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Quantum mechanics is one of the basic theories of modern physics. Here, the famous Schrödinger
equation and the differential operators representing mechanical quantities in quantum mechanics
are derived, just based on the principle that the translation invariance (symmetry) of a system in
Hamiltonian mechanics should be preserved in quantum mechanics. Moreover, according to the
form of the differential operators, the commutation relation in quantum mechanics between the
generalized coordinate and the generalized momentum can be easily obtained.

After about one century of development, quantum me-
chanics has become a fundamental theory in physics that
provides a description of the physical properties at the
scale of atoms and subatomic particles. It is the foun-
dation of all quantum physics including quantum chem-
istry, quantum field theory, quantum technology and
quantum information science. Nevertheless, as a funda-
mental equation in quantum mechanics, the Schrödinger
equation is given as a hypothesis in any quantum me-
chanics textbook, as well as the differential operators rep-
resenting physical quantities. In fact, they are closely re-
lated to the translation invariance (symmetry) in Hamil-
tonian mechanics where the equations of motion of a sys-
tem are given as

q̇ =
∂ H

∂ p
, ṗ = −∂ H

∂ q
. (1)

Here, q and p are respectively the generalized coordinate
and generalized momentum of the system (for simplic-
ity, we assume that the system has only one generalized
coordinate q and the corresponding generalized momen-
tum p), and H(q, p, t) is the Hamiltonian function of the
system. In Hamiltonian mechanics, the conserved quan-
tities in a system are closely related to the translation
invariance of the system. For instance, the generalized
momentum p in Eq. (1) will be a constant if the Hamil-
tonian H(q, p, t) is invariant under the translation trans-
formation with respect to the generalized coordinate q.

In the 1920s, Quantum mechanics was founded by
Schrödinger [1], Heisenberg [2], Born [3, 4] and others
based on some hypotheses including the hypothesis of
wave-particle duality proposed by de Broglie [5]. Wave-
particle duality is the concept in quantum mechanics that
every particle or quantum entity may be described as ei-
ther a particle or a wave. It expresses that the classical
concepts “particle” or “wave” cannot fully describe the
behavior of quantum-scale objects. Actually, any matter
will not disappear in space and time, will only be con-
verted from one form into another. Both “particle” and
“wave” are the forms of matter. In 1927, the hypothe-
sis of de Broglie wave was first conformed in Davisson-
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Germer experiment [6] which was an experimental mile-
stone in the development of quantum mechanics. In fact,
de Broglie wave can be viewed as a field of the corre-
sponding particle just like the electromagnetic wave is
the field of photons.

Although, in microscopic systems, the quantum entity
behaves sometimes like a particle and sometimes like a
wave, the translation invariance (symmetry) of the sys-
tem should be consistent no matter from the “particle”
or the “wave” viewpoint. According to this principle,
the differential operators representing physical quantities
and the Schrödinger equation in quantum mechanics can
be easily obtained. In order to see that, let’s assume that
there is a particle whose motion in classical mechanics is
dominated by the canonical equation in Eq. (1), and the
corresponding wave can be denoted as ψ(q, t) where q
is the generalized coordinate of the particle in Hamilto-
nian mechanics. (It is conceivable that the wave function
ψ(q, t) must be related to the distribution of matter in
the generalized coordinate space.) Now suppose that the
particle system has a translation invariance with respect
to the generalized coordinate q, as mentioned above, the
corresponding wave ψ(q, t) should have the same trans-
lation invariance, which means that the wave ψ(q, t) and
the shifted wave ψ(q+a, t) should correspond to the same
observables, here a denotes the translational value of the
system.

We will see that the translation invariance (symme-
try) of the system will impose severe constraints on the
wave function ψ(q, t). First, the wave ψ(q, t) cannot be
a constant in the whole coordinate space because no in-
terference fringes can be generated by such a wave. Sec-
ondly, the quantity ψ∗(q, t)ψ(q, t) should be an observ-
able (analogy with the observable light intensity in an
electromagnetic field, i.e., E∗(r, t)E(r, t), here E(r, t) is
just the electromagnetic wave at coordinate r and time
t) which will be invariant under the translation transfor-
mation. Hence, the only possible situation of the wave
function ψ(q, t) under the translation transformation is
that

ψ(q + a, t) = eiaf(q)ψ(q, t) (2)

with a real function f(q).
In order to see what we can obtain from Eq. (2), we
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do the Taylor expansion on both sides of Eq. (2), i.e.,

ψ(q + a, t) = ψ(q, t) + aψ′(q, t) +
a2

2
ψ′′(q, t) + ... (3)

eiaf(q)ψ(q, t) = [1 + iaf(q)− a2f2(q)

2
+ ...]ψ(q, t). (4)

Since Eq. (2) is true for any value a, the corresponding
terms in Eqs. (3) and (4) must be equal. According to
the second and third terms in Eqs. (3) and (4), we have

ψ′(q, t) = if(q)ψ(q, t), (5)
ψ′′(q, t) = −f2(q)ψ(q, t). (6)

According to Eqs. (5) and (6), it is easy to obtain

f ′(q) = 0, (7)

which means the function f(q) can only be a constant,
denoted by k. Then Eq. (5) becomes

−i ∂
∂ q

ψ(q, t) = kψ(q, t), (8)

which is an eigen equation of the Hermitian operator
−i ∂

∂ q with the eigenfunction ψ(q, t) and the eigenvalue
k. The eigenvalue k is a real number because in mathe-
matics, the eigenvalues of any Hermitian operator are all
real numbers.

What Eq. (8) means is that when a particle system
has a translation invariance with respect to a generalized
coordinate q (the corresponding generalized momentum p
is a constant), the corresponding wave ψ(q, t) must sat-
isfy the eigen equation of the Hermitian operator −i ∂

∂ q ,
vice versa. Hence, the eigenvalue k in Eq. (8) should be
directly related to the generalized momentum p. Mean-
while, the important Planck constant ℏ, which can reflect
the quantum properties of a microscopic system, is obvi-
ously absent in Eq. (8). However, we can always multi-
ply both sides of Eq. (8) by the Planck constant ℏ. In
fact, the number ℏk is just the momentum p of the par-
ticle, which can be directly verified by substituting the
plane electromagnetic wave eikq to ψ(q, t) in Eq. (8) with
the Einstein’s hypothesis that the photon’s momentum
p satisfies p = ℏk. Therefore, it can be concluded that
operating on the wave function ψ(q, t), the Hermitian op-
erator −iℏ ∂

∂ q will give out the value of momentum p of
the system, hence the Hermitian operator −iℏ ∂

∂ q can be
considered as the generalized momentum operator (de-
noted by p̂). In fact, the momentum operator −iℏ ∂

∂ q is
exactly the famous Born’s assumption in the establish-
ment of quantum mechanics, while here we know that the
form of the momentum operator comes from the transla-
tion invariance in Hamiltonian mechanics.

If we take the complex conjugate to both sides of Eq.
(8) and multiply the Planck constant ℏ, we have

iℏ
∂

∂ q
ψ∗(q, t) = pψ∗(q, t) (9)

with p = ℏk. It means that operating on the eigenfunc-
tion ψ∗(q, t), the differential operator iℏ ∂

∂ q can give the
same momentum p of the system. Hence, we can also
choose the differential operator iℏ ∂

∂ q as the generalized
momentum operator p̂ of the system.

Since the physical quantities are represented by oper-
ators, the order in which they act on the wave function
becomes important. The commutation relation (order re-
lationship) between the generalized coordinate q and the
generalized momentum operator ±iℏ ∂

∂ q can be directly
obtained as

[±iℏ ∂

∂ q
, q ] = ±iℏ, (10)

according to [ ∂
∂ q , q ] = 1 with definition [Â, B̂] = ÂB̂ −

B̂Â. In fact, the equation with minus sign in Eq. (10)
is exactly the Dirac’s canonical quantization rule which
we obtain very naturally here. It can be seen from Eq.
(10) that the generalized momentum p is represented by
an operator p̂ while the coordinate q is the same as that
in classical mechanics. The reason is that in the analysis
above we study the wave function in generalized coordi-
nate space (called coordinate representation). If we do
that in generalized momentum space (called momentum
representation), the situation is the opposite.

In classical mechanics, the energy will be conserved
if the Hamiltonian of the system is time independent.
In this case, the system is said to have time translation
invariance (symmetry). As previously mentioned, if there
is some translation invariance in a particle system, then
the corresponding wave must also have that. Based on
the time translation invariance, and through some similar
calculations as those in Eqs. (2)–(8), it is easy to find
that the change of the wave function ψ(q, t) with time
will satisfy

−iℏ ∂
∂ t
ψ(q, t) = Eψ(q, t). (11)

Here, the constant E should be the energy of the system,
which can be verified by substituting the plane electro-
magnetic wave eiωt to ψ(q, t) in Eq. (11) with the Ein-
stein’s hypothesis that the photon’s energy E satisfies
E = ℏω. Therefore, it can be concluded that operating on
the wave function ψ(q, t), the Hermitian operator −iℏ ∂

∂ t
will give out the value of energy E of the system. Hence,
the Hermitian operator −iℏ ∂

∂ t can be considered as the
energy operator of the system (of course, we can also
choose iℏ ∂

∂ t as the energy operator of the system).
Meanwhile, there exists another energy operator in the

system, i.e., the Hamiltonian operator Ĥ(q̂, p̂, t) since the
Hamiltonian function H(q, p, t) is just the energy of the
system in Hamiltonian mechanics. It means that the two
Hermitian operators are equivalent when they operate on
a wave function, i.e.,

±iℏ ∂
∂ t

≡ Ĥ(q̂, p̂, t). (12)
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Hence, according to Eq. (12), the time evolution of a
wave function ψ(q, t) will satisfy

±iℏ ∂
∂ t
ψ(q, t) = Ĥ(q̂, p̂, t)ψ(q, t). (13)

In fact, there are four equivalent time evolution equations
in Eq. (13) because the momentum operator p̂ can be
chosen as iℏ ∂

∂ q or −iℏ ∂
∂ q (in coordinate representation).

If we choose −iℏ ∂
∂ q as the momentum operator p̂, then

the equation with plus sign in Eq. (13) is just the famous
Schrödinger equation in quantum mechanics.

In summary, due to the wave-particle duality in mi-

croscopic systems, Hamiltonian mechanics describing
the macroscopic properties of a system has to be re-
placed by quantum mechanics when we study the prop-
erties of quantum-scale objects. And the origins of the
Schrödinger equation and the differential operators rep-
resenting mechanical quantities in quantum mechanics
all come from the translation invariance (symmetry) in
Hamiltonian mechanics. We believe the results in this
paper are very beneficial to understand the physical ori-
gin of quantum mechanics.
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