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1. NOTATION

Meaning

vertically-averaged ice hardness
acceleration due to gravity

ice thickness

ice top surface elevation

Glen flow law exponent

number of trial functions per element
number of quadrature points per element
sliding power law exponent

horizontal ice velocity

regularization parameters for S(u), v, n
effective viscosity of ice

trial functions

test functions

ice density

basal shear stress

driving shear stress

Formulas that appear in the code are | highlighted.
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2 CONSTANTINE KHROULEV
2. THE SHALLOW SHELF APPROXIMATION

Define the effective SSA strain rate tensor M [1]:

M= dug + 20y uy + v,
Uy + UV 2up +4vy )

Then the strong form of the SSA system (without boundary conditions) is
(1) —V-(nM) =17+ Ta,

@

This is equivalent to the more familiar form (found in [3], for example):

— | (e +20,))2 + (1 +v2))y| = Tow + T

— [y + v2))e + (1200 +40))y| = Toy +Tay

Here 74 =| pgHVh |is the gravitational driving shear stress; see subsections for definitions of 7 and the ice

viscosity v.

2.1. Ice viscosity. Let U = {u,v,w} and X = {x,y, z}.
The three-dimensional strain rate tensor D (2], equations 3.25 and 3.29) is defined by

10U | ou;
Dij(w) =3 (axj N axi> '

We assume that ice is incompressible, so w, = —(u, + v,). Moreover, in the shallow shelf approximation
horizontal velocity components do not vary with depth, so v, = v, = 0.

With these assumptions D becomes

Uy % (uy + vz) 0
D= | 3 (uy+wvg) vy 0
0 0 —(ug + vy)

Now the second invariant of D ([2], equation 2.42)
v = tr(D?) — (tr D)

simplifies to

1

3) v={5 (0 @+ 0+ G 4 |

We define the regularized effective viscosity of ice v ([3], equation 2.3):

1
(4) v={5B e+ T
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2.2. Basal shear stress. The basal shear stress is defined by
() T, = —f(u)u,
where 8 = (u) is a scalar-valued drag coefficient related to the yield stress.

In PISM, S(u) is defined as follows (see [4]):

(6) Blu) =| 1 (eg + |uf?)@D/2

q
Uthreshold

3. THE WEAK FORM OF THE SSA

Multiplying by a test function ¥ and integrating by parts, we get the weak form:

V(M) =714+ Ty,

/qpv (nM) = /1/)7',14-7'1)
_/V-(wnM)+/Vz/)~(nM)Z/Qw(Td-i-Tb),

/ (Yn) - nds+/Vz/J (M) = [ p(ra+1)
oQ 0
(7) /Q [V¢-(77M)_¢(Td+7'b)]:/{9(2(¢UM)_ndS.

If we ignore the boundary integral (which corresponds to using natural boundary conditions), we can re-write
this as follows.

(8) /Q %) (n(4ug + 2v,)) + %Z; 1ty +v2)) = ¥(Toz + Taz) =0
(9) /Q % (n(uy +ve)) + % (n(2uz + 4vy)) — (T + Tay) =0

This is the system considered in the remainder of these notes.

4. SOLVING THE DISCRETIZED SYSTEM

In the following subscripts x and y denote partial derivatives, while subscripts &, [, m denote nodal values of a
particular quantity. Also, to simplify notation from here on u, v, etc stand for finite element approximations
of corresponding continuum variables.

To build a Galerkin approximation of the SSA system, let ¢ be trial functions and v be test functions. Then
we have the following basis expansions:

(10) ou Op;
Bz, = 2w,
ov 8@1%
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We use a Newton’s method to solve the system resulting from discretizing equations (8] and @D This
requires computing residuals and the Jacobian matrix.

4.1. Residual evaluation. In this and following sections we focus on element contributions to the residual
and the Jacobian. Basis functions used here are defined on the reference element, hence the added determi-
nant of the Jacobian of the map from the reference element to a particular physical element |J,| appearing
in all quadratures.

N,
. Oy, Oy,
(11) Fr1= ; | Jq| - wg - [77 ( o (dug + 2vy) + Ty(u“ + 1)3”)) ~V(Toa Td’gC)} evaluated at g

(12) Fro= Z |Jq] - wq - ['r (81/;: (uy +vg) + %(21@ + 4vy)> — Yp(Tp,y + Td,y):|

evaluated at ¢

4.2. Jacobian evaluation. Equations and define a map from RZ*N to RN, where N is the
number of nodes in a FEM mesh. To use Newton’s method, we need to be able to compute the Jacobian of
this map.

It is helpful to rewrite equations defining Fj 1 and Fj o using basis expansions for ug, uy, vz, and v, (see
(10])), as follows:

Ny Ny, Ny Ng Ny
Fk71 = Z |Jq| SWg - [ (dl/)k (4 Z U d¢m +2 Z md?m) d(;/;k (Z 8(]5m n Z m(‘)gbm>>
q=1 m=1 —

— i (Toe + Td,r)]

evaluated at g

Nk Ny, Ny
Fio = Z|]| Wy - [n(awk (Z Uy T _,_Z m?ﬂ%m) (‘35/); <2Z m8¢m+4z ma¢m>>

qg=1 m=1 ' m=1 m=1

— Y (Toy + Td,y)]

evaluated at ¢

The Jacobian has elements

OF OF;
Jri = 81];1’ Jri2 = 811171’

OF; OF;
Jkl3_ k,2 Jkl4_ k2
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N
N on ([ Oy 0Py,
(13) Je1 = ; |Jq] - wq [altl < o (dugy + 2vy) + 9y — (uy + vy)
. (81/ LI avfw) ) 0]
0 87/ 81/ 81” evaluated at ¢
okl on [0y 89
_ N J Yk
(14) Jii2 = ; | Jql - wq [31}1 ( - (dug + 2vy) + Ay (uy + Uac))
k 3</>l 3’% ody OTb o
e < oz Qy {)y ox ¥ vy
evaluated at g
J o (o o
— cw. - | 21 7" ¥k
(15) Jki3 = qz::l |Jq] - wq [81” < o (uy +vg) + 2y (2uy +4vy)>
v 96 v 00\ 0m,
o < or oy "oy 2ox) Y ow
evaluated at ¢
ol o (o .
n k Pk
(16) T4 = z:: PARETE [81}1 ( (uy + vy) + 8—y(2uw + 41}y)>
oY O¢p Oy Ody 0T,y
i <0T ox + dy 483/ v o Mated
evaluate at q

In our case the number of trial functions Ny is 4 (@1 elements). Our test functions are the same as trial
functions (a Galerkin method), i.e. we also have 4 test functions per element. Moreover, each combination of
test and trial functions corresponds to 4 values in the Jacobian (2 equations, 2 degrees of freedom). Overall,
each element contributes to 4 x 4 x 4 = 64 entries in the Jacobian matrix.

To evaluate J. .., we need be able to compute the following:

- - - - o On  Otee  OTe 0Ty 0Ty
b, b, d, d, .
w v w v 8ul ’ (91)1 ’ 0ul ’ a'l)l ’ aul ’ 3’01

Subsections that follow describe related implementation details.

4.2.1. Ice viscosity. Recall (equation ) that = €, + vH. We use the chain rule to get

on dv Oy an dv Oy
/R s gt R/ i .
oy 87 ou;’ oy 87 oy

The derivative of v with respect to v can be written in terms of v itself:

ov 1., 1—-n (1—n)/(2n)—1
oy 27 on (e +7) ’
l-n 1 1-n)/2n) 1
— - ~B(e, ( R
2n 2 (ev +) €+’

1—n v

2n 'el,Jr’y ‘
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To compute g—; and % we need to re-write v (equation ) using the basis expansion :

1 Yo 96 ’ L ’
Nk Ny, 2 Ny Ny,
O 06\ .1 Oém O

m=1
So,
g—; = ugciil + (ug +vy)%(il + %(uy + uz)%—?,
(17) =|(2ug +vy>% + %(uy +vm>% :
% = vy%—(zl + (ugy + vy)aa—q;l + %(uy + vm)%,
(18) _ %(uy+vm)% +(um+2vy)%—¢; .

4.2.2. Basal drag. The method IceBasalResistancePlasticLaw: :drag_with_derivative() computes [
and the derivative of 8 with respect to o = 3|ul? = £ (u? + v?).

Then

9 _ .0 s L LA
8ul o 8ul - b a’Ul - 8vl o -

Recall from equation
Toe =|—B(u) - uj, Toy =|—L(u)-v|

Using product and chain rules, we get

O (ﬁ(u)- Ou | 9p(w) u)

ouy a77//[ Ouy
0B(u) O

=|- (/J’(U) o+ 8/;?) 'uz@z> )

0Tz 0B(u) u

61/[ o 8111
0B oo
- Oa ' 81}1
o)

aTb,y o _8B(u) v

6ul o 311,1
NI

vy _ ~Ov 9B (u) .
8’[1[ o (ﬁ(U) 8vl + 8ul U)
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