

IMOTHEP configurations

Sebastien DEFOORT - ONERA

Stakeholders Workshop - 11/11/2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

Table of content

Introduction

- Motivation : intrication between electric architecture and configuration
- Organization of design loops within IMOTHEP

Configurations under study

- Missions and EIS horizon
- Challenges for each configuration

Perspectives

- Preliminary numbers and output for technology studies
- Refined design loops

Motivation to study configurations

Intersection of electric architectures and configurations

Aircraft architecture

Can it be accomodated on conventional tube & wings aircraft without major changes ?

Electric architectures

Motivation to study configurations

Intersection of electric architectures and configurations

Motivation to study configurations

Intersection of electric architectures and configurations

What are the best combinations, and the associated benefits ?

IMOTHEP design approach

An iterative OAD process with two objectives :

- Derive requirements to the subsystems of the HEP chain
- Integrate realistic figures and continuously update the benefits

IMOTHEP design approach

An iterative OAD process with two objectives :

- Derive requirements to the subsystems of the HEP chain
- Integrate realistic figures and continuously update the benefits

CONFIGURATIONS UNDER STUDY

Configurations

Supporting missions and configurations :

Address two levels of power requirements (and expected EIS) : regional and SMR

Configurations

Supporting missions and configurations :

1st evolution : limited change in A/C architecture

Configurations

Supporting missions and configurations :

More aggressive evolution : increased architecture novelty

REG-CONS Aircraft Configuration

Hybrid-electric aircraft with assisted turbo-shaft engine

Study focus: mission strategy, hybridization degree, technology advancement of electrical components, thermal management system

REG-RAD Aircraft Configuration

Hybrid chain with DEP

- Partial turboelectric architecture assumed.
- 8 propellers.

GETTING . HYBRID . FLECTRI

- 2 gas turbines.
- 2 inner propellers driven by the gas turbines.
- 2 generators driven by the gas turbines in parallel.
- 6 e-motors driven by the generators.
- Simplified mass & efficiency modelling to be aligned with project assumptions.
- No battery assumed currently, but can be directly added to this architecture.

SMR-CONS Aircraft configuration

DRAGON concept:

- Inherits from studies conducted within CS2-LPA (see [1] and P. Schmollgruber's presentation)
- Turboelectric architecture with 2 gas tubines and 26 / 40 e-motors
- Work to be conducted within IMOTHEP:
 - Refinement of component power level upon flight / safety criterions
 - Full review of electric architecture and inclusion of variants (eg. with batteries)
 - Detailed design of components including transient effect and thermal management
 Right Side

1."*Multidisciplinary Design and performance of the ONERA Hybrid Electric Distributed Propulsion concept (DRAGON)"*, P. Schmollgruber, D. Donjat, M. Ridel, I. Cafarelli, O. Atinault, C. François, B. Paluch. AIAA2020-0501 Scitech 2020 Forum

SMR-RAD Aircraft configuration

Reference: turboelectric hybrid chain

Modelling of BWB airframe specificities and inclusion of HEP components with similar performances as for REG-CONS

Relative mission fuel burn effects by including additional assumptions of system losses/benefits

GETTING . HYBRID . FLECTRIC

- Sensitivity to aeropropulsive integration effects, highly sensitive at that stage
- Other HEP architectures to be investigated

Perpectives

Main orders of magnitude delivered

- Provide a basis for electric architecture definition and component sizing (e-motors, cables, batteries, generators, turboshafts,...)
 - -> Consistent aircraft integration, power level expectations confirmed

	REG-CONS ¹	REG-RAD ²	SMR-CONS ³	SMR-RAD ⁴
Power required on selected flight points	Total a/c level shaft-power [MW]: TO: 2.8 / 2.95* MC: 1.6 / 2.5*	Total a/c level shaft-power [MW]: TO: 2.5 TOC: 2.3 MC:2.1	Total a/c level shaft-power of electric motors [MW]: TO: 18.2 TOC: 10.7 MC: 10.1	Total a/c level shaft-power [MW]: TO:33.2 TOC:10. MC: 8. See the Leap model table below for the context of these values.

Define initial geometries for aero-propulsive integration

-> High impact of uncertainties on DEP and BLI evaluation

Refined loops to be conducted

- Loop 1 : incorporate parametric models from technological WP and use multidisciplinary design approaches to consolidate results
- Loop 2 : defined consolidated CAD and refined performances of components, including transient behaviour

