PISM Installation Manual
The PISM Authors

Contents
1 Introduction
2 Libraries and programs needed by PISM

3 Installation Cookbook
3.1 Imstalling PISM’s prerequisites o e
3.1.1 Installing prerequisites by packages (Debian)
3.1.2 Installing prerequisites from source
3.1.3 Imstalling PETSc from source e
3.2 Imstalling PISM itself o o
3.2.1 Installing PISM and prerequisites on a Cray XK6 system
3.2.2 Installing PISM and prerequisites on Mac OS X
3.3 Common build problems and solutions (i.e. if it still does not work ...)

4 Quick tests of the installation
5 Installing Python packages

6 Rebuilding PISM documentation
6.1 Building documentation for PISM’s Python bindings and inversion tools

Support by email: help@pism-docs.org.
Please see the PISM User’s Manual for the full list of authors.
Manual date June 30, 2015. Based on PISM revision stable v0.7.1-2-g79b8840.

Get development branch source code: git clone -b dev git@github.com:pism/pism.git pism-dev

O O Uk D

mailto:help@pism-docs.org

1 Introduction

This Installation Manual describes how to download the PISM source code and install PISM and
the libraries it needs. Information about PISM, including a User’s Manual, is on-line at

www.pism-docs.org

The fastest path to a fully functional PISM installation is to use a Linux system with a Debian-
based package system (e.g. Ubuntu): Start by following subsections 3.1.1 about getting Debian
packages for prerequisites, then 3.1.3 to install PETSc from source, then 3.2 to install PISM itself,
and finally install Python packages following section 5.

WARNING: PISM is an ongoing project. Ice sheet modeling is complicated
and is generally not mature. Please don’t trust the results of PISM or any
other ice sheet model without a fair amount of exploration.

Also, please don’t expect all your questions to be answered here. Write to us

with questions at help@pism-docs.org.

Copyright (C) 2004-2014 the PISM authors.

This file is part of PISM. PISM is free software; you can redistribute it and /or modify it under
the terms of the GNU General Public License as published by the Free Software Foundation;
either version 3 of the License, or (at your option) any later version. PISM is distributed in
the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy of the GNU
General Public License along with PISM. If not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

http://www.pism-docs.org
mailto:help@pism-docs.org

2 Libraries and programs needed by PISM

This table lists required dependencies for PISM alphabetically.

Required Program or Library Comment
FFTW http://www.fftw.org/ version > 3.1
GSL http://www.gnu.org/software/gsl/ version > 1.15
MPI http://www.mcs.anl.gov/mpi/
NetCDF http://www.unidata.ucar.edu/software/netcdf/ version > 4.1
PETSc http://www.mcs.anl.gov/petsc/petsc-as/ version > 3.3

UDUNITS-2 http://www.unidata.ucar.edu/software/udunits/

Before installing these “by hand”, check the Debian and Mac OS X sections below for specific how-to.
In particular, if multiple MPI implementations (e.g. MPICH and Open-MPI) are installed then PETSc
can under some situations “get confused” and throw MPI-related errors. Even package systems have
been known to allow this confusion.

Optional libraries are needed for certain PISM features, namely cell-area correction and parallel I/0.
These libraries are recommended, but not strictly required:

Recommended Library Comment

PROJ.4 http://trac.osgeo.org/proj/
PnetCDF http://trac.mcs.anl.gov/projects/parallel-netcdf

Python (http://python.org/) is needed both in the PETSc installation process and in scripts related
to PISM pre- and post-processing, while Git (http://git-scm.com/) is usually needed to download the
PISM code. Both should be included in any Linux/Unix distribution.

The following Python packages are needed to do all the examples in the User’s Manual (which run
python scripts):

Recommended Python Package Comment

matplotlib http://matplotlib.sourceforge.net/ used in some scripts
netcdf4d-python https://pypi.python.org/pypi/netCDF4/1.1.7 used in most scripts
numpy http://numpy.scipy.org/ used in most scripts

http://www.fftw.org/
http://www.gnu.org/software/gsl/
http://www.mcs.anl.gov/mpi/
http://www.unidata.ucar.edu/software/netcdf/
http://www.mcs.anl.gov/petsc/petsc-as/
http://www.unidata.ucar.edu/software/udunits/
http://trac.osgeo.org/proj/
http://trac.mcs.anl.gov/projects/parallel-netcdf
http://python.org/
http://git-scm.com/
http://matplotlib.sourceforge.net/
https://pypi.python.org/pypi/netCDF4/1.1.7
http://numpy.scipy.org/

3 Installation Cookbook

3.1 Installing PISM’s prerequisites
3.1.1 Installing prerequisites by packages (Debian)

You should be able to use your package manager to get the prerequisites for PISM. Install the fol-
lowing packages using apt-get or synaptic or similar. All of these are recommended as they satisfy
requirements for building or running PISM.

Package name

Comments

cmake
libfftw3-dev
g++

libgsl0-dev
netcdf-bin
libnetcdf-dev
libudunits2-dev

required to configure PISM

required by PISM

required to build PISM

required by PISM

required: ncgen is used during the build process
required by PISM

required by PISM

cdo
cmake-curses-gui
git

nco

ncview
libproj-dev
python-dev

python-pyproj
libx11-dev

used in some pre-processing scripts

a text-based easy interface for CMake

used to get PISM source code

used in many pre-processing scripts

view fields in NetCDF files

used to compute ice area and volume

(helps with scripts. . . perhaps not essential)

used in some pre-processing scripts

X windows is useful to get graphics through PETSc

libblas—-dev
liblapack-dev
openmpi-bin
libopenmpi-dev

BLAS is required by PETSc

LAPACK is required by PETSc

MPI is required to run PISM in parallel
MPI is required to run PISM in parallel

Once done, see 3.1.3 to install PETSc from source and then 3.2 for building PISM itself.

3.1.2 Installing prerequisites from source

From now on, this manual assumes the use of the bash shell.

1. You will need Python and Git installed. To use the (recommended) graphical output of PISM you
will need an X Windows server.

http://www.python.org/
http://git-scm.com/
http://www.x.org/

2. Generally the “header files” for its prerequisite libraries are required for building PISM. (This
means that the “developer’s versions” of the libraries are needed if the libraries are downloaded
from package repositories like Debian; see section 2.)

3. PISM uses NetCDF (= network Common Data Form) as an input and output file format. If it is
not already present, install it using the instructions at the web-page or using a package management
system.

4. PISM uses the GSL (= GNU Scientific Library) for certain numerical calculations and special
functions. If it is not already present, install it using the instructions at the web-page or using a
package management system.

5. PISM uses the FFTW (= Fastest Fourier Transform in the West) library for the deformation of
the solid earth (bed) under ice loads. Install FFTW version 3.1 or later, or check that it is installed
already.

6. You will need a version of MPI (= Message Passing Interface). Your system may have an existing
MPI installation, in which case the path to the MPI directory will be used when installing PETSc
(see 3.1.3). The goal is to have the PETSc installation use the same version of MPI which is called

by the mpiexec or mpirun executable.

Once MPI is installed, you will want to add the MPI bin directory to your path so that you
can invoke MPI using the mpiexec or mpirun command. For example, you can add it with the
statement

export PATH=/home/user/mympi/bin:$PATH (for bash shell)
or
setenv PATH /home/user/mympi/bin:$PATH (for csh or tcsh shell).

Such a statement can, of course, appear in your .bashrc (or .profile or .cshrc) file so that there
is no need to retype it each time you use MPL.

3.1.3 Installing PETSc from source

PISM uses PETSc (= Portable Extensible Toolkit for Scientific Computation).! Unfortunately, an up-
to-date PETSc distribution is unlikely to be available in package repositories. Download the PETSc
source by grabbing the current gzipped tarball at:

http://www.mcs.anl.gov/petsc/

PISM requires a version of PETSc which is 3.3 or later. The “lite” form of the tarball is fine if you are
willing to depend on an Internet connection for accessing PETSc documentation.

You should configure and build PETSc as described on the PETSc installation page, but it might be
best to read the following comments on the PETSc configure and build process first:

L«“PETSc” is pronounced “pet-see”.

http://www.unidata.ucar.edu/software/netcdf/
http://www.gnu.org/software/gsl/
http://www.fftw.org/
http://www.mcs.anl.gov/mpi/
http://www.mcs.anl.gov/petsc/
http://www.mcs.anl.gov/petsc/

(i)

(iii)

Untar in your preferred location and enter the new PETSc directory. Note PETSc should not
be configured using root privileges. When you run the configure script the following options are
recommended; note PISM uses shared libraries by default:

$ export PETSC_DIR=$PWD
$ export PETSC_ARCH=linux-gnu-opt
$./config/configure.py --with-shared-libraries --with-debugging=0

You need to define the environment variable PETSC_DIR—one way is shown here—before running
the configuration script. Turning off the inclusion of debugging code and symbols can give a signif-
icant speed improvement, but some kinds of development will benefit from a ——with-debugging=1
configuration option. Using shared libraries may be unwise on certain clusters, etc.; check with
your system administrator.

It is sometimes convenient to have PETSc grab a local copy of BLAS and LAPACK rather than
using the system-wide version. So one may add “--download-f2cblaslapack=1" to the other
configure options. Since there is no use of Fortran in PISM, Fortran can also be disabled using
“~—with-fortran=0" (PETSc < 3.4), or “~-with-fc=0" (PETSc > 3.5).

If there is an existing MPI installation, for example at /home/user/mympi/, one can point PETSc

“

to it by adding the option “~--with-mpi-dir=/home/user/mympi/”. The path used in this option
must have MPI executables mpicxx and mpicc, and either mpiexec or mpirun, in sub-directory
bin/ and MPI library files in sub-directory 1ib/. If you get messages suggesting that PETSc
cannot configure using your existing MPI, you might want to try adding the ~—~download-mpich=1

(or —-download-openmpi=1) option to PETSc’s configure command.

Configuration of PETSc for a batch system requires special procedures described at the PETSc
documentation site. One starts with a configure option —--with-batch=1. See the “Installing on
machine requiring cross compiler or a job scheduler” section of the PETSc installation page.

Configuring PETSc takes at least a few minutes even when everything goes smoothly. A value for
the environment variable PETSC_ARCH will be reported at the end of the configure process; take
note of this value. One may always reconfigure with additional /new PETSC_ARCH as needed.

After configure.py finishes, you will need to make all test in the PETSc directory and watch
the result. If the X Windows system is functional some example viewers will appear; as noted you
will need the X header files for this to work.

3.2 Installing PISM itself

At this point you have configured the environment which PISM needs.

To make sure that the key PETSc and MPI prerequisites work properly together, so that you can run

PISM in parallel, you might want to make sure that the correct mpiexec can be found, by setting your

PATH. For instance, if you used the option --download-mpich=1 in the PETSc configure, the MPI bin

http://www.mcs.anl.gov/petsc/petsc-2/documentation/installation.html

directory will have a path like $PETSC_DIR/$PETSC_ARCH/bin. Thus the following lines might appear in
your .bashrc or .profile, if not there already:

export PETSC_DIR=/home/user/petsc-3.4.0/
export PETSC_ARCH=linux-gnu-opt
export PATH=$PETSC_DIR/$PETSC_ARCH/bin/:$PATH

From now on we will assume that the PETSC_ARCH and PETSC_DIR variables are set.
You are ready to build PISM itself, which is a much quicker procedure, as follows:

(i) Get the latest source for PISM using the Git version control system:
a) Check the website http://www.pism-docs.org/ for the latest version of PISM.
b) Do
$ git clone git://github.com/pism/pism.git pism0.7
c) A directory called “pism0.7/” will be created. Note that in the future when you enter that
directory, git pull will update to the latest revision of PISM.?

(i) Build PISM:?

mkdir pism0O.7/build

cd pism0.7/build
PISM_INSTALL_PREFIX="/pism cmake ..
make install

€ H H &P

Here pism0.7 is the directory containing PISM source code while ~/pism is the directory PISM will
be installed into. All the temporary files created during the build process will be in pism0.7/build
created above.

You might need to add CC and CXX to the cmake command:
$ PISM_INSTALL_PREFIX="/pism CC=mpicc CXX=mpicxx cmake ..

Whether this is necessary or not depends on your MPI setup.

Commands above will configure PISM to be installed in ~/pism/bin, ~/pism/lib/pism and
~/pism/share/doc, then compile and install all its executables and scripts.

If your operating system does not support shared libraries*, then set Pism_LINK_STATICALLY to
“ON?”. This can be done by either running

$ cmake -DPism_LINK_STATICALLY:BOOL=0ON ..

20f course, after git pull you will make -C build install to recompile and re-install PISM.
3Please report any problems you meet at these build stages by sending us the output: help@pism-docs.org.
4This might be necessary if you’re building on a Cray XT5 or a Sun Opteron Cluster, for example.

http://www.pism-docs.org/
mailto:help@pism-docs.org

or by using ccmake:® run
$ ccmake ..

and then change Pism_LINK_STATICALLY (and then press 'c’ for “configure” then ’g’ for “generate
makefiles”). Then do make install.

Object files created during the build process (located in the build sub-directory) are not automat-
ically deleted after installing PISM, so do “make clean” if space is an issue. You can also delete
the build directory altogether if you are not planning on re-compiling PISM.

(iii) PISM executables can be run most easily by adding the bin/ sub-directory in your selected install
path (“/pism/bin in the example above) to your PATH. For instance, this command can be done
in the bash shell or in your .bashrc file:

export PATH="/pism/bin:$PATH
(iv) Now see section 4 or the Getting Started section of the User’s Manual to continue.

3.2.1 Installing PISM and prerequisites on a Cray XK6 system

Installing PISM on Cray systems deserves special mention for two reasons:
e building on a Cray requires static linking
e Cray uses non-standard locations for libraries and header files

This describes a successful PISM installation on a Cray XK6m-200 at ARSC (http://www.arsc.edu/
arsc/support/howtos/usingfish/).

(i) Load appropriate modules. You may need to set module versions; note that PISM requires PETSc
version > 3.3. (Loading all the necessary modules allows compilers to find headers and libraries.)

module swap PrgEnv-pgi PrgEnv-gnu
netcdf-hdfbparallel/4.2.0 requires GCC 4.7
module swap gcc/4.9.0 gcc/4.7.1

for module in \
fftw/3.3.4.0 \
petsc/3.3.00 \
netcdf-hdf5parallel/4.2.0 \
gsl/1.15.gnu;

do

module load $module

SInstall the cmake-curses-gui package to get ccmake on Ubuntu.

http://www.arsc.edu/arsc/support/howtos/usingfish/
http://www.arsc.edu/arsc/support/howtos/usingfish/

done

petsc/3.3.00 does not work with the default tpsl
module swap tpsl/1.2.00 tpsl/1.3.00

Cray does not provide modules for GSL, UDUNITS-2, and CMake, but your system administrators
can install them for you.

Get PISM sources and create a build directory

git clone git://github.com/pism/pism.git
mkdir pism/build
cd pism/build

Create a text file pism_config.cmake in the build directory you created. It should contain the
following, edited to reflect locations of libraries on your system and the desired PISM install
location.

Compiler
set (CMAKE_C_COMPILER "cc" CACHE STRING "")
set (CMAKE_CXX_COMPILER "CC" CACHE STRING "")

Disable testing for PISM’s prerequisites
set (Pism_LOOK_FOR_LIBRARIES OFF CACHE BOOL "")

Installation path
set (CMAKE_INSTALL_PREFIX "$ENV{HOME}/pism/" CACHE STRING "")

General compilation/linking settings
set (Pism_ADD_FPIC OFF CACHE BOOL "")
set (Pism_LINK_STATICALLY ON CACHE BOOL "")

No Proj.4 on fish.arsc.edu

set (Pism_USE_PR0J4 OFF CACHE BOOL "")

No TAO on fish.arsc.edu

set (Pism_USE_TAO OFF CACHE BOOL "")

No PNetCDF on fish (alas)

set (Pism_USE_PNETCDF OFF CACHE BOOL "" FORCE)

Set the custom GSL location

set (GSL_LIBRARIES "/path/to/libgsl.a;/path/to/libgslcblas.a" CACHE STRING "" FORCE)

set (GSL_INCLUDES "/path/to/gsl/include" CACHE STRING "" FORCE)

Set the custom UDUNITS2 location
set (UDUNITS2_LIBRARIES "/path/to/libudunits2.a;/path/to/libexpat.a" CACHE STRING "" FORCE)
set (UDUNITS2_INCLUDES "/path/to/udunits2/include" CACHE STRING "" FORCE)

(v) Configure and build PISM:

cmake -C pism_config.cmake ..
make install

Notes:

e Setting Pism_LOOK_FOR_LIBRARIES to “off” lets the module system manage all necessary
compile flags. (This is only necessary on systems that install libraries in non-standard loca-
tions.)

e To set PROJ.4 location manually, set variables PR0OJ4_INCLUDES and PROJ4_LIBRARIES and
makes sure Pism_USE_PR0J4 is set to ON.

e To set PnetCDF location manually, set PNETCDF_INCLUDES, PNETCDF_LIBRARIES, and Pism_
USE_PNETCDF.

e To set parallel HDF5 location manually, set HDF5_C_INCLUDE_DIR, HDF5_LIBRARIES, HDF5_
HL_LIBRARIES, and Pism_USE_PARALLEL_HDF5.

e Extra compiler flags can be added by setting CMAKE_CXX_FLAGS, extra linker flags —
CMAKE_EXE_LINKER_FLAGS.

3.2.2 Installing PISM and prerequisites on Mac OS X

This section adds information on installing PISM and its prerequisites on the Mac OS X operating
system.

(i) As PISM is distributed as compilable source code only, you will need software developer’s tools,
XCode and the X window system, X11. Both packages can be installed by either downloading
them from Apple Developer Connection or using the Mac OS X installation DVD.

(ii) The use of MacPorts or Fink is recommended, as it significantly simplifies installing many open-
source libraries. Download a package from the MacPorts homepage (or Fink homepage), install
and set the environment:

export PATH=/opt/local/bin:/opt/local/sbin:$PATH

for MacPorts and
source /sw/bin/init.sh

for Fink.

10

http://developer.apple.com/tools/xcode/
http://www.macports.org/
http://www.finkproject.org/
http://www.macports.org/install.php
http://www.finkproject.org/download/index.php

(iii) It is not necessary to install Python, as it is bundled with the operating system. Some PISM
scripts use SciPy; it can be installed using MacPorts or by downloading the Enthought Python
Distributions.

(iv) If you are using MacPorts, do
$ sudo port install netcdf ncview gsl fftw-3 libproj4 git cmake

Fink users should use the following command instead (ncview is only available in the unstable
branch).

$ fink install netcdf gsl fftw3 proj git cmake

(v) At this point, all the PISM prerequisites except PETSc are installed. Download the latest PETSc
tarball from the PETSc website. Untar, then change to the directory just created. The next three
commands complete the PETSc installation:

$ export PETSC_DIR=$PWD; export PETSC_ARCH=macosx;

$./config/configure.py --with-shared-libraries \
--with-fortran=0 --with-debugging=0

$ make all test

(vi) Now you can build PISM as described in section 3.2.

3.3 Common build problems and solutions (i.e. if it still does not work ...)

We recommend using ccmake, the text-based CMake interface to adjust PISM’s build parameters. One
can also set CMake cache variables using the -D command-line option (cmake -Dvariable=value) or
by editing CMakeCache.txt in the build directory.

Here are some issues we know about.

e Sometimes, if a system has more than one MPI installation CMake finds the wrong one. To
tell it which one to use, set MPI_LIBRARY and related variables by using ccmake or editing
CMakeCache.txt in the build directory. You can also set environment variables CC and CXX to
point to MPI wrappers:

$ CC=mpicc CXX=mpicxx cmake path/to/pism-source
It is also possible to guide CMake’s configuration mechanism by setting MPI_COMPILER to the

compiler (such as mpicc) corresponding to the MPI installation you want to use, setting MPI_
LIBRARY to MPI_LIBRARY-NOTFQOUND and re-running CMake.

11

http://www.enthought.com/
http://www.enthought.com/
http://www.mcs.anl.gov/petsc/petsc-as/

e If you are compiling PISM on a system using a cross-compiler, you will need to disable CMake’s

tests trying to determine if PETSc is installed properly. To do this, set PETSC_EXECUTABLE_RUNS

3

to “yes”.
To tell CMake where to look for libraries for the target system, see http://www.cmake.org/Wiki/

CMake_Cross_Compiling and the paragraph about CMAKE_FIND_ROOT_PATH in particular.

You may find section 3.2.1 to be useful in a case like this.

Note that the PISM build system wuses ncgen from the NetCDF package to generate
pism_config.nc. This means that a working NetCDF installation is required on both the “host”
and the “target” systems when cross-compiling PISM. If CMake finds ncgen for the target platform,
try setting CMAKE_FIND_ROOT_PATH_MODE_PROGRAM to NEVER.

Some systems support static libraries only. To build PISM statically and tell CMake not to try to
link to shared libraries, set Pism_LINK_STATICALLY to ON using ccmake.

You can set Pism_LOOK_FOR_LIBRARIES to “OFF” to disable all heuristics and set compiler flags by
hand. See section 3.2.1 for an example.

4 Quick tests of the installation

Once you're done with the installation, a few tests can confirm that PISM is functioning correctly.

(i)

(i)

Try a MPI four process verification run:
$ mpiexec -n 4 pismv -test G -y 200
If you see some output and a final Writing model state to file ’unnamed.nc’ then PISM

completed successfully. At the end of this run you get measurements of the difference between the
numerical result and the exact solution. See the User’s Manual for more on PISM verification.

The above “-n 4” run should work even if there is only one actual processor (core) on your machine.
(In that case MPI will just run multiple processes on the one processor.) This run will also produce
a NetCDF output file unnamed.nc, which can be read and viewed by NetCDF tools.

Try an EISMINT II run using the PETSc viewers (under the X window system):
$ pisms -y 5000 -view_map thk,temppabase,velsurf_mag

When using such viewers and mpiexec the additional final option -display :0 is sometimes
required to enable MPI to use X, like this:

$ mpiexec -n 2 pisms -y 5000 -view_map thk,temppabase,velsurf_mag -display :0

Also -draw_pause 0.1 or similar may be needed if the figures are refreshing too fast.

12

http://www.cmake.org/Wiki/CMake_Cross_Compiling
http://www.cmake.org/Wiki/CMake_Cross_Compiling

(iii) Run a basic suite of software tests. To do this, make sure that NCO and Python packages numpy
and netcdf4-python are installed. Also, the CMake flag Pism_BUILD_EXTRA_EXECS should be ON.
Then run:

$ make test

in the build directory. The message at the bottom should say “100% tests passed, O tests
failed out of XX” or similar. Feel free to send the output of make test to help@pism-docs.org
if any failed tests cannot be resolved.

Next steps

Start with the User’s Manual, which has a “Getting started” section. A copy is on-line at the PISM
homepage and documentation page www.pism-docs.org, along with a source code Browser (HTML).
Completely up-to-date documentation can be built from IATEX source in the doc/ sub-directory, as
described in the last section.

A final reminder with respect to installation: Let’s assume you have checked out a copy of PISM using
Git, as in step la above. You can update your copy of PISM to the latest version by running git pull
in the PISM directory and make install in your build directory.

5 Installing Python packages

If you're lucky, you might be able to install all the Python packages mentioned in section 2 using a
package manager. On the other hand, the Python packages below are not currently available in Debian
package repositories. They are easy to install using Python setuptools or pip, however; these tools are
included with recent versions of Python.

Python module netCDF4, from package netcdf4-python

You can skip this paragraph if you have Enthought Python Distributions installed.
To install netcdf4-python providing the netCDF4 module needed by PISM scripts, download a tarball
from the project homepage https://github.com/Unidata/netcdf4-python.

$ wget https://pypi.python.org/packages/source/n/netCDF4/netCDF4-VERSION. tar.gz
$ tar -xzvf netCDF4-VERSION.tar.gz

Enter the directory you just untarred and install:

$ cd netCDF4-VERSION/
$ sudo python setup.py install

assuming that NetCDF was installed in the /usr/ tree. If you are using python installed via MacPorts,
you can get netdf4-python by doing

$ sudo port install py-netcdf4d

13

mailto:help@pism-docs.org
http://www.pism-docs.org/
http://www.enthought.com/
https://github.com/Unidata/netcdf4-python

Alternatively you can use pip:
pip install netCDF4

The scripts in directories util/, examples/. .., and so on, which need netCDF4, should now work.

6 Rebuilding PISM documentation

You might want to rebuild the documentation from source, as PISM and its documentation evolve
together. These tools are required:

ETEX www.latex-project.org needed for rebuilding any of the documentation
doxygen www.doxygen.org required to rebuild the Browser from source
graphviz www.graphviz.org required to rebuild the Browser from source

To rebuild PISM documentation, change to the PISM build directory and do

make manual to build the User’s Manual, manual.pdf

make forcing to build the PISM’s Climate Forcing Components document, forcing.pdf
make installation to build this document, the Installation Manual, installation.pdf

make browser to build the PISM Source Code Browser,

To build documentation on a system without PISM’s prerequisite libraries (such as MPI and PETSc),
assuming that PISM sources are in /pism0.7, do the following:

$ cd "/pism0.7
$ mkdir doc-build # create a build directory
$ cd doc-build
$ cmake ../doc

then “make manual”, “make installation” and others (see above) will work as expected.

6.1 Building documentation for PISM’s Python bindings and inversion tools

The documentation for PISM’s Python bindings uses the documentation-generation tool Sphinx; see
sphinx-doc.org. The bindings make scripting and interactive PISM possible, but many PISM users will
not need them. Installing them is required to use PISM for inversion of surface velocities for basal shear
stress and ice hardness. Building their documentation is strongly-recommended before use.

Sphinx can be installed via apt-get or macports. See http://sphinx-doc.org/latest/install.
html for more details. For example, do

sudo apt-get install sphinx-common

14

https://pip.pypa.io/en/stable/
http://www.latex-project.org/
http://www.stack.nl/~dimitri/doxygen/
http://www.graphviz.org/
http://sphinx-doc.org/
http://sphinx-doc.org/latest/install.html
http://sphinx-doc.org/latest/install.html

The bindings documentation also requires the Sphinx extension called sphinxcontrib.bibtex, which
may come with some Sphinx packages (but not with Debian packages at this time). Without it you will
see this error when you try to build the bindings documentation:

Extension error:
Could not import extension sphinxcontrib.bibtex (exception: No module named bibtex)

To install it see http://sphinxcontrib-bibtex.readthedocs.org.

Note that if you install Sphinx using macports, you will install a version that depends on your python
version, and its executables will have names that depend on the python version, e.g. sphinx-build-2.7
rather than sphinx-build for Python 2.7. You will want to set up aliases so that the standard names
work as well. To do this,

sudo port select sphinx py27-sphinx

(replacing py27-sphinx with py26-sphinx for Python 2.6, etc.) If you opt not to do this, you can tell
CMake the name of your sphinx executable using

cmake -DSPHINX_EXECUTABLE=sphinx-build-2.7 ...

for example.
Now you can build the documentation. In the PISM build directory, do

make pismpython_docs
If you get an error like
make: ***x No rule to make target ‘pismpython_docs’. Stop.

then re-run cmake .. or ccmake .., making sure that Sphinx is installed (see above); the pismpython_
docs make target will then be present.

The main page for the documentation is then in doc/pismpython/html/index.html inside your build
directory. The documentation build can take some time while it builds a large number of small images
from KTEXformulas.

15

http://sphinxcontrib-bibtex.readthedocs.org

	Introduction
	Libraries and programs needed by PISM
	Installation Cookbook
	Installing PISM's prerequisites
	Installing prerequisites by packages (Debian)
	Installing prerequisites from source
	Installing PETSc from source

	Installing PISM itself
	Installing PISM and prerequisites on a Cray XK6 system
	Installing PISM and prerequisites on Mac OS X

	Common build problems and solutions (i.e. if it still does not work …)

	Quick tests of the installation
	Installing Python packages
	Rebuilding PISM documentation
	Building documentation for PISM's Python bindings and inversion tools

