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DESIGNED & TUNED FOR HIGH PERFORMANCE!
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No speed limit



YOUR MILEAGE MAY VARY
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..it happens!



PERFORMANCE VARIATION

Application (user domain)
● changes of code versions, compilers & run-time libraries, optimization levels/flags
● non-determinism (Monte-Carlo, data races)

System (hardware/software)
● machine-hall power outages, power/energy management policies
● chip manufacturing variance / wear-and-tear
● error correction (cosmic rays)
● contention on network interconnect
● file I/O to shared filesystem
● (rogue) system daemons (NHC)
● ...
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Typical causes (selection)

Unmodified jobscript & 
application executable
still runs correctly, 
but takes (much) longer 
and not under user control!

Generally intentional!



CASE STUDY

HemeLB open-source code and test case: www.hemelb.org
● CoE flagship code developed by UC London (UK)
● C++ parallelised with MPI
● built with Intel Studio compiler & MPI library
● 5,000 time-step (500µs) simulation of cerebrovascular “circle of Willis” geometry

– 6.4µm lattice resolution (21.15 GiB): 10,154,448,512 lattice sites

SuperMUC-NG Lenovo ThinkSystem SD650 at LRZ
● dual 24-core Intel Xeon Platinum 8174 (‘Skylake’) @ 3.1GHz compute nodes
● 48 MPI processes per node, 6,452 (of 6,480) compute nodes: 309,696 MPI processes
● 144 ‘fat’ [768 GiB] + 6,336 ‘thin’ [96 GiB] compute nodes
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POP performance assessment of HemeLB on SuperMUC-NG



INITIAL RESULTS
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Application strong scaling

up to 6,250 compute nodes
(dual 24-core)

• 96.5% of entire system
(6,480 compute nodes)

• 300,000 MPI processes 
(one per core)

• 80% scaling efficiency 
maintained to over 100,000 
processes in production

• but ‘poor’ performance for 
jobs using the entire system 
in dedicated block operation 
– also erratic



SYSTEM VIEW
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HemeLB application execution

One of the first (non-HPL) 
application executions on the 
entire virgin compute system

• 300,000 MPI processes on 
6,250 compute nodes

• spread over all 9 ‘islands’

– production jobs limited 
to only half of system 
(3168 compute nodes)

• avoiding 20 off-line nodes, 
and additional 2 which failed 
to boot in first attempt



LOAD BALANCE?
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Scalasca analysis of execution with 300,000 MPI processes on 6,250 dual 24-core compute nodes

Focus of Analysis (FOA) = SimulationMaster::RunSimulation



LOAD BALANCE?
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Scalasca analysis of execution with 300,000 MPI processes on 6,250 dual 24-core compute nodes



COMP TIME
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Process topology (folded)

300,000 MPI processes as 
625x480 topology

• 10 compute nodes / column

• computation time peer %

– highest process value 
shown red and sets 
colour scale of values

• looks fairly homogeneous
= well balanced?



HOTSPOT?
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Node i02r08c05s07 (odds)

300,000 MPI processes as 
625x480 topology map

• 10 compute nodes / column

• computation time peer %

– highest process value 
shown red and sets 
colour scale of values

• 24 processes on one node 
take much longer than any 
others (even on the same 
node)



PEER VALUES?
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Node i02r08c05s07 (odds)

300,000 MPI processes in system tree

• 6,250 compute nodes each with 48 MPI processes

• computation time peer %

• 24 odd-numbered processes on node i02r08c05s07 
take more than 6x longer than any of their peers

– who must then wait in their subsequent
point-to-point neighbour communication



WHY?
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Node i02r08c05s07 (odds)

300,000 MPI processes in system tree

• 6,250 compute nodes each with 48 MPI processes

• computation time peer %

• 24 odd-numbered processes on node i02r08c05s07 
take more than 6x longer than any of their peers

– executing roughly the same number of instructions

– but suffering 14x the CPU resource stall cycles

– ultimately due to memory access stalls

• node subsequently taken off-line for diagnostic checks 
which immediately identified that it had a faulty DIMM



ONE-OFF?
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Folded process topology

300,000 MPI processes as 
625x480 topology map

• 10 compute nodes / column

• computation time peer %

– highest process value 
sets maximum of 
colour scale



ONE-OFF?
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Node i04r01c05s10 (evens)

300,000 MPI processes as 
625x480 topology map

• 10 compute nodes / column

• resource stall cycles peer %

– enhanced colour map

• 24 even-numbered processes 
on node i04r01c05s10 also 
take notably longer than their 
peers: diagnostics reported 
lacklustre performance



SUCCESS?
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Application strong scaling

up to 6,452 compute nodes

• 99.6% of entire system

• 309,696 MPI processes 
(cores)

• 80% scaling efficiency 
maintained to over 100,000 
processes

• 190x speed-up compared 
to 18 ‘fat’ compute nodes 
with larger memory



STRONG SCALING

Global scaling efficiency fairly good around 80%, before generally degrading at larger scales
● Parallel efficiency deteriorating following Load balance efficiency; 

excellent Communication efficiency throughout
● Computation scaling (relative to 24 nodes) very good, except at largest scale
● Degradation of Instructions scaling partially compensated by improving IPC scaling
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POP performance assessment



ALL DONE?
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Look closer

13,824 MPI processes
(on 288 compute nodes)

• communication efficiency 
is excellent (100%)

• load balance still only 
miserable 49%

• due to 2 MPI processes 
3474 & 7782 taking 30% 
longer than any others

– so that they never 
have to wait



ROGUE PROCESSES?
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MPI ranks 3474 & 7782 in topological representation (compute node vs. core)

MPI waiting time (MPI_Waitall)

Computation time (HandleActors)



TRACE VISUALISATION
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Vampir

Execution timeline view of 13,824 
processes (on 288 compute nodes)

• zoom to RunSimulation phase 
of 5,000 simulation time-steps 
(duration 1500 seconds)

• lots of MPI waiting time [red] 
vs. computation [green]

– slightly more for those MPI 
processes on first and last 
compute nodes

• each line of pixels for 11 processes!



TRACE VISUALISATION
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Vampir

Execution timeline view of 13,824 
processes (on 288 compute nodes)

• zoom to RunSimulation phase 
of 5,000 simulation time-steps 
(duration 1500 seconds)

• lots of MPI waiting time [red] 
vs. computation [green]

• examining individual processes: 
MPI process 7782 takes much 
longer for its computation

– it never has to wait

– others must wait for it!



1ST RUN IN JOB
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Computation time by MPI rank

13,824 processes (on 288 nodes)

• work distribution by process 
shown by number of blocks of 
lattice sites [blue, in tens]

– somewhat less for first and 
last compute nodes

• resulting computation time for 
simulation by process [red, sec]

– certainly imbalanced

– but one serious outlier!



2ND RUN IN JOB
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Computation time by MPI rank

13,824 processes (on 288 nodes)

• work distribution by process 
shown by number of blocks of 
lattice sites [blue, in tens]

– identical to previous run 
(and for all runs)

• resulting computation time for 
simulation by process [red, sec]

– imbalanced much as in 
previous run

– a different serious outlier!



RÉSUMÉ

“Slow” memory on a few compute nodes affects all processes/threads on those nodes
● results in large performance degradation that’s entirely repeatable
● can be circumvented by excluding those nodes

Processes/threads bound to individual cores sometimes suffer more modest degradation
● also reflected in elevated stall cycles for memory accesses, throughout execution
● affects different cores in each execution (using the exact same compute nodes)
● see McCalpin@SC18 [DOI: 10.1109/SC.2018.00021]
● not predictable, therefore requires adaptive work redistribution

Neither unique to SuperMUC-NG: apparently ubiquitous!
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State of play

mailto:McCalpin@SC18


METHODOLOGY & TOOLS

Performance Optimisation & Productivity methodology:  www.pop-coe.eu
● hierarchical execution efficiency analysis
● scaling of FoA relative to smallest executable configuration
● investigation of core performance via top-down Intel hardware counter analysis

Scalasca/CUBE & Vampir profile & trace analysis tools:  www.scalasca.org
● based on community-developed, open-source Score-P measurement infrastructure
● widely deployed and highly scalable
● (independently verified with Intel tools)
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“pretty standard”



LESSONS?

Defective compute nodes don’t always result in application failures
● apparently aren’t always caught by system/node bring-up and pre/post-job diagnostics
● but some (sensitive) applications execute much, much slower

– over 6x slower in the studied case of HemeLB

– one lacklustre compute node resulting in 6,249 others busy waiting 5/6 of time

● depleting CPU allocation, wasting energy and preventing other jobs from running

– additional core-to-core variation (moving around) for each ‘identical’ run

● 5% and more, but application (working set) dependent

● multiple HPC systems affected: different processors, interconnects, OS kernels, 
MPI libraries, compilers, ...
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Do try this yourself



ADVICE TO USERS
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Stay alert

Keep a vigilant look out for occurrences of 
performance degradation!

● provide detailed reports to system admins and 
performance analysts

– facilitates more timely investigation & fixes

– potentially refunding your lost CPU time

● be prepared to swerve?

… or turn up the volume and ignore the noise?



11/23/2016This project has received funding from the European Union Horizon 2020 research and innovation programme under grant agreements No 676553 & 824080. 

Performance Optimisation and Productivity
Centre of Excellence in Computing Applications & HPC

• contact: Prof. Jesús Labarta

• mailto: pop@bsc.es

• https://www.pop-coe.eu
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