the POVM elements to

build the SDP or the JM-graph with. Therefore, it does not seem to be possible to

consider η as a full descriptor of the noise of the joint measurement of {P1, 11−P1}
and {P2, 11 − P2} as claimed in [8]. We have sought to resolve this problem in

proposition 4.4, where we have found that such a parameter with the desired inter-

pretation is obtainable.

3By the properties of S0 we know that −(1−η)P1+(1−η)S0 ≤ 0, so 11−(1−η)P2−(1−η)P1+S ≤
11− (1− η)P2 ≤ 11 since P2 ≥ 0.
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However, before setting out to prove the proposition we may ask about the possi-

bility that depending on the choice of the POVM elements some SDP parameters

be less or equal than one and some greater. More explicitly:

Lemma 4.2. Let {P1, P2} and {Q1, Q2} bet two. Let λ(i, j) be the solution to the

SDP problem taking Pi and Qj. If there exist i0, j0 ∈ {1, 2} such that λ(i0, j0) ≤ 1,

then λ(i, j) ≤ 1 for all i, j ∈ {1, 2}.

Proof. Suppose there exist such (i0, j0) as in the hypothesis. Then {P1, P2} and

{Q1, Q2} are jointly measurable, which means that we can find a joint measure R

and build graphs as in theorem 4.1, which for any choice of Pi and Qj would give

us a feasibility condition for the SDP parameter λ = 1, therefore λ(i, j) ≤ 1. �

Proposition 4.4. Let {P1, P2}, {Q1, Q2} and λ(i, j) be as in lemma 4.2.

(1) There exists a minimum parameter η ∈ [0, 1] such that {(1− η)Pi, 11 − (1−
η)Pi} and {(1− η)Qj , 11 − (1− η)Qj} are jointly measurable for any choice

of i, j ∈ {1, 2}. This parameter is given by max{0, 1− λ−1
∗ } where

λ∗ = max{λ(i, j) | i, j ∈ {1, 2}}

Proof. (1) If λ∗ ≤ 1 then the proposition holds since they are jointly measurable

and therefore η = 0. Suppose then λ∗ > 1, then by lemma 4.2 we have

λ(i, j) > 1 for all i, j ∈ {1, 2} and conditions for proposition 4.3 are met.

Therefore considering η as defined in the hypothesis would grant us the

joint measurability of (1− η)Pi and (1− η)Qj for all, i, j ∈ {1, 2} since η is

by definition greater or equal than the minimum parameter η′ in each case.

�

We leave as an open problem to show under exactly which conditions the SDP

parameter is invariant depending on the choice of the POVM elements. Also we

find interesting to characterize the set of feasible E’s, i.e., for which 0 ≤ E ≤ 11

exactly the convex combinations are jointly measurable.
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4.7. Joint measurablility via subgraphs. Using the idea of joint measurability

graphs we have found a straightforward way of defining information parameters that

account for the joint measurablility of subsets of two outcome observables and the

j-wise joint measurability of n two outcome observables. These parameters have to

do with the minimum amount of noise required to make the subset of effects joint

measurable in the same way as in the last subsection.

Let {P1, . . . , Pn} be n two outcome observables and G = (V,A, S) the joint mea-

surability graph associated to the set of effects through the semidefinite program,

i.e., assuming S(∅) = λmin11 (see subsection 4.4 and proposition 4.1). Let Ω ⊆ N
with |Ω| ≥ 2 and G(Ω) be the subgraph induced by Ω as in proposition 4.2.

For this subset Ω we can write the semidefinite program as in section 4.4 to

obtain a parameter value λ which we will write in dependence of Ω as λ(Ω). Let

us state a property about the semidefinite program for the subgraph G(Ω). As we

know it is about looking for the inf
{S(A),A⊂Ω,|A|≥2}

{α} subjected to

(10)



α11 +
∑
A⊂Ω
A6=∅

(−1)|A|S(A) ≥ 0

∑
A⊆Ω\Ω̃

(−1)|A|S(Ω̃ ∪A) ≥ 0 for all Ω̃ ⊂ Ω where Ω̃ 6= ∅

The fact that λ(Ω) is the infimum means that the constraints are being fulfilled

for α ≥ λ(Ω). If however we consider an α0 < λ(Ω), then necessary the first

equation in 10 must cease to be valid since the other ones do not depend on the

parameter α and will continue to hold regardless of it. In other words, the semi-

definite positivity of the first equation would contradict the nature of λ(Ω). Note

however that this does not mean that the first inequality must be negative, since

the order relation ≥ is not a full order for operators acting on a Hilbert space. As

stressed for the case of n = 2, the parameter λ(Ω) will in general depend on the

choice of POVM element for every observable, i.e., depending on whether or not

we choose Pi or 11 − Pi, the name of which is arbitrary. For the last section, the

conclusion was to consider the maximum of these parameters in order not to have

this problem, i.e., λ∗(Ω) = maxλ(Ω). We will do here the same thing, however,

since we will use always λ∗ for its interpretation, we can rename it as λ. We think

it is important to formalize this concept.
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Definition 4.2. Let us consider n observables Pi = {P 1
i , P

2
i } where i ∈ N =

{1, . . . , n}.4 For every choice of POVM element from the observables, i.e, for every

set {P i11 , . . . , P
in
n } where all ik ∈ {1, 2} we can find the SDP parameter λ(i1, . . . , in)

formed by the POVM elements. Let us define by λ(N ) the maximum of these SDP

parameters considering all choices, i.e.

λ(N ) = max{λ(i1, . . . , in) | ik ∈ {1, 2}, k ∈ N}

With this definition we can therefore define a parameter λi(N ) for every storey,

i.e., for every subset of |Ω| elements. This parameter will be analogous to the pa-

rameters for the case n = 2, but taking into consideration the j-wise measurability.

Definition 4.3. Let i ∈ {2, . . . , n} and Pi be as in definition 4.2. For every Ω ⊆ N ,

the parameter λ(Ω) at the beginning of this section, where we consider the set of

observables {Pi | i ∈ Ω} for the SDP. Therefore we can define λi(N ) as

λi(N ) = max{λ(Ω) | Ω ⊆ N , |Ω| = i}.

As it can be seen from the definition, each parameter (which remember are

effectively obtainable) λi(N ) accounts for the joint measurability of the effects i-

wisely, in the following sense:

• If λi(N ) ≤ 1 then the observables {Pi | i ∈ N} are joint measurable i-

wisely, since λ(Ω) ≤ λi(N ) for every Ω with |Ω| = i.

• If however λi(N ) > 1 then it is the negation of the sentence above since at

least there exists one Ω ⊂ N with |Ω| = i so that λ(Ω) > 1. Therefore they

would not be i-wisely measurable.

We have found that these λi(N ) are ordered in a regular way inversely following

the ordered structure of the storeys in the graph, therefore it is helpful to state it

down precisely in the following proposition:

Proposition 4.5. Let G and N be as at the beginning of the section. The following

inequality is satisfied

λi(N ) ≤ λi+1(N )

for i ∈ {2, . . . , n− 1}.

Proof. Let Ω0 ⊂ N be such that |Ω0| = i and λi(N ) = λ(Ω0). Take any set Ω ⊆ N
such that Ω0 ⊂ Ω and |Ω| = i+ 1 which exists since i < n. We will prove the result

4To avoid confusions let us state that P 1
i + P 2

i = 11 for all i ∈ N .



36 ALEJANDRO AGUSTÍ MARTÍNEZ-SORIA GALLO

supposing that λ(Ω) < λ(Ω0) and getting to a contradiction, therefore λi+1(N ) will

be at least as big as λ(Ω0). The infimum condition for α = λ(Ω) in equation 10

means that one can build a joint measurability graph with S(∅) = λ(Ω)11 (of course

we should select a suitable choice of the POVM elements). As a joint measurability

graph, G(Ω) contains several subgraphs, in particular the subgraph generated by

Ω0. This subgraph has S(∅) = λ(Ω) and it follows therefore that

λ(Ω)11 +
∑

A⊂Ω0

A6=∅

(−1)|A|S(A) ≥ 0

∑
A⊆Ω0\Ω̃

(−1)|A|S(Ω̃ ∪A) ≥ 0 for all Ω̃ ⊂ Ω0 where Ω̃ 6= ∅

which can not be since λ(Ω) < λ(Ω0) and λ(Ω0) is the least number for which this

system of inequalities would hold. Therefore λ(Ω) ≥ λ(Ω0) = λi(N ). �

Physically, proposition 4.5 accounts for the well-known fact that if a set of n

obersvables is not i-wisely joint measurable, then it can not be either (i+ 1)-wisely

joint measurable. It also accounts for the fact that we can not make a set of ob-

servables jointly measurable by adding more obsevables.

Proposition 4.5 is also interesting on its own for the following question: is it

possible to have a set of observables {Pi | i ∈ N} for which some parameters

λj(N ) < λj+1(N )? This would mean for example, in the case that there existed a

j ∈ {2, . . . , n−1} such that λj(N ) ≤ 1 and λj+1(N ) > 1, the observables would be

j-wise measurable but not (j + 1)-wise, which is a treat characteristic of POVM’s

in general, as opposed to sharp POVM’s. Actually we can prove that such an

ordering is possible. In the recent paper of Kunjwal et al. [3], they have shown

that all jointly measurable structures are quantum realizable. This meaning that

all possible scenarios regarding measurability are attainable using observables. For

example there exists a set of n observables {Ai} such that they are j-wise jointly

measurable but not (j + 1)-wise, for any j < n we may fancy. In fact, they provide

the existence using two-outcome observables, which ensures that in our structure

we can always find some set {Pi} of two-outcome observables such that we have

λj(N ) < λj+1(N ) for some desired j. We put this result in form of a proposition

to lay it down.
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Proposition 4.6. For every i > 2 there exists some set of n two-outcome observ-

ables, where n > i, for which in the notation of proposition 4.5

λi(N ) < λi+1(N ).

Up to now however λi(N ) have been mere parameters which have something to

say about the joint measurablility of subsets. What follows makes the case for their

importance in constraining and fixing the amount of noise that must be added into

a system to make the effects jointly measurable. The following two propositions

must be seen as a generalization of the results on section 4.6, where we found

corrections and refinements of the results in [8]. We put together in proposition 4.7

the generalization of propositions 4.3 and 4.4.

Proposition 4.7. Let {Pi | i ∈ N = {1, . . . , n}}, with n ≥ 2 be a set of 2-outcome

observables, where Pi = {P 1
i , P

2
i }.

(1) Let λ(i1, . . . , in) and S0 be the solutions to the SDP taking into consider-

ation the POVM elements {P i11 , . . . , P
in
1 } with ik ∈ {1, 2} for all k ∈ N .

Then the parameter

η = max{0, 1− λ(i1, . . . , in)−1}

is the least number such that the effects {(1 − η)P
ij
j , 11 − (1 − η)P

ij
j } are

jointly measurable for all j ∈ N . Furthermore, if

(11) λ(i1, . . . , in)11 −
n∑
j=1

P
ij
j +

∑
A⊂N
|A|≥2

S0(A) 6= 0

then there exists E, 0 < E < 11 such that {(1−η)P
ij
j +ηE, 11 −(1−η)P

ij
j −

ηE} are jointly measurable for all j ∈ N .

(2) There exists a parameter η such that {(1−η)P
ij
j , 11 −(1−η)P

ij
j } are jointly

measurable for all j ∈ N regardless of the specific choice of ij. Therefore

one can write for this parameter that

{(1− η)Pj | j ∈ N}

are jointly measurable.This parameter is given by

η = max{0, 1− λ(N )−1}

where λ(N ) is defined in definition 4.2.
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Proof. (1) The arguments for the first claim are exactly the same than for

the case in proposition 4.3. The case for λ(i1, . . . , in) ≤ 1 is clear, let us

suppose otherwise. One is able to write the inequalities using the notation

of JM-graphs, i.e.,

λ(i1, . . . , in)11−
∑
j∈N

P
ij
j +

∑
A⊂N
|A|≥2

(−1)|A|S0(A) ≥ 0

P
ij
j +

∑
A⊂N\{j}
|A|6=∅

(−1)|A|S0({i} ∪A) ≥ 0, ∀j ∈ N

∑
A⊂N\Ω

(−1)|A|S0(Ω ∪A) ≥ 0

where λ(i1, . . . , in) is the infimum. Multiplying these inequalities by some

positive constant k does not change the infimum nature of the SDP pa-

rameter kλ(i1, . . . , in), in particular if k = λ(i1, . . . , in)−1 = 1 − η then

the infimum becomes one, so it is the minimum for which we have joint

measurability of (1− η)P
ij
j . Next, if we consider the SDP for some E and

feasibility for S = (1− η)S0, we get considering equation 11

>0︷ ︸︸ ︷
11−

∑
j∈N

(1− η)P
ij
j +

∑
A⊂N
|A|≥2

(−1)|A|(1− η)S0(A)−nηE ≥ 0

ηE +

≥0︷ ︸︸ ︷
(1− η)P

ij
j +

∑
A⊂N\{j}
|A|6=∅

(−1)|A|(1− η)S0({i} ∪A) ≥ 0, ∀j ∈ N

∑
A⊂N\Ω

(−1)|A|(1− η)S0(Ω ∪A) ≥ 0

some values of E, where 0 < E < 11 for which the SDP is feasible.

(2) This is also analogous to the proof of proposition 4.4. By definition,

λ(N ) = max{λ(i1, . . . , in) | ik ∈ {1, 2}, k ∈ N}.

For any choice of ik, {(1 − η)P
ij
j } will be jointly measurable since the

minimum parameter η(i1, . . . , in) for the given choice is less than η. This is

due to the fact that λ(i1, . . . , in) ≤ λ(N ) and that the function x→ 1−x−1

is monotonous increasing for x > 0.

�
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Corollary 4.1 (j-wise joint measurablility). Let {Pi | i ∈ N} be a set of n 2-

outcome observables and j ∈ {2, . . . , n}. The minimum amount of noise ηj needed

to make the observables (1− ηj)Pi j-wisely measurable is given by

ηj = max{0, 1− λj(N )−1}

where λj(N ) was defined in definition 4.3 on page 35.

Proof. For every Ω ⊂ N where |Ω| = j consider the subgraph G(Ω). To each

subgraph we have the parameter λ(Ω) associated by the SDP. As a graph there

is for every G(Ω) a noise parameter η(Ω) from proposition 4.7 which is the least

amount of noise necessary to make {(1 − η(Ω)Pi | i ∈ Ω} joint measurable (notice

that we need not consider the choice of the POVM elements Pi due to the definition

of λ(Ω)). Simply take the maximum of these η(Ω) as ηj . �
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4.8. Universality of noise. In this section we will use some results about last

section and use them to prove the property that there exist noise parameters η for

which all effects are k-wisely measurable, we give constraints and actual values for

η.

Lemma 4.3. Let N = {1, . . . , n} and {P1, . . . , Pn} 2-outcome observables. Then

λ(N ) ≤ n

and as a consequence

λi(N ) ≤ i.

Proof. Let λ(N ) and S be an optimal solution of the SDP for {Pi}. The first

inequality gives us

λ(N )11−
∑
i∈N

Pi +
∑
A⊂Ω
|A|≥2

(−1)|A|S(A) ≥ 0

As a mathematical problem however, the feasible convex set of this convex opti-

mization problem includes the point (n, {S(Ω) = 0 | Ω ⊂ N , |Ω| ≥ 2}) since for all

i ∈ N we have 0 ≤ Pi ≤ 11, therefore

n11−
∑
i∈N

Pi ≥ 0

and the other constraints are met trivially. Therefore the optimal solution param-

eter λ(N ) must be less or equal than n. The condition for λi(N ) is a consequence

of the general one considering JM-subgraphs. �

This last lemma is useful to prove the following proposition, which get to the

idea that noise can be made universal for all 2-outcome observables.

Proposition 4.8 (Universality of noise). Let j ≥ 2. There exists a parameter ηj ∈
[0, 1− j−1] such that for every set 2-outcome observables {Pi | i ∈ N = {1. . . . , n}}
with n ≥ 2, the convex transformed observables {(1 − ηj)Pi | i ∈ N} are j-wisely

jointly measurable.

Proof. Consider η̃j = 1−λj(N )−1. We know from corollary 4.1 that for any η ≥ η̃j
the set of effects

{(1− η)Pi | i ∈ N}
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is j-wise jointly measurable. However from lemma 4.3 we know too that indepen-

dently of {Pi}
λj(N ) ≤ j

therefore we may as well choose a η independent of N since 1− λj(N ) ≤ 1− j−1.

Therefore we are always able to find such an η in [0, 1 − j−1], where in particular

η = 1−j−1 will work for any set of effects, but it is not ensured to be the minimum.

�

Despite proposition 4.8 we should not be led to think that actually we can find

a noise parameter so that all effects are all-wise jointly measurable. For this case

proposition 4.8 should be addressed using a limiting process. We could perform

a limiting process taking a set N (n) = {1, . . . , n} and n effects {Pi}i∈N (n). We

should increase the size of the set, thus watching what happens with the parameter

ηn. Of course as n tends to infinity the closed interval [0, 1 − n−1] tends to [0, 1],

which does not ensure that η∞ < 1. It is therefore left as an open question whether

or not η∞ < 1. In the same way it is left to show whether or not ηj = 1 − j−1 or

ηj < 1− j−1. The case ηj = 1− j−1 seems more appealing as the limiting process

would get us η∞ = 1, however it is important to note that proposition 4.8 only

specifies that ηj ∈ [0, 1− j−1].
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4.9. Universality of noise for general POVM’s. In this section we will provide

an immediate generalization of last results for a particular case of general multiple

outcome observables, where at least one of them is assumed to be sharp. The

main idea is that from every general observable we can always produce several two

outcome observables. The question arises, how can we relate the joint measurability

of these “subobservables” or “partitions” to the joint measurability of the bigger

observables? For that we need a definition and we borrow a result that allows us

to generalize proposition 4.8.

Definition 4.4. Let C be a POVM, ΩC its outcome space and FC its σ-algebra.

Take X ∈ FC , then the effect {C(X), 11 − C(X)} is called a partition of C or a

X-partition of C. Physically, it is the POVM that is to measure if a given outcome

belongs to X.

Proposition 4.9 (From [2]). Suppose at least A or B (or both) is sharp. Then

they are jointly measurable if and only if every partition of A and B is jointly

measurable.

Last proposition can seem natural at first glance, however as it is noted in [2], the

assumption that at least one of them is sharp is essential. This means, if neither A

nor B are sharp, the result ceases to be valid for some observables. Let us present

our use of proposition 4.9.

Proposition 4.10. Let A and B be POVM where at least one of them is sharp.

Then there exists an η ∈
[
0, 1

2

]
such that the convex compositions (1 − η)A and

(1− η)B are jointly measurable.

Proof. Let (ΩA,FA) and (ΩB ,FB) be the outcome spaces of A and B respectively

and take X ∈ FA, Y ∈ FB . Let us consider the partitions AX = {A(X), 11−A(X)}
and BY = {B(Y ), 11−B(Y )}. We can consider as throughout the section P1 = AX

and P2 = BY two observables, for which a parameter λ(X,Y ) can be calculated

that makes (1 − λ(X,Y )−1)Pi joint measurable for i ∈ {1, 2}. Let us therefore

consider

λ = sup
X∈FA
Y ∈FB

{λ(X,Y )},

which also fulfills λ ≤ 2 by virtue of lemma 4.3. Taking η = 1− λ−1, we know that

(1− η)AX and (1− η)BY are joint measurable for whatever choice of X ∈ FA and

Y ∈ FB . Therefore by proposition 4.9 (1− η)A and (1− η)B are joint measurable

and η ∈
[
0, 1

2

]
. �
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The above proposition is completely general inasmuch that it does not consider

discrete observables at all, i.e, We may therefore consider continuous observables.

4.10. Definition of the distance. We are able at this point to generalize the

notion of distance proposed in [8], where a “distance” for the case of two effects was

proposed (see at the end of subsection 4.4). We propose two different definitions,

which rectify the idea proposed in [8].

Definition 4.5. Let N = {1, . . . , n} ⊂ N and let {Pi | i ∈ N} be any set of n

effects. We can define a “distance” µ as

µ(P1, . . . , Pn) = η(N )

where η(N ) = max
{

0, 1− λ(N )−1
}
.

The following definition takes into account too the parameters which are related

to the subgraphs or to j-wise measurability, where j ≤ n.

Definition 4.6 (With subgraphs). Let N = {1, . . . , n} ⊂ N and let {Pi | i ∈ N}
be any set of n effects. We can define a “distance” µs5 as

µs(P1, . . . , Pn) =

n∑
j=2

ηj(N )

where ηj(N ) = max
{

0, 1− λj(N )−1
}
.

From the definitions it is worth mentioning that whenever µ(P1, . . . , Pn) = 0 or

µs(P1, . . . , Pn) = 0 , it means that the observables are jointly n-wisely measurable

and they would therefore represent the same point. Note that these definitions are

consistent since λk(N ) is independent of the choice of POVM elements, unlike the

distance proposed in [8].

5We write µs to denote that it is built upon subgraphs.
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5. Conclusion

The main finding of this work is the following theorem:

Theorem 5.1. To every set of two outcome observables {Pi | i ∈ N = {1, . . . , n}}
we can associate a joint measurability graph G = (V,A, S) coming as a solution of

a semi definite program, together with efficiently computable parameters ηj(N ) for

every storey, which account for the minimum amount of noise needed to make the

observables {(1− ηj)Pi | i ∈ N} j-wise jointly measurable.

For sharp observables there is a complete operational characterization of joint

measurability, i.e., in that case it is equivalent to commutativity. However, for

general observables, this is not the case anymore, as we have already stressed

throughout the report. Therefore, this theorem could open the door to general

methods using homology theory to describe the joint measurability of observables.

The direction to follow could be to define an algebraic structure within the set of

joint measurability graphs, so that one may be able to add and substract them in

order to obtain particular or general results. This structure in turn could give us

some insight about a full characterization of the joint measurability of two outcome

observables, and maybe of general ones. For that we think the joint measurability

graphs could be useful.

There are several treats of this work from which other people looking at these prob-

lems could benefit, namely: the use of the notation of joint measurability graphs

and the generalizations that this notation enables for the case of n observables.

Also the graph structure and its notation can help to devise general algorithms to

perform SDP for a large number of two outcome observables.

However, no report is complete without a critique of the ideas and the results ob-

tained. It is not yet clear whether this graph structure is going to be useful or

essential to future research in the field. In our opinion, the main reason to be

doubtful is the dependence of the SDP parameter on the choice of POVM elements

to perform the SDP with. The SDP parameters do not seem to bear anymore the

whole information about the joint measurability due to this fact, that is why the

discovery of the mistake in [8] has been crucial. In consequence, the distances pro-

posed should be studied in their own generality to asses their relevance considering

the lack of invariance in the SDP parameters. This problem could in turn be quite

serious to whether or not considering SDP’s to study the quantification of joint

measurability for observables. It is an open matter whether we should turn our
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attention to noise operators E in convex combinations rather than noise parame-

ters η, or maybe to a combination of both, to have a consistent interpretation of

the information obtained through SDP’s. Although we have given an approach to

mending this hindrance by taking the maximum of these parameters, it does not

seem to be an elegant solution to describe the noise of the systems. Also, as the

dimension of the problem rises, the number of combinations needed to calculate

the SDP parameters (definition 4.2) rises exponentially, conforming thus a threat

to the effective computability of the parameters. More work should be done to

clarify these terms and to establish a complete characterization of the existence of

POVM’s E in noisy convex combinations (1−η)Pi+ηE. This could ultimately lead

to a complete description of this kind of noisy models for two outcome observables

and maybe even for general observables. In this area our results have been modest.

Indeed, we only consider two general observables and we had to assume that one

of them is sharp.

We hope to have shed some light on the named aspects about the joint measurability

of two outcome observables.
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Appendix A. Program to look for counter-examples

The following algorithm has the following structure:

(1) Generate α, β and u.

(2) Determine the optimal value of t:

(a) if α ≤ t1, we can choose t = α.

(b) else, i.e., if α > t1 then t = t1.

(3) Calculate λα,β = λ(t;α, β, u).

(4) Repeat step 2 and 3 interchanging α by β and β by α. The result will be

the λβ,α = λ(t;β, α, u).

(5) If λα,β = λβ,α, go again to step 1. Else, we have our examples.

from math import sqrt, ceil;

#Definition of the formula for the eigenvalues.

#There is an optional parameter, mode,

#which one can change to give us only the

#+-solutions or the maximum of both eigenvalues.

#By default it is set to max.

def eig(alpha,beta,t,u,mode = ’max’):

#calculate the part with and

#without the square root of the formula.

no_sqrt = (alpha - t + 2 - beta)/2;

yes_sqrt = (sqrt((beta+alpha-t)**2-4*beta*(alpha-t)*u**2))/2;

#cases considering the different values of the mode parameter.

if mode == ’plus’:

value = no_sqrt+yes_sqrt;

return value;

elif mode == ’minus’:

value = no_sqrt-yes_sqrt;

return value;

elif mode == ’max’:

#this will return the norm, i.e. the maximum of the eigenvalues.

value = max(no_sqrt+yes_sqrt, no_sqrt-yes_sqrt);

return value;

else:

return False;

def t1(c, u):

if u==0:

return 1;
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else:

return (1-c)/(1-c + c*u**2);

#This is to calculate the constraint,

#we just compare t1(beta) and alpha

def tconstraint(alpha,beta,u):

t1ab = t1(beta,u);

t1ba = t1(alpha,u);

if alpha <=t1ab:

constraint_ab = alpha;

else:

constraint_ab = t1ab;

if beta <= t1ba:

constraint_ba = beta;

else:

constraint_ba = t1ba;

#We return the values in the format of a dictionary

return {’constraint_ab’:constraint_ab,

’constraint_ba’:constraint_ba};

#This function will look for suitable points for

# which the norm varies in dependence of

#the permutation of alpha and beta.

#If count is set to true then we will count the

#numbers that are in the different

#sets M<<, M<> or M>>

def look_for_points(N,all = False, count = False):

#we create a grid in (0,1) of N-2 points.

#The precision we will use is 5 decimal places

precision = 5;

#the number of total points (alpha,beta,u) which are looked

total_points = (N+1)*(N+1)*N;

#help variable for the percentage process

perc_step = 0;

count_total = 0;

count_dif =0;

count_great_great=0;

count_great_less=0;

count_less_less=0;

count_less_great=0;
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eq_count_great_great=0;

eq_count_great_less=0;

eq_count_less_less=0;

eq_count_less_great=0;

for i in range(0,N+1):

for j in range(0,N+1):

#u is in [0,1)

for k in range(1,N+1):

alpha = round((1-i/N)*1 + (i/N)*0,precision);

beta = round((1-j/N)*1 + (j/N)*0,precision);

u =round((1-k/N)*1 + (k/N)*0,precision);

constraint = tconstraint(alpha,beta,u);

tab = round(constraint[’constraint_ab’],precision);

tba = round(constraint[’constraint_ba’],precision);

ab = round(eig(alpha, beta, tab,u),precision);

ba = round(eig(beta,alpha,tba,u),precision);

count_total+=1;

#Percentage process

if count_total/total_points >= perc_step:

print(str(ceil(100*perc_step))+’%’);

perc_step += .1;

if ab != ba:

count_dif+=1;

points = {’alpha’:alpha, ’beta’:beta, ’u’:u,

’tab’:tab, ’tba’:tba, ’ab’:ab, ’ba’:ba};

if all:

if alpha > t1(beta,u):

if beta > t1(alpha,u):

count_great_great+=1;

elif beta < t1(alpha,u):

count_great_less+=1;

elif alpha < t1(beta,u):

if beta > t1(alpha,u):

count_less_great+=1;

elif beta < t1(alpha,u):

count_less_less+=1;

else:

#When we only want a suitable point,
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#we get the first suitable point.

return points;

else:

if all:

if alpha > t1(beta,u):

if beta > t1(alpha,u):

eq_count_great_great+=1;

elif beta < t1(alpha,u):

eq_count_great_less+=1;

elif alpha < t1(beta,u):

if beta > t1(alpha,u):

eq_count_less_great+=1;

elif beta < t1(alpha,u):

eq_count_less_less+=1;

if(count and all):

print(’---------------------’);

print(’total points = ’+str(count_total));

print(’\ntotal suitable points = ’+str(count_dif));

print(’ total great great points = ’+str(count_great_great));

print(’ total great less points = ’+str(count_great_less));

print(’ total less great points = ’+str(count_less_great));

print(’ total less less points = ’+str(count_less_less));

print(’\ntotal nonsuitable points = ’+str(count_total-count_dif));

print(’ total great great points = ’+str(eq_count_great_great));

print(’ total great less points = ’+str(eq_count_great_less));

print(’ total less great points = ’+str(eq_count_less_great));

print(’ total less less points = ’+str(eq_count_less_less));

return False;

look_for_points(10,all=True, count = True)
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