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Abstract 11 

The 2019 Ridgecrest sequence provides the first opportunity to evaluate Uniform California 12 

Earthquake Rupture Forecast Version 3 with Epidemic Type Aftershock Sequences (UCERF3-13 

ETAS) in a pseudo-prospective sense. For comparison, we include a version of the model 14 

without explicit faults more closely mimicking traditional ETAS models (UCERF3-NoFaults). 15 

We evaluate the forecasts with new metrics developed within the Collaboratory for the Study of 16 

Earthquake Predictability (CSEP). The metrics consider synthetic catalogs simulated by the 17 

models rather than synoptic probability maps, thereby relaxing the Poisson assumption of 18 

previous CSEP tests. Our approach compares statistics from the synthetic catalogs directly 19 

against observations, providing a flexible approach that can account for dependencies and 20 

uncertainties encoded in the models. We find that, to first order, both UCERF3-ETAS and 21 

UCERF3-NoFaults approximately capture the spatiotemporal evolution of the Ridgecrest 22 

sequence, adding to the growing body of evidence that ETAS models can be informative 23 

forecasting tools. However, we also find that both models mildly overpredict the seismicity rate, 24 

on average, aggregated over the evaluation period. More severe testing indicates the 25 

overpredictions occur too often for observations to be statistically indistinguishable from the 26 

model. Magnitude tests indicate that the models do not include enough variability in forecasted 27 

magnitude-number distributions to match the data. Spatial tests highlight discrepancies between 28 

the forecasts and observations, but the greatest differences between the two models appear when 29 

aftershocks occur on modeled UCERF3-ETAS faults. Therefore, any predictability associated 30 

with embedding earthquake triggering on the (modeled) fault network may only crystalize during 31 

the presumably rare sequences with aftershocks on these faults. Accounting for uncertainty in the 32 

model parameters could improve test results during future experiments. 33 
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Introduction 34 

A fundamental question in seismology is: What is the probability of observing an earthquake 35 

within some predefined space-time-magnitude region? Earthquake forecasting models try to 36 

answer this question by incorporating ideas of varying complexity about the earthquake process, 37 

including both empirical statistical relations, such as the Omori-Utsu and Gutenberg-Richter 38 

relations (Gutenberg and Richter, 1944; Utsu, 1961), and physical modeling, such as Coulomb 39 

stress calculations (Oppenheimer et al., 1988; King et al., 1994; Stein, 1999; Woessner et al., 40 

2011; Cattania et al., 2018). The simplest models use locations of previous earthquakes to 41 

forecast locations of future earthquakes via smoothing (Kagan and Jackson, 1994; Frankel, 1995; 42 

Werner et al., 2010; Zechar and Jordan, 2010; Werner et al., 2011; Helmstetter and Werner, 43 

2014). By contrast, UCERF3-ETAS (hereafter U3ETAS) combines long-term earthquake 44 

probabilities on faults based on elastic rebound statistics with short-term earthquake clustering as 45 

epidemic type aftershock sequences (Ogata, 1998) into a single model with fault-specific 46 

magnitude distributions (Field et al., 2017a; Field et al., 2017b). Most notably, U3ETAS 47 

provides probabilities of triggering ruptures on known faults, such as the Garlock and San 48 

Andreas faults. U3ETAS is a candidate model for Operational Earthquake Forecasting (OEF) 49 

issued by the US Geological Survey, motivating model evaluations also from a practical 50 

perspective.  51 

 The Collaboratory for the Study of Earthquake Predictability (CSEP) has established the 52 

philosophy and cyber-infrastructure required to conduct earthquake forecasting experiments in 53 

an unbiased and transparent fashion (Jordan, 2006; Schorlemmer and Gerstenberger, 2007; 54 

Jordan et al., 2011; Michael and Werner, 2018; Schorlemmer et al., 2018).  Since its inception, 55 

CSEP has been using likelihood-based consistency tests (Schorlemmer et al., 2007; Zechar et al., 56 
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2010; Rhoades et al., 2011; Werner et al., 2011) that are rooted in the concepts that 1) 57 

earthquakes occur in space-time-magnitude bins independently, 2) earthquakes follow the 58 

Poisson distribution in each bin, and 3) modelers provide the 'true' parameter of the distribution 59 

in each bin. Thus, CSEP required that modelers provide forecasts giving the expected number of 60 

earthquakes in discrete space-time-magnitude bins. This pragmatic simplification allows multiple 61 

types of models, including those without explicit likelihood functions, to participate in the 62 

experiments.  63 

However, Poisson likelihood-based evaluations of gridded forecasts can incorrectly 64 

report discrepancies between forecasts and observations when the true likelihood function of a 65 

forecast does not match a Poisson distribution or when strong dependencies exist between events 66 

within a forecast period. For example, the ETAS model is overdispersed with respect to a 67 

Poisson process, causing forecasts to be more frequently rejected than expected (Werner and 68 

Sornette 2008, Lombardi and Marzocchi 2010, Nandan et al., 2019). This is particularly 69 

noticeable when evaluating forecasts over multiple forecasting periods. 70 

Evaluating gridded forecasts over multiple time periods exploits the property that the sum 71 

of N Poisson random variables each with parameter 𝜆" is a Poisson random variable with 72 

parameter ∑𝜆". The same convenience does not hold for catalog-based forecasts, because, in 73 

general, simulated events in catalogs from later time periods are not consistent with simulated 74 

events from earlier catalogs. Thus, catalog-based forecasting models should be evaluated for 75 

consistency by comparing realizations from their predictive distributions against observations. 76 

This approach is formally referred to as calibration, which is based on the idea that observations 77 

should be indistinguishable from realizations drawn from the predictive distributions of the 78 

model (Gneiting et al., 2006; Gneiting et al., 2007; Gneiting and Katzfuss, 2014). In other words, 79 
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if the model were the data generator, we would expect observations to uniformly sample the 80 

forecasted distribution over independent trials. 81 

Fundamentally, calibration is a different type of evaluation approach that can be 82 

potentially more severe than previously used cumulative evaluations. For example, evaluations 83 

over individual periods might indicate that observations consistently fall within the forecasted 84 

distribution, but instead of sampling the forecasted distribution uniformly they are concentrated 85 

towards one end. Thus, the model would fail calibration, but potentially pass a cumulative test. 86 

Understanding the overall performance of these models is more important than ‘rejecting’ a 87 

particular forecast; therefore, we focus on characteristics of the models and differences between 88 

models that potentially uncover new insights that might lead to model improvements. 89 

Page and van der Elst (2018) introduced Turing-style evaluations for assessing 90 

forecasting models that produce synthetic catalogs. The tests evaluate important features of the 91 

simulated catalogs such as: aftershock productivity, seismicity rate, magnitude distribution, and 92 

clustering behavior. The Turing tests provide useful insights into the behavior of the forecasts, 93 

and can help to inform modeling decisions and identify discrepancies between the model and 94 

observations. However, they are not well suited for consistency testing or calibration, because 95 

they do not formally score forecasts against observations.  96 

 Here, we introduce new validation methods (consistency tests) for catalog-based 97 

earthquake forecasting models. Most notably, these methods relax the assumption that 98 

earthquakes follow independent Poisson distributions in discrete space-time-magnitude bins 99 

(Schorlemmer et al., 2007). Catalog-based forecasts differ from gridded forecasts in that they can 100 

capture the full aleatory variability of the model and can also account for epistemic uncertainty 101 

(such as in parameter estimates). Exhaustive sets of simulated catalogs retain the full 102 
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spatiotemporal dependencies amongst modeled earthquakes, i.e., they can reflect the full 103 

complexity of the model through simulations. We build predictive distributions from the 104 

forecasts, empirically, by defining statistics that emphasize important characteristics of 105 

seismicity. This enables hypothesis testing and calibration of probabilistic forecasts over multiple 106 

evaluation periods. 107 

 We organize this manuscript as follows. First, we introduce the evaluation metrics for 108 

catalog-based forecasts. We then apply the metrics to forecasts made during the Ridgecrest 109 

sequence for an eleven-week period following the Mw 7.1 mainshock. To benchmark the fault-110 

based triggering component of U3ETAS, we also generate and evaluate forecasts from a simpler 111 

version of the model, named UCERF3-NoFaults (hereafter NoFaults), which removes the fault 112 

component of U3ETAS. We discuss the primary differences between U3ETAS and NoFaults in 113 

the Methods section. Finally, we discuss the evaluation results with respect to U3ETAS and 114 

NoFaults and comment on the evaluation metrics. 115 

Methods: Evaluations 116 

Definitions and Notation 117 

We introduce some notation to help us define evaluations in the context of earthquake 118 

forecasts that are specified as synthetic earthquake catalogs. First, we define a testing region 𝓡, 119 

as the combination of a magnitude range 𝓜,  spatial domain 𝓢, and time period 𝓣:  120 

 121 

 𝓡 =𝓜× 𝓢 × 𝓣. (1) 

 122 
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These individual components can be regarded as filters that operate on a catalog which retain 123 

only the events within 𝓡.  124 

Let us consider an event, 𝑒 = (𝑡, 𝒙,𝑚). Each 𝑒 can be specified exactly by its origin time, 125 

𝑡, geographic location, 𝒙, and magnitude, 𝑚. The spatial coordinate, 𝒙,	typically refers to a 126 

latitude and longitude pair, but can also include depth. Thus, an earthquake catalog is simply a 127 

collection of events.  128 

We define an observed catalog as  129 

  130 

 Ω = {𝑒"	|	𝑖 = 1,… ,𝑁:;<; 𝑒" ∈ 𝓡}.	 (2) 

 131 

Here, Ω is the observed catalog containing 𝑁:;< observed events, 𝑒", within 𝓡. This catalog is 132 

used as the testing data set for the evaluations.  133 

A forecast is a collection of synthetic catalogs whose events 𝑒̃"A in 𝓡 are defined as  134 

 135 

 𝚲 ≡ 	ΛA = E𝑒̃"A	|	𝑖 = 1,… ,𝑁A; 𝑗 = 1,… , 𝐽; 	 𝑒̃"A ∈ 𝓡H.	 (3) 

 136 

The forecast, 𝚲,	contains 𝐽 synthetic catalogs each with 𝑁A events. ΛA indicates the 𝑗IJ 137 

catalog of the forecast 𝚲, likewise 𝑒̃"A denotes the 𝑖IJ	event from the 𝑗IJ synthetic catalog of 138 

𝚲.	Each ΛA is a synthetic catalog that represents a continuous space-time-magnitude realization of 139 

seismicity generated by the model. The synthetic catalogs from the forecast and the observed 140 

catalog share the same event definitions, therefore the same statistics can be readily applied to all 141 

catalogs.  142 
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The testing methodology presented here follows three guiding principles: (1) statistics 143 

should be calculated directly from the simulated and observed catalogs to build test distributions 144 

empirically; (2) testing methods should be able to preserve space-time-magnitude dependencies 145 

between events that are encoded in the model and may exist within the earthquake process; and 146 

(3) these tests should reduce their reliance on approximate likelihood functions of models, 147 

whether parametric in the case of the Poisson assumption or non-parametric in the case of the 148 

spatial test and pseudo-likelihood tests presented here. The last principle requires compromise if 149 

(approximate) likelihood-based inference remains desirable for model comparison, especially if 150 

no analytical likelihood function is available. Models without explicit likelihood functions are 151 

also known as generative or simulator-based models (Gutmann and Corander, 2016), which is 152 

the case for U3ETAS. In the remainder of this section, we define a suite of evaluations that can 153 

be used to evaluate the consistency of earthquake forecasts specified as synthetic catalogs against 154 

observed seismicity. These evaluations by no means represent an exhaustive set of metrics that 155 

can be used to evaluate catalog-based forecast models. 156 

 157 

Number Test 158 

The number test asks whether the number of earthquakes observed in 𝓡 is inconsistent with the 159 

forecasted number distribution by assessing whether the observed number falls into the tails of 160 

the forecast distribution (Kagan and Jackson, 1995; Schorlemmer et al., 2007; Zechar et al., 161 

2010). The test statistic for an arbitrary catalog, 𝜉, is 𝑁 = |𝜉|, where the bars denote the count of 162 

events in the catalog. Thus, the observed statistic is 163 

 164 

 𝑁:;< = |Ω|, (4) 
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or simply the number of events in the observed catalog. To build the test distribution from the 165 

forecast 𝚲 we calculate this statistic for every catalog forming the vector: 166 

 167 

 𝑁A = LΛAL; 𝑗 = 1,… , 𝐽. (5) 

 168 

To identify potentially important discrepancies between the observation and the forecast 169 

distribution, we compute the quantiles of the observed number in the empirical cumulative 170 

distribution function (CDF) of the forecast distribution (Equation 5) according to 171 

 172 

 	𝛿N = 1 − 𝐹Q(𝑁:;< − 1) = 𝑃S𝑁A ≥ 𝑁:;<U (6) 

 173 

and 174 

 𝛾Q = 𝛿W = 𝐹Q(𝑁:;<) = 𝑃S𝑁A ≤ 𝑁:;<U.	 (7) 

 175 

𝐹Q(𝑛) denotes the empirical cumulative distribution function of 𝑁A. For the number test, we 176 

should consider a two-sided test to assess the probabilities of observing (1) at least and (2) at 177 

most 𝑁:;< events, a distinction that becomes important when forecasted and observed numbers 178 

are small (Zechar et al., 2010). 𝐹Q(𝑛) denotes the empirical predictive CDF of 𝑁A. For a 179 

probabilistically calibrated forecast, we expect the quantile scores, 𝛾Q, to uniformly sample the 180 

forecasted number distribution over multiple independent trials.  181 

 182 
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Magnitude Test  183 

The magnitude test evaluates whether an observed magnitude-frequency distribution (MFD) is 184 

inconsistent with the forecasted MFD. We base this statistic on a square metric computed from 185 

the difference in logarithms between the incremental MFDs of the so-called union catalog ΛZ, 186 

individual catalogs Λ[, and the observed catalog Ω. This metric is loosely related to the quadratic 187 

Cramer von-Mises and Anderson tests (Anderson, 2006). Using the logarithm of bin-wise 188 

magnitude counts places greater weight on magnitude bins with relatively fewer observed (and 189 

predicted) earthquakes, which typically occur at larger magnitudes. Thus, each missed (or over-190 

predicted) event at larger magnitudes should contribute more to the test statistic than the same 191 

absolute error between smaller magnitudes. 192 

We first define the union catalog Λ\ as  193 

 194 

 Λ\ = EΛN ∪ ΛW ∪ …∪ Λ^H. (8) 

 195 

The union catalog Λ\ contains all events from 𝚲 totaling 𝑁\ = ∑ |ΛA|
^
A_N  events. We compute 196 

the standard histograms of (1) Λ\
(`), the magnitudes of the union catalog, (2) ΛA

(`), the 197 

magnitudes of each individual synthetic catalog, and (3) Ω(`), the observed magnitudes, with all 198 

histograms discretized according to 𝓜 (say, in increments of 0.1 magnitude units). We 199 

normalize all histograms so that ∑ 𝜉(`)(𝑘) 	= 𝑁:;<b , where 𝜉(`)(𝑘) represents the normalized 200 

number of events in the 𝑘IJ bin of the incremental MFD for an arbitrary catalog. This ensures 201 

that differences in forecasted rates do not contribute directly to the bin-wise sum, although the 202 

earthquake rate may implicitly affect the shape of the MFD. We compute the observed statistic 203 
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as the sum of squared logarithmic residuals between the normalized observed magnitude and 204 

union histograms following   205 

 206 

 𝑑:;< =delog i
𝑁:;<
𝑁\

Λ\
(`)(𝑘) + 1k − loglΩ(`)(𝑘) + 1mn

W

.
b

 (9) 

 207 

Λ\
(`)(𝑘) and Ω(`)(𝑘) represent the count in the 𝑘IJ	bin of the incremental MFDs from the union 208 

and observed catalogs, respectively. We add unity to each bin to prevent the singularity 209 

associated with log(0). Since we are only concerned with differences between two MFDs, this 210 

modification does not bias the statistic. Next, we build the test distribution from the catalogs in 211 

𝚲, i.e., the distribution of test statistics if the forecast model were the data-generating model 212 

following  213 

 214 

 𝐷A =dqlog i
𝑁:;<
𝑁\

Λ\
(`)(𝑘) + 1k − log r

𝑁:;<
𝑁A

ΛA
(`)(𝑘) + 1st

W

b

; 	𝑗 = 1,… 𝐽. (10) 

 215 

Here, ΛA
(`)(𝑘) indicates the count of events in the 𝑘IJ magnitude bin from the 𝑗IJ synthetic 216 

catalog. Finally, we compute the quantile score of 𝑑:;< within the empirical cumulative 217 

distribution function defined as 218 

 219 

 𝛾 = 𝐹u(𝑑:;<) = 𝑃S𝐷A ≤ 𝑑:;<U.	 (11) 

 220 
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We expect the quantile scores, 𝛾 , should uniformly sample the test distribution 𝐷A for either 221 

forecast.                 222 

 223 

Pseudo-Likelihood Test 224 

Here, we introduce a statistic based on the continuous point-process likelihood function (Daley 225 

and Vere-Jones, 2004). While this statistic resembles the likelihood scores used by previous 226 

CSEP experiments (e.g., Schorlemmer et al., 2007), there are two differences. First, we do not 227 

compute an actual likelihood, whence the name pseudo-likelihood. Second, this pseudo-228 

likelihood statistic is aggregated over target event likelihood scores as opposed to the Poisson 229 

likelihood scores computed over discrete cells (see also Rhoades et al., 2011). In the case of zero 230 

or one events the pseudo-likelihood and the Poisson likelihood scores are identical. Finally, and 231 

most importantly, we build test distributions of pseudo-likelihood scores using the simulated 232 

(non-Poissonian) catalogs provided by the forecasting model, thereby producing distributions 233 

that better represent models that are over-dispersed and more clustered than a Poisson process.  234 

 A continuous marked space-time point process can be represented by its conditional 235 

intensify function 𝜆(𝒆	|	𝐻I), where Ht denotes the history of all earthquake occurrences (and any 236 

other relevant input data) prior to time t. The log likelihood function of any point-process over a 237 

region	𝓡 is  238 

 239 

 𝐿 =dln 𝜆(𝑒"	|	𝐻I) − z 𝜆(𝒆	|	𝐻I)𝑑𝓡.
𝓡

	
Q

"_N

 (12) 

 240 
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CSEP seeks to accommodate a wide range of stochastic models, including generative or 241 

simulator-based models such as UCERF3-ETAS without explicit conditional intensity or 242 

likelihood functions. CSEP therefore does not require an explicit likelihood function for 243 

evaluation (although models that contain explicit likelihood functions can be evaluated using this 244 

idea, e.g., Ogata et al., 2013).  245 

Instead, we approximate the expectation of 𝜆(𝒆	|	𝐻I) using the forecasted catalogs. To do 246 

this we introduce a discretization of 𝓡 similar to previous CSEP experiments. Heuristically, the 247 

approximate rate density is defined as the conditional expectation, given the discretized region, 248 

𝓡𝒅, of its continuous rate density: 249 

 250 

 𝜆|(𝒆	|	𝐻I) = 𝐸[𝜆(𝒆	|	𝐻I)	|	𝓡𝒅]. (13) 

 251 

Conceptually, we can still regard the model as continuous in space, time and magnitude, 252 

but its rate density is only approximated and takes a constant value within a given cell. The 253 

approximate rate density is readily derived from the standard CSEP forecast of gridded expected 254 

rates, by computing the mean event count from the forecast, 𝚲, in each cell in 𝓡𝒅. The discrete 255 

grid cells are used only for approximation purposes; we use the synthetic catalogs from the full 256 

model to calculate the pseudo-likelihood statistic (rather than catalogs of the approximate 257 

model).  258 

From the approximate rate density (Equation 13), we can define the pseudo log likelihood 259 

𝐿� by 260 

 𝐿� =dln 𝜆|(𝑒𝒊	|	𝐻I) − z 𝜆|(𝒆	|	𝐻I)𝑑𝓡.
𝓡

	
Q

"_N

 (14) 
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The pseudo-likelihood test applied here considers a discretized region in space to avoid 261 

introducing artifacts into the forecasts (such as minimum “water-levels” and smoothing operators 262 

that could bias the evaluations) to account for under-sampling in space-magnitude bins. 263 

Formally, we can write the spatial approximate rate density as 264 

 265 

 𝜆|<(𝒆	|	𝐻I) =d𝜆|(𝒆	|	𝐻I)
𝓜

. (15) 

 266 

If 𝜆|<(𝑘) denotes the approximate rate density in the 𝑘IJ spatial cell of the model, we can 267 

compute the observed pseudo-likelihood score using, 268 

 269 

 𝐿�:;< = d ln 𝜆|< (𝑘") − 𝑁�.
Q���

"_N

 (16) 

 270 

Here 𝑘" denotes the spatial cell in which the 𝑖IJ event occurs and 𝑁� denotes the expected number 271 

of events in 𝓡𝒅. Following Equation 16, we compute the statistics for the test distribution as  272 

 273 

 𝐿�A = �dln 𝜆|<S𝑘"AU − 𝑁�
Q�

"_N

� ; 𝑗 = 1,… , 𝐽. (17) 

 274 

Here 𝜆|<(𝑘"A) denotes the approximate rate density of the 𝑖IJ event of the 𝑗IJ catalog from the 275 

forecast. We combine Equation 16 and Equation 17 to obtain the quantile score 276 

 277 
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 𝛾� = 𝐹�S𝐿�:;<U = 𝑃S𝐿�A ≤ 𝐿�:;<U.	 (18) 

 278 

The statistic captures simultaneously the spatial component and the rate component of the 279 

forecast. Thus, potential discrepancies in both rate and the spatial components of the forecasts 280 

should be reflected in this statistic. As with the magnitude test and the number test, we expect 281 

that the quantile scores 𝛾� should be uniformly distributed over multiple evaluation periods. 282 

 283 

Spatial Test – Geometric Average of Target Event Rate Distribution   284 

The spatial test isolates the spatial distribution of the forecast to evaluate whether the observed 285 

locations are consistent with the forecasted spatial distribution. This statistic utilizes the 286 

approximate rate density (Equation 15) with normalization 𝜆|<∗ = 𝜆|</ ∑ 𝜆|<𝓡  to isolate the spatial 287 

component of the forecast.  288 

We define the observed spatial statistic according to 289 

 290 

 𝑠:;< = �d ln 𝜆|<∗(𝑘")
Q���

"_N

	� 𝑁:;<�N , (19) 

 291 

where 𝜆|<∗(𝑘") denotes the normalized approximate rate density in the 𝑘IJ cell corresponding to 292 

the 𝑖IJ event in 𝛀. Likewise, we can define the test distribution for the statistic defined in 293 

Equation (19) using 294 

 295 
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 𝑆A = �dln 𝜆|<∗(𝑘"A)

Q�

"_N

� 𝑁A�N ; 𝑗 = 1,… , 𝐽. (20) 

  296 

As above, 𝜆|<∗S𝑘"AU denotes the approximate rate density in the 𝑘IJ cell corresponding to the 𝑖IJ 297 

event in the 𝑗IJ simulated catalog. The observed spatial statistic (Equation 19) is scored by 298 

computing quantiles in the test distribution (Equation 20) using, 299 

 300 

 𝛾� = 𝐹�(𝑠̂:;<) = 𝑃S𝑆|A ≤ 𝑠̂:;<U. (21) 

 301 

We interpret this statistic as being the geometric mean of the target event rate 302 

distribution. Normalizing 𝜆|< and computing the geometric mean of the target event rate 303 

distribution ensures that two catalogs (from the same forecast) with events occurring in identical 304 

bins will result in equivalent spatial test statistics irrespective of the number of events in either 305 

catalog. If the model were the data generator, we expect that 𝛾� will be uniformly distributed 306 

over multiple evaluation periods. 307 

 308 

Testing Over Multiple Periods 309 

 To assess models over many periods, we exploit the following idea: quantile scores over 310 

multiple periods should be uniformly distributed if the model is the data generator (Gneiting and 311 

Katzfuss, 2014). Departures from a uniform distribution of the quantile scores flag discrepancies 312 

between the forecasting model and observation. Formally, we employ a Kolmogorov-Smirnov 313 

test between the quantile scores and the uniform distribution to test the hypothesis that the 314 
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observed quantile scores are uniformly distributed. We calculate the p-value of this test and use a 315 

significance level 𝛼 = 0.05	to identify discrepancies.  316 

Graphically, we consider different patterns of variation of the observed quantile scores 317 

from a uniform distribution. A model that under-predicts the test statistic produces a graph 318 

similar to that in Figure 1a. In this case, there is a small proportion of low quantile scores and a 319 

high proportion of high quantiles compared to the uniform distribution, because the observed 320 

test-statistic tends to be higher than the simulated test-statistic. Conversely, a model that tends to 321 

over-predict the test statistic produces a graph similar to Figure 1b, because in that case the 322 

actual test statistic tends to be lower than the simulated test statistics. If the model test statistics 323 

are under-dispersed relative to the observed test statistics, then the quantile scores will fall near 324 

the end-points 0 and 1 of the distribution. This produces the pattern seen in Figure 1c. 325 

Conversely, if the model test statistics are over-dispersed relative to the actual test statistic, the 326 

pattern seen in Figure 1d will be the result. 327 

 328 

Methods: Pseudo-Prospective Experiment Design 329 

The 2019 Ridgecrest sequence provides the first opportunity to evaluate operational aftershock 330 

forecasts in a pseudo-prospective sense. A pseudo-prospective experiment preserves the time-331 

dependent causality of the data set by partitioning the dataset into a training set and a testing set 332 

(Schorlemmer et al., 2018), which happened naturally as these forecasts were computed in near 333 

real-time during the Ridgecrest sequence. Most of the forecasts produced in this study were 334 

computed in near-real-time using real-time data products with the exceptions listed in Table 1. 335 

The forecasts presented in this study use the ShakeMap (v.14) source model and default 336 
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parameters described in Milner et al. (2020). We evaluate the forecasts starting at 𝑡 = 0 and 𝑡 =337 

7 days following the Mw 7.1 mainshock (along with the nine others) in this study. 338 

 339 

Data 340 

 For this experiment, we use authoritative data from the Advanced National Seismic 341 

System (ANSS) provided by the United States Geological Survey (USGS) Comprehensive 342 

Catalog (ComCat). The evaluation data were accessed from ComCat on 11 November 2019, 343 

approximately 60 days following the date of the final forecast. We use the data directly provided 344 

by ComCat, and do not attempt to standardize magnitude types or manually relocate events. We 345 

apply the time-dependent magnitude of completeness model from Helmstetter et al. (2006) to 346 

account for missing events following the mainshock, modeled by a time-dependent magnitude of 347 

completeness 𝑀�(𝑡). Therefore, the evaluation catalog has a threshold magnitude 348 

 349 

 𝑀I(𝑡) = maxS𝑀`"�,𝑀�(𝑡)U. (22) 

 350 

Here, 𝑀`"�	, represents a minimum magnitude that is either defined to be	𝑀`"� = 2.5 or 𝑀`"� =351 

3.5, in the case of the number test. We apply the time-dependent magnitude of completeness 352 

model to both forecasted and observed catalogs. The inset in Figure 2a shows the events used for 353 

this study along with the time-dependent magnitude of completeness. In the 77 days following 354 

the Mw 7.1 Ridgecrest event, the catalog lists 1,362 events with 𝑀 ≥ 2.5 in the study region.  355 

Finite-fault representations for trigger ruptures are based on surface field mapping and 356 

geodetic observations, and were provided by ShakeMap (Wald et al., 1999). These finite-fault 357 

models were made available on 11 July 2019 within six days after the Mw 7.1 mainshock. Milner 358 
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et al. (2020) explains the various finite-fault representations available and the sensitivity of the 359 

forecasts to these. 360 

 361 

Earthquake Forecasting Models 362 

We consider two forecasting models, (1) UCERF3-ETAS (U3ETAS) and (2) UCERF3-363 

NoFaults (NoFaults). The former model is explained in detail by Field et al. (2017b), so we 364 

summarize the important differences between U3ETAS and NoFaults here. Field et al. (2017a) 365 

provides a less technical overview of the UCERF3-ETAS model for the interested reader. The 366 

full mathematical description of these models can be found in the above manuscripts and their 367 

appendices. 368 

U3ETAS is unique as compared with standard ETAS models, because the model includes 369 

finite faults that can host so-called supraseismogenic earthquakes. In U3ETAS, a 370 

supraseismogenic earthquake is defined as an earthquake with a rupture length at least as long as 371 

the seismogenic fault width. When a large earthquake in close enough proximity to a U3ETAS 372 

fault is sampled by ETAS, that earthquake is mapped onto the modeled fault-sections. 373 

Subsequently, the rates of all events that utilize the ruptured sections are modified according to 374 

Reid renewal statistics (Reid, 1910; Field et al., 2015). Therefore, U3ETAS provides stochastic 375 

event sets with ruptures on modeled finite faults in addition to ‘off-fault’ ruptures elsewhere, 376 

following a traditional ETAS model. U3ETAS makes no model-wide assumptions about 377 

magnitude-frequency distributions on faults, with most exhibiting non Gutenberg-Richter (GR) 378 

behavior depending on the relative rate of microseismicity versus inferred fault-based ruptures.  379 

On average the faults are slightly characteristic (elevated rates at higher magnitudes), which 380 

means off-fault areas are slightly anti-characteristic so that combined a GR b-value of 1.0 is 381 
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maintained. However, the model assigns the regional faults surrounding the Ridgecrest sequence 382 

an anti-characteristic behavior (Field et al., 2017b; Milner et al., 2020) implying lower 383 

probabilities of triggering supraseismogenic aftershocks than under a pure GR model. In 384 

contrast, NoFaults applies the state-wide G-R relationship (b-value=1.0) throughout the entire 385 

model.  386 

As the name suggests, NoFaults does not include information about modeled faults and 387 

behaves similar to a traditional space-time ETAS implementation (Ogata and Zhuang, 2006). 388 

Both U3ETAS and NoFaults explicitly model the depth distribution of seismicity. The 389 

computational requirements for the two models differ by approximately an order of magnitude, 390 

with U3ETAS being more expensive. Because model simplicity and computational efficiency are 391 

two desirable characteristics of robust operational forecasting tools (Jordan and Jones, 2010; 392 

Jordan et al., 2011), we seek to understand the relative predictive skills and usefulness of the 393 

models.  394 

The forecasts issued by both U3ETAS and NoFaults consist of a family of 100,000 395 

synthetic catalogs constrained to the bounding-box of the CSEP California testing region 396 

(Schorlemmer and Gerstenberger, 2007).  As inputs to all forecasts, we include earthquakes with 397 

M2.5+ for seven days prior to the Mw 7.1 mainshock until the start-time of each forecast, 398 

including the Mw 6.4 Searles Valley event. We use identical input catalogs for both U3ETAS and 399 

NoFaults to maintain direct comparability between the two forecasts. Also, we do not include 400 

spontaneous (background) events in the conditioning data for the forecasts. Therefore, any 401 

discrepancies between the forecast and observations can be attributed to the implementation of 402 

the short-term components of the model and not the background seismicity model.  403 

 404 
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Spatial Region, Magnitude Bins, and Forecast Horizons 405 

For this experiment, we choose magnitude bins 406 

 407 

 𝓜= {[2.5, 2.6), [2.7, 2.8), … , [8.4, 8.5), [8.5,∞)}. (23) 

 408 

The bins are uniformly spaced at Δ𝑀 = 0.1 except for the right-most bin which extends 409 

to infinity. We remove events outside a spatial zone of three Wells and Coppersmith (1994) fault 410 

radii from the M7.1 epicenter (143 km) to isolate the Ridgecrest aftershocks from other 411 

seismicity. Each forecast horizon extends for seven non-overlapping days, which we treat as 412 

independent time intervals. Figure 2b shows the spatial extent of the circular region surrounding 413 

the hypocenter of the Mw 7.1 mainshock and the observed M2.5+ events during this time period.  414 

These definitions completely define the extent of 𝓡 for our experiment. All forecasts are 415 

evaluated for seven days following the forecast start time to preserve effects of short-term 416 

clustering in the observed catalog. Table 1 contains the exact start and end times for all the 417 

forecasts considered in this study, which consist of eleven non-overlapping time periods 418 

following the Mw 7.1 mainshock. All but two U3ETAS forecasts were computed prospectively 419 

using real-time catalogs and data. The NoFaults simulations were run pseudo-prospectively, but 420 

using the same input catalogs and input finite-fault models as U3ETAS. 421 

Results 422 

Before we share the results of the quantitative evaluations of the forecasts, we show how 423 

differences between U3ETAS and NoFaults manifest in individual synthetic catalogs. Since the 424 

models are similar for events smaller than ~Mw 6.5, catalogs display similar characteristics for 425 
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‘typical’ realizations (Figure 3a,c), defined here as catalogs representing the median of the 426 

forecasted number distribution. The differences become obvious when viewing catalogs (Figure 427 

3b,d) that sample the tails of the number distribution at the 99.9th percentile. We call these 428 

catalogs ‘extreme’ as they forecast rare, but possible, large aftershock sequences on potentially 429 

multiple faults. Extreme U3ETAS scenarios involve ruptures triggered on the Garlock fault and 430 

subsequently on the San Andreas fault. Their respective aftershocks are largely constrained 431 

within the fault zones. On the other hand, NoFaults assigns aftershock locations isotropically in 432 

space resulting in (nearly) isotropic catalogs that contain clusters of earthquakes (Figure 3d). 433 

 The differences illustrated in Figure 3, namely in the catalogs at the tails of the forecast, 434 

complicate robust model comparisons using typical California aftershock sequences, which only 435 

occasionally involve triggering of large aftershocks on (mapped) faults. This is because the 436 

models produce very similar (visually nearly indistinguishable) catalogs near the modes and 437 

medians of the number distributions. Sequences such as the 1992 Landers earthquake cascade 438 

and others that are thought to have triggered other large ruptures could help distinguish between 439 

these two models (Kisslinger and Jones, 1991; Hauksson et al., 1993; Freed and Lin, 2001).  440 

We show test results as quantile scores for all evaluations in Table 2. The overall 441 

(aggregate) scores over all forecast periods are reported as p-values of Kolmogorov-Smirnov 442 

tests between a uniform distribution and the quantile scores of each test computed at the updating 443 

periods shown in Table 1. 444 

 445 

Forecasted Seismicity Rates 446 

Figure 4 shows the forecasted number distributions as a function of time during the 447 

aftershock sequence for both 𝑀I(𝑡) = maxS2.5,𝑀�(𝑡)U	and 𝑀I(𝑡) = maxS3.5,𝑀�(𝑡)U.  448 
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We observe the largest variability in the number distribution immediately following the 449 

mainshock, which decreases rapidly throughout the evaluation period. During the first evaluation 450 

period the median forecasted numbers are 925 and 956 for U3ETAS and NoFaults, respectively, 451 

with 829 observed events during this period. The median forecasted event counts are identical 452 

between the two models for the remaining forecasting periods. 453 

We compute number test results for each forecast by reporting quantile scores for 454 

individual testing periods as a function of evaluation day (Figure 5a). Except for the first day, 455 

both forecasts produce nearly identical quantile scores. The difference in number distributions 456 

during the first forecasting period can potentially be explained by the anti-characteristic behavior 457 

of the U3ETAS faults surrounding the aftershock sequence. This behavior results in U3ETAS 458 

producing fewer large (M6.5+) events, along with their numerous aftershocks, and subsequently 459 

fewer catalogs with large numbers of aftershocks. During the first forecasting period, the 95- 460 

percentile range of the number distribution are (751, 2482) and (756, 3906) for U3ETAS and 461 

NoFaults respectively.  462 

Figure 5b shows the number test quantile scores compared against standard uniform 463 

quantiles as a quantile-quantile plot. We assign the standard uniform quantiles following 𝑈(b) =464 

𝑘/(𝑛 + 1), for 𝑘 = 1,… , 𝑛, to space the quantiles equally along the distribution. We compute 465 

confidence intervals for the 𝑘IJ order statistic of the standard uniform distribution using 𝑈(b) ∼466 

Β(𝑘, 𝑛 + 1 − 𝑘) where 𝑛 is the number of observations (Jones, 2004). 467 

The distribution of quantile scores indicates the forecasts overpredict the observed 468 

seismicity (Figure 1b), as the observed numbers of earthquakes too frequently fall into the lower 469 

tails of the forecasted distributions. At both magnitude cutoffs, the Kolmogorov-Smirnov tests 470 

reject the hypothesis that the distribution of quantile scores from the number test are uniformly 471 
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distributed. This suggests that, given this limited forecasting period, the observations are not 472 

indistinguishable from realizations from the forecast number distribution. 473 

 474 

Magnitude Number Distribution 475 

 Figure 6a shows incremental MFDs aggregated over the eleven-week evaluation period. 476 

For the union MFD, Λ\
(`), and observed MFDs, Ω\

(`), we sum bin-wise counts from each 477 

evaluation period to obtain aggregate counts. We estimate percentiles using an aggregate 478 

forecasted MFD (thin lines in Figure 6). We generate the aggregate forecasted MFD using a 479 

bootstrapped approach where we randomly sample one MFD per forecast per time-period and 480 

sum bin-wise counts over each evaluation period. This produces 100,000 aggregate MFDs 481 

approximating an MFD representative of the eleven-week evaluation period. Except between 482 

M3.0 and M4.0 the observations generally fall within the variability of the forecasted MFD. 483 

Above M6.5 we see differences in the tails of the magnitude frequency distributions that further 484 

show how the anticharacteristic MFDs assumed by U3ETAS manifest in the forecasts.  485 

Figure 6b shows the bin-wise value of the magnitude test statistic over the full evaluation 486 

period to highlight the bin-wise contribution to the overall magnitude test statistic. From the bin-487 

wise statistic, we can obtain the magnitude test statistic in Equation 9 by summing over all 488 

magnitude bins. This figure illustrates that discrepancies at larger magnitudes contribute more 489 

(per event) to the value magnitude test statistic, but this must be reconciled with statistics 490 

computed from simulated catalogs. We can identify bins whose values contribute most to the 491 

discrepancy between observations and forecasts by assessing the observed statistic with respect 492 

to the bin-wise distribution of magnitude test statistics. 493 
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The percentiles in Figure 6b (for both U3ETAS and NoFaults) are estimated from the 494 

bin-wise distributions of magnitude test statistics based on the bootstrapped aggregate MFD 495 

(explained above). We can associate the large peak observed near M4.7 in Figure 6b with 496 

catalogs from either model that contain zero events in that magnitude bin. This can be seen by 497 

comparing the square bin-wise difference with the union MFD and zero observed events in 498 

Figure 6a. The percentiles in Figure 6b indicate 2.5% of the catalogs contain no events at this 499 

magnitude, and 16% of the catalogs contain no events at M5.0. The largest discrepancies with 500 

respect to the forecasts occur from around M3.0 through M4.0 indicated by the observed bin-501 

wise values falling outside the 95th percentile range of the bin-wise distribution. Generally, the 502 

observed values are frequently greater than the median from their respective bin-wise 503 

distributions, and this behavior is not confined to a particular magnitude range. 504 

 Figure 7a shows quantile scores for each evaluation period following the Mw 7.1 505 

mainshock to assess the performance of the forecast over multiple updating periods. The shaded 506 

region in Figure 7a indicates the critical region assuming a 0.05 significance level for a right-507 

tailed statistical test. (In this magnitude test, larger-than-expected values of the statistic, i.e. large 508 

quantile scores, indicate larger discrepancies). Figure 7b shows the quantile-quantile plot of the 509 

magnitude test scores against standard uniform quantiles. The quantile scores, 𝛾 , do not sample 510 

the test distribution uniformly and are instead concentrated near the upper end. The Kolmogorov-511 

Smirnov test thus rejects the hypothesis of a uniform distribution of the quantile scores. The 512 

pattern in Figure 7b implies persistently greater-than-expected differences between the observed 513 

magnitude distribution and the forecast. The pattern of magnitude test quantile scores reflects the 514 

finding in Figure 6b that the bin-wise magnitude scores are typically greater than the median bin-515 

wise values. 516 
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Spatial Distribution of Seismicity and Pseudo-likelihood Test 517 

 Figure 8a,b shows the approximate spatial rate density (Equation 15) for both U3ETAS 518 

and NoFaults during the first evaluation period following the Mw 7.1 mainshock. The expected 519 

cell-wise event counts clearly show differences between U3ETAS and NoFaults, specifically the 520 

increased expected rates along modeled faults in U3ETAS. The relatively high rates along the 521 

Garlock fault, for example, are dominated by catalogs containing supraseismogenic ruptures 522 

along these faults (which occur in about 7% of the catalogs). Thus, we should expect to see 523 

noticeable differences between these two models with observations of such aftershock 524 

sequences. 525 

Figure 8c shows test distributions of spatial statistics for a single week-long forecast 526 

immediately following the Mw 7.1 mainshock. Likewise, Figure 8d shows test distributions for 527 

the pseudo-likelihood score. Positive values of the pseudo-likelihood scores can occur when 528 

multiple target events occur within the same spatial bin with 𝜆|< ≫ 1 (the Poisson likelihood 529 

contains an explicit term to account this discretization artifact that does not appear in the pseudo-530 

likelihood statistic), which can happen when scoring catalogs that sample upper tails of the 531 

number distribution. For this evaluation period, the observed statistic, 𝐿�:;<, lies in the lower tail 532 

of the test distribution 𝐿�. 533 

 The aggregate spatial test result in Figure 9a shows quantile scores and pseudo-534 

likelihood quantiles for each evaluation period since the Mw 7.1 mainshock. In general, U3ETAS 535 

tends to have larger quantile scores, and thus, more favorable test statistics for a given forecast 536 

than NoFaults. We find that if differences are observed, they appear in both the pseudo-537 

likelihood and spatial test statistics. Comparisons of quantile scores against the uniform 538 

distribution (Figure 9b) show the statistic from the observed catalog tends to fall in the lower tail 539 
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of the spatial test distribution for most forecasts. Thus, according to the spatial test, random 540 

draws from the forecasted distribution are distinguishable from the observations; the latter more 541 

frequently occur in cells of lower rates than expected by the models. 542 

The pseudo-likelihood quantiles 𝛾� shows seemingly better agreement with the standard 543 

uniform quantiles (we compute p=0.0280, p=0.0235 from the Kolmogorov-Smirnov test for 544 

U3ETAS and NoFaults, respectively); however, this observation must be analyzed in the context 545 

of both the number test and spatial test results. Since both models show inconsistencies in the 546 

number test and spatial test, we expect this to be reflected in the pseudo-likelihood test. Previous 547 

studies have shown that the Poisson-based likelihood test is anticorrelated with the number test 548 

results (Werner et al., 2011). The somewhat counterintuitive result causes forecasts that 549 

overpredict the seismicity rates to trivially pass the likelihood test. Therefore, this must be 550 

considered when interpreting the pseudo-likelihood test results. Specifically, the test results are 551 

probably better solely because the models overpredict. 552 

Deconstructing the statistics helps to inform us about the behavior of the evaluation 553 

results. For the magnitude test, we showed the bin-wise value of the test statistics to identify 554 

problematic bins. Here, we show cell-wise spatial pseudo-likelihood ratios (U3ETAS – 555 

NoFaults) in Figure 10 to understand which cells contribute to the differences observed in the 556 

spatial test and the pseudo-likelihood tests. We represent the observed event rate distribution on 557 

the spatial grid as follows: spatial cells with no observed events show the difference in the 558 

approximate rate density between models, and cells containing observed events show the 559 

difference in the that cells’ contribution to the pseudo-likelihood scores. Only cells containing 560 

observed events contribute to the spatial test statistic, therefore cells without observed events 561 

help to visualize differences in the spatial distributions of the forecast. These plots are similar to 562 
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spatial deviance residuals (Schneider et al., 2014). We find that U3ETAS tends to show larger 563 

spatial test statistics, and thus quantile scores, when observed events occur along modeled 564 

U3ETAS faults. 565 

Discussion 566 

We have introduced a suite of evaluations for catalog-based earthquake forecasts that provide 567 

insight into the forecasted earthquake rates, magnitude-number distributions, and spatial 568 

distributions of seismicity. These evaluations are complementary to the Turing Tests introduced 569 

by Page and van der Elst (2018) and the comparative mean-information gain introduced by 570 

Nandan et al. (2019), which can also be used to evaluate generative or simulator models that 571 

produce synthetic catalogs. Importantly, these metrics begin to relax the independence and 572 

Poisson assumptions of previous forecast evaluations (Schorlemmer et al., 2007). Additionally, 573 

we introduced an approach, commonly applied to weather (and other) probabilistic forecasts 574 

(e.g., Gneiting et al., 2006), to calibrate probabilistic earthquake forecasting models. We apply 575 

these new methods to U3ETAS and NoFaults forecasts of the Ridgecrest sequence for eleven-576 

weeks following the Mw 7.1 mainshock. 577 

We find U3ETAS and NoFaults overpredict earthquake rates in 10 out of 11 evaluation 578 

periods for 𝑀I(𝑡) = maxS2.5,𝑀�(𝑡)U by comparing observed event counts against the mode of 579 

the forecasted number distribution (modal ratio), but 5 out of 11 modal ratios are within ±20% of 580 

the observed event count (with the maximum being a 140% overprediction). On average, from 581 

the modal ratio, the forecasts overpredict observed event counts by approximately 50%. 582 

NoFaults tends to produce larger variability in the number distribution than U3ETAS (e.g., 583 

Figure 4a,b), which is most noticeable during the first evaluation period. This likely occurs 584 

because the Airport Lake and Little Lake faults are both anti-characteristic in U3ETAS (Milner 585 
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et al., 2020), which causes these faults to host fewer large magnitude events as compared with 586 

the GR (b=1.0) MFD implemented in NoFaults (Figure 6). Moreover, every event in NoFaults is 587 

treated as a point-source. In contrast, U3ETAS can assign large ruptures to faults (if the event 588 

occurs close enough to a modeled fault). This in turn activates the elastic-rebound model (Field 589 

et al., 2015), and this combined behavior effectively smooths the forecasted number of events in 590 

the vicinity of the rupture (Figure 8a,b). The anticharacteristic behavior of the Little Lake and 591 

Airport Lake faults is likely to have pronounced differences in the tails of the number 592 

distributions and the associated hazard and risk curves. In areas with anticharacteristic MFDs, 593 

U3ETAS produces lower expected rates of events except along the faults that host aftershock 594 

sequences. Visually, we see the larger rates along the faults for U3ETAS as compared with 595 

NoFaults (Figure 8a,b), but statistically the chance of damaging aftershocks is lower in U3ETAS. 596 

On aggregate, the U3ETAS and NoFaults produce catalogs whose MFDs display lower 597 

variability with respect to the expected MFD than observations. By comparing the logarithms of 598 

bin-wise counts we find that observations are different, statistically, from realizations from the 599 

forecasts. Figure 6b shows contributions to this discrepancy across all magnitude ranges, but 600 

M3.0 through M4.0 show the largest discrepancy with respect to the forecasted bin-wise 601 

statistics. This can be interpreted in two ways: either significant discrepancies exist between 602 

U3ETAS (and NoFaults) and observations, or this magnitude test is too severe given the 603 

uncertainties in reported magnitudes and assumed b-values in the forecasting model. To address 604 

uncertainties in reported magnitudes, we recomputed the magnitude test with magnitude bins 605 

Δ𝑀 = 0.2, and found consistent results with those presented in Figure 7. Moreover, using Monte 606 

Carlo simulations we find the magnitude test results are sensitive to changes in b-values of Δ𝑏 ≤ 607 

0.1 units, which is on the order of the uncertainty in b-value estimates for U3ETAS (Felzer, 608 
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2013). Thus, including epistemic uncertainty in the assumed b-value could potentially improve 609 

calibration. Furthermore, we should consider explicitly accounting for uncertainties in observed 610 

magnitudes when evaluating earthquake forecasts. 611 

Here, we discuss a potential reason for the inconsistencies in the spatial test results. 612 

ETAS models, due to their self-excitation property (Hawkes, 1971), have a particularly difficult 613 

time forecasting seismicity in areas that were not previously active. As a result, the approximate 614 

rate densities (Equation 13) and locations of events in the simulated catalogs are controlled by 615 

the events in the input catalog used to condition the forecast. For example, neither U3ETAS nor 616 

NoFaults forecast much seismicity off the northwest-end of the mainshock fault plane during the 617 

first forecasting period (Figure 8a,b), leading to the observations falling in the lower tail of the 618 

test distribution. This discrepancy can be reduced with more frequent updating of the ETAS 619 

intensity function, which would locally increase after each subsequent event. Ideally, the 620 

conditional intensity function would be updated continuously after each observed event; 621 

however, this might prove difficult in practice because of computational times and costs.   622 

 The spatial and pseudo-likelihood tests show the largest differences between U3ETAS 623 

and NoFaults amongst the statistics, which we expected because the spatial distribution of 624 

seismicity is the primary difference between these models. Figure 10 shows spatial (pseudo-) 625 

log-likelihood ratios (U3ETAS – NoFaults) to understand where differences in the spatial test 626 

statistic originate. Carefully looking at the cell-wise ratios where observed events occur in Figure 627 

10, we find the differences manifest when aftershocks occur near modeled U3ETAS faults. This 628 

suggests that we should be able to identify differences between U3ETAS and NoFaults using the 629 

spatial test for sequences when aftershocks occur on modeled U3ETAS faults. 630 
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We draw counter-intuitive conclusions from the pseudo-likelihood test, when put in 631 

context of the spatial and number tests. We find that observations are inconsistent with both the 632 

rate and spatial forecasts from both models, and thus we expect the pseudo-likelihood scores to 633 

reflect this observation. Instead, the pseudo-likelihood test scores show more favorable 634 

agreement with the observations. Similar to the Poisson likelihood test (Schorlemmer et al., 635 

2007), overpredictions in rates can result in artificially high pseudo-likelihood scores (e.g., 636 

Werner et al., 2011). From this, we conclude that the pseudo-likelihood test provides redundant 637 

information to the number and spatial tests, and the test is less severe than the spatial test when 638 

the forecast fails the number test. 639 

U3ETAS uses ETAS parameters estimated from the state-wide California seismic catalog 640 

(Hardebeck, 2013). The moderate overprediction by U3ETAS (and NoFaults) suggests that the 641 

Ridgecrest sequence deviates from the state-wide average in aftershock productivity. Milner et 642 

al. (2020) found this behavior was due to high primary productivity of the mainshock, coupled 643 

with low secondary aftershock productivity. State-wide maximum-likelihood estimates (MLE) of 644 

ETAS parameters also result in over-predictions for this sequence when using traditional ETAS 645 

models (Mancini et al., 2020, In Press). These results suggest that accurate forecasting of 646 

aftershock rates requires proper treatment of intersequence variability or obtaining sequence 647 

specific parameters (Page et al., 2016).  648 

MLE parameter estimates of a traditional ETAS model may well be different, however, 649 

from MLE estimates of U3ETAS parameters, because the models are different: non-GR behavior 650 

in U3ETAS is spatially variable, magnitude and spatial distributions are not separable, and 651 

‘characteristic-ness’ impacts secondary triggering productivity (Milner et al., 2020). Milner et al. 652 

(2020) showed that adjustment of the ETAS c-value could improve the fit to the cumulative 653 
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number of 𝑀 ≥ 3.5 events, but this required manual trial-and-error adjustments to optimize for a 654 

specific metric. If sequence specific parameters are not (yet) available, incorporating additional 655 

uncertainty in the ETAS parameters could make the model more general and perhaps calibrated, 656 

especially for the first forecasts following a large earthquake before sequence-specific 657 

information is available (Omi et al., 2015; Omi et al., 2019).  658 

The discrepancies between the models and observations can potentially be explained by 659 

epistemic uncertainty in model parameters not accounted for by the model. Incorporating 660 

parameter uncertainty would broaden distribution functions (reduce sharpness) and potentially 661 

lead to calibrated probabilistic forecasts. Moreover, incorporating more sequences (and quiet 662 

periods) could uncover systematic discrepancies with observations that can lead to improvements 663 

in the models, and increase the robustness of the results. Retrospective as well as further 664 

prospective tests are required to understand the usefulness and accuracy of modeling decisions. 665 

In particular, the U3ETAS model will be most easily differentiated from standard ETAS models 666 

in the rare circumstances (of about 7%, assuming U3ETAS is correct) when supraseismogenic 667 

events are triggered. This relatively small percentage (which varies spatially in the model) 668 

implies that we expect to observe substantial differences between the models about once in 20 669 

earthquake sequences. Future work should therefore evaluate the model retrospectively against 670 

all well-recorded aftershock sequences observed in California.   671 

Conclusions 672 

In this manuscript, we evaluate forecasts from UCERF3-ETAS and UCERF3-NoFaults during 673 

the Ridgecrest using new non-parametric evaluations developed for forecasts specified as 674 

simulated catalogs. We evaluate eleven week-long forecasts immediately following the Mw 7.1 675 

mainshock using an idea, known as calibration, that suggests that random draws from the 676 
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forecast should be indistinguishable from observations. Probabilistic calibration is severe, but is 677 

a useful approach to aggregate forecasts over multiple periods. Probabilistic forecasts should aim 678 

to maximize the sharpness of their predictive distributions, subject to calibration (Gneiting et al., 679 

2007; Gneiting and Katzfuss, 2014). We introduce statistics that probe the forecasted earthquake 680 

rate, magnitude distributions, and spatial component of the forecast. Importantly, these 681 

evaluations relax the assumption that earthquakes occur in discrete Poissonian space-time-682 

magnitude bins and better reflect the dependencies between earthquakes. 683 

This pseudo-prospective evaluation of U3ETAS (and NoFaults) constitutes a milestone as 684 

it represents the first out-of-sample evaluation of a model under consideration for real-time 685 

operational earthquake forecasting by the US Geological Survey. (Pseudo-) Prospective model 686 

evaluation is a critical step in building confidence in the model outputs. To first order, both 687 

U3ETAS and NoFaults capture the temporal evolution and magnitude distributions of the 688 

earthquake sequence, notwithstanding the generic state-wide ETAS model parameters. For 689 

example, when considering the mode of the forecasted number distribution, the forecasts on 690 

average overpredict the observed number of events by approximately 50% with 5 out of 11 691 

forecasts being within ±20% of the observed event count. This suggests that, in spite of the much 692 

more severe calibration test results, U3ETAS (and ETAS models in general) are effective tools 693 

to provide insight into the spatial and temporal distributions of seismicity, in real-time, during an 694 

aftershock sequence. As with any forecasting model, the usefulness depends on the specific use-695 

case in mind (Field and Milner, 2018). For U3ETAS, in particular, estimates of probabilities of 696 

ruptures on nearby faults may provide valuable information for emergency planners and decision 697 

makers (Milner et al., 2020). 698 
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 The results of the proposed tests lead to similar conclusions for both UCERF3-ETAS and 699 

NoFaults. For the number test, the forecasts systematically overpredict the observed seismicity. 700 

The overpredictions can be attributed to deviations in primary and secondary aftershock 701 

productivity during the Ridgecrest with respect to the state wide average. The observed MFDs 702 

show greater variability with respect to the expected MFD than predicted by the forecasts. We 703 

interpret this discrepancy as a result of unmodeled uncertainty in the magnitude data, 704 

highlighting a need to account for observational uncertainty in the tests. The spatial tests uncover 705 

an issue associated with the discrete updating of self-exciting ETAS models, that is, the models 706 

have difficulty forecasting seismicity in areas without previous seismicity. We find the largest 707 

differences between U3ETAS and NoFaults when observed aftershocks occur on modeled 708 

U3ETAS faults. In such cases, the pseudo-likelihood test provides redundant results to the 709 

number and spatial test.  710 

Data and Resources 711 

The evaluation results and data for individual simulations can be found at 712 

https://github.com/cseptesting/ridgecrest_evaluation_bssa. The UCERF3-ETAS and UCERF3-713 

NoFaults simulations were generated using the UCERF3 model implemented in OpenSHA and 714 

can be found at https://github.com/opensha/ucerf3-etas-launcher/. The code used for the analysis 715 

can be found in development at https://github.com/SCECcode/csep2/. The finite-fault data was 716 

obtained from the ShakeMap accessed through the Comprehensive Catalog (ComCat) provided 717 

by the United States Geological Survey and can be access through the web at 718 

https://earthquake.usgs.gov/data/comcat/. 719 
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Tables 922 

Table 1. Start times for the forecasts considered in this study. UCERF3-NoFaults were computed pseudo-923 

prospectively using the same input catalogs as their UCERF3-ETAS counterparts. UCERF3-ETAS forecasts were 924 

computed in near-real-time with real-time data products except as otherwise noted.  925 

Mw 7.1 + 𝚫𝑻	(days) Start Time (GMT+0) End Time (GMT+0) 

0.0* 2019-07-06 03:19:54.04 2019-07-13 03:19:54.04 

7.0† 2019-07-13 03:19:54.04 2019-07-20 03:19:54.04 

14.0** 2019-07-20 03:19:54.04 2019-07-27 03:19:54.04 

21.0 2019-07-27 03:19:54.04 2019-08-03 03:19:54.04 

28.0 2019-08-03 03:19:54.04 2019-08-10 03:19:54.04 

35.0 2019-08-10 03:19:54.04 2019-08-17 03:19:54.04 

42.0 2019-08-17 03:19:54.04 2019-08-24 03:19:54.04 

49.0 2019-08-24 03:19:54.04 2019-08-31 03:19:54.04 

56.0 2019-08-31 03:19:54.04 2019-09-07 03:19:54.04 

63.0 2019-09-07 03:19:54.04 2019-09-14 03:19:54.04 

70.0 2019-09-14 03:19:54.04 2019-09-21 03:19:54.04 

* Calculated on 09/04/19, catalog input data accessed from ComCat 09/04/19 

† Calculated on 07/16/19, catalog input data accessed from ComCat 07/16/19 

** Calculated on 08/19/19, catalog input data accessed from ComCat 08/19/19 

   

  926 
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Table 2. Evaluation results for number, magnitude, pseudo-likelihood, and spatial tests results for UCERF3-ETAS 927 

and UCERF3-NoFaults for 𝑀I(𝑡) = max,2.5,𝑀�(𝑡)1. 928 

Test day 

(since M7.1) 

U3ETAS  

(N-Test)* 

NoFaults 

(N-Test)* 

U3ETAS  

(M-Test) 

NoFaults 

(M-Test) 

U3ETAS  

(PL-Test) 

NoFaults 

(PL-Test) 

U3ETAS 

(S-Test) 

NoFaults 

(S-Test) 

7 [0.818, 0.185] [0.843, 0.160] 0.912 0.944 0.073 0.094 0.044 0.035 

14 [0.688, 0.326] [0.692, 0.322] 0.819 0.822 0.035 0.032 0.043 0.04 

21 [0.995, 0.006] [0.996, 0.006] 0.129 0.136 0.109 0.083 0.192 0.137 

28 [0.958, 0.052] [0.958, 0.051] 0.725 0.731 0.018 0.017 0.065 0.065 

35 [0.999, 0.002] [0.999, 0.002] 0.57 0.575 0.031 0.036 0.296 0.298 

42 [0.907, 0.114] [0.908, 0.113] 0.825 0.827 0.018 0.012 0.116 0.078 

49 [0.399, 0.636] [0.398, 0.636] 0.782 0.781 0.325 0.186 0.307 0.209 

56 [0.998, 0.004] [0.998, 0.004] 0.904 0.905 0.012 0.013 0.266 0.276 

63 [0.999, 0.002] [0.999, 0.002] 0.908 0.905 0.187 0.095 0.921 0.874 

70 [0.995, 0.008] [0.995, 0.008] 0.905 0.904 0.052 0.024 0.732 0.609 

77 [1.000, 0.000] [1.000, 0.001] 0.967 0.967 0.134 0.138 0.975 0.976 

Overall 8.450e-05 3.363e-05 1.425e-03 1.222e-03 2.796e-02 2.349e-02 2.432e-06 1.927e-08 

 *,𝜹𝟏, 𝜹𝟐1        

  929 
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Figure Captions 930 

Figure 1. Schematic of cumulative distribution of quantile scores for a test statistic calculated 931 

over multiple test periods (points) as compared with the ideal uniform distribution (dashed line) 932 

expected for a well-calibrated model. Panels show instances of (a) under-prediction, and (b) 933 

over-prediction of the statistic by the model; (c) under-dispersion, and (d) over-dispersion of 934 

statistic in the model simulations. 935 

 936 

Figure 2. (a) Ridgecrest sequence data beginning one week preceding the Mw 6.4 foreshock 937 

through the eleven-week evaluation period. Vertical gray dashed lines indicate the starting times 938 

of the forecasts. Brown data denote target (test) earthquakes. The forecasts are conditioned on all 939 

events until the start time of the forecast. The inset shows the Helmstetter et al. (2006) 940 

magnitude-completeness model for the first three days following the Mw 7.1 mainshock. (b) 941 

Distribution of spatial seismicity from ComCat during the period shown in (a). The circle shows 942 

the spatial region used for the evaluations based on an average Mw 7.1 fault length from Wells 943 

and Coppersmith (1994) with a radius of approximately 143 km. 944 

 945 

Figure 3. Synthetic catalog realizations showing 7 days of aftershocks following the Mw 7.1 946 

mainshock. (a) ‘Typical’ U3ETAS synthetic catalog, defined as the catalog whose event count 947 

lies along the median amongst all simulated catalogs. (b) ‘Extreme’ U3ETAS synthetic catalog, 948 

which is defined as the catalog whose event count falls in the uppermost 0.1 percentile of the 949 

forecasted number distribution. Notice the triggered ruptures on the Garlock and San Andreas 950 

faults that in turn generate aftershocks along these faults. (c) ‘Typical’ synthetic catalog 951 

generated by NoFaults and (d) an ‘extreme’ catalog from NoFaults, which lacks triggering of 952 
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ruptures on prescribed faults resulting in a nearly isotropic aftershock distribution. The ‘extreme’ 953 

catalogs highlight the predominant differences between these two models and suggest that 954 

differences will be most noticeable when large aftershocks occur on mapped faults in U3ETAS. 955 

 956 

Figure 4. Forecasted number distributions and observed cumulative number over the eleven-957 

week evaluation period. The forecasted event count distributions are offset by the number of 958 

observed events at the start of the forecast. Forecasted number distributions are plotted at the end 959 

of each evaluation period. The vertical extent of the lines indicates the 95-percentile range of the 960 

forecasted number distribution. The ‘x’ indicates evaluation periods with observed event counts 961 

that fall outside the 95-percentile range of the forecast. (a) Both observed and forecasted catalogs 962 

are filtered to threshold magnitudes M«	(t) = max(2.5,𝑀�(𝑡)) and (b) catalogs are filtered to 963 

M«(t) = max(3.5,𝑀�(𝑡)). During the first seven-day forecast period, the 95th percentile of the 964 

forecasted number distribution for M2.5+ events are 2,482 and 3,906 events for U3ETAS and 965 

NoFaults, respectively. 966 

 967 

Figure 5. Aggregate number test results for 𝑀I(𝑡) = max(2.5,𝑀�(𝑡))  and 𝑀I(𝑡) =968 

max(3.5,𝑀�(𝑡)) magnitude thresholds for U3ETAS and NoFaults for eleven weekly evaluation 969 

intervals following the Mw 7.1 mainshock. (a) Quantile scores 𝛿N (top) and 𝛿W (bottom) for 970 

individual weekly evaluation periods. (b) Quantile-quantile plot showing calibration of rate 971 

forecasts by comparing quantile scores, 𝛾Q against standard uniform quantiles. The dashed lines 972 

indicate 95 percent confidence intervals around the standard uniform quantiles. Thus, U3ETAS 973 

and NoFaults overpredict the number of M2.5+ and M3.5+ events during this aftershock 974 

sequence. 975 
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 976 

Figure 6. (a) Magnitude frequency distribution in Δ𝑀 = 0.1 bins aggregated over entire the 977 

eleven-week evaluation period. The thin lines approximate the 95% percentile range of the event 978 

counts in each magnitude bin. The U3ETAS magnitude frequency distribution shows anti-979 

characteristic behavior through the lack of M6.5+ earthquakes as compared with NoFaults. (b) 980 

Bin-wise magnitude test statistic aggregated over the entire evaluation period. The circles depict 981 

the kernel of 𝑑:;< for both U3ETAS and NoFaults to show bin-wise contributions to 𝑑:;<. We 982 

find negligible differences between the two models. The solid lines show percentiles from the 983 

bin-wise value distribution, for both models. 984 

 985 

Figure 7. Magnitude test results for events with 𝑀I(𝑡) = (2.5,𝑀�(𝑡)) over the full eleven-week 986 

evaluation period.  (a) Quantile scores are shown for individual week-long evaluation periods. 987 

Gray patch depicts the 0.05 significance level for the magnitude test. The largest differences 988 

between U3ETAS and NoFaults exist during the first week and become negligible over the 989 

remainder of the evaluation period. (b) Calibration of magnitude forecasts by comparing 990 

magnitude test quantile scores against standard uniform quantiles. The dashed lines depict 95 991 

percent confidence intervals around the standard uniform quantiles. 992 

 993 

Figure 8. Logarithm of the expected event counts per spatial bin per week for U3ETAS (a) and 994 

NoFaults (b) for the week-long forecast following the Mw 7.1. The relatively high expected 995 

counts along the faults in U3ETAS are controlled by scenarios whose aftershock sequences 996 

contain supraseismogenic ruptures along these faults. In both plots, target events during this 997 

period are shown as white circles. The color scale is manually saturated for comparison 998 
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purposes. The spatial bin with highest rate expects 64.24 and 65.76 events for U3ETAS and 999 

NoFaults, respectively. (c) Evaluation result for the spatial test for U3ETAS (top) and NoFaults 1000 

(bottom) for the first evaluation period at seven days after the Mw 7.1 mainshock. 𝑆|(­®)	denotes 1001 

the 95th percentile range of the test distribution of the spatial test statistic, 𝑠̂:;< is the observed 1002 

statistic, and 𝛾� is the quantile score. (d) Same as (c) except for the pseudo-likelihood test 1003 

statistics. 1004 

 1005 

Figure 9. Spatial test and pseudo-likelihood results for events with 𝑀I(𝑡) = max(2.5,𝑀�(𝑡)) 1006 

over the complete eleven-week evaluation period. The spatial test and likelihood tests show the 1007 

greatest differences between U3ETAS and NoFaults. (a) Quantile scores shown for individual 1008 

week-long evaluation periods. The patch depicts the 0.05 significance level for the spatial test. 1009 

(b) Calibration of spatial forecasts by comparing quantile scores against standard uniform 1010 

quantiles. The dashed lines depict 95 percent confidence intervals around the standard uniform 1011 

quantiles. 1012 

 1013 

Figure 10. Map of cell-wise spatial pseudo log-likelihood ratios between U3ETAS and NoFaults 1014 

for individual evaluation periods ending on (a) day 35, (b) day 49, (c) day 56, and (d) day 63 1015 

following the Mw 7.1 mainshock. Maps show the higher rates along faults in U3ETAS. 1016 

Evaluation periods at (b) 49 days and (d) 63 days show the largest differences in the observed 1017 

spatial statistic, which is calculated only from spatial cells where events occur, while periods 1018 

ending on days 35 and 56 show a negligible difference in the spatial statistic. This highlights 1019 

how spatial test results are sensitive to events occurring on modeled U3ETAS faults and that 1020 

such events are required to discern between the models. The color 1021 
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scale	is	manually	saturated	between	-0.05	and	0.05	to	help	comparisons; and dots show 1022 

locations of target events 1023 

  1024 
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Figures 1025 

 1026 

Figure 1. Schematic of cumulative distribution of quantile scores for a test statistic calculated over multiple test 1027 

periods (points) as compared with the ideal uniform distribution (dashed line) expected for a well-calibrated model. 1028 

Panels show instances of (a) under-prediction, and (b) over-prediction of the statistic by the model; (c) under-1029 

dispersion, and (d) over-dispersion of statistic in the model simulations. 1030 
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 1031 

Figure 2. (a) Ridgecrest sequence data beginning one week preceding the Mw 6.4 foreshock through the eleven-week 1032 

evaluation period. Vertical gray dashed lines indicate the starting times of the forecasts. Brown data denote target 1033 

(test) earthquakes. The forecasts are conditioned on all events until the start time of the forecast. The inset shows the 1034 

Helmstetter et al. (2006) magnitude-completeness model for the first three days following the Mw 7.1 mainshock. (b) 1035 

Distribution of spatial seismicity from ComCat during the period shown in (a). The circle shows the spatial region 1036 

used for the evaluations based on an average Mw 7.1 fault length from Wells and Coppersmith (1994) with a radius 1037 

of approximately 143 km.    1038 
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 1039 

Figure 3. Synthetic catalog realizations showing 7 days of aftershocks following the Mw 7.1 mainshock. (a) 1040 

‘Typical’ U3ETAS synthetic catalog, defined as the catalog whose event count lies along the median amongst all 1041 

simulated catalogs. (b) ‘Extreme’ U3ETAS synthetic catalog, which is defined as the catalog whose event count 1042 

falls in the uppermost 0.1 percentile of the forecasted number distribution. Notice the triggered ruptures on the 1043 

Garlock and San Andreas faults that in turn generate aftershocks along these faults. (c) ‘Typical’ synthetic catalog 1044 

generated by NoFaults and (d) an ‘extreme’ catalog from NoFaults, which lacks triggering of ruptures on prescribed 1045 

faults resulting in a nearly isotropic aftershock distribution. The ‘extreme’ catalogs highlight the predominant 1046 

differences between these two models and suggest that differences will be most noticeable when large aftershocks 1047 

occur on mapped faults in U3ETAS. 1048 
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 1049 

Figure 4. Forecasted number distributions and observed cumulative number over the eleven-week evaluation period. 1050 

The forecasted event count distributions are offset by the number of observed events at the start of the forecast. 1051 

Forecasted number distributions are plotted at the end of each evaluation period. The vertical extent of the lines 1052 

indicates the 95-percentile range of the forecasted number distribution. The ‘x’ indicates evaluation periods with 1053 

observed event counts that fall outside the 95-percentile range of the forecast. (a) Both observed and forecasted 1054 

catalogs are filtered to threshold magnitudes M«	(t) = max(2.5,𝑀�(𝑡)) and (b) catalogs are filtered to 1055 

M«(t) = max(3.5,𝑀�(𝑡)). During the first seven-day forecast period, the 95th percentile of the forecasted number 1056 

distribution for M2.5+ events are 2,482 and 3,906 events for U3ETAS and NoFaults, respectively.    1057 

  1058 
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 1059 

Figure 5. Aggregate number test results for 𝑀I(𝑡) = max(2.5,𝑀�(𝑡))  and 𝑀I(𝑡) = max(3.5,𝑀�(𝑡)) magnitude 1060 

thresholds for U3ETAS and NoFaults for eleven weekly evaluation intervals following the Mw 7.1 mainshock. (a) 1061 

Quantile scores 𝛿N (top) and 𝛿W (bottom) for individual weekly evaluation periods. (b) Quantile-quantile plot 1062 

showing calibration of rate forecasts by comparing quantile scores, 𝛾Q against standard uniform quantiles. The 1063 

dashed lines indicate 95 percent confidence intervals around the standard uniform quantiles. Thus, U3ETAS and 1064 

NoFaults overpredict the number of M2.5+ and M3.5+ events during this aftershock sequence. 1065 

  1066 
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 1067 

Figure 6. (a) Magnitude frequency distribution in Δ𝑀 = 0.1 bins aggregated over entire the eleven-week evaluation 1068 

period. The thin lines approximate the 95% percentile range of the event counts in each magnitude bin. The 1069 

U3ETAS magnitude frequency distribution shows anti-characteristic behavior through the lack of M6.5+ 1070 

earthquakes as compared with NoFaults. (b) Bin-wise magnitude test statistic aggregated over the entire evaluation 1071 

period. The circles depict the kernel of 𝑑:;< for both U3ETAS and NoFaults to show bin-wise contributions to 𝑑:;<. 1072 

We find negligible differences between the two models. The solid lines show percentiles from the bin-wise value 1073 

distribution, for both models.  1074 

  1075 
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 1076 

Figure 7. Magnitude test results for events with 𝑀I(𝑡) = (2.5,𝑀�(𝑡)) over the full eleven-week evaluation period.  1077 

(a) Quantile scores are shown for individual week-long evaluation periods. Gray patch depicts the 0.05 significance 1078 

level for the magnitude test. The largest differences between U3ETAS and NoFaults exist during the first week and 1079 

become negligible over the remainder of the evaluation period. (b) Calibration of magnitude forecasts by comparing 1080 

magnitude test quantile scores against standard uniform quantiles. The dashed lines depict 95 percent confidence 1081 

intervals around the standard uniform quantiles.  1082 
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 1083 

Figure 8. Logarithm of the expected event counts per spatial bin per week for U3ETAS (a) and NoFaults (b) for the 1084 

week-long forecast following the Mw 7.1. The relatively high expected counts along the faults in U3ETAS are 1085 

controlled by scenarios whose aftershock sequences contain supraseismogenic ruptures along these faults. In both 1086 

plots, target events during this period are shown as white circles. The color scale is manually saturated for 1087 

comparison purposes. The spatial bin with highest rate expects 64.24 and 65.76 events for U3ETAS and NoFaults, 1088 

respectively. (c) Evaluation result for the spatial test for U3ETAS (top) and NoFaults (bottom) for the first 1089 

evaluation period at seven days after the Mw 7.1 mainshock. 𝑆=(­®)	denotes the 95th percentile range of the test 1090 

distribution of the spatial test statistic, 𝑠̂:;< is the observed statistic, and 𝛾� is the quantile score. (d) Same as (c) 1091 

except for the pseudo-likelihood test statistics.  1092 
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 1093 

Figure 9. Spatial test and pseudo-likelihood results for events with 𝑀I(𝑡) = max(2.5,𝑀�(𝑡)) over the complete 1094 

eleven-week evaluation period. The spatial test and likelihood tests show the greatest differences between U3ETAS 1095 

and NoFaults. (a) Quantile scores shown for individual week-long evaluation periods. The patch depicts the 0.05 1096 

significance level for the spatial test. (b) Calibration of spatial forecasts by comparing quantile scores against 1097 

standard uniform quantiles. The dashed lines depict 95 percent confidence intervals around the standard uniform 1098 

quantiles.   1099 
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 1100 

Figure 10. Map of cell-wise spatial pseudo log-likelihood ratios between U3ETAS and NoFaults for individual 1101 

evaluation periods ending on (a) day 35, (b) day 49, (c) day 56, and (d) day 63 following the Mw 7.1 mainshock. 1102 

Maps show the higher rates along faults in U3ETAS. Evaluation periods at (b) 49 days and (d) 63 days show the 1103 

largest differences in the observed spatial statistic, which is calculated only from spatial cells where events occur, 1104 

while periods ending on days 35 and 56 show a negligible difference in the spatial statistic. This highlights how 1105 

spatial test results are sensitive to events occurring on modeled U3ETAS faults and that such events are required to 1106 

discern between the models. The color scale is manually saturated between -0.05 and 0.05 to help comparisons; and 1107 

dots show locations of target events. 1108 

  1109 
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