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In run 4 of the LHC, the extreme high luminosity is expected to generate an enormous pileup of up to 200 
proton-proton collisions for each bunch crossing. This has to be read out at 750 kHz with a maximum 
latency of  12.5𝜇s. In order to disentangle the energy from pileup collision, the upgraded CMS detector for 
Run-4 will feature a new High Granularity Calorimeter (HGCAL) with unprecedented lateral and 
longitudinal segmentation. The total number of channels read out into the Level-1 trigger processor will be 
of the order of 106. To process this data with such small latency, we need to develop sophisticated 
algorithms. In this report, we aim to use machine learning techniques for electron-photon identification and 
energy estimation in the L1 Trigger. The idea is to implement the architectures on FPGA boards that will 
have fast inference, enough to cope with the requirements of the HGCAL. 
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1. INTRODUCTION 

For the fourth run of the LHC, CMS will undergo an update in its detector with the endcap calorimeters 
being replaced by the High Granularity Calorimeter (HGCAL) [1]. The new calorimeter will feature 
extremely fine transverse and longitudinal segmentation, for both electromagnetic and hadronic 
compartments. This is necessary to counter the effects of high pileup that will be generated due to the 
higher luminosity of 7.5x1034 cm-2s-1 expected from the increased bunch population and focussing in the 
LHC. Novel approaches are required to enhance pileup rejection and perform particle identification and 
energy estimation in the detector.  

The HGCAL detector will consist of 52 layers, of which 28 layers are for the electromagnetic portion 
(ECAL) and 24 for the hadronic portion (HCAL) [1, 2]. The electromagnetic layers and a part of the 
hadronic layers will consist of hexagonal silicon sensors with 0.5-1 cm2 cell size. The remainder of the 
hadronic portion is made of highly segmented scintillators with SiPM readout. The L1 trigger only uses 
alternate layers, so that the data collection is kept manageable. Hence, we have 14 effective layers from 
ECAL. 

The latency at the L1 trigger level is 12.5𝜇s, of which, the calorimeter only energy estimation and particle 
identification will have only ~1𝜇s. To have fast inference, we explore the possibility of employing the 
powerful tools of deep learning and deploying these architectures on FPGAs. For this, we are using 
Micron’s SB852 board which features Xilinx Virtex Ultrascale+ FPGA [4]. The compiler and the necessary 
drivers have been provided by Micron. Currently, the Micron development environment is optimized to 
support Convolutional Neural Networks (CNN) and taking this into account, we develop models that can 
perform regression and classification.  

This report highlights the approaches taken and is arranged in the following order: Section 2 covers the 
dataset generation process, followed by the proposed models in Section 3. Section 4 reports the 
performance of the model on the board and we conclude with the summary and future work in Section 5. 

2. Dataset 

For this study. we use a simulated sample of 100,000 single particle events comprising of 50% photons 
and 50% electron-positron pairs generated at the interaction region. Forty percent of the photons convert 
to electron-positron pairs before reaching the surface of the detector. These events are excluded from the 
sample and will be studied separately at a later stage. This sample was generated with no pileup. The 
goal here is to develop an architecture with optimal efficiency in terms of latency, computational resource 
required and identification power. To create the dataset, we use constrained topological clustering that 
generates 20x20 grids around the simulated hit which corresponds to the maximum energy deposition 
across all 38 channels. The 3D representation of the energy deposits is shown in Figure 1(a). Initially, the 
idea was to use the first 14 layers that correspond to the electromagnetic part of the detector. However, it 
was observed that the electromagnetic layers alone are not sufficient to contain the energies of the most 
energetic particles and that these particles penetrate into the hadronic layers as well. This can be seen in 
Figure 1(b). Therefore, we consider all 38 layers for our training.  

Traditional CNNs work with RGB images with 3 input channels, with each channel processed by dedicated 
kernels. In other words, the channels do not share weights. Since our representation has 38 channels and 
they are correlated (because the energy deposits across the layers are from the same shower), the 
natural choice is to use approaches that are either independent of the input shape or use 4D inputs, for 
example, convolutional LSTMs, 3D-CNNs or GNNs. 
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3. DL model architectures 

Model 1 - 3D CNN architecture 
The selection of the model for inference requires the consideration of model performance and its 
implementation on hardware. As explained in the earlier sections, taking into account the Micron toolset 
characteristics and in order to optimize the performance, we settle on using CNN models. We start by 
using 3D-CNNs to incorporate inter-channel correlation. The proposed model is shown in Figure 2. The 
input to the network is a matrix of dimension 38x20x20x1. This is convolved twice with 32 3D kernels of 
size 3x3x3 with relu activation, followed by a 3D max-pooling layer with pool size of 3x3x3. This is 
followed in series by a 0.25 dropout layer, flatten layer, a fully connected (FC) layer with 64 nodes, a 0.5 
dropout layer, and finally a 2 node output using cross-entropy loss for classification.  

Training using ~23k samples with learning rate of 1e-3 for around 80 iterations and early stopping, we get 
an accuracy of 85%, which means that 85% of the time the test data is categorized correctly. The 
confusion matrix is shown in Table 1. However, while the performance is acceptable, the time taken for 
inference is quite large at around 0.8 ms per test image on a GTX 1080Ti GPU. It is also quite a memory-
intensive process because of the storage requirements of 4D kernels. It was therefore decided to explore 
the use of 2D CNNs.  
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Fig 1.(From left to right) a) 3D visualization of energy depositions. The size of the 
spheres is proportional to the energy in the cell. b) Total energy of all trigger cells 
when summed across 38 layers.
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Model 2 - 2D CNN architecture 

1 input architecture 
To reduce the inference time, we tested a 2D CNN approach. The difference is that the kernels used here 
have 2 dimensions, such that they slide over individual channels of the input image instead of convolving 
across them. To see the effect of using a 2D model, we use the architecture shown in Figure 3. For this, 
we have developed two models. In the first model, we use one projected image as shown in Figure 4. For 
the second model, we use the full image with 38 channels. As expected, the full image performs better at 
identification than the projected images. In fact, its predictive power is close to that of the 3D CNN 
architecture. We further explore the possibility of using projected images and to improve the performance. 
To this end, we use the 2 input architecture discussed in the next section. 

 

 

Fig. 2 : Classification network with 3D convolution.

Fig. 3 : 2D classification network with 1 input. 
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2 input architecture 
While 3D CNNs used weight sharing between different channels of the input image, thereby learning any 
existing relationship between them, using independent  2D filters for each channel does not capture this 
relation. Therefore, we develop our 2D CNN by using 2 inputs that together can be expected to capture 
the information across the channels. These inputs are generated by projecting the 3D image along the x 
and y axes resulting in a pair of arrays of size 38x20x1 each. These inputs, while retaining the layer 
information, also have information from the x and y dimensions. The image pair is shown in Figure 4 with 
the color intensity being proportional to the energy deposition magnitude. 

 

 

The architecture we use is shown in Figure 5 and takes as inputs a pair of 38x20x1 images generated by 
summing along the x and y axes. The model develops along two symmetrical branches. The first layer 
after the input is a convolution layer with kernel size 3x3, stride 1, followed by another 2D Conv layer with 
64 filters and a kernel size of 3x3. All convolution layers have relu activation functions. This is followed by 
a 2D max pooling layer with window size 2x2 and stride size 2x2. The output from the two branches are 
concatenated and then flattened at this point to generate a vector of length 17408. We then apply two FC 
layers of sizes 128 and 64, each followed by a 0.5 dropout. Categorical cross-entropy is used as a loss 
function for both the 2D and 3D models. The inference time for this model is 0.09ms which is much faster 
compared to the 3D model.  

 

Fig. 4 : Energy deposits with layer vs x axes on summing along the y-axis. Energy 
depositions in layer vs y axis on summing along x-axis. The color intensity is 
representative of the energy content in the cell with darker cells having more energy.
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Classification performance of the models. 
 We tested our model on ~14k samples and achieved 85% accuracy with both 3D and 2D models. The 
confusion matrix is given in Table 1. 

 

For a better understanding of the performance of the 3D and 2D models, a visual comparison is provided 
with a classification plot in Figure 6. From these, we can see that the 3D model is able to distinguish the 
two types of particles based on their energy deposition more accurately than the 2D model.  

Fig. 5 : 2D classification network with 2 inputs. 

Pred Photons Pred e+/e-

True photons
2D conv 1 input - X1 0.78 0.22

1 input - X2 0.81 0.19

1 input - X 0.84 0.16

2 input 0.82 0.18

3D conv 3D conv 0.85 0.15

True e+/e-
2D conv 1 input - X1 0.11 0.89

1 input - X2 0.12 0.88

1 input - X 0.15 0.85

2 input 0.13 0.87

3D conv 3D conv 0.15 0.85

Table 1 : Classification performance of the models in terms of confusion matrix. The 
different row colors represent different model’s performance.
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Regression model and performance 
We further want to explore the capability of deep learning models for energy estimation. To do this, we use 
a similar model as that for 2D classification using the nominal energy of the incoming particle as target. In 
the FC layers, the relu activation is replaced with elu activation function. The last layer has one output 
node and uses mean squared error (mse) loss for regression instead of categorical cross-entropy that was 
used for classification. We train both the 2-input and 1-input models for comparison. 

 

 

Fig. 6 : Histogram showing the performance of the 3D convolution model (left) and 
the 2D 2-input classification model (right). The color of the histograms represents the 
ground truth particle ID and the probability represented on the x-axis is the model’s 
prediction. From the figure we see that the 3D model performs slightly better than the 
2D 2-input model.
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In Figure 7 we show the relative error distributions for the three energy estimates:  the 2D 2-input model 
predictions, the traditional density-based clustering approach (cl3d) and, as a sanity check, the total 
energy if we summed up all the trigger cell energy values for a particular cluster. From these plots, we can 
see that the model has performance close but not competitive with that of cl3d. The last three plots in 
Figure 7 show the standard deviation based on a Gaussian fit of the cl3d based prediction and the 
predictions based on both models. Clearly, the cl3d performs better. This shows the scope for further 
improvement of the regression models to achieve competitive performance. 

4. Model on hardware 

We tested our models on the SB852 board which is a “full-height, GPU-length, PCIe x16 Gen3 board with 
a Xilinx® VU9P Virtex Ultrascale+ FPGA, a 2GB Hybrid Memory Cube (HMC), up to 512GB of high-
performance memory and two QSFP28 connectors” [4]. To do that, we first convert our model to .onnx 
format using onnx convert tools for keras models. Then we use Micron’s dedicated compiler [3] to convert 
the .onnx model to their FPGA bitstream. We compare the output from the hardware with the output from 
onnxruntime, which is a tool to run the .onnx models. The output from the runtime is identical to the output 
of an inference made directly using python keras.  

Sample outputs from onnxruntime and the board for the 2D classification model with two inputs are given 
below. Particle ID refers to the type of particle for the test case, output onnxruntime is the inference using 
onnxruntime and output hw is the board’s output. The individual test cases are separated by horizontal 
lines. 

Fig. 7 : Performance of 2D 2-input model in energy estimation. In the top plots, the 
red curve shows the relative error in the predicted energy, green shows relative error 
of true energy and energy estimated by summing up energy across all cells, and the 
blue curve represents the relative energy error with respect to the energy predicted 
using density based clustering approach (cl3d). Top left: Relative error histogram plot. 
Top right: Absolute value of the relative error plot. Mid left: Gaussian fit on the relative 
error from cl3d. Mid right: Gaussian fit on relative error for 2-input 2D model 
estimation. Mid left: Gaussian fit on the relative error from cl3d. Bottom: Gaussian fit 
on relative error for 1-input 38 channels 2D model estimation.
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Figure 8 shows the frequency of the absolute value of the relative difference between the output from 
onnxruntime and the hardware. We can see that they do not match precisely. For the purpose of particle 
classification, this might be acceptable, but in general, the L1 requires agreement to better than 0.001%. 
More investigation is needed to understand these discrepancies. The probable reasons these differences 
trigger could be overflow or the effect of using fixed-point precision for the board while using floating-point 

particle ID =  22.0 → output onnxruntime =  0.6614985 ,  output hw =  0.71780354 

------------------------------------------------- 

particle ID =  22.0 → output onnxruntime =  0.43477285,  output hw =  0.5117166 

------------------------------------------------- 

particle ID =  22.0 → output onnxruntime =  0.9984659, output hw =  0.9641675 

------------------------------------------------- 

particle ID =  22.0 → output onnxruntime =  0.74310744, output hw =  0.62062156

Fig. 8 : Plot of frequency vs absolute value of the relative error of the predictions 
from the model on SB852.
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precision on onnxruntime. A way to validate this would be to check the results from onnxruntime’s 
inference using fixed point precision. 

5. Conclusion 

We have developed deep learning architectures to perform particle identification and energy regression 
based on simulated data. The models are based on hardware requirements and the dataset used. Two 
broad variety of models have been explored- one based on 3D convolution and the other with 2D 
convolution. Under the 2D convolution model category, we have used single input models and a model 
having 2 inputs. We see promising results for classification and regression using these deep learning 
architectures. The current best model gives 85% classification accuracy. Currently, the regression results 
are not competitive with the traditional density-based clustering approaches for energy estimation. With a 
more diverse training data and tailored models, the results are expected to improve. 
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