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Summary

The evolutionary and ecological success of the arbuscular mycorrhizal (AM) symbiosis relies on

an efficient and multifactorial communication system for partner recognition, and on a fine-

tuned and reciprocal metabolic regulation of each symbiont to reach an optimal functional

integration. Besides strigolactones,N-acetylglucosamine-derivatives released by the plant were

recently suggested to trigger fungal reprogramming at the pre-contact stage. Remarkably, N-

acetylglucosamine-based diffusible molecules also are symbiotic signals produced by AM fungi

(AMF) and clues on the mechanisms of their perception by the plant are emerging. AMF

genomes and transcriptomes contain a battery of putative effector genes that may have

conservedandAMF-or host plant-specific functions.Nutrient exchange is thekey featureofAM

symbiosis. A mechanism of phosphate transport inside fungal hyphae has been suggested, and

first insights into the regulatory mechanisms of root colonization in accordance with nutrient

transfer and statuswere obtained. The recent discovery of the dependency of AMF on fatty acid

transfer from the host has offered a convincing explanation for their obligate biotrophism.Novel

studies highlighted the importance of plant and fungal genotypes for the outcome of the

symbiosis. These findings open new perspectives for fundamental research and application of

AMF in agriculture.

I. Introduction

Soil is a complex matrix with diverse geochemical properties that is
inhabited by wide range of prokaryotic and eukaryotic organisms
(Nielsen et al., 2015). The soil volume in direct contact with the
plant root is defined as the rhizosphere and represents a particularly
biologically rich environment, in which microbial communities
profit frommetabolites released by roots (Sasse et al., 2017). Some

of the soil inhabitants, such as arbuscular mycorrhizal fungi (AMF)
establish a very intimate association with plant roots, leading to the
formation of a mutualist interaction called the arbuscular mycor-
rhizal (AM) symbiosis (Martin et al., 2017).

AMF show peculiar features: besides their obligate biotrophism,
they are characterized by coenocytic hyphae and multinucleated
spores (Kamel et al., 2016; Lanfranco et al., 2016). No sexual
reproduction has been described so far, although evidence for the

� 2018 The Authors

New Phytologist� 2018 New Phytologist Trust

New Phytologist (2018) 220: 1031–1046 1031
www.newphytologist.com

Review

 h
ttp

s:
//d

oi
.o

rg
/1

0.
11

11
/n

ph
.1

52
30

, T
he

 d
ef

in
iti

ve
 v

er
si

on
 is

 a
va

ila
bl

e 
at

 w
w

w
.n

ew
ph

yt
ol

og
is

t.c
om

http://orcid.org/0000-0002-3961-2552
http://orcid.org/0000-0002-3961-2552
http://orcid.org/0000-0001-9805-1559
http://orcid.org/0000-0001-9805-1559
http://orcid.org/0000-0001-6163-745X
http://orcid.org/0000-0001-6163-745X
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.15230&domain=pdf&date_stamp=2018-05-28


potential ofmating-related processes has been obtained (Corradi&
Brachmann, 2017). They have a rather long history of taxonomic
revisions, which reflects the general difficulty in resolving the
earliest branches in the fungal genealogy. Ribosomal DNA-based
phylogenies placed them in the Glomeromycota phylum which is
considered a sister group to Dikarya (Sch€ussler et al., 2001). An
extensive phylogenomic study, based on kingdom-wide sampling
of fungal species and genome-scale sampling of loci, placed AMF in
the subphylum Glomeromycotina with a close relationship with
Mortierellomycotina (Spatafora et al., 2016).

AM is one of the most ancient and widespread symbioses in
nature (Lanfranco et al., 2016). The main advantage of the AM
symbiosis is the exchange of nutrients: the plant provides up to 20%
of the photosynthetically fixed organic carbon to the AMF (Roth&
Paszkowski, 2017), whereas the AMF transfersmineral nutrients to
the plant thanks to its efficiency in exploring and acquiring these
resources from the soil (Smith et al., 2011). In addition, plants
colonized byAMFoften showhigher tolerance to biotic and abiotic
stresses compared to nonmycorrhizal plants and this is not a mere
consequence of a better nutritional status (Jung et al., 2012; Aug�e
et al., 2015). At the ecosystem level, AM improves soil quality
(Rillig et al., 2015) and increases plant biodiversity (van der
Heijden et al., 1998).

Root colonization by AMF occurs in successive steps. Before
physical contact between plant and fungus, diffusible molecules
mediate reciprocal recognition. When fungal hyphae touch the
root epidermis, they form adhesion structures called hyphopodia.
Subsequently, AMF enter the root and grow into the root cortex
taking an intercellular and/or intracellular route. In the cortex,
hyphae penetrate single cells, where they develop highly branched
hyphal structures, the arbuscules (Gutjahr & Parniske, 2013;
Lanfranco et al., 2016). Arbuscules are surrounded by a plant-
derived periarbuscularmembrane (PAM),which, together with the
arbuscule membrane, forms an extensive interface for nutrient
exchange (Fig. 1).

Excellent recent reviews describe the latest advances in plant
regulatory and cell biological mechanisms required for accommo-
dation of AMF inside roots (Luginbuehl & Oldroyd, 2017;
MacLean et al., 2017; Pimprikar & Gutjahr, 2018). Herein we
discuss new findings in understanding the molecules and mech-
anisms that control partner recognition, the importance of
nutrients in the formation and maintenance of arbuscular mycor-
rhizas, and the role of plant–fungal genotype combinations for the
outcome of the symbiosis.

II. Interkingdom communication enabling symbiosis

The rhizosphere is a preferential niche for large microbial
communities. Unequivocal and efficient communication systems
are therefore required to enable specific interactions such as the AM
symbiosis.

1. Plant exudates activate the fungus

AMF and plants rely on reciprocal recognition before physical
contact (Nadal & Paszkowski, 2013; Bonfante & Genre, 2015).

Plant roots, particularly under inorganic phosphate (Pi) limiting
conditions, release strigolactones (SLs), carotenoid-derived
molecules with hormone functions in plants (Waters et al.,
2017). These stimulate branching and elongation of AMF hyphae
(Akiyama et al., 2005; Besserer et al., 2006; Fig. 2), thus promoting
the chances of encountering the host. Furthermore, a general
activation of the fungal mitochondrial metabolism (visible as
organelle division, ATP production and gene expression) has been
associated with SL exposure (Besserer et al., 2008; Lanfranco et al.,
2018).Notably, SL treatment also led to an increase in the release of
chitin oligomers by AMF (Genre et al., 2013), which act as
signalling molecules on the plant (Sun et al., 2015a). SLs also
contribute to the induction of fungal genes (Tsuzuki et al., 2016;
Kamel et al., 2017). One of them, encoding a putative secreted
protein 1 (SIS1), is important for symbiosis as host-induced gene
silencing (HIGS) led to stunted arbuscules and reduced root length
colonization (Tsuzuki et al., 2016). The fungal receptor for SL is
currently unknown and its identification is a matter of active
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Fig. 1 A simplified scheme of an arbuscule-containing cell showing the
periarbuscular membrane (PAM), the periarbuscular space (PAS) and details
of the phosphate ion (Pi) transfer. Pi derived from polyP hydrolysis in the
fungal cytoplasm, are delivered to the periarbuscular space, by a still
unknown mechanism. Pi is then imported into plant cells by arbuscular
mycorrhizal (AM)-inducible, PAM-localized plant phosphate transporters
(PT), such as Medicago PT4 and rice PT11 (Javot et al., 2007b; Yang et al.,
2012). This transport is suggested to be driven by an H+ energy gradient
produced by an H+-ATPase (Krajinski et al., 2014; Wang et al., 2014). The
expression of fungal PT genes in the intraradical mycelium suggests a
possible role in Pi reabsorption from the PAS (Benedetto et al., 2005;
Balestrini et al., 2007; Fiorilli et al., 2013; Xie et al., 2016).
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investigation. Nevertheless, the importance of SLs for efficient
symbiosis formation is clear, as plants defective in the biosynthesis
or the exudation of SLs display a lower colonization level, whereas
arbuscule morphology is normal (summarized in Waters et al.,
2017; Lanfranco et al., 2018).

Although SLs are plant-derived, they do not appear to play an
important role at the host side because rice mutants defective in the
alpha-beta hydrolase SLs receptor D14, are not perturbed in AM
colonization (Yoshida et al., 2012; Gutjahr et al., 2015). During
SLs perception, D14 interacts with the F-box protein MAX2/D3/
RMS4 in a receptor complex (Hamiaux et al., 2012). MAX2/D3/
RMS4 is also involved in the perception of karrikins together with
the alpha-beta fold hydrolase KAI2/D14LIKE (Nelson et al., 2010;
Waters et al., 2012). Karrikins are butenolide molecules found in
smoke extracts that promote seed germination of many plant
species (Flematti et al., 2004). Interestingly, rice d3 and pea rms4

mutants displayed aborted colonization attempts and reduced
arbuscules formation, respectively (Yoshida et al., 2012; Foo et al.,
2013; Gutjahr et al., 2015), and a rice mutant defective in the
karrikin receptor D14-LIKE/KAI2 is characterized by an absence
of hyphopodia (Gutjahr et al., 2015). In addition, the rice d14l/
kai2mutant lacks the transcriptional response to fungal germinat-
ing spore exudates, indicating that the karrikin receptor complex
may be involved in perception of the fungus. However, it is not yet
clear whether a karrikin-like compound of fungal or plant origin
acts as ligand of the D14L receptor in plant–AMF recognition
(Gutjahr et al., 2015; Waters et al., 2017).

The recent discovery that an N-acetylglucosamine (GlcNAc)
transporter of rice and maize, called NOPE1, is required for early
signalling in the AMsymbiosis, points to the existence of additional
and GlcNAc-based diffusible plant molecules, which may trigger
presymbiotic fungal reprogramming (Nadal et al., 2017; Fig. 2).
nope1mutants display very low levels of root colonization and root
exudates from the mutant differ from wild-type (WT) exudates in
their ability to induce transcriptome changes associated with the
GO-term ‘signalling’ in the AMF Rhizophagus irregularis (Nadal
et al., 2017). Although the exactmolecular function ofNOPE1 and
its substrate are so far unknown, the strong mycorrhizal phenotype
of the nope1 mutant indicates a crucial role in plant–fungal
communication. Identification of theNOPE1 substrate will add an
exciting new aspect to plant biology in general, as GlcNac-based
signalling molecules are currently only known from bacteria and
fungi but not – to our knowledge – from plants.

2. Fungal chitin-based molecules elicit symbiotic plant
responses

AMFuseGlcNAc-basedmolecules as pre-contact signals to activate
symbiotic responses in the host plant such as calcium spiking,
lateral root formation, starch accumulation and gene expression
(Gutjahr et al., 2009; Mukherjee & An�e, 2011; Czaja et al., 2012;
Genre et al., 2013; Camps et al., 2015; Sun et al., 2015a). These so
called ‘Myc Factors’ include lipo-chito-oligosaccharides (Myc-
LCOs, Maillet et al., 2011) and short chitin tetra- and pentamers
(Myc-COs; Genre et al., 2013) (Fig. 2). Although the Myc-LCOs
show strong similarity to Nod Factors, which are released by
nitrogen-fixing rhizobia (Gough & Cullimore, 2011), the
metabolic pathways leading to their synthesis in AMF are not yet
known.

Both Myc-COs and Myc-LCOs are able to elicit repetitive
nuclear calcium (Ca2+) oscillations, known as Ca2+-spiking, which
is considered a hallmark of symbiotic signalling (Oldroyd, 2013;
Sun et al., 2015a) in legumes. Interestingly, in rice only Myc-COs
and not Myc-LCOs were able to elicit Ca2+ oscillations in root
epidermal cells (Sun et al., 2015a), indicating differences in the
ability to perceive chitin-based symbiotic signalling molecules
among nodulation-competent legumes and the monocot rice. So
far, the biological significance of producing both Myc-COs and
Myc-LCOs remains obscure. It is possible that a diversity of
signalling molecules contributes to the ability of AMF to interact
with a wide range of AM host plants or to the robustness of the
system.

SL

ERM

IRM

KARL? 

KARL? 

Myc factors
LCOs/COs

AMF effectors
D14L/KAI2
NOPE1
LysM RLKs

GlcNac-
derivative? 

Epidermis Cortex

Fig. 2 Molecules involved in the communication between arbuscular
mycorrhizal fungi (AMF) and host plants. Plant roots release strigolactones
(SL) which stimulate AMF metabolism and hyphal branching to promote
colonization (Akiyama et al., 2005; Besserer et al., 2006, 2008). A rice
mutant deficient for the D14L gene is characterized by an absence of
hyphopodia (Gutjahr et al., 2015). The D14L/KAI2 protein localizes to the
nucleus and cytoplasm. It is yet unclear whether the karrikin-like (KARL)
ligand of D14L/KAI2, relevant for AM symbiosis is of plant or fungal origin.
The recent finding that a plasmamembrane-resident plant N-
acetylglucosamine (GlcNAc) transporter (NOPE1) is required for early
signalling in AM suggests the existence of GlcNAc-based diffusible plant
molecules, which may trigger presymbiotic fungal reprogramming (Nadal
et al., 2017). Also AMF use GlcNAc-based molecules, which include lipo-
chito-oligosaccharides (LCOs; Maillet et al., 2011) and short chitin tetra-
and pentamers (COs; Genre et al., 2013); these are perceived by plant
LysM-RLKs (Zipfel & Oldroyd, 2017) and activate plant symbiotic
responses. AMF effector candidates, thought to interfere with host cellular
processes to favour colonization at early and/or late stages of the AM
symbiosis, have been predicted from fungal genomes and transcriptomes
(Sezdzielewska Toro & Brachmann, 2016; Kamel et al., 2017). SLs stimulate
the production of chitin oligomers (Genre et al., 2013) and secreted proteins
(Tsuzuki et al., 2016; Kamel et al., 2017) by AMF. Note that the tissue-
specific expression of D14L/KAI2 and NOPE1 is currently unknown. IRM,
intraradical mycelium; ERM, extraradical mycelium.
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However, GlcNAc-containing molecules can be produced by
many microorganisms, including plant pathogens, and it is
puzzling how plants can distinguish AMF from the others. One
possibility is that this is facilitated by fine-tuned Myc Factors
ligand-receptor specificities (Zipfel & Oldroyd, 2017). Small
moleculeswith aGlcNAcbackbone are perceived byLysM-domain
containing receptor-like kinases (LysM RLKs) and receptor like
proteins (LyMRLPs), with different ligand specificities (Gust et al.,
2012). The repertoire of LysM-receptors differs significantly
among plant species (Zhang et al., 2009), whichmay have favoured
the co-evolution or maintenance of several different Myc Factors.
Due to the functional redundancy of AMF-responsive LysM-
receptor kinases in the genome of AMF-host plants, and the
multitude of different Myc Factors, definitive receptors for Myc-
COs or Myc-LCOs have not yet emerged (Buendia et al., 2016;
Zipfel & Oldroyd, 2017). Good candidates are SlLYK10 from
tomato and NFP from Parasponia, as virus-induced and RNAi-
mediated gene silencing of the corresponding genes, respectively,
partially perturbed AM formation (Op den Camp et al., 2011;
Buendia et al., 2016). However, there is currently no evidence that
both LysM-RLKs bind Myc-COs or Myc-LCOs and it cannot be
excluded that VIGS andRNAi affected the expression of additional
redundant LysM-RLKs. The rice LysM RLK OsCERK1, which
has a dual role in both interactions with pathogenic fungi and AMF
(Miyata et al., 2014), was shown to play a central role in the
perception of Myc-COs because an oscerk1 mutant does not
respond to these molecules with Ca2+-spiking (Carotenuto et al.,
2017). In addition, it fails to induce lateral roots in response to
AMF (Chiu et al., 2018). However, root colonization of oscerk1 is
only delayed and not entirely abolished (Miyata et al., 2014; Zhang
et al., 2015; Chiu et al., 2018), pointing towards redundant
recognition mechanisms. By contrast, OsCEBiP, a LysM RLP,
which acts as co-receptor of OsCERK1 in the perception of long-
chain chitin oligomers frompathogenic fungi (Kaku et al., 2006), is
not required for theAMsymbiosis and is not essential forMyc-CO-
induced Ca2+ spiking (Carotenuto et al., 2017). Therefore, an
unknown LysM-containing protein likely associates with
OsCERK1 to mediate specificity for the interaction with AMF.

An additional level of complexitymay be added by the possibility
that AMF may produce different amounts and/or a different
repertoire of Myc Factors at different life-stages. Additionally, the
composition of the Myc Factor cocktail may differ among AMF
species. Thus, our understanding of how plants distinguish
beneficial microbes and limit the invasion by detrimental ones
will rely, at least in part, on the characterization of the blend of
GlcNAc-containingmolecules produced byAMFand their specific
receptors and downstream signalling components.

Also volatile signals may participate in the belowground
communicationwith the plant. Fungal volatile organic compounds
(VOCs) can reprogram root growth and architecture and influence
the defence system of the host plants (Werner et al., 2016). Using
an elegant split Petri-dish system, Sun et al. (2015b) found that
volatiles, released by germinating spores of the AMF Gigaspora
margarita, stimulated lateral root formation in Lotus, as well as in
the AMnonhostArabidopsis, indicating that these volatiles trigger a
response, which is conserved in both host and nonhost species. The

SLs biosynthesis gene LjCCD7, was upregulated following expo-
sure to these VOCs, suggesting that SLs may act as mediators of
such a response (Sun et al., 2015b).

3. An emerging role for fungal effectors in AM symbiosis

In addition to GlcNAc-containing molecules, other AMF-
produced factors contribute to interkingdom communication. A
growing interest, coming from studies on pathogenic interactions,
is given to effectors: they serve to dampen defence responses and/or
to interfere with host cellular processes to favour colonization of the
host (Lo Presti et al., 2015).

AMF effector candidates have been predicted from fungal
genomes and transcriptomes (Sezdzielewska Toro & Brachmann,
2016; Kamel et al., 2017). The number of identified genes
depends on the criteria used to define effectors. A first criterion
is the presence of a signal peptide that guides proteins towards
secretion. In addition, the presence of cysteines, internal repeats,
PFAM domains and nuclear localization signals also has been
considered (Sezdzielewska Toro & Brachmann, 2016; Kamel
et al., 2017). A large majority (95%) of R. irregularis secreted
proteins (SPs) is conserved in the related species R. clarus,
whereas only 194 of 872 (22%) of R. irregularis SPs show
similarity with those from Gigaspora rosea, a distantly related
AMF (Sezdzielewska Toro & Brachmann, 2016; Kamel et al.,
2017). The AMF secretome therefore seems to be characterized
by the prevalence of lineage-specific proteins, which is in
agreement with data obtained from comparative analyses in
other fungal groups including parasitic, mutualistic or sapro-
trophic fungi (Schirawski et al., 2010; Heard et al., 2015;
Pellegrin et al., 2015). Secretome variations have been ascribed
to several factors such as phylogenetic history, life style as well
as host specificity. Indeed, a comparison of the transcriptomes
from R. irregularis and G. rosea, when colonizing three different
host plants (the dicotyledon M. truncatula, the monocotyledon
Brachypodium distachyon and the liverwort Lunularia cruciata),
revealed that the expression of putative SPs can differ depending
on the host plant. Among 87 SP genes expressed in the
intraradical mycelium of R. irregularis only 33 were expressed in
all three plant species (Kamel et al., 2017), suggesting that these
33 fulfill core functions, whereas the others may act host-
specifically (Fig. 3). Remarkably, a larger proportion (74%) of
host-specific SPs was found in G. rosea with respect to
R. irregularis (44%) and this may reflect differences in the their
host range. Host-specifically expressed effector candidates also
have been observed for the endophyte Piriformospora indica,
when colonizing roots of barley or Arabidopsis (Lahrmann et al.,
2013). A tight host-specificity is more common in plant–
pathogen interactions and host shifts can produce the most
devastating disease outbreaks (Woolhouse et al., 2005). In
plant–pathogen interactions effectors can play a significant role
in host specificity (Hung et al., 2014). Regarding SPs, a recent
study compared the complete genome sequence of six isolates of
Magnaporthe species obtained from three different host plants.
An inventory of SPs showed that many new SPs have evolved in
different isolates and, interestingly, some of these SPs are only
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present in groups of isolates from the same host plant
suggesting that the evolution of SPs is under host-directed
selection (Zhong et al., 2016).

However, Kamel et al. (2017) also identified a small set of SPs,
shared by R. irregularis and G. rosea, with similar expression
patterns in the different host plants. These genes, which have been
referred to as theAMsymbiotic core secretome, encode proteases or
protein with unknown function. It has been hypothesized that
proteases may play a role in the inactivation of plant defence
proteins (Jashni et al., 2015), the cleavage of fungal/plant signalling
proteins and even the generation of peptides and amino acids with
nutritional or signalling functions. The characterization of these
common and lineage-specific SPs will highlight their mode of
action inside the plant and reveal similarities and specificities
between AMF and fungal pathogens.

The seminal work by Kloppholz et al. (2011) provided currently
the only functional characterization of a putative AMF effector.
The protein, named secreted protein 7 (SP7), from R. irregularis
increased the degree of root colonization by AMF, when the
corresponding gene was ectopically expressed in M. truncatula
hairy roots (Kloppholz et al., 2011). Using Magnaporthe as a
heterologous system, the authors provided evidence of SP7
translocation into the plant cell nucleus, where it was suggested
to counteract the plant immune response by interacting with the
pathogenesis-related-transcription factor ethylene response factor
ERF19 (Kloppholz et al., 2011). However, the SP7 gene is not only

expressed in intraradical fungal structures; SP7 transcripts also
strongly accumulate in extraradical fungal mycelia (Kamel et al.,
2017), suggesting that SP7 may play a role in addition to
suppressing plant immunity inside the root. SP7 contains several
sequence repeats, which are separated by computationally pre-
dicted KEX2 protease cleavage motifs. This could mean that SP7
can be cleaved into small peptides, which may act on the fungus or
the plant (Kamel et al., 2017).

Tsuzuki et al. (2016) recently described a gene encoding the
putative secreted protein SIS1 from R. irregularis, which was
among the genes upregulated in both SL-treated germinating
spores and symbiotic extraradical mycelium; therefore, it has been
proposed as a marker gene for fungal SLs response (Tsuzuki et al.,
2016). In the absence of genetic transformationprotocols for AMF,
SIS1 silencing was obtained by HIGS. This led to reduced
colonization and stunted arbuscules.

Another R. irregularis gene has been identified with a puta-
tive role in the accommodation of fungal structures in the root
(Fiorilli et al., 2016). The gene was called RiPEIP1 (Preferentially
Expressed In Planta) because it is strongly induced in the
intraradical phase, including arbuscules, as demonstrated by laser
microdissection. RiPEIP1 expression in Oidiodendron maius, an
ericoid endomycorrhizal fungus, for which transformation pro-
tocols are available, led to enhanced colonization capacity
compared to the O. maius WT strain (Fiorilli et al., 2016).
Because it encodes a four-transmembrane domain protein,
RiPEIP1 does not fit to the canonical definition of effectors;
further studies are needed to define the mechanism of action of
RiPEP1 and its specific role in the process of AM colonization.

In addition to proteins, small RNAs of the pathogenic fungus
Botrytis cinereawere shown to targetmRNAs of defence genes in the
host plant, thus acting as effectors (Wang et al., 2017). It is possible
that such cross-kingdom RNAi also is exploited by AMF. The
interference with RNA metabolism of the host plant also can be
envisaged for the so-called RALPH (RNase-Like Proteins associ-
ated with Haustoria) the secreted avirulence effectors described in
the obligate biotroph pathogenic fungusBlumeris graminis (Spanu,
2017).

III. Nutritional and regulatory roles for key
metabolites in the AM symbiosis

After the AM symbiosis has been established, both symbionts
benefit from nutrient supply by the other partner. Accumulating
evidence indicates that the exchangednutrients not only function as
nourishment, but also act as signals that can drastically influence
AM development. Thus, AM development is strongly linked to
symbiotic function.

1. AMF receive lipids as well as carbohydrates from the host

Based on stable isotope labelling experiments, it has long been
established that AMF receive carbohydrates and specifically glucose
from the plant (Pfeffer et al., 1999;Tr�epanier et al., 2005).How the
sugars are transported from the plant to the fungus is still unclear. A
number of genes encoding sugar transporters with activities

AMF-specific effectors

AMF and host plant-specific effectors

Conserved effectors

Species A Species B Species A Species B

Fig. 3 Scheme of the variety of symbiotic effectors produced by arbuscular
mycorrhizal fungi (AMF) during the interaction with host plants (based on
data from Kamel et al., 2017). For a single AMF species some effectors are
expressed in association with all plant species, whereas others are expressed
in a host plant-specific manner. Some effectors are conserved among AMF
and may play core symbiotic functions.
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towards monosaccharides (MSTs) and sucrose (SUTs), as well as
members of the SWEET family, are upregulated in mycorrhizal
roots (Harrison, 1996;Doidy et al., 2012;Manck-G€otzenberger&
Requena, 2016), but genetic evidence for their function is still
missing. So far, only the function of the PAM-located sucrose
transporter SUT2 from tomato has been investigated by reverse
genetics (Bitterlich et al., 2014). Roots of sut2 antisense plants are
significantly more colonized than WT roots. Together, this
suggests that SUT2 may be involved in competition with the
fungus for sucrose, for example by pumping the metabolite from
the periarbuscular space (PAS; Fig. 1) back into the plant cell
(Bitterlich et al., 2014). A high affinitymonosaccharide transporter
MST2 from the AMF R. irregularis has been characterized.
RiMST2 is expressed in arbuscules and intercellular hyphae and
is possibly responsible for sugar uptake from the plant apoplast
surrounding the fungus. Silencing of RiMST2 by HIGS led to
reduced root colonization and impaired arbuscule branching
(Helber et al., 2011), indicating an important role of RiMST2
function for fungal intraradical development. Interestingly, expres-
sion of RiMST2 was triggered also in the extraradical mycelium,
when it was supplied with xylose. Furthermore, the extraradical
myceliumwas able to take up 14C-labelled glucose and xylose from
the medium (B€ucking et al., 2008; Helber et al., 2011) and this
uptake was inhibited by the protonophore carbonyl cyanide m-
chlorophenyl hydrazone, demonstrating that it occurred by active
transport and not simple diffusion across the membrane (Helber
et al., 2011). The finding that AMF can actively take up pentoses
and hexoses from the medium challenges the notion that obligate
biotrophy of AMF is based upon strict dependence on plant-
derived sugars.

Genome and transcriptome sequencing of the first AMF
species shed more light on the biology and the evolution of
AMF (Tisserant et al., 2013; Lin et al., 2014; Kamel et al., 2016;
Ropars et al., 2016; Tang et al., 2016). Surprisingly, it was
found that genes encoding the cytosolic fatty acids (FA)
synthase subunits, which are responsible for the bulk FA
production in fungi, are absent from AMF genomes (Wewer
et al., 2014; Tang et al., 2016). At approximately the same time
it was discovered that legume mutants with stunted arbuscules
and with reduced colonization were defective in three
AM-induced lipid biosynthesis genes: DISORGANIZED
ARBUSCULES (DIS), FatM and REDUCED ARBUSCULAR
MYCORRHIZA 2 (Wang et al., 2012; Bravo et al., 2016, 2017;
Jiang et al., 2017; Keymer et al., 2017; Luginbuehl et al., 2017).
DIS encodes a b-keto-acyl-ACP synthase I (KASI), which is
specific to genomes of AM-competent gymnosperms and dicots
and catalyses FA chain elongation from C4 to C16 (Keymer
et al., 2017). FatM encodes a thioesterase, which terminates FA
chain elongation by hydrolysis of the acyl-ACP, and FatM
shows a preference for C16-ACP (Bravo et al., 2017; Brands
et al., 2018). RAM2 encodes an sn-2 glycerol-3-phosphate
acyltransferase 6, which transfers a fatty acyl residue to the
sn-2-position of a glycerol, thereby creating b-mono-acyl-
glycerol (b-MAG, Luginbuehl et al., 2017). Both FatM and
RAM2 have been found only in genomes of AM-competent
land plants (Delaux et al., 2015; Bravo et al., 2016). Consistent

with the phenotype, the promoters of all three genes DIS, FatM
and RAM2 are specifically active in arbuscule-containing cells
(Gobbato et al., 2013; Bravo et al., 2017; Jiang et al., 2017;
Keymer et al., 2017).

Comprehensive lipid profiling in L. japonicus andM. truncatula
supported the hypothesis thatDIS, FatM andRAM2act in anAM-
specific lipid-biosynthesis pathway because ram2 mutants accu-
mulate unusual phospholipids enriched in palmityl moieties,
which are the predicted products of the concerted action ofDIS and
FatM (Bravo et al., 2017; Keymer et al., 2017; Brands et al., 2018).

AMF store lipids mainly as tri-palmityl-triacylglyerol (16:0 –
TAG) and desaturate the 16:0 fatty acyl chain at a specific x5
position, permitting distinction of fungal from plant lipids by
using 16:1x5 FAs as an AMF-specific signature (Olsson et al.,
2005). The lipid profile of dis, fatm and ram2 mutants
contained hardly any 16:1x5 FAs (Bravo et al., 2017; Keymer
et al., 2017; Brands et al., 2018), and the fungus R. irregularis
did not form lipid-containing vesicles in dis and ram2 mutant
roots, and formed only very small vesicles in roots of
L. japonicus fatm knock-down mutants (Keymer et al., 2017;
Brands et al., 2018). This suggests that in the roots of these
mutants the fungus is deprived of lipids. Lipid transfer from
host plants to AMF was shown by two independent experi-
mental approaches (Keymer & Gutjahr, 2018): Luginbuehl
et al. (2017) and Jiang et al. (2017) used a synthetic approach
and transformed Medicago hairy roots with the Umbellularia
californica fatty acyl-ACP thioesterase gene (UcFatB) that
produces the 12:0 FA, lauric acid, which occurs neither in
Medicago nor in R. irregularis. Transgenic Medicago roots
carrying UcFatB synthesized lauric acid and it also was detected
in the spores of colonizing R. irregularis (Jiang et al., 2017;
Luginbuehl et al., 2017), unequivocally demonstrating that
lauric acid containing lipids were transferred from the host to
AMF. Keymer et al. (2017) measured lipid transfer in non-
transgenic plants by isotopolog profiling of 16:0 and 16:1 FAs.
To this end, Lotus plants and carrot root organ culture were fed
with 13C labelled glucose. The isotopolog profile of 16:0 FAs in
Lotus and carrot roots differed significantly. However, in each
case the root profile was precisely mirrored by the 16:0 FAs in
the fungal extraradical mycelium, as well as by the fungus-
specific 16:1 FAs (Keymer et al., 2017). This demonstrated that
the fungal FA isotopolog profile was determined by the plant
and, therefore, the FAs were transferred from the plant to the
fungus. In the dis, fatm and ram2 mutants, lipid transfer was
impaired as well as in str mutants, which are deficient in an
ABC-half transporter gene (Jiang et al., 2017; Keymer et al.,
2017; Brands et al., 2018). STR together with its complex
partner STR2 (Zhang et al., 2010) is considered a good
candidate transporter for lipid transfer across the PAM (Gutjahr
et al., 2012; Bravo et al., 2017; Keymer & Gutjahr, 2018).

Taken together, these recent findings indicate that AMF are
entirely dependent on lipid supply by the plant for their growth,
development and reproduction. The dependence on lipids may be
the prime reason for their obligate biotrophy. Thismay explainwhy
AMF store a large amount of lipids in their spores. They are
probably used as resources for membrane construction during
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spore germination and during the first phase of root colonization,
until the first developing arbuscules can obtain lipids from the host.
These findings also change our view on the energy balance of the
symbiosis, in which the burden of organic carbon compound
biosynthesis ismore significantly shifted towards the plant thanwas
assumed previously.

2. Mechanisms of phosphate transfer from AMF to plant
hosts

Phosphorus (P) is amajormacronutrient limiting for plant growth.
It occurs in soils predominantly as dihydrogen phosphate ion
(H2PO4

�, Pi; Nussaume et al., 2011). Due to the low mobility of
this ion a phosphate depletion zone forms rapidly around the root.
To overcome Pi starvation stress and increase access to Pi, plants
have evolved several strategies. Under low Pi availability, plants
activate aPi starvation response system that regulates root and shoot
architecture and physiology (Poirier &Bucher, 2002). In addition,
plants can exploit the AM symbiosis to optimize Pi acquisition.
Almost the entire Pi taken up by plants is contributed by AMF
independent of themagnitude of the plant growth response (Smith
et al., 2004). Thanks to the extraradical hyphal network in the soil
AMF greatly increase the absorbing surface area (up to 100-fold
that of root hairs) extending well beyond the Pi depletion zone
(Javot et al., 2007b). AMF also were suggested to be able to
mineralize soil organic P (Feng et al., 2003; Shibata&Yano, 2003);
and some initial evidence was provided by Sato et al. (2015)
demonstrating that extraradical hyphae of theAMFR. clarus release
an acid phosphatase of c. 187 kDa, which may be involved in
mobilizing organic P. However, is not yet clear how far AMF are
dependent on soil bacterial for phosphate mineralization.
Colonization by AMF also induces the expression and secretion
of acid phosphatases on the plant side (Ezawa et al., 2005),
indicating that the symbiosis may also increase the plant’s ability to
solubilize organic P from the soil.

Fungal Pi:H+ symporter (PT) homologues of the yeast high-
affinity transporter PHO84 (Bun-Ya et al., 1991), are thought to be
responsible for Pi uptake from the soil (Harrison & van Buuren,
1995; Maldonado-Mendoza et al., 2001; Benedetto et al., 2005;
Xie et al., 2016). Consistent with this, the fungal PT genes are
expressed in the extraradical mycelium (ERM). However, their
additional expression in the intraradical mycelium (IRM) suggests
a second role in Pi reabsorption from the PAS (Benedetto et al.,
2005; Balestrini et al., 2007; Fiorilli et al., 2013; Xie et al., 2016;
Fig. 1).

Once absorbed by the ERM, Pi is quickly converted inside
vacuoles into polyphosphate (polyP) chains, linear polymers
comprising up to hundreds of Pi molecules (Solaiman et al.,
1999; Ezawa et al., 2003). It has been hypothesized that AMF
synthesize polyP through the VTC complex (Tani et al., 2009;
Ezawa& Saito, 2018), as described in yeast (Hothorn et al., 2009).
PolyP is then translocated to the IRM via cytoplasmic streaming
and/or along a motile tubular vacuolar network (Olsson et al.,
2002; Uetake et al., 2002; Hijikata et al., 2010). Interesting new
insights into themechanismof long-distance polyP translocation in
AM associations were obtained from the characterization of the

R. clarus aquaporin 3 (RcAQP3), an aquaglyceroporin responsible
for water transport across the plasma membrane (Kikuchi et al.,
2016). RcAQP3 is strongly expressed in intraradical mycelia and
downregulation of RcAQP3 via VIGS through the host plant, as
well as the suppression of host plant transpiration, slowed polyP
translocation. Thus, Kikuchi et al. (2016) proposed a model in
which transpiration provides a primary driving force for polyP
translocation by creating water flow through the fungal RcAQP3
and the AM-inducible plant aquaporins.

PolyP breakdown in the IRMpossibly involves acid and alkaline
phosphatases (Ezawa et al., 2001; Aono et al., 2004; Kojima &
Saito, 2004) and produces a large amount of negative charges. A
compensatorymechanismmaintains a neutral charge inside the cell
by accompanying the massive accumulation of polyP in fungal
mycelia with near-synchronous and near-equivalent uptake ofNa+,
K+, Ca2+ and Mg2+ (Kikuchi et al., 2014).

Pi is delivered to the periarbuscular space by a still unknown
mechanism. It is then imported into plant cortical cells by AM-
inducible, PAM-localized plant PTs, such as Medicago PT4 and
rice PT11 (Javot et al., 2007b; Yang et al., 2012; Fig. 1). This
transport is suggested to be driven by an H+ energy gradient
produced by a H+-ATPase. Similar to PT4/PT11 this H+-ATPase
has been found to be important for arbuscule maintenance and
AM-mediated phosphate uptake (Krajinski et al., 2014; Wang
et al., 2014; Fig. 1). AM-inducible PT genes have been identified
in different host plants (Rausch et al., 2001; Harrison et al., 2002;
Paszkowski et al., 2002; Nagy et al., 2005; Balestrini et al., 2007;
Javot et al., 2007a; Xu et al., 2007; Loth-Pereda et al., 2011;
Hong et al., 2012; Yang et al., 2012; Willmann et al., 2013; Xie
et al., 2013; Walder et al., 2015; Volpe et al., 2016; Sawers et al.,
2017). They are homologues of the yeast PHO84 and belong to
the Phosphate transporter 1 (Pht1) class (Poirier & Bucher,
2002) of the plant H+/Pi symporters. In a phylogenetic tree of
PHT1 proteins, they cluster in a separate clade that does not
contain Pht1 transporters from AM nonhost plants (Hong et al.,
2012; Yang et al., 2012), indicating that an AM-specific PT genes
duplication was maintained for symbiotic Pi transport in the
plant kingdom. Interestingly, in addition to AMF, the root
endophyte Colletotrichum tofieldiae was shown to transfer Pi to
the AM nonhost plant Arabidopsis and to promote plant growth
only under P-deficient conditions (Hiruma et al., 2016).
Although the Arabidopsis genome does not contain AM-specific
PT gene duplications, several Arabidopsis genes of the Pht1
family were induced during colonization. It will be interesting to
investigate whether they, in a similar way to AM-specific PTs,
localize to plant membranes close to fungal hyphae for direct Pi
uptake from the fungus. Promoters of AM-specific PT genes have
been mostly reported to be specifically expressed in arbuscule-
containing cells. However, the PT4 promoters of M. truncatula
and L. japonicus are also expressed in root tips when grown in Pi
starvation conditions (Volpe et al., 2016). Interestingly, mtpt4
mutants and Lotus hairy roots silencing PT4 by RNAi do not
fully respond to low Pi conditions with changes in lateral root
formation (Volpe et al., 2016). This suggests that PT4 is involved
in root architecture responses to low Pi, in addition to symbiotic
Pi uptake.
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3. Phosphate status influences AM development

When a fungal PT or plant PT genes essential for symbiosis are
mutated or silenced arbuscule development is affected (Javot et al.,
2007a; Yang et al., 2012; Volpe et al., 2016; Xie et al., 2016) by
accelerated arbuscule turnover (Javot et al., 2007a). This indicates
that arbuscule lifetime is related to successful Pi delivery, a possible
mechanism to avoid fungal parasitism (Gutjahr&Parniske, 2017).
Interestingly, the accelerated arbuscule turnover in the Medicago
pt4mutant can be suppressed when the plant is grown in nitrogen
starvation conditions (Javot et al., 2011; Breuillin-Sessoms et al.,
2015). This indicates that under these conditions, symbiotic
nitrogen delivery becomes an advantage even if Pi is not delivered,
according to Liebig’s law of the minimum (Gutjahr & Parniske,
2017). However, a double mutant of MtPT4 and the PAM-
localized ammonium transporter MtAMT2.3 (Breuillin-Sessoms
et al., 2015) retained a phenotype of premature arbuscule degen-
eration under N starvation conditions, pointing towards a
particular importance of ammonium as compared to nitrate, at
least in Medicago. Together, this indicates that fungus-delivered
nutrients can act as cell-autonomous signals in the regulation of
arbuscule maintenance. The molecular mechanism for this is
currently unknown, but it has been suggested that PAM-localized
PTs could act as transceptors similar to PHO84 in yeast (Popova
et al., 2010; Yang et al., 2012; Breuillin-Sessoms et al., 2015; Volpe
et al., 2016). This was based on the observation that in rice the
OsPT13 gene, which is specifically expressed in arbuscule-
containing cells, is not required for AM-mediated Pi uptake, in
contrast to the major playerOsPT11 (Yang et al., 2012). However,
mutation of OsPT13 still leads to accelerated arbuscule turnover,
indicating thatOsPT13may be important for Pi sensing. The same
may apply to ammonium transporters, as only AMT2.3 was
essential for arbuscule branching in the pt4 mutant background,
whereas the other AM-induced AMT2.2, AMT2.4 and AMT2.5
genes were not required or were redundant, although AMT2.4
showed a higher affinity for ammonium than AMT2.3 in yeast
complementation assays (Breuillin-Sessoms et al., 2015). This
could indicate that the receptor activity of AMT2.3 is more
important than its transport activity. Remarkably, the recently
described PT gene from the AMF Gigaspora margarita, which is
expressed in both ERM and IRM, was shown to act as a transceptor
(Xie et al., 2016). Thus, coupling of Pi uptake and sensing seems to
be also important for the fungus.

An innovative RNAi-based suppressor screen for pt4 and
focusing on transcription factors led to the identification of
MYB1, the first transcriptional regulator of arbuscule degener-
ation (Floss et al., 2017). MYB1 is involved in the regulation of a
range of hydrolase genes possibly involved in dismantling the
arbuscule inside the cortex cell. The myb1 mutant does not show
an increased arbuscule lifetime in comparison to wild-type
plants, (Volpe et al., 2013; Floss et al., 2017). Ectopic expression
of MYB1 is associated with a decreased root length colonization,
stretches of hyphae without arbuscules and a high incidence of
degenerated arbuscules (Floss et al., 2017). Together, these
results indicate genetic redundancy at the level of MYB1 when
Pi is delivered normally. MYB1 interacts with the GRAS

proteins NODULATION SIGNALLING PATHWAY1 (NSP1)
and with the suppressor of gibberellin signalling DELLA in
binary interaction studies (Floss et al., 2017), pointing towards a
link between the regulation of arbuscule degeneration and plant
hormone signalling.

In addition to its cell-autonomous influence on arbuscule
maintenance, Pi also regulates AM formation in a systemicmanner.
It has long been known that AM colonization is repressed when
plants are grown under high Pi supply (Mosse, 1973; Branscheid
et al., 2010; Balzergue et al., 2011; Kobae et al., 2016). In addition,
in split-root experiments, in which only one side of the split root
system was fertilized with high Pi concentrations, AM formation
was suppressed on both sides (Branscheid et al., 2010; Breuillin
et al., 2010; Balzergue et al., 2011). Members of the miR399
family, which are systemic Pi-starvation signals, have been
proposed as signalling molecules in the regulation of AM by Pi,
as they are induced by AM fungal colonization (Branscheid et al.,
2010). miR399 overexpression did not restore AM fungal
colonization at high Pi concentration (Branscheid et al., 2010),
suggesting that other mechanisms are involved. Perturbed early
communication between plant and fungus also is a possible cause of
reduced AM colonization. However, Ca2+ spiking in epidermal
cells is still generated in response to AMF hyphopodia at high Pi
conditions, indicating that the host plant maintains the ability to
perceive and respond to the fungal partner (Balzergue et al., 2013).
On the plant side, SLs biosynthesis is reduced under high Pi. The
exogenous application of GR24, a synthetic SLs analogue, failed to
increase AM colonization levels at high Pi (Breuillin et al., 2010;
Balzergue et al., 2011), suggesting that other factors or phytohor-
mones such as auxin or gibberellin may be involved in suppressing
AM at high Pi (Floss et al., 2013; Carbonnel & Gutjahr, 2014;
Pozo et al., 2015).

Interesting further clues are emerging from metagenomics
studies: the plant immune system (Lebeis et al., 2015) and soil
nutrient composition (Hacquard et al., 2015; Castrillo et al., 2017)
were shown to play a key role in the coordination of root
colonization by specific microbial taxa. Castrillo et al. (2017)
demonstrated that the genetic network controlling the Pi stress
response influences the composition of the microbial community
of Arabidopsis roots. An Arabidopsis double mutant defective in
PHR1 and PHL1, encoding two redundant master transcriptional
regulators of Pi starvation responses, showed an upregulation of
plant defence genes leading to an atypical composition of a
synthetic bacterial community at low as well as high Pi conditions.
These results are in line with the observation that Arabidopsis roots
induce defence genes when colonized at high Pi conditions by the
fungal endophyte C. tofieldiae (Hacquard et al., 2016), which
promotes plant growth under low-Pi conditions by translocating Pi
to the host (Hiruma et al., 2016), reminiscent of what occurs inAM
symbiosis. A similar activation of defence-related genes was
observed in field-grown maize when the plants were grown at high
soil Pi concentrations. This was accompanied by alterations in the
root-inhabiting fungal community and with reduced root-length
colonization by AMF (Yu et al., 2018). It appears that lowering
plant defences at low Pi serves to increase the chances of recruiting
beneficial soil microbes to overcome the nutritional stress.
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Conversely, it is tempting to speculate that in Pi-sufficient plants,
similar defence mechanisms may participate in limiting AM
formation.

An RNAseq analysis of R. irregularis colonizing Lotus roots
represents the first investigation of fungal responses to high Pi
(Sugimura & Saito, 2017). Fungal cell-cycle regulatory genes,
cyclin-dependent kinase CDK1 and several DNA replication- and
mitosis-related geneswere repressed under highPi conditions in the
IRM (Sugimura & Saito, 2017). The same genes are not regulated
by a high Pi treatment in the ERM (Kikuchi et al., 2014),
suggesting that the transcriptional change in cell-cycle related genes
may be mediated by the Pi-sufficient plant and not triggered by Pi
itself. High Pi treatment also led to downregulation of 29 putative
secreted proteins, including the SLs-induced putative secreted
protein (SlS1) (Sugimura & Saito, 2017), pointing to an effect of
the reduced SLs production of the plant.

IV. The plant–fungus genotype combination
determines the outcome of the symbiosis

1. Plant growth responses cannot be predicted by AMF
phylogeny

Despite a rathermodestmorphological variation, AMF showahigh
level of genetic variability. The characterization of ribosomal
sequences revealed an unusually high sequence divergence, espe-
cially in the Internal Transcribed Spacer region (Thi�ery et al.,
2016). Thus, the small rDNA subunit (SSU) is nowadays
commonly used as a more reliable marker to define species in the
Glomeromycotina ( €Opik & Davison, 2016). However, SSU
rDNAmay suffer from a limited resolution andmany exceptions to
the correlation between SSU alone andmorphological species were
reported. Indeed, the concept of species for AMF is currently a
matter of debate and resolution of this issue will possibly require
multilocus data (Bruns et al., 2018).

AMF also display a high functional diversity: the efficiency to
stimulate plant growth of AMFgenera and isolates belonging to the
same species is highly variable. Also, depending on the host plant,
the effect can vary in magnitude and can have either positive or
negative growth consequences (Hart & Reader, 2002; Munkvold
et al., 2004; Feddermann et al., 2008; Antunes et al., 2011; Hong
et al., 2012; Fig. 4). The high functional variation, measured as the
growth effect on the host plant, contrasts with the low intraspecific
morphological variation shown by isolates of the same species.

In a large comparative study looking for relationships between
fungal traits/phylogenetic position and plant growth responses, 56
AMF isolates belonging to six different families and 17 genera were
inoculated on three different host plants (Koch et al., 2017). Even if
most isolates originated from geographically distant areas, traits
such as extraradical hyphal volume or total spore weight were
relatively constant within AMF families. Surprisingly, AMF
phylogeny and species identity could not predict the plant growth
response.Moreover, with the exception of total spore volume, none
of the considered fungal traits (total fungal volume, extra- and
intraradical fungal volumes) was positively correlated with plant
performance (Koch et al., 2017). This suggests that molecular

features such as the repertoire of fungal signalling molecules,
effectors or the abundance and efficiency of nutrient transport
proteins may play a more important role for plant performance
than AMF growth andmorphology. Deciphering the origin of this
intraspecific functional diversity is challenging and will require
genomics and functional genomics studies at intra- and interspeci-
fic levels such as that of Chen et al. (2018). The effects on plant
performance are likely under the control of a number of loci
showing intraspecific polymorphisms. As suggested by host-
specific expression patterns of candidate effector genes (Kamel
et al., 2017) the host plant may also play a role in the regulation of
such loci. In addition, plant growth promotionmay not be the only
trait that should be considered: other benefits such as tolerance to
abiotic or biotic stresses could provide a different picture. This
knowledgewill be fundamental to predict the impact of inoculation
with specific AMF on plant performance.

The recent discovery of homokaryotic as well as dikaryotic
strains of R. irregularis, and the identification of putative mating-
type (MAT) loci (Ropars et al., 2016; Corradi & Brachmann,
2017) highlighted the potential of AMF for sexual reproduction.
The characterization of MAT loci will be instrumental to
understand whether they are involved in dikaryon formation and,
eventually, in karyogamy and meiosis. These new findings and
expected advances in the understanding of AMF genetics and life
cycle may even pave the way to genetic strain improvement for
applied purposes.

2. Plant responsiveness to AMF is subject to genetic diversity

Not only the AMF, but also the plant genotype strongly affects the
outcome of the symbiosis (Smith et al., 2004; Fig. 5). The
performance response of plants to AMF has been defined as
responsiveness as opposed to dependence, which refers to genet-
ically determined, poor nutrient use efficiency that can be
compensated by AMF (Paszkowski & Boller, 2002; Janos, 2007;

Species A Noncolonised Species B

Fig. 4 Themagnitude of plant growth promotion depends on the arbuscular
mycorrhizal fungal (AMF) genotype.
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Sawers et al., 2008). Responsiveness can differ among cultivars of
the same species and, in addition, it is affected by soil nutrient
content (Sawers et al., 2010; Chu et al., 2013), indicating a
complex genotype–environment interaction. Sawers et al. (2017)
identified a first symbiotic parameter, which may determine AM-
responsiveness in maize. They investigated AM-responsiveness in
30 American maize lines, including the founder lines of a nested
association mapping population (McMullen et al., 2009), when
colonized with the fungus Funneliformis mosseae in glasshouses.
Interestingly, the capacity of the maize lines to profit from the
symbiosis in terms of shoot dry weight and shoot Pi content
correlated with the amount of associated extraradical hyphae
(Sawers et al., 2017; Fig. 5). This suggested an influence of plant
genetics on fungal growth performance and, conversely, an impact
of fungal morphology on plant performance when comparisons are
based on only one fungal isolate. The plant molecular mechanisms
determining fungal performance are entirely unknown andmay be
related to the amount of carbohydrates and lipids released to the
fungus. Indeed, the expression pattern of monosaccharide trans-
porter genes from the AMF R. irregularis in intraradical vs
extraradical hyphae depended on the host plant (Ait Lahmidi
et al., 2016). This may be symptomatic of differences in monosac-
charide supply or plant signals, which influence carbohydrate
uptake strategies of the fungus.

Moreover, an ionomics screen for 19 mineral ions in shoots and
roots using the same cohort of 30 maize lines, allowed the
identification of clusters of ions, which changed in response to
AMF and to maize genotype in a coordinated manner (Ram�ırez-
Flores et al., 2017). It will be interesting to understand how the
coordinated uptake of or protection from certain ions occurs and
whether these correlations also can be found in a field setting. Plant
genetic variation also determines the root colonization level of a

given fungus. However, according to our current knowledge, the
amount of colonization is not a major determinant of plant
performance benefit (Koch et al., 2017; Sawers et al., 2017). In a
major study, 94 bread wheat genotypes were analysed for root
length colonization by amixed inoculum of three AMF species and
six QTLs associated with colonization level were identified
(Lehnert et al., 2017). Interestingly, these QTLs contained genes
related to defence and cell wall metabolism, whichmay be involved
in limiting root colonization.

Some plant genotypes respond to AMF with growth depression.
The mechanism behind the depression is not yet clear and depends
partially on soil conditions (Sawers et al., 2010). In other studies on
wheat and barley growth depression was partially uncoupled from
Pi uptake as well as from fungal growth (Li et al., 2008; Grace et al.,
2009). It has been suggested that domesticationmayhave decreased
the ability of plants to respond positively to AMF (Lehmann et al.,
2012). This was investigated in a comparison of 27 crops with their
wild progenitors (Mart�ın-Robles et al., 2018). Both wild and
domesticated species responded to AMF at low Pi conditions.
However, the response was not strictly correlated to Pi in the green
leaves, indicating either a variety of Pi partitioning strategies in the
different species or a range of mechanisms contributing to the
growth response. A subset of 14 pairs of wild and domesticated
species was also tested at high Pi conditions. Interestingly, the
growth response of wild progenitors to AMFwas similar at low and
high Pi, whereas it was strongly reduced at high Pi in the
domesticated counterparts. In addition, suppression of root
colonization at high Pi was more pronounced in the domesticated
plants (Mart�ın-Robles et al., 2018). Together, this indicates that –
at least in the tested species – domestication selected for AM
independence at high Pi concentrations, which possibly increased
yield in the absence of the fungus-associated carbon drain.
However, as AMF provide other services to plants such as increased
resistance to abiotic stress and certain pathogens, it remains to be
investigated whether other stresses would enhance AM-
responsiveness of domesticated plants under high Pi fertilization.

V. Perspectives

It is now commonly accepted that soil biodiversity promotes
multiple ecosystem functions and that the tailored management of
soil communities, including AMF, has the potential to enhance
agricultural sustainability (Bender et al., 2016). Understanding the
biology of AMF and the AM symbiosis is therefore crucial for their
full exploitation. A significant enlargement of our current knowl-
edge in several fields of AM research can be envisaged in the near
future.

Comparative genomics and transcriptomics from a larger
number of AMF species will expand our knowledge of their
genome organization, genetic and regulatory complexity. The
complexity of AMF genetics is increased by the presence of
endobacteria, which live inside many AMF (Bonfante & Desir�o,
2017) and may influence fungal fitness. For example, the
endobacteriumCandidatusGlomeribacter gigasporarumwas shown
to increase sporulation, ATP production, reactive oxygen detox-
ification and responsiveness to the plant signal strigolactones of the
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Fig. 5 Distinct plant genotypes of the same species show differences in
responsiveness (R) to arbuscular mycorrhizal fungi (AMF). In maize,
responsiveness was correlated with the ability of the line to promote the
growth of the extraradical mycelium (ERM) of Funnelliformis mossae

(Sawers et al., 2017).
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fungal host,G. margarita (Salvioli et al., 2016). In addition, viruses
can thrive inside AMF, yet our knowledge on the AMF virome is
limited to few AMF species (Ikeda et al., 2012; Kitahara et al.,
2014; Turina et al., 2018). In particular, Ikeda et al. (2012)
demonstrated that a virus-free fungal strain produced more spores
and promoted plant growth more efficiently than the virus-
containing strain. The full complement of the microbiota living
inside AMF certainly deserves further investigation to define their
influence on the metabolism of the fungal host and the potential
impact on plant performance.

The characterization of putative AMF effectors and the iden-
tification of factors involved in the perception of plant signals,
nutrient uptake, transport and metabolism also will be an active
field of research and should involve AMF species-comparisons to
foster an understanding of AMF functional diversity. Current
limitations in the direct genetic manipulation of AMF can be
circumvented using heterologous systems such as Nicotiana
benthamiana leaf and legume hairy root assays or transgenic
expression in transformable biotrophic fungi such as O. maius
(Fiorilli et al., 2016) or pathogenic oomycetes such as Phytophtora
palmivora (Rey & Schornack, 2013). HIGS or VIGS and the
emerging tool Spray-Induced Gene Silencing (SIGS; Wang & Jin,
2017) can be exploited for silencing fungal genes; however, the
efficiency and reliability of thesemethods still need to be improved.

We expect to see progress in the description and characterization
of plant receptors for AMF signalling molecules as well as in the
identification of substrates of receptors and transporters such as
D14L/KAI2 andNOPE1 (Gutjahr et al., 2015;Nadal et al., 2017).
Physiological and molecular investigation is needed to resolve
mechanisms and regulation of nutrient transfer between the
symbionts and, in particular, the flux of carbohydrates and lipids
towards the fungus (Rich et al., 2017). It is becoming increasingly
clear that despite their large host range, the efficiency of AMF in
promoting plant performance differs strongly among fungal species
and isolates, and the ability of the plant to respond to the symbiosis
depends on the plant genotype. The molecular basis of AM-
responsiveness is entirely unclear but itmay depend on a diversity of
traits such as nutrient partitioning, hormone homeostasis or
(in)compatibilities of AMF effector–plant target pairs. The
identification of the genetic polymorphisms underlying differences
in symbiotic performance of plants and AMF will be key to smart
breeding for profitable application of the AM symbiosis in
sustainable agricultural systems with reduced chemical fertilizer
and pesticide input.
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