
EXASCALE POTHOLES FOR HPC

2020/11/12 I BRIAN WYLIE (B.WYLIE@FZ-JUELICH.DE)

Execution performance and variability analysis of the flagship application code HemeLB

ProTools@SC20 Workshop

mailto:ProTools@SC20

DESIGNED & TUNED FOR HIGH PERFORMANCE!

 2

No speed limit

YOUR MILEAGE MAY VARY

 3

..it happens!

PERFORMANCE VARIATION

Application (user domain)
● changes of code versions, compilers & run-time libraries, optimization levels/flags
● non-determinism (Monte-Carlo, data races)

System (hardware/software)
● machine-hall power outages, power/energy management policies
● chip manufacturing variance / wear-and-tear
● error correction (cosmic rays)
● contention on network interconnect
● file I/O to shared filesystem
● (rogue) system daemons (NHC)
● ...

 4

Typical causes (selection)

Unmodified jobscript &
application executable
still runs correctly,
but takes (much) longer
and not under user control!

Generally intentional!

CASE STUDY

HemeLB open-source code and test case: www.hemelb.org
● CoE flagship code developed by UC London (UK)
● C++ parallelised with MPI
● built with Intel Studio compiler & MPI library
● 5,000 time-step (500µs) simulation of cerebrovascular “circle of Willis” geometry

– 6.4µm lattice resolution (21.15 GiB): 10,154,448,512 lattice sites

SuperMUC-NG Lenovo ThinkSystem SD650 at LRZ
● dual 24-core Intel Xeon Platinum 8174 (‘Skylake’) @ 3.1GHz compute nodes
● 48 MPI processes per node, 6,452 (of 6,480) compute nodes: 309,696 MPI processes
● 144 ‘fat’ [768 GiB] + 6,336 ‘thin’ [96 GiB] compute nodes

 5

POP performance assessment of HemeLB on SuperMUC-NG

INITIAL RESULTS

 6

Application strong scaling

up to 6,250 compute nodes
(dual 24-core)

• 96.5% of entire system
(6,480 compute nodes)

• 300,000 MPI processes
(one per core)

• 80% scaling efficiency
maintained to over 100,000
processes in production

• but ‘poor’ performance for
jobs using the entire system
in dedicated block operation
– also erratic

SYSTEM VIEW

 7

HemeLB application execution

One of the first (non-HPL)
application executions on the
entire virgin compute system

• 300,000 MPI processes on
6,250 compute nodes

• spread over all 9 ‘islands’

– production jobs limited
to only half of system
(3168 compute nodes)

• avoiding 20 off-line nodes,
and additional 2 which failed
to boot in first attempt

LOAD BALANCE?

 8

Scalasca analysis of execution with 300,000 MPI processes on 6,250 dual 24-core compute nodes

Focus of Analysis (FOA) = SimulationMaster::RunSimulation

LOAD BALANCE?

2020/09/09 9

Scalasca analysis of execution with 300,000 MPI processes on 6,250 dual 24-core compute nodes

COMP TIME

2020/09/09 10

Process topology (folded)

300,000 MPI processes as
625x480 topology

• 10 compute nodes / column

• computation time peer %

– highest process value
shown red and sets
colour scale of values

• looks fairly homogeneous
= well balanced?

HOTSPOT?

2020/09/09 11

Node i02r08c05s07 (odds)

300,000 MPI processes as
625x480 topology map

• 10 compute nodes / column

• computation time peer %

– highest process value
shown red and sets
colour scale of values

• 24 processes on one node
take much longer than any
others (even on the same
node)

PEER VALUES?

 12

Node i02r08c05s07 (odds)

300,000 MPI processes in system tree

• 6,250 compute nodes each with 48 MPI processes

• computation time peer %

• 24 odd-numbered processes on node i02r08c05s07
take more than 6x longer than any of their peers

– who must then wait in their subsequent
point-to-point neighbour communication

WHY?

 13

Node i02r08c05s07 (odds)

300,000 MPI processes in system tree

• 6,250 compute nodes each with 48 MPI processes

• computation time peer %

• 24 odd-numbered processes on node i02r08c05s07
take more than 6x longer than any of their peers

– executing roughly the same number of instructions

– but suffering 14x the CPU resource stall cycles

– ultimately due to memory access stalls

• node subsequently taken off-line for diagnostic checks
which immediately identified that it had a faulty DIMM

ONE-OFF?

2020/09/09 14

Folded process topology

300,000 MPI processes as
625x480 topology map

• 10 compute nodes / column

• computation time peer %

– highest process value
sets maximum of
colour scale

ONE-OFF?

2020/09/09 15

Node i04r01c05s10 (evens)

300,000 MPI processes as
625x480 topology map

• 10 compute nodes / column

• resource stall cycles peer %

– enhanced colour map

• 24 even-numbered processes
on node i04r01c05s10 also
take notably longer than their
peers: diagnostics reported
lacklustre performance

SUCCESS?

 16

Application strong scaling

up to 6,452 compute nodes

• 99.6% of entire system

• 309,696 MPI processes
(cores)

• 80% scaling efficiency
maintained to over 100,000
processes

• 190x speed-up compared
to 18 ‘fat’ compute nodes
with larger memory

STRONG SCALING

Global scaling efficiency fairly good around 80%, before generally degrading at larger scales
● Parallel efficiency deteriorating following Load balance efficiency;

excellent Communication efficiency throughout
● Computation scaling (relative to 24 nodes) very good, except at largest scale
● Degradation of Instructions scaling partially compensated by improving IPC scaling

 17

POP performance assessment

ALL DONE?

2020/09/09 18

Look closer

13,824 MPI processes
(on 288 compute nodes)

• communication efficiency
is excellent (100%)

• load balance still only
miserable 49%

• due to 2 MPI processes
3474 & 7782 taking 30%
longer than any others

– so that they never
have to wait

ROGUE PROCESSES?

2020/09/09 19

MPI ranks 3474 & 7782 in topological representation (compute node vs. core)

MPI waiting time (MPI_Waitall)

Computation time (HandleActors)

TRACE VISUALISATION

 20

Vampir

Execution timeline view of 13,824
processes (on 288 compute nodes)

• zoom to RunSimulation phase
of 5,000 simulation time-steps
(duration 1500 seconds)

• lots of MPI waiting time [red]
vs. computation [green]

– slightly more for those MPI
processes on first and last
compute nodes

• each line of pixels for 11 processes!

TRACE VISUALISATION

 21

Vampir

Execution timeline view of 13,824
processes (on 288 compute nodes)

• zoom to RunSimulation phase
of 5,000 simulation time-steps
(duration 1500 seconds)

• lots of MPI waiting time [red]
vs. computation [green]

• examining individual processes:
MPI process 7782 takes much
longer for its computation

– it never has to wait

– others must wait for it!

1ST RUN IN JOB

 22

Computation time by MPI rank

13,824 processes (on 288 nodes)

• work distribution by process
shown by number of blocks of
lattice sites [blue, in tens]

– somewhat less for first and
last compute nodes

• resulting computation time for
simulation by process [red, sec]

– certainly imbalanced

– but one serious outlier!

2ND RUN IN JOB

 23

Computation time by MPI rank

13,824 processes (on 288 nodes)

• work distribution by process
shown by number of blocks of
lattice sites [blue, in tens]

– identical to previous run
(and for all runs)

• resulting computation time for
simulation by process [red, sec]

– imbalanced much as in
previous run

– a different serious outlier!

RÉSUMÉ

“Slow” memory on a few compute nodes affects all processes/threads on those nodes
● results in large performance degradation that’s entirely repeatable
● can be circumvented by excluding those nodes

Processes/threads bound to individual cores sometimes suffer more modest degradation
● also reflected in elevated stall cycles for memory accesses, throughout execution
● affects different cores in each execution (using the exact same compute nodes)
● see McCalpin@SC18 [DOI: 10.1109/SC.2018.00021]
● not predictable, therefore requires adaptive work redistribution

Neither unique to SuperMUC-NG: apparently ubiquitous!

 24

State of play

mailto:McCalpin@SC18

METHODOLOGY & TOOLS

Performance Optimisation & Productivity methodology: www.pop-coe.eu
● hierarchical execution efficiency analysis
● scaling of FoA relative to smallest executable configuration
● investigation of core performance via top-down Intel hardware counter analysis

Scalasca/CUBE & Vampir profile & trace analysis tools: www.scalasca.org
● based on community-developed, open-source Score-P measurement infrastructure
● widely deployed and highly scalable
● (independently verified with Intel tools)

 25

“pretty standard”

LESSONS?

Defective compute nodes don’t always result in application failures
● apparently aren’t always caught by system/node bring-up and pre/post-job diagnostics
● but some (sensitive) applications execute much, much slower

– over 6x slower in the studied case of HemeLB

– one lacklustre compute node resulting in 6,249 others busy waiting 5/6 of time

● depleting CPU allocation, wasting energy and preventing other jobs from running

– additional core-to-core variation (moving around) for each ‘identical’ run

● 5% and more, but application (working set) dependent

● multiple HPC systems affected: different processors, interconnects, OS kernels,
MPI libraries, compilers, ...

 26

Do try this yourself

ADVICE TO USERS

 27

Stay alert

Keep a vigilant look out for occurrences of
performance degradation!

● provide detailed reports to system admins and
performance analysts

– facilitates more timely investigation & fixes

– potentially refunding your lost CPU time

● be prepared to swerve?

… or turn up the volume and ignore the noise?

11/23/2016This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreements No 676553 & 824080.

Performance Optimisation and Productivity
Centre of Excellence in Computing Applications & HPC

• contact: Prof. Jesús Labarta

• mailto: pop@bsc.es

• https://www.pop-coe.eu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Contact: https://www.pop-coe.eu

