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Recent spacecraft collisions with debris and various near misses have highlighted the need for pursuing
Active Debris Removal (ADR) of space debris. Robotic manipulators provide a versatile way to capture,
detumble, and eventually deorbit the debris. This paper explores the classification of space debris and
robotic manipulators based on angular momentum. Previous classifications have considered the tumble
rates, size, and orbit of the debris. However, a momentum-based classification gives an additional insight
into the method selection for debris removal as shown in this paper. A study on the momentum capture
capabilities of previously flown robotic manipulators is performed. This gives an impression of the capabilities
of the flight-heritage robotic manipulators for their use in ADR missions. Furthermore, an analysis is also
performed on the momentum of cylindrical space debris as it closely represents the spent rocket upper stages
which could be prime targets for a robotic ADR mission. The change in momentum due to the tumble rate
and inertia is analysed for such cylindrical debris and they are then categorized based on their momentum.
These analyses provide the data required to perform a matching of the momentum of the debris with the
momentum capabilities of the existing robotic manipulators and thus classify the debris based on momentum.
The classification is then applied to real debris objects and the results are discussed. The comparison of the
momentum of debris and manipulators is also used to provide input for future manipulator development for
ADR missions.

Acronyms

ADR Active Debris Removal

ESA European Space Agency

ETS-VII Engineering Test Satellite No. 7

LEO Low Earth Orbit

OOS On-Orbit Servicing

SRMS Shuttle Remote Manipulator System

SSRMS Space Station Remote Manipulator System

TRACER the onTology foR ACtive dEbris Re-
moval

URDF Unified Robot Description Format

Vespa Vega Secondary Payload Adapter

I. Introduction

It is well acknowledged that space debris is cur-
rently an ever-increasing problem, especially in the
Low Earth Orbit (LEO) region [1]. In [2], it can be
seen that a significantly large share of the debris ob-
jects in terms of number as well as mass are the rocket
bodies used to launch the satellites. These are, for the
most part, the upper stages of the rockets used for the
final burn before satellite deployment and were his-
torically (and still commonly) left in space after satel-
lite deployment. Guidelines for space debris mitiga-
tion require the passivisation of the rocket upper bod-
ies i.e. all on-board stored sources of energy must be
released and emptied [3]. However, this guideline was
first published in 1997 [4] and the rocket upper stages
before that were not necessarily passivated. Even
though passivisation is now common, upper stage
break-ups still occur such as those reported in the
following references:[5], [6], [7]. Notwithstanding the
guidelines that have existed for spacecraft and rocket
bodies for reducing space debris, it can be seen that
the number has been increasing at a significant rate
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in the last decade [1], [2], [8].

Due to this, ADR has been suggested as a method
of reducing debris such that the orbits do not be-
come unusable [9]. However, considering the variety
of space debris, their orbital regimes and currently
studied ADR methods, choosing one over the other,
even if for a specific target object, is a challenging
task due to the dimensions of the parameter space
characterizing the problem at hand [10]. Further-
more, the available data about the space debris and
the studied ADR methods is often incoherent and un-
structured which points to a more fundamental prob-
lem currently afflicting the ADR domain, the infor-
mation paradox [11], [12]. To obviate this situation
in recent years several knowledge organization sys-
tems (such as taxonomies, ontologies and knowledge
graphs) were developed [10], [12]–[19]. These meth-
ods are capable not only of systematically storing and
categorizing data, but also allowing inference of new
knowledge, that would otherwise be obscured by the
shear amount of available data. However, out of the
mentioned studies only [10], [12] focus on the ADR
domain, or more specifically on the domain of ADR
capture methods, with an aim to define a standard-
ized, machine-interpretable vocabulary of character-
istics of objects that allows for an automatic infer-
ence of most suited ADR capture methods, safety
wise. This way the initial mission planning can be
made easier by allowing ADR researchers to analyze
quickly the domain of interest and infer new knowl-
edge, while at the same time keeping the parameter
space of each object hidden from the user, reducing
the complexity and possibility of a human error [12].
Nevertheless, the onTology foR ACtive dEbris Re-
moval (TRACER) developed within [12] does not, in
its current iteration, consider axioms related to the
shape of an object nor its mass characteristics which
might be problematic in case of specific ADR cap-
ture methods, such as the robotic manipulator. In
fact, in the context of ADR, manipulator-based sys-
tems are mainly associated with targets having stable
to medium tumbling attitude regimes [12]. However,
it can be seen that even slow tumble rates (≈ 5 ◦ s−1)
can lead to very-high joint torques on the robot arms
used for capture if the momentum of the debris is not
considered [20]. This is because a slow-rotating ob-
ject can have a high angular momentum/kinetic en-
ergy (due to high inertia) which has to be dissipated
during the ADR operation for post-capture stabiliza-
tion.

To bridge this gap, in this paper, we propose an
additional quantity based on which a classification

can be carried out: the target’s angular momentum.
This can be used in conjunction with the current clas-
sification methods for improved matching of the de-
bris objects with the removal methods. For this, we
consider the case of ADR using a robotic manipu-
lator which has to absorb the angular momentum of
the target for post-capture stabilization. We consider
previously space-flown robot arms and classify an ar-
tificial dataset along with sparse real data which has
been pre-classified using state of the art ontology-
based method (TRACER) described in [12].

The layout of this paper is as follows: section 2
describes the methodology of the classification along
with the relevant momentum calculations of the de-
bris and robot manipulation given in subsection 2.1
and subsection 2.2 respectively. In section 3, the
Momentum-Based Classification is carried out with
subsection 3.1 showing the classification of generated
dataset and subsection 3.2 demonstrating the clas-
sification on real debris data pre-classified using an
ontology-based method. A discussion based on the
classification results is carried out in section 4 fol-
lowed by conclusions and future work given in sec-
tion 5.

II. Methodology

The methodology followed in this paper is as fol-
lows: initially, an artificial dataset for cylindrical
space debris with varying mass, inertia (size), and
rotation rates is generated. From this, a sample
dataset is considered for classification and visualiza-
tion. Then, the technique for computing the momen-
tum capture capability for robot arms with a free-
floating base is provided along with its application to
3 space-flown manipulators. This data is then used
to classify the dataset generated earlier based on the
angular momentum computed in both sections. Fur-
thermore, a sparse dataset which is pre-classified us-
ing state of the art ontology-based method for ADR
method selection is classified based on the computed
angular momentum of the debris. This is followed by
a discussion on the ramifications on including angular
momentum in the classification of space debris based
on the results obtained in this paper.

This leads to the classification of debris, specifi-
cally rocket upper stages, based on the momentum
capabilities of the robot arms described in section 2.
This is referred to as Momentum Based Classifica-
tion: the classification of space debris based on their
angular momentum and the current angular momen-
tum capabilities of the space-qualified robot arms.
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II.i Space Debris Momentum Data Generation

Even though a lot of data is available about space
debris, specifically, their size and their orbits [21],
it is extremely sparse to find any data on their ro-
tation rates. This is because the data gathered for
space debris is done using ground-based telescopes
and extracting rotation information from ground-
based telescopes is extremely challenging using the
current technology [22]–[25].

Due to this, an artificial dataset of momentum val-
ues for various space debris was generated for this
paper. The focus was aimed at the upper stages of
various rockets used to launch satellites. After the
release of the satellite, these upper stages tend to
stay in orbit for a long time. Generally, these are
passivated to release the stored energy and prevent
any future explosion leading to fragmentation and un-
wanted debris generation [3]. After passivation, the
upper stages tend to stay in orbit. The number of up-
per stages can seem low when compared to the num-
ber of fragmentation debris objects but they form the
highest mass fraction of non-operational objects in
space i.e. debris [2]. This makes them a prime target
for removal as removing them amounts to removing a
major mass of debris which can prevent future frag-
mentation events due to collisions/breakups. Due to
these considerations, rocket upper stages have been
of high interest and recently European Space Agency
(ESA) awarded a contract to remove a piece of de-
bris from the VEGA upper stage: Vega Secondary
Payload Adapter (Vespa) [26].

To generate the momentum data for cylindrical ob-
jects representing used rocket upper stages, the di-
mensions of the various upper stages from different
rockets were taken into account. These include the
Centaur upper stage from the Atlas V rocket [27],
Ariane 5 Second stage [28], Falcon 9 Second Stage
[29], Soyuz Volga and Fregat Upper Stages [30] [31],
Vega AVUM Upper Stage [32], and the Delta Cryo-
genic Second Stage [33]. In Table 1, the dimensions
and masses of these upper stages are given. The mass
and dimensions of the space debris objects were var-
ied and their momentum was calculated for different
spin rates about their X, Y, and Z Axis. This gives
an extensive database of various debris and their mo-
mentum at various tumbling rates.

From each of these upper stages, the upper and
lower limits for the length and the diameter of the
cylinder was determined. For the mass, the lowest
dry mass was taken as the lower limit and the upper
limit was taken from the maximum dry mass upper
stage along with a 10% margin for leftover propel-

lant as an extremely conservative estimate. For the
sake of simplicity, the sloshing effect of the propellant
was not considered in this study. The inner radius
of the cylinder is taken as 90% of the outer radius,
thus the mass of the cylinder is assumed to be the
concentrated at the outer 10% volume of the shell.
The parameters used to generate the full momentum
dataset for cylindrical objects can be seen in Table 2.

From this dataset, a sample can be considered
for the sake of visualization and demonstration of
the momentum-based classification method. For this
sample data, we consider the change in momentum
with the change in mass and rotation velocities about
the Z axis while keeping all other parameters con-
stant The numbers given below are thus only given
for the purpose of illustration.The upper stage’s mass
is varied between 1000 kg to 3000 kg as it covers most
of the upper stages given in Table 1. The rotational
velocities about the Z axis vary between 1 ◦ s−1 to
20 ◦ s−1. The height, outer diameter, and the rota-
tional velocities about the X and Y axis are kept
constant at 4.25 m, 3.75 m, and 1 ◦ s−1 for both axes
respectively. This sample data can be seen in Fig-
ure 1 where the change in the angular momentum
with the change in the mass and the angular veloc-
ity about the Z-axis of rotation is represented by the
size of the circle at the given data point. It shows
the increase in angular momentum as both mass and
rotation rate changes.

Fig. 1: Change of Momentum with Mass and Z-
Rotation Velocity

II.ii Robot Arms Momentum Data Generation

To classify and assess if a robot arm can capture
specific space debris, the angular momentum capabil-
ities of robotic manipulators are computed. For this,
the robot arms considered were those that have al-
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Table 1: Upper Stages of Various Rockets

Rocket Upper Stage Height (m) Diameter (m) Min. Mass (kg) Max Mass (kg)

Soyuz Fregat Upper Stage [30] 1.5 3.35 902 7540
Arianne 5 ESC-A [28] 4.711 5.4 4540 19440
Atlas V Centaur [27] 12.68 3.05 2528 23288
Delta Cryogenic Upper Stage [33] 13.7 5.1 3840 30700
Falcon Heavy 2nd Stage [29] NA 3.66 NA NA
Soyuz Volga Upper Stage [31] 1.025 3.2 840 1740
Vega Upper Stage AVUM [32] 2.04 2.18 688 1265

Table 2: Parameters for Cylinder Momentum
Dataset

Parameter Min Max Data
Points

Mass (kg) 650 4500 10
Height (m) 1 14 5
Outer Diameter (m) 2 5.5 5
Rotation X-Axis (deg/s) 1 20 5
Rotation Y-Axis (deg/s) 1 20 5
Rotation Z-Axis (deg/s) 1 20 5

ready been flown to space. The motivation for this is
as follows: if the robotic manipulator has previously
flown to space, then it has already been through the
process for flight qualification. And due to this, all
the components of the manipulator are flight quali-
fied. This allows the results from this study to be
used to create a new robot arm (or use an existing
design) from the pre-flight qualified components such
that the time-to-flight is reduced.

The models of the robot arms were created in the
Unified Robot Description Format (URDF), which is
an XML format for representing a robot model. Since
not many URDF models exist for the pre-flown robot
arms, information from available published literature
was used to create the models. The following robot
manipulator models with complete kinematic and dy-
namic parameters were created:

• Engineering Test Satellite No. 7 (ETS-VII)
Spacecraft and Robot Arm from [34] and [35].

• Shuttle Remote Manipulator System (SRMS) i.e.
Canadarm from [36].

• Space Station Remote Manipulator System (SS-
RMS) i.e. Canadarm2 from [36].

To avoid the repetition of this task in the future

by other robotics researchers, these models were pub-
lished as initial models in an open-source GitHub
repository: Traceable Robot Models [37]. This repos-
itory will be used in the future to add more robot
models from literature as they are developed.

For momentum based classification, the momen-
tum capabilities of the manipulator arms are evalu-
ated from the models. For this, a global search in the
manipulator state space, consisting of the joint posi-
tion and velocity space, can be performed. However,
such a search, while giving the maximum momentum
the robot arm can exert, does not provide insights
into the momentum capture capability in relation to
the debris capture problem. It can be easily seen
and verified in simulation (using Equation 1) that a
robot arm will exert the maximum momentum if it
starts in a fully extended position and all main-axis
joints rotate with maximum velocity so that all the
links of the arm move in the same direction. Such mo-
mentum capability, while calculable, does not provide
any insight. Hence, it was decided to use a capture
configuration for a robot arm as the initial config-
uration and the momentum search is carried out in
the neighbourhood of this configuration. This raises
the following question: Which configurations of the
robot arm qualify as capture configurations? To an-
swer this, the following requirements were devised,
which when met, a configuration can be called as one
of the capture configurations:

• The position of joints should not be close to the
joint limits, if any.

• The end-effector should be facing away from the
base-satellite towards a hypothetical target for
capture.

• The end-effector position should not be nearby
to the base of the manipulator arm.

• The configuration should not be close to a kine-
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matic singularity i.e. have high kinematic manip-
ulability.

• The configuration should not be close to a dy-
namic singularity i.e. have high dynamic manip-
ulability.

Configurations that comply with all the mentioned
requirements were found for each of the arms. For
each arm, the kinematic and dynamic manipulability
at the initial capture configuration was verified to be
high so that the arm is not close to a singular con-
figuration. From here on, the neighbourhood of the
capture configuration can be defined using the maxi-
mum allowed joint deviations from the configuration.
For this, a maximum joint deviation of 10◦ was used.
This gives the manipulator freedom to move with-
out violating any of the singularity constraints and
avoid self-collisions or collisions with the base. Along
with this, the maximum specified joint velocity was
varied from 2 ◦/s to 20 ◦/s. The joint rate limit for
the SSRMS/Canadarm is 4 ◦ s−1 for an unloaded arm
[36]. The reason for choosing a higher range of joint
rates is to have a more future-facing view and this is
further discussed in section 4.

Once the neighbourhood of state space (joint posi-
tions and velocities) was defined, the linear and angu-
lar momentum can be calculated using the following
equation from [38]:[

P
L

]
= H0

[
V0
ω0

]
+H0mφ̇ [1]

Where,

P = Linear Momentum Vector (kg m s−1)
L = Angular Momentum Vector (kg m2 s−1)
H0 = Base Inertia Tensor
V0 = Base Linear Velocity Vector (m s−1)
ω0 = Base Angular Velocity Vector (◦ s−1)
H0m = Dynamic-Coupling Inertia Matrix

φ̇ = Joint Velocity Vector (◦ s−1)

An implicit assumption made here is that the ini-
tial linear momentum of the base is zero [38]. As this
work is focused on the angular momentum capabili-
ties of the manipulator, the base spacecraft’s angu-
lar and linear velocity are assumed to be zero. This
satisfies the zero base linear momentum assumption.
Furthermore, this also entails that the attitude con-
trol system’s momentum contribution is not consid-
ered as the base is taken to be stationary. Using the
above given equation the maximum angular momen-
tum exerted by the robot arm in the neighborhood of

the capture configuration is found using an optimi-
sation based approach using the MATLAB function
”fmincon”.

The angular momentum that can be
stored/exerted by the robot arms along with
the maximum allowed joint velocities can be seen
in Figure 2. It can be seen that the angular mo-
mentum stored in the arm is directly proportional
to the joint velocity limit as expected from Equa-
tion 1. Furthermore, the larger arm such as the
SSRMS/Canadarm2, which has a higher inertia
for its links, have a higher slope for Joint velocity
vs Angular Momentum when compared to the
small arm such as the ETS-VII arm. The angular
momentum capacity of each arm is the maximum
angular momentum the arm can exert while allowing
for a maximum joint velocity of 20 ◦ s−1.

Fig. 2: Momentum Capability of Flown Robot Arms

III. Momentum Based Classification

In this section, we describe and demonstrate a
momentum-based classification of space debris. In
subsection 3.1, the classification is carried out for the
debris dataset generated in subsection 2.1 and the de-
bris is classified based on the robot arm momentum
capabilities outlined in subsection 2.2. The classifi-
cation is then applied to real-world debris objects to
explore a more realistic scenario in subsection 3.1.

For the classification carried out in this section,
the selection of debris for detumbling was based on
the Bias-Momentum Approach given in [39] and [40].
This approach was chosen as it aims to minimize
the chaser satellite’s attitude deviation during the
approach of the robot arm to the target and post-
capture without utilizing any fuel. This is only pos-
sible if the target momentum can be absorbed by the
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robot arm and the reaction wheels independently. It
does this by pre-loading the robot arm and the reac-
tion wheels of the base spacecraft with angular mo-
mentum which is same in value to the debris angular
momentum but opposite in direction. This allows the
target and the arm to have a net-zero angular momen-
tum after the capture. A rotation-free and zero-fuel
usage makes Bias-Momentum detumble the preferred
method for Momentum Based Classification.

The Bias-Momentum approach includes with it
certain assumptions that confine its applicability to
a bounded number of ADR situations. Thus, this
classification method is applicable when the follow-
ing assumptions are met (from [39] [40]) for the Bias-
Momentum Approach:

• The rotation speed and the inertia properties of
the target are known a priori.

• There is no linear motion between the chaser and
the target satellite.

• The total momentum of the system is conserved
i.e. no external forces and no thruster firings.

• The angular momentum of the target can be
stored by the attitude control system of the
spacecraft i.e. the reaction wheels.

From the Bias-Momentum Approach described
above, it can be seen that for a successful capture
without any attitude disturbance of the chaser satel-
lite, the robot arm (and the reaction wheels) should
be capable of storing the angular momentum equal
to that of the target.

III.i Classification of Generated Data

From the rocket upper stage angular momentum
data generated in subsection 2.1, the upper stage de-
bris data from subsection 2.1 can be allocated as fol-
lowing:

• Debris Momentum that can be absorbed by the
ETS-VII arm

• Debris Momentum that can be absorbed by
SRMS/Canadarm

• Debris Momentum that can be absorbed by SS-
RMS/Canadarm2

From the given sample debris data in Figure 1,
the debris whose momentum can be absorbed by the
robot arms can be seen in Figure 3.

Fig. 3: Sample Data Momentum that can be Ab-
sorbed by the Robot Arms.

It can be seen from this figure that the SS-
RMS/Canadarm2 robot manipulator has a theoret-
ical capability to capture the momentum of all the
debris objects in the sample dataset. Along with this,
the SRMS/Canadarm is also able to capture cylindri-
cal rocket upper stages rotating at ≈ 10 ◦ s−1 up to
a mass of 1500 kg. The ETS-VII robot arm does not
have the capability to capture any debris in this sam-
ple data. As seen from Figure 3, momentum-based
classification can be useful in finding debris objects
which can be captured using the currently available
robotic technology.

A more practical classification can be carried out
using the data from real debris. This is shown in the
following section.

III.ii Classification of Real Data

The validity of the developed classification was
tested on the real data by applying it on top of the
results of TRACER which consists of 210 ontology in-
dividuals associated to 30 large intact cataloged ob-
jects (19 payloads and 11 rocket bodies) [12]. The
reason for building on top of the results of TRACER
stems from its ability to identify for each debris ob-
ject its most suited ADR capture method(s) not only
according to its attitude regime, on-board propellant
and object type but also according to its breakup
criticality as well as its degree of uncooperative-
ness [12]. This way among the 30 objects processed
by TRACER we were able to select, for the purposes
of the current paper, only four specific target objects.

The four objects considered for the momentum-
based classification have the following international
designators: 2009-017B, an Atlas V 421 Centaur
Upper Stage, 1991-084C, an Ariane 44L H10 upper
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stage, 2001-045D, a Proton Blok-DM-2 upper stage,
and 1995-026D, a Molniya-M Blok-2BL upper stage.
Details of the these objects can be found in the ESA’s
DISCOS [21]. These were selected from the TRACER
dataset for the following reasons: the shape of these
objects is cylindrical and they do not have solar pan-
els, thus in-line with the work presented in this pa-
per, and their rotation rates are between 1 ◦ s−1 and
20 ◦ s−1. Emphasis was placed on the availability of
data regarding the weight and dimensions of the de-
bris object. As described previously in subsection 2.1,
a scarcity of data exists for the angular rates and
masses of the debris. These objects were selected as
information about them was readily available from
public sources. These debris objects have been clas-
sified by TRACER as to be removed using either a
net-based method or a manipulator-based method.
The angular momentum for these debris is calculated
and checked if it can be absorbed by a space-flown
robotic manipulator.

The given debris objects and the removal method
from [12], along with the computed absolute angular
momentum, are given in Table 3.

The angular momentum of these objects is com-
puted assuming the rotation rate to be only about the
axis of the cylinder, i.e. the axis of maximum inertia,
to find the maximum possible angular momentum of
the debris object. This can then be compared with
the angular momentum capture capabilities of the
robot arms in subsection 2.2. Along with the max-
imum joint rate of 20 ◦ s−1 as taken in the previous
section, the current joint limit of SSRMS/Canadarm2
of 4 ◦ s−1 ([36]) is also taken into account while com-
puting the robot arm angular momentum capability.
This provides a more realistic view of the capture
capabilities using the currently space-qualified joint
actuators. The robot arms that were matches with
the respective debris, i.e. that could capture the mo-
mentum of the debris, can be seen in Table 4.

IV. Discussion

From section 3, it can be seen that debris data,
both generated and from real-data sources can be
classified based on their angular momentum and
the angular momentum of the currently space-flown
robot arms, albeit with some innate challenges.

In Figure 3, it can be seen that the SS-
RMS/Canadarm2 robot manipulator can absorb all,
SRMS/Canadarm can absorb about half, and the
ETS-VII robot arm can absorb none of the angu-
lar momentum of the debris in the sample dataset.
This analysis is based solely on the absolute angular

momentum of the debris and the arm. It should be
noted that the ability to absorb the angular momen-
tum does not imply the capture of the debris itself.
One of the reasons for this is that the momentum
computations used a joint velocity limits of 20 ◦ s−1,
however, the SSRMS/Canadarm2 is only qualified for
operation with max joint velocity of 4 ◦ s−1 [36]. Fur-
thermore, an object of length 4.25 m and diameter
3.75 m poses extreme difficulties for capture while ro-
tating at 20 ◦ s−1 about any axis.

The robot arms used in this study were space-
qualified and have already been flown to space for
successful missions. This is significant as the parts
and designs used for these arms are space-qualified
and hence can facilitate the design of future manipu-
lators specific for ADR. On the other hand, the joint
velocity limits used in subsection 3.1 are not the ex-
emplar of the robot arms flown to space. They are
more akin to the robot arms used in the terrestrial
industries. The joint velocity limit of 20 ◦ s−1 is gen-
erally on the lower end of the spectrum when look-
ing at robust industrial arms used for manufactur-
ing, welding, etc. The current industrial arms regu-
larly provide over 50 ◦ s−1 joint velocities with pay-
loads over 1000 kg [41]. Years of research and de-
velopment invested in the industrial joint actuators
has increased their reliability and maturity. These
technologies can be transferred to the future manip-
ulators for ADR/On-Orbit Servicing (OOS) missions
thus bringing along the high-speed joint velocities.

Barring the high angular rate debris, it is note-
worthy to see that the upper stage debris (in the
generated dataset) of various sizes and masses could
be captured by the given robot arms. In Table 4,
a portion of the results of debris classification from
TRACER ([12]) are viewed through the lens of
Momentum-Based Classification. Here, two things
can be observed about the ADR methods assigned
to the debris: one of the net-based capture target’s
angular momentum can be absorbed by a robot arm
with current joint velocity limits, and the angular
momentum of one of the debris which is assigned for
robot arm-based removal method cannot be absorbed
with any currently available space-flown robot arm.
However, even though the robot arm could absorb the
momentum of the debris that have been selected for
the net-based capture, it is not necessarily the pre-
ferred choice as the pre-classification considers factors
such as Grapple feature existence, Capture interface
material, and Capture interface clearance (from [12]).
For the debris whose angular momentum cannot be
absorbed by any currently available robot arm, the
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Table 3: Space Debris Object’s Properties

COSPAR
ID

Name Mass
(kg)

Length
(m)

Diameter
(m)

Rotation
Rate (◦ s−1)

Removal
Method

Angular
Momentum
(kg m2 s−1)

2009-
017B

Centaur-5
SEC (Atlas
V 421)

2020 11.7 3.1 6.35 net 1947

1991-
084C

H10 (Ariane
44L H10)

1764 11.42 2.6 1.735 net 327.73

2001-
045D

Blok-DM-2
(Proton-
K/DM-2)

2440 6.3 3.7 4.65 net/robot
arm

2453.4

1995-
026D

Blok-2BL
(Molniya-M
Blok-2BL)

892 2.3 2.2 9.95 net/robot
arm

678.51

Table 4: Debris and Robot arm Matching

COSPAR ID Angular
Momentum
(kg m2 s−1)

Removal
Method

Matched Robot
Arms (20 ◦ s−1)

Matched Robot
Arms (4 ◦ s−1)

2009-017B 1947 net SSRMS -
1991-084C 327.73 net SRMS/SSRMS SSRMS
2001-045D 2453.4 net/robot arm SSRMS -
1995-026D 678.51 net/robot arm SRMS/SSRMS SSRMS

high angular momentum could cause predicaments
such as high joint torques during robotic ADR due
to its high angular momentum [20]. Thus, this debris
object is not suitable for the robotic arm removal
method excluding a preceding attitude syncing ma-
neuver. This indicates that momentum data can play
a role in the selection of removal method as it pro-
vides more information than just the rotation rate
that is currently used. Furthermore, all of the debris
object’s angular momenta can be absorbed by the
robot arms if the joint velocity limits are increased to
20 ◦ s−1. This shows that further development of the
joint actuators in the future will enable better ADR
capabilities even if other parameters in the design of
the arm are kept constant.

From the above discussion, it can be seen that in-
cluding the angular momentum data in the current
classification methods for space debris removal could
provide an valuable information towards a more ex-
haustive selection of ADR capture methods. How-
ever, this is not without its limitations. One of
the foremost consideration is that this classification
is based on the capture capability using the bias-

momentum approach and thus, has the same assump-
tions. Even though it gives insight into the debris
removal problem, it does not take into account the
use of active momentum dissipating devices such as
thrusters which could be used to provide detumbling
strategies without storing the angular momentum
solely in the manipulator arm/reaction wheels. Such
methods use the entire system such as is done in [42].
However, classification based on such methods are not
computationally efficient considering the large num-
ber of possible trajectories the system could take for
each scenario. Additionally, data sources for inertia
and angular rate for space debris are scarce. Until
now, most of the work on space debris cataloguing
has been put into the detection of the debris and its
orbit determination. Not much effort has been put
in cataloguing the inertia parameters of the debris
nor their angular velocities. This can be partially at-
tributed to the technological difficultly in estimating
the angular velocity of the debris and only recently
the angular rate estimation has become interesting
for researchers [22]–[25]. Including momentum data
to improve the current debris classification techniques
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requires detection, identification, and cataloguing the
inertial and angular rate parameters of debris. Hav-
ing catalogued inertia and momentum data further
increases the utility of momentum-based classifica-
tion presented here. Furthermore, momentum-based
classification while providing insights into the debris
target selection for robotic ADR, does not provide in-
formation about target selection for other ADR meth-
ods such as net-based or electromagnetic-based meth-
ods. This classification method can be expanded in
the future to include other capture methods and then
be included in a knowledge-based classification frame-
work for most utility.

V. Conclusion and Future Work

In this paper, we provide a method for Momentum-
Based classification of space debris that can be used
to improve the selection of an ADR capture method.
Current classification methods use a variety of param-
eters for debris classification such as orbital param-
eters, attitude regime etc. Some of the classification
methods also provide a framework for the inference
of ADR methods most suited to capture a specific de-
bris object. However, none of the methods consider
the target’s angular momentum. Momentum-based
classification bridges this gap as it accounts for the
inertia (and thus shape and mass) and the rotation
velocity of the debris while selecting a robotic-based
method for ADR. This method for classification con-
stitutes the computation of angular momentum of de-
bris as well as the momentum limits of the considered
robotic manipulators. Then the debris capture is de-
fined based on the momentum capture capabilities
of the robot arm using the Bias-Momentum capture
and detumble method. This classification was carried
out on an artificially generated dataset of tumbling
cylinders representing upper stage debris and con-
sequently applied to real cylindrical debris objects.
From this, we can show that the currently available
space-flown robot manipulators have the capability
to absorb the angular momentum of various upper
stage debris. This capability can be further increased
by simply developing joint actuators with higher ve-
locity limits without any changes to the rest of the
space-qualified robot arm. As this work was limited
to cylindrical objects only, the future work aims to
generalize this method of debris classification by ap-
plying it to wider types of debris objects which can
be captured by a robotic arm such as upper stages
or cylindrical satellites with solar panels, and generic
satellite shapes such as a box with panels. Further-
more, considering the limited scope of the current

implementation of the developed method our future
work will consist in implementing it within a knowl-
edge management system, such as TRACER, as an
axiom to further improve the current state of the art.
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Letizia, and V. Braun, “Space debris ontology
for ADR capture methods selection,” Acta As-
tronautica, vol. 173, pp. 56–68, Aug. 2020. doi:
10.1016/j.actaastro.2020.03.047.

[13] M. P. Wilkins, A. Pfeffer, P. W. Schumacher,
and M. K. Jah, “Towards an Artificial Space
Object Taxonomy,” in Advanced Maui Opti-
cal and Space Surveillance Technologies Con-
ference (AMOS), vol. 1, Maui, Hawaii, USA:
Maui Economic Development Board, Inc., Sep.
2013, pp. 1–18. [Online]. Available: https://
bit.ly/2EWSWPH (visited on 01/27/2020).

[14] C. Frueh, M. Jah, E. Valdez, P. Kervin, and T.
Kelecy, “Taxonomy and Classification Scheme
for Artificial Space Objects,” in Advanced Maui
Optical and Space Surveillance Technologies
Conference (AMOS), vol. 1, Maui, Hawaii,
USA: Maui Economic Development Board, Sep.
2013, pp. 1–13. [Online]. Available: https://
bit.ly/2ryiH5O.

[15] A. P. Cox, C. K. Nebelecky, R. Rudnicki, W. A.
Tagliaferri, J. L. Crassidis, and B. Smith, “The
Space Object Ontology,” in 2016 19th Interna-
tional Conference on Information Fusion (FU-
SION), Heidelberg, Germany: IEEE, Jul. 2016,
pp. 146–153, isbn: 978-0-9964527-4-8. [Online].
Available: https://bit.ly/360WeNw.

[16] R. J. Rovetto, “An ontological architecture for
orbital debris data,” Earth Science Informatics,
vol. 9, no. 1, pp. 67–82, Mar. 6, 2016, issn: 1865-
0473. doi: 10/gfxj3m.

[17] R. Furfaro, R. Linares, D. Gaylor, M. Jah, and
R. Walls, “Resident Space Object Character-
ization and Behavior Understanding via Ma-
chine Learning and Ontology-based Bayesian
Networks,” presented at the Advanced Maui
Optical and Space Surveillance Technologies
Conference (AMOS), Wailea, Maui, Hawaii,
USA: Maui Economic Development Board,

Inc., Sep. 1, 2016, pp. 1–14. [Online]. Avail-
able: https://bit.ly/31kcbeR (visited on
10/17/2019).

[18] B. Liu, L. Yao, and D. Han, “Harnessing on-
tology and machine learning for RSO classifi-
cation,” SpringerPlus, vol. 5, no. 1, Dec. 26,
2016, issn: 2193-1801. doi: 10/gf9zg3.

[19] S. Le May, B. Carter, S. Gehly, and S. Flegel,
“Leveraging Web data and graph structures
to support rapid space object identification,”
in 69th International Astronautical Congress
(IAC), Bremen, Germany: International Astro-
nautical Federation (IAF), 2018, pp. 1–10.

[20] S. Jaekel, R. Lampariello, W. Rackl, M. De Ste-
fano, N. Oumer, A. M. Giordano, O. Porges, M.
Pietras, B. Brunner, J. Ratti, Q. Muehlbauer,
M. Thiel, S. Estable, R. Biesbroek, and A.
Albu-Schaeffer, “Design and operational ele-
ments of the robotic subsystem for the e.deorbit
debris removal mission,” Frontiers Robotics AI,
vol. 5, no. AUG, pp. 1–20, 2018. doi: 10.3389/
frobt.2018.00100.

[21] ESA Space Debris Office, DISCOS - Database
and Information System Characterising Ob-
jects in Space. [Online]. Available: https :

/ / discosweb . esoc . esa . int/ (visited on
08/16/2020).

[22] T. Schildknecht, H. Krag, and T. Flohrer, “De-
termining, Monitoring and Modelling the At-
titude Motion of Potential ADR Targets,” in
Proceedings of the Clean Space Industrial Days,
2016.

[23] T. Schildknecht, J. Silha, J.-N. Pittet, and
A. Rachman, “Attitude states of space debris
determined from optical light curve observa-
tions,” in 1st IAA Conference on Space Situ-
ational Awareness ( ICSSA ), 2017. doi: 10.
7892/boris.106946.

[24] J. Silha, T. Schildknecht, J. N. Pittet, D. G.
Kirchner, M. Steindorfer, D. Kucharski, D.
Cerutti-Maori, J. Rosebrock, S. Sommer, L.
Leushacke, P. Karrang, R. Kanzler, and H.
Krag, “Debris attitude motion measurements
and modelling by combining different observa-
tion techniques,” in 7th European Conference
on Space Debris, Darmstadt, Germany: ESA
Space Debris Office, 2017.

IAC–20–A6,6,7,x58014 Page 10 of 11

https://doi.org/10.1007/978-3-319-69956-1_8
https://doi.org/10.1007/978-3-319-69956-1_8
https://bit.ly/2oKFSIe
https://doi.org/10.1016/j.actaastro.2020.03.047
https://bit.ly/2EWSWPH
https://bit.ly/2EWSWPH
https://bit.ly/2ryiH5O
https://bit.ly/2ryiH5O
https://bit.ly/360WeNw
https://doi.org/10/gfxj3m
https://bit.ly/31kcbeR
https://doi.org/10/gf9zg3
https://doi.org/10.3389/frobt.2018.00100
https://doi.org/10.3389/frobt.2018.00100
https://discosweb.esoc.esa.int/
https://discosweb.esoc.esa.int/
https://doi.org/10.7892/boris.106946
https://doi.org/10.7892/boris.106946


71th International Astronautical Congress (IAC), The CyberSpace Edition, 12-14 October 2020. Copyright c© 2020 by
German Research Centre for Artificial Intelligence. Published by the IAF, with permission and released to the IAF to publish

in all forms.

[25] E. Linder, J. Silha, T. Schildknecht, and M.
Hager, “Extraction of spin periods of space de-
bris from optical light curves,” in Proceedings of
66th International Astronautical Congress, In-
ternational Astronautical Federation ( IAF ),
2015. doi: 10.7892/boris.73954.

[26] ESA, ESA ClearSpace-1, 2019. [Online]. Avail-
able: https://bit.ly/3ij9Ede (visited on
09/28/2020).

[27] United Launch Alliance, Atlas V Launch Ser-
vices User’s Guide, March. United Launch Al-
liance, 2010. [Online]. Available: http : / /

www . ulalaunch . com / uploads / docs /

AtlasVUsersGuide2010.pdf.

[28] Arianespace, “Ariane 5 User’s Manual,” Ari-
anespace, Tech. Rep. 5, 2016.

[29] Space Exploration Technologies Corp, “Falcon
User’ s Guide,” Space Exploration Technologies
Corp, Tech. Rep. April, 2020.

[30] Arianespace, “Soyuz User’s Manual,” Arianes-
pace, Tech. Rep. 2, 2012.

[31] A. Zak, Volga upper stage, 2016. [Online]. Avail-
able: http : / / www . russianspaceweb . com /

volga.html.

[32] Arianespace, “Vega User’s Manual,” Arianes-
pace, Tech. Rep. 4, 2014.

[33] United Launch Alliance, Delta IV Launch Ser-
vices User’s Guide, June. United Launch Al-
liance, 2013.

[34] K. Yoshida, “Engineering test satellite VII
flight experiments for space robot dynam-
ics and control: Theories on laboratory test
beds ten years ago, now in orbit,” Interna-
tional Journal of Robotics Research, vol. 22,
no. 5, pp. 321–335, 2003. doi: 10 . 1177 /

0278364903022005003.

[35] K. Yoshida and S. Abiko, “Inertia parame-
ter identification for a free-flying space robot,”
AIAA Guidance, Navigation, and Control Con-
ference and Exhibit, no. August, pp. 1–8, 2002.
doi: 10.2514/6.2002-4568.

[36] P. K. Nguyen and P. C. Hughes, “Teleopera-
tion: From The Space Shuttle To The Space
Station,” in Teleoperation and Robotics in
Space, American Institute of Aeronautics and
Astronautics, Jan. 1994, pp. 353–410. doi: 10.
2514/5.9781600866333.0353.0410.

[37] S. Vyas, vyas-shubham/TraceableRobotModels:
Release v0.3 of Traceable Robot Models, Jul.
2020. doi: 10.5281/ZENODO.3930786.

[38] M. Wilde, S. K. Choon, A. Grompone, and
M. Romano, “Equations of motion of free-
floating spacecraft-manipulator systems: An
Engineer’s tutorial,” Frontiers Robotics AI,
vol. 5, no. APR, pp. 1–24, 2018. doi: 10.3389/
frobt.2018.00041.

[39] D. N. Dimitrov and K. Yoshida, “Momentum
distribution in a space manipulator for facilitat-
ing the post-impact control,” 2004 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS), vol. 4, 2004. doi: 10 .

1109/iros.2004.1389933.

[40] D. Dimitrov and K. Yoshida, “Utilization of
the bias momentum approach for capturing a
tumbling satellite,” in 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566),
vol. 4, IEEE, 2004. doi: 10.1109/IROS.2004.
1389931.

[41] KUKA AG, “KUKA robots for heavy payloads
from 360kg to 1,000kg. Brochure,” Tech. Rep.,
2018.

[42] J. Virgili-Llop and M. Romano, “Simultaneous
capture and detumble of a resident space ob-
ject by a free-flying spacecraft-manipulator sys-
tem,” Frontiers Robotics AI, vol. 6, no. MAR,
2019. doi: 10.3389/frobt.2019.00014.

IAC–20–A6,6,7,x58014 Page 11 of 11

https://doi.org/10.7892/boris.73954
https://bit.ly/3ij9Ede
http://www.ulalaunch.com/uploads/docs/AtlasVUsersGuide2010.pdf
http://www.ulalaunch.com/uploads/docs/AtlasVUsersGuide2010.pdf
http://www.ulalaunch.com/uploads/docs/AtlasVUsersGuide2010.pdf
http://www.russianspaceweb.com/volga.html
http://www.russianspaceweb.com/volga.html
https://doi.org/10.1177/0278364903022005003
https://doi.org/10.1177/0278364903022005003
https://doi.org/10.2514/6.2002-4568
https://doi.org/10.2514/5.9781600866333.0353.0410
https://doi.org/10.2514/5.9781600866333.0353.0410
https://doi.org/10.5281/ZENODO.3930786
https://doi.org/10.3389/frobt.2018.00041
https://doi.org/10.3389/frobt.2018.00041
https://doi.org/10.1109/iros.2004.1389933
https://doi.org/10.1109/iros.2004.1389933
https://doi.org/10.1109/IROS.2004.1389931
https://doi.org/10.1109/IROS.2004.1389931
https://doi.org/10.3389/frobt.2019.00014

	Introduction
	Methodology
	Space Debris Momentum Data Generation
	Robot Arms Momentum Data Generation

	Momentum Based Classification
	Classification of Generated Data
	Classification of Real Data

	Discussion
	Conclusion and Future Work

