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Optimal Prediction of Synchronization-Reversal Free Races

ANONYMOUS AUTHOR(S)

Concurrent programs are notoriously hard to write correctly, as scheduling nondeterminism introduces subtle

errors that are both hard to detect and reproduce. The most common concurrency errors are (data) races,
which occur when memory-conflicting actions are executed concurrently. Consequently, considerable effort

has been made towards identifying efficient techniques for race detection. The most common approach is

dynamic race prediction: given an observed, race-free trace 𝜎 of a concurrent program, the task is to decide

whether events of 𝜎 can be correctly reordered to a trace 𝜎∗ that witnesses a race hidden in 𝜎 .

In this work we introduce the notion of sync(hronization)-reversal free races. A sync-reversal free race occurs

in 𝜎 when there is a witness 𝜎∗ in which synchronization operations (e.g., acquisition and release of locks)

appear in the same order as in 𝜎 . This is a broad definition that strictly subsumes the famous notion of

happens-before races. Our main results are as follows. First, we develop a sound and complete algorithm for

predicting sync-reversal free races that runs in 𝑂 (N) time and space, for up to a moderate number of other

parameters, such as the number of threads. Second, we show that the problem has a Ω(N/log2N) space lower
bound, and thus our algorithm is essentially time and space optimal. Third, we show that predicting races with

even just a single reversal of two sync operations is NP-complete and even W[1]-hard when parameterized by

the number of threads. Thus, sync-reversal freeness characterizes exactly the tractability boundary of race

prediction, and our algorithm is nearly optimal for the tractable side. Our experiments show that our algorithm

is fast in practice, while sync-reversal freeness characterizes races often missed by state-of-the-art methods.

CCS Concepts: • Software and its engineering→ Software verification and validation; • Theory of
computation→ Theory and algorithms for application domains; Program analysis.

Additional Key Words and Phrases: concurrency, dynamic analysis, race detection, complexity

1 INTRODUCTION
The verification of concurrent programs is one of the main challenges in formal methods. Concur-

rency adds a dimension of non-determinism to program behavior which stems from inter-process

communication. Accounting for such non-determinism during program development is a challeng-

ing mental task, making concurrent programming significantly error-prone. At the same time, bugs

due to concurrency are very hard to reproduce manually, and automated techniques for doing so

are crucial in enhancing productivity of software developers.

Data races are the most common form of concurrency errors. A data race (sometimes just called

race) occurs when a thread of a multi-threaded program accesses a shared memory location while

another thread is modifying it without proper synchronization. The presence of a data race is often

symptomatic of a serious bug in the program [Lu et al. 2008]; they have lead to data corruption

and compilation errors [Boehm 2011; Kasikci et al. 2013; Narayanasamy et al. 2007], and have lead

to significant system errors in the past [Boehm 2012; Zhivich and Cunningham 2009]. Therefore,

considerable research has focused on detecting and preventing races in multi-threaded programs.

One of the most popular approaches to race prediction is via dynamic analysis [Bond et al. 2010;

Flanagan and Freund 2009; Pozniansky and Schuster 2003]. Unlike static analysis, dynamic race

prediction is performed at runtime. Such techniques determine if an observed execution provides

evidence for the existence of a possibly alternate program execution that can concurrently perform
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1:2 Anon.

𝑡1 𝑡2

1 w(x)
2 acq(ℓ)
3 rel(ℓ)
4 acq(ℓ)
5 rel(ℓ)
6 w(x)

≤
HB

(a) An observed trace 𝜎1.

𝑡1 𝑡2

1 acq(ℓ)
2 rel(ℓ)
3 w(x)
4 w(x)

(b) A witness 𝜎∗
1
of a race in 𝜎1.

𝑡1 𝑡2

1 w(x)
2 acq(ℓ)
3 w(𝑥)
4 rel(ℓ)
5 acq(ℓ)
6 w(x)
7 rel(ℓ)

(c) An observed trace 𝜎2.
Fig. 1. (1a) shows a trace 𝜎1 with sync-reversal free race (𝑒1, 𝑒6) missed by ≤HB. (1b ) shows the witness
𝜎∗
1
that exposes the race. (1c) shows a sync-reversal-free race (𝑒1, 𝑒6) that is non-consecutive, due to the

intermediate event 𝑒3.

conflicting data accesses
1
. The underlying principle is that a race is present but “hidden” in a

large number of different program executions; hence techniques that uncover such hidden races

can accelerate the process of debugging concurrent programs. The popularity of dynamic race

prediction techniques further stems (i) from their scalability to large production software, and

(ii) from their ability to produce only sound error reports.

The most popular dynamic race prediction techniques are based on Lamport’s happens-before

partial order [Lamport 1978]. These techniques scan the input trace, determine happens-before

orderings on-the-fly, and report a race on a pair of conflicting data accesses if they are unordered by

happens-before. This approach is sound, in that the presence of unordered conflicting data accesses

ensures the existence of an execution with a race. While happens-before based analysis fails to

predict races in various cases [Smaragdakis et al. 2012], its wide deployment is based on the fact

that the algorithm is fast, single pass, and runs in linear time. The principle that forms the basis of

its efficiency is the following. When reasoning about alternate executions, happens-before analysis

does not consider any execution in which the order of synchronization primitives is reversed from

that in the observed execution. We call such alternate executions sync(hronization)-reversal free
executions 2

in this paper. Other, more powerful race prediction techniques [Genç et al. 2019; Huang

et al. 2014; Huang and Rajagopalan 2016; Pavlogiannis 2019; Roemer et al. 2018; Smaragdakis

et al. 2012] sacrifice this principle and consider alternate executions that are not sync-reversal free

free. Naturally, this typically results in performance degradation, as the problem is in general

NP-hard [Mathur et al. 2020], and considerable efforts are made towards improving the scalability

of such techniques [Roemer and Bond 2019; Roemer et al. 2020].

Although happens-before only detects races whose exposure preserves the ordering of synchroniza-

tion primitives, it can still miss simple races that adhere to this pattern. For example, consider the

trace 𝜎1 shown in Figure 1a. Let us name the events of this trace based on the order in which they

appear in the trace; thus, 𝑒𝑖 denotes the 𝑖
th
event of the trace. Here, the partial order happens-before

orders the first w(𝑥) (event 𝑒1) and the last w(𝑥) (event 𝑒6), and therefore, does not detect any race in
this execution. However events 𝑒1 and 𝑒6 are in race. This can be exposed by the alternate execution

shown in Figure 1b, which is obtained by dropping the critical section of lock ℓ performed by

thread 𝑡1. Notice that the order of synchronization events (namely, acq(ℓ) and rel(ℓ) events) that
appear in the trace of Figure 1b, are in the same order as in the trace of Figure 1a, and hence this is

1
Conflicting data accesses are data accesses by two threads to a common memory location such that at least one of them is

a write.

2
Precise definition of such executions given in Section 2.1.
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Optimal Prediction of Synchronization-Reversal Free Races 1:3

a sync-reversal free execution. Thus, the notion of sync-reversal freeness captures races beyond

standard happens-before races.

Another important limitation of happens-before and virtually all partial-order methods [Kini et al.

2017; Mathur et al. 2018; Roemer et al. 2018, 2020; Smaragdakis et al. 2012] is highlighted in Figure 1c.

The trace 𝜎2 has a race between 𝑒1 and 𝑒6, both conflicting on variable 𝑥 . Notice, however, that the

intermediate event 𝑒3 also accesses 𝑥 , but is not in race with either 𝑒1 or 𝑒6. Partial-order methods

for race prediction are limited to capturing races only between successive conflicting accesses
3
.

Hence, distant races that are interjected with intermediate conflicting but non-racy events, are

missed by such methods. On the other hand, sync-reversal freeness is not bound to such limitations:

(𝑒1, 𝑒6) is characterized as a race under this criterion, regardless of the intermediate, non-racy 𝑒3,

exposed by a witness that omits the critical section on lock ℓ in the thread 𝑡1.

Our Contributions. Motivated by observations like the above, our contributions are as follows.

(1) We introduce the novel notion of sync(hronization)-reversal free races. This is a sound notion

of predictable races, and it strictly subsumes the standard notion of happens-before races.

Moreover, it characterizes races between events that can be arbitrarily far apart in the input

trace, as opposed to happens-before and other partial-order methods that only characterize

races between successive conflicting accesses. Our notion is applicable to all concurrency

settings, and interestingly, it is also complete for systems with synchronization-deterministic

concurrency [Aguado et al. 2018; Bocchino et al. 2009; Cui et al. 2015; Zhao et al. 2019].

(2) We develop an efficient, single-pass, nearly linear-time algorithm SRFree that, given a trace 𝜎 ,

detects whether 𝜎 contains a sync-reversal free free race. In fact, our algorithm soundly reports

all events 𝑒2 which are in a sync-reversal free free race with an event 𝑒1 that appears earlier in 𝜎 .

Given N events in 𝜎 , our algorithm spends 𝑂 (𝑁 ) time, where 𝑂 hides factors poly-logarithmic

in N , when other parameters of the input (e.g., number of threads) are 𝑂 (1).
(3) Although our algorithm performs a single pass of the trace, in the worst case, it might use space

that is nearly linear in the length of the trace, i.e.,𝑂 (N) space. Hence follows a natural question:
is there an efficient algorithm for sync-reversal free race prediction that uses considerably

less space? We answer this question in negative, by showing that any single-pass algorithm

for detecting even a single sync-reversal free race must use nearly linear space. Hence, our

algorithm SRFree has nearly optimal performance in both time and space.

(4) We next study the complexity of race prediction with respect to the number of synchronization

reversals that might occur when constructing a witness that exposes the race. In the case of

synchronization via locks, this number corresponds to the number of critical sections whose

order is reversed in the witness trace. We prove that the problem of predicting races which can

be witnessed by a single reversal (of two critical sections) is NP-complete and even W[1]-hard
when parameterized by the number of threads. Thus, sync-reversal freeness characterizes

exactly the tractability boundary of race prediction, and our algorithm is nearly optimal for the
tractable side. Moreover, our result shows that any level of synchronization suffices to make the

problem of race prediction as hard as in the general case, improving a recent result of [Mathur

et al. 2020].

(5) Finally, we have implemented our race prediction algorithm SRFree and evaluated its perfor-

mance on standard benchmarks from the literature. Our results show that sync-reversal freeness

characterizes many races that are missed by state-of-the-art methods, and SRFree successfully
detects them.

3
When the earlier access is a read instead of a write, this statement is true per thread.
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2 PRELIMINARIES
In this section, we establish notations useful for the rest of the paper.

Traces and Events. Our objective is to develop a dynamic analysis technique which works over

execution traces, or simply traces of concurrent programs. We work with the sequential con-

sistency memory model. Under this assumption, traces are sequences of events. We will use

𝜎, 𝜎 ′, . . . , 𝜎1, 𝜎2, . . . to denote traces in this presentation. Every event of 𝜎 can be represented as

a tuple 𝑒 = ⟨𝑖, 𝑡, op⟩, where 𝑖 is a unique identifier of 𝑒 in 𝜎 , 𝑡 is the thread that performs 𝑒 and

op is the operation performed in the event 𝑒 . We often omit the unique identifier of such a tuple

and simply write 𝑒 = ⟨𝑡, op⟩. We use thr(𝑒) and op(𝑒) to denote the thread performing 𝑒 and the

operation performed by 𝑒 . An operation can be one of read from or write to a shared memory

location or variable 𝑥 , denoted r(𝑥) and w(𝑥), and acquisition or release of a lock ℓ , denoted acq(ℓ)
or rel(ℓ). Forks and joins can be naturally handled, but we avoid introducing them here for nota-

tional convenience. We denote by Events𝜎 the set of events in a trace 𝜎 . We use Thr𝜎 , Vars𝜎 and

Locks𝜎 to denote respectively the threads, variables and locks that appear in the trace 𝜎 . Likewise,

we use Acquires𝜎 (ℓ) and Releases𝜎 (ℓ) to denote the set of acquire and release events of 𝜎 on lock

ℓ ∈ Locks𝜎 .
We assume that traces obey lock semantics. This means, every lock ℓ is released by a thread 𝑡

only if there is an earlier matching acquire event by the same thread 𝑡 , and that each such lock

is held by at most one thread at a time. Formally, let 𝜎 |ℓ denote the projection of 𝜎 to the set of

events Acquires𝜎 (ℓ) ∪ Releases𝜎 (ℓ). We require that for every lock ℓ , the sequence 𝜎 |ℓ is a prefix
of some sequence that belongs to the regular language corresponding to the regular expression( ∑
𝑡 ∈Thr𝜎

⟨𝑡, acq(ℓ)⟩ · ⟨𝑡, rel(ℓ)⟩
)∗
.

For an acquire event 𝑒 , we usematch𝜎 (𝑒) to denote the matching release event of 𝑒 if one exists (and

⊥ otherwise). Similarly, for a release event 𝑒 , match𝜎 (𝑒) is the matching acquire of 𝑒 on the same

lock. For an acquire event 𝑒 , the critical section protected by 𝑒 , denoted CS𝜎 (𝑒) is the set of events
𝑒 ′ such that thr(𝑒 ′) = thr(𝑒) and 𝑒 ′ occurs after 𝑒 (and before the matching release match𝜎 (𝑒), if it
exists) in 𝜎 . For a release event 𝑒 , we have CS𝜎 (𝑒) = CS𝜎 (match𝜎 (𝑒)).

Orders on Traces. A partial order ≤𝜎P defined over a trace 𝜎 is a reflexive, anti-symmetric and

transitive binary relation on Events𝜎 ; the symbol P is an optional identifier for the partial order.

We will often write 𝑒1 ≤𝜎P 𝑒2 to denote (𝑒1, 𝑒2) ∈≤𝜎P , where 𝑒1, 𝑒2 ∈ Events𝜎 . For a partial order ≤
𝜎
P ,

we use <𝜎
P to denote the strict order ≤𝜎P \{(𝑒, 𝑒) | 𝑒 ∈ Events𝜎 }. We write 𝑒1≰

𝜎
P𝑒2 to denote that

(𝑒1, 𝑒2) ∉≤𝜎P . Events 𝑒1, 𝑒2 ∈ Events𝜎 are said to be unordered by ≤𝜎P , denoted 𝑒1 ∥
𝜎
𝑃
𝑒2 if 𝑒1≰

𝜎
P𝑒2 and

𝑒2≰
𝜎
P𝑒1; otherwise, we write 𝑒1 ∦

𝜎
𝑃
𝑒2, denoting that 𝑒1 and 𝑒2 are ordered by ≤𝜎P in one or the other

way. When 𝜎 is clear from context, we will use ≤P, <P, ≰P, ∥𝑃 and ∦
𝑃
instead of respectively ≤𝜎P ,

<𝜎
P , ≰

𝜎
P , ∥𝜎𝑃 and ∦𝜎

𝑃
. For a partial order ≤𝜎P , a set 𝑆 ⊆ Events𝜎 is said to be downward-closed with

respect to ≤𝜎P if for every 𝑒, 𝑒 ′ ∈ Events𝜎 , if 𝑒 ≤𝜎P 𝑒
′
and 𝑒 ′ ∈ 𝑆 , then 𝑒 ∈ 𝑆 .

The trace-order ≤𝜎tr defined by 𝜎 is the total order on Events𝜎 imposed by the sequence 𝜎 , i.e.,

𝑒1 ≤𝜎tr 𝑒2 iff the event 𝑒1 occurs before 𝑒2 in 𝜎 . The thread-order (or program-order) ≤𝜎TO of 𝜎 is the

partial order on Events𝜎 that orders events in the same thread: for two events 𝑒1, 𝑒2 ∈ Events𝜎 ,
𝑒1 ≤𝜎TO 𝑒2 iff 𝑒1 ≤

𝜎
tr 𝑒2 and thr(𝑒1) = thr(𝑒2).

Conflicting Events and Data Races. Let 𝜎 be a trace. Two events 𝑒1, 𝑒2 ∈ Events𝜎 are said to be

conflicting, denoted 𝑒1 ≍ 𝑒2, if thr(𝑒1) ≠ thr(𝑒2), and there is a common variable 𝑥 ∈ Vars𝜎 such

that op(𝑒1), op(𝑒2) ∈ {r(𝑥), w(𝑥)} and at least one of op(𝑒1) and op(𝑒2) is w(𝑥). Let 𝜌 be a trace

with Events𝜌 ⊆ Events𝜎 . An event 𝑒 ∈ Events𝜎 is said to be 𝜎-enabled in 𝜌 if 𝑒 ∉ Events𝜌 and for all

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.
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𝑡1 𝑡2

1 acq(ℓ)
2 rel(ℓ)
3 acq(ℓ)
4 rel(ℓ)
5 w(𝑥)
6 r(𝑥)

(a) Trace 𝜎3 with data race

𝑡1 𝑡2

1 w(𝑥)
2 acq(ℓ)
3 r(𝑥)
4 rel(ℓ)
5 acq(ℓ)
6 w(𝑥)
7 rel(ℓ)

(b) Trace 𝜎4 with predictable race

𝑡1 𝑡2

1 w(𝑦)
2 acq(ℓ)
3 w(𝑥)
4 rel(ℓ)
5 acq(ℓ)
6 r(𝑥)
7 rel(ℓ)
8 w(𝑦)

(c) Trace 𝜎5 with no predictable race
Fig. 2. Traces, data races and predictable data races

events 𝑒 ′ ∈ Events𝜎 such that 𝑒 ′ <𝜎
TO 𝑒 , we have 𝑒

′ ∈ Events𝜌 . A pair of conflicting events (𝑒1, 𝑒2)
in 𝜎 is said to be a data race of 𝜎 if 𝜎 has a prefix 𝜎 ′ such that both 𝑒1 and 𝑒2 are 𝜎-enabled in 𝜎 ′.
Trace 𝜎 is said to have a data race if there is a pair of conflicting events (𝑒1, 𝑒2) in 𝜎 that constitutes

a data race of 𝜎 .

Example 1. Consider the trace 𝜎3 in Figure 2a. The set of events of 𝜎3 is Events𝜎3 = {𝑒1, 𝑒2, . . . , 𝑒6},
Thr𝜎 = {𝑡1, 𝑡2}, Vars𝜎 = {𝑥} and Locks𝜎 = {ℓ}. For the event 𝑒1 = ⟨𝑡1, acq(ℓ)⟩, we have thr(𝑒1) = 𝑡1
and op(𝑒1) = acq(ℓ). The trace order of this trace is ≤𝜎3tr = {(𝑒𝑖 , 𝑒 𝑗 ) | 𝑖 ≤ 𝑗} and the thread-order is

≤𝜎3TO= {(𝑒1, 𝑒2), (𝑒1, 𝑒5), (𝑒2, 𝑒5), (𝑒3, 𝑒4), (𝑒3, 𝑒6), (𝑒4, 𝑒6)}. Events 𝑒5 and 𝑒6 conflict because they access
the same variable 𝑥 and are performed by different threads. For the prefix trace 𝜎 ′

3
= 𝑒1·𝑒2·𝑒3·𝑒4,

both 𝑒5 and 𝑒6 are 𝜎3-enabled in 𝜎 ′
3
. Thus, (𝑒5, 𝑒6) constitutes a data race of 𝜎3.

Correct Reorderings. Execution traces of concurrent programs are sensitive to thread scheduling

and looking for a trace with a specific pattern is like searching for a needle in a haystack. In terms

of data race detection, this means that a dynamic analysis technique that looks for executions with

conflicting events enabled (data races) is likely going to miss many data races that might have

otherwise been captured in alternate executions of the same program that arise due to slightly

different thread scheduling. The notion of data race prediction attempts to alleviate this problem by

capturing a more robust notion of data races. The idea here is to infer data races that might occur

in alternate reorderings of an observed trace, thereby detecting data races beyond those in just the

execution that was observed. The set of allowable reorderings of an observed trace 𝜎 is defined in a

manner that ensures that data races can be detected agnostic of the program that generated 𝜎 in

the first place. Such a notion is captured by a correct reordering which we define next.

For a trace 𝜎 and a read event 𝑒 , we use lw𝜎 (𝑒) to denote the write event observed by 𝑒 . That is,

𝑒 ′ = lw𝜎 (𝑒) is the last (according to the trace order ≤𝜎tr) write event 𝑒 ′ of 𝜎 such that 𝑒 and 𝑒 ′ access
the same variable and 𝑒 ′ ≤𝜎tr 𝑒; if no such 𝑒 ′ exists, then we write lw𝜎 (𝑒) = ⊥.
Given the above notation, a trace 𝜌 is said to be a correct reordering of trace 𝜎 if

(a) Events𝜌 ⊆ Events𝜎
(b) Events𝜌 is downward closed with respect to ≤𝜎TO, and further ≤𝜌TO⊆≤

𝜎
TO,

(c) for every read event 𝑒 ∈ Events𝜌 , lw𝜌 (𝑒) = lw𝜎 (𝑒).
The above definition ensures that if 𝜌 is a correct reordering of 𝜎 , then every program that generates

the execution trace 𝜎 also generates 𝜌 . This is because 𝜌 preserves both intra-thread ordering, as

well as the values read by every read occurring in 𝜌 , thereby preserving any control flow that

might have been taken by 𝜎 . This style of formalizing alternative executions based on semantics

of concurrent objects was popularized by [Herlihy and Wing 1990] and by prior race detection

works [Said et al. 2011; Şerbănuţă et al. 2012]. Our definition of correct reordering has been derived
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from [Smaragdakis et al. 2012], which has subsequently also been used in the literature [Genç et al.

2019; Kini et al. 2017; Mathur et al. 2018, 2020; Pavlogiannis 2019; Roemer et al. 2018].

Data Race Prediction. Armed with the notion of correct reorderings, we can now define a more

robust notion of data races. A pair of conflicting events (𝑒1, 𝑒2) in 𝜎 is said to be a predictable data
race of 𝜎 if there is a correct reordering 𝜌 of 𝜎 such that 𝑒1, 𝑒2 are 𝜎-enabled in 𝜌 . We remark that a

pair of conflicting events (𝑒1, 𝑒2) in trace 𝜎 may not be a data race of 𝜎 , but nevertheless may still

be a predictable data race of 𝜎 .

Example 2. Consider the trace 𝜎4 in Figure 2b. Observe that there is no prefix of 𝜎4 in which both

𝑒1 and 𝑒6 are enabled. However, (𝑒1, 𝑒6) is a predictable race of 𝜎4 that is witnessed by the singleton

correct reordering 𝜎CR
4

= 𝑒5 in which both 𝑒1 and 𝑒6 are enabled; 𝜎
CR
4

is both downward closed with

respect to and respects ≤𝜎4TO. Further, it has no read events and thus vacuously every read observes

the same last write as in 𝜎4. The other pair of conflicting events in 𝜎4, namely (𝑒3, 𝑒6), however,
is not a predictable race. These events are protected by a common lock, and there is no correct

reordering in which 𝑒3 and 𝑒6 are simultaneously enabled — any attempt at doing so will lead to

overlapping critical sections on ℓ , thereby violating lock semantics.

Example 3. Now, consider 𝜎5 in Figure 2c. Here, the conflicting pair (𝑒3, 𝑒6) cannot be a predictable
race as in the case of 𝜎4— the lock ℓ protects both 𝑒3 and 𝑒6. Now consider the other conflicting

pair (𝑒1, 𝑒8). Let 𝜌 be a correct reordering of 𝜎5 in which 𝑒8 is enabled. We must have 𝑒6 ∈ Events𝜌
(𝜌 must be ≤𝜎5TO-downward closed) and further 𝑒3 ∈ Events𝜌 (as 𝑒3 = lw𝜎5 (𝑒6) = lw𝜌 (𝑒6)). Clearly,
𝑒1 cannot be enabled in any such trace 𝜌 , and thus, the trace 𝜎5 has no predictable data race.

The central theme of race prediction is to solve the problem below.

Problem 1 (Data Race Prediction). Given a trace 𝜎 , determine if 𝜎 has a predictable data race.

A note on soundness. We say that an algorithm for data race prediction is sound if whenever

the algorithm reports a YES answer, then the given trace has a predictable data race. Likewise,

an algorithm is complete if the algorithm reports YES whenever the input trace has a data race.

Our convention for this nomenclature ensures that no false positives are reported by a sound
algorithm [Sergey 2019] and is consistent with prior work on data race prediction [Genç et al. 2019;

Kini et al. 2017; Pavlogiannis 2019; Roemer et al. 2018; Smaragdakis et al. 2012]. Soundness is often

a desirable property for dynamic race predictors for widespread adoption [Gorogiannis et al. 2019].

2.1 Sync-Reversal Free Data Races
In general, the problem of data race prediction is intractable [Mathur et al. 2020], and a sound

and complete algorithm for data race prediction is unlikely to scale beyond programs of even

modest size. A recent trend in predictive analysis for race detection instead, aims to develop

techniques that are sound but incomplete, with successively better prediction power (ability to

report more data races) than previous techniques [Genç et al. 2019; Kini et al. 2017; Pavlogiannis

2019; Roemer et al. 2018; Smaragdakis et al. 2012]. Most of these techniques are either based on

partial orders [Kini et al. 2017; Pozniansky and Schuster 2003; Smaragdakis et al. 2012] or use

graph-based algorithms [Pavlogiannis 2019; Roemer et al. 2018]. In this paper, we characterize a

class of predictable data races, called sync-reversal free races, which we define shortly. We will later

(Section 4) present an algorithm that reports a race iff the input trace has a sync-reversal free race.

Since sync-reversal free races are predictable races, our algorithm will be sound for race prediction.
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𝑡1 𝑡2 𝑡3

1 w(𝑥)
2 acq(ℓ)
3 rel(ℓ)
4 acq(ℓ)
5 w(𝑥)
6 rel(ℓ)
7 acq(ℓ)
8 r(𝑥)
9 rel(ℓ)

(a) Trace 𝜎6

𝑡1 𝑡2 𝑡3

1 acq(ℓ)
2 w(𝑥)
3 rel(ℓ)
4 acq(ℓ)
5 r(𝑥)
6 w(𝑥)
7 rel(ℓ)

(b) Sync-reversal free correct reordering 𝜎CR
6

of 𝜎6
Fig. 3. Sync-reversal free correct reordering and sync-reversal free races

Sync-Reversal FreeCorrectReordering.A correct reordering of a trace is called synchronization-
reversal free (sync-reversal free, for short) if it does not reverse the order of synchronization con-

structs; in our formalism, traces uses locks as synchronization primitives to enforcemutual exclusion.

Formally, a correct reordering 𝜌 of a given trace 𝜎 is sync-reversal free with respect to 𝜎 if for every

lock ℓ and for any two acquire events 𝑒1, 𝑒2 ∈ Acquires𝜌 (ℓ), we have 𝑒1 ≤
𝜌

tr 𝑒2 iff 𝑒1 ≤𝜎tr 𝑒2. In other

words, the order of two critical sections on the same locks do not change across a trace 𝜎 and its

sync-reversal free correct reordering 𝜌 . Let us illustrate the notion of sync-reversal free-ness using

an example.

Example 4. Consider trace 𝜎6 in Figure 3a. This trace has 3 critical sections on lock ℓ . Now

consider the correct reordering 𝜎CR
6

(Figure 3b) of 𝜎6. Here, the critical section in thread 𝑡1 is not

present. But, nevertheless, the order amongst the remaining critical sections on ℓ (in threads 𝑡2
and 𝑡3) is the same as in 𝜎6, making 𝜎CR

6
also a sync-reversal free correct reordering of 𝜎6. This

example also demonstrates that the order of read and write events may be different in a trace and

its sync-reversal free correct reordering (as in Figure 3).

A pair of conflicting events (𝑒1, 𝑒2) of a trace 𝜎 is said to be a sync-reversal free race of 𝜎 if there

is a sync-reversal free correct reordering 𝜌 of 𝜎 in which 𝑒1 and 𝑒2 are 𝜎-enabled.

Example 5. Let us again consider traces from Figure 3. Events 𝑒1 and 𝑒8 in 𝜎6 (Figure 3a) correspond

respectively to events 𝑒6 and 𝑒7 in 𝜎
CR
6

(Figure 3b). These two events are 𝜎6-enabled in the prefix

𝜌 = 𝑒1·𝑒2·𝑒3·𝑒4·𝑒5 of 𝜎CR6
. As a result, (𝑒1, 𝑒8) is a sync-reversal free race of 𝜎6. Likewise, (𝑒1, 𝑒4) is

also a sync-reversal free race of 𝜎6 witnessed by the singleton sync-reversal free correct reordering

𝜌 ′ = ⟨𝑡2, acq(ℓ)⟩, in which both 𝑒1 and 𝑒4 are enabled.

In this article, we will present a linear algorithms for the following decision problem, giving a

sound algorithm for Problem 1.

Problem 2 (Sync-Reversal Free Race Prediction). Given trace 𝜎 , determine if there is a pair of

conflicting events (𝑒1, 𝑒2) in 𝜎 such that (𝑒1, 𝑒2) is a sync-reversal free data race of 𝜎 .

Comparison with other approaches. Here we briefly compare sync-reversal free races with

other approaches in the literature for sound dynamic race prediction. The famous happens-before
HB partial order [Pozniansky and Schuster 2003], and its extension to schedulable-happens-before
SHB [Mathur et al. 2018] are strictly subsumed by this notion. That is, they only compute sync-

reversal free races, but can also miss simple cases of sync-reversal freeness, as already illustrated in

the examples of Figure 1. The causally precedes (CP) partial order [Smaragdakis et al. 2012], and
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its extension to the weak causally precedes (WCP) partial order [Kini et al. 2017] are capable of
predicting races that reverse critical sections. However, they are closed under composition with

HB, and as such can miss even simple sync-reversal free races, even on two-threaded traces. The

does not commute DC partial order [Roemer et al. 2018] is an unsound weakening to WCP, that
further undergoes a vindication phase to filter out unsound reports. Nevertheless, DC is somewhat

similar to WCP, while the two are identical for two-threaded traces. As such, DC also misses

sync-reversal free races on such inputs. The recently introduced partial order strong-dependently-
precedes (SDP) [Genç et al. 2019], while claimed to be sound in that paper, is actually unsound. In

Appendix D, we show a counter-example to the soundness theorem of SDP. We further refer to

Section C for a few examples that illustrate the above comparison.

3 SUMMARY OF MAIN RESULTS
Here we give an outline of the main results of this paper. In later sections we present the details,

i.e., algorithms, proofs and examples. Due to limited space, some technical proofs are relegated to

the appendix. Our first result is an algorithm for dynamic prediction of sync-reversal free races.

We show the following theorem.

Theorem 3.1. Sync-reversal free race prediction is solvable in 𝑂 (N · T 2 + A · V · T 3) time and
𝑂 (N + T 3 · V · L) space, for a trace 𝜎 with length N , T threads, A lock-acquires, andV variables.

In many settings the number of events N and number of lock-acquires A are the dominating

parameters, whereas the other parameters are much smaller, i.e., T ,V = 𝑂 (1), where𝑂 hides poly-

logarithmic factors. Hence, the complexity of our algorithm becomes𝑂 (N) for both time and space.

Our next result shows that a linear space complexity is essentially unavoidable when predicting

sync-reversal free races with one-pass streaming algorithms, which captures most algorithms in

the literature.

Theorem 3.2. Any one-pass algorithm for sync-reversal free race prediction on traces with ≥ 2 threads,
N events and Ω(logN) locks uses Ω(N/log2N) space.

Clearly, any algorithm for the problem must spend linear time, while Theorem 3.2 shows that

the algorithm must also use (nearly) linear space. As our algorithm has 𝑂 (N) time and space

complexity, it is optimal for both resources, modulo poly-logarithmic improvements. Our next

theorem shows a combined time-space lower bound for the problem, which highlights that reducing

the space usage must lead to an increased running time, given that the algorithm is executed on

the Turing Machine model.

Theorem 3.3. Consider the problem of sync-reversal free race prediction on traces with ≥ 2 threads,
N events and Ω(logN) locks. Consider any Turing Machine algorithm for the problem with time and
space complexity 𝑇 (N) and 𝑆 (N), respectively. Then we have 𝑇 (N) · 𝑆 (N) = Ω(N 2/log2N).

Finally, we study the complexity of general race prediction as a function of the number of reversals of

synchronization operations. Given our positive result in Theorem 3.1, can we relax our restriction of

sync-reversal freeness while retaining a tractable definition of predictable races? Our next theorem

answers this question in negative.

Theorem 3.4. Dynamic race prediction on traces with a single lock and two critical sections is W[1]-
hard parameterized by the number of threads.

Note that W[1]-hardness implies NP-hardness. The theorem has two important implications.
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(1) Any witness of predictable races in the setting of Theorem 3.4 is either a sync-reversal free

reordering, or reverses the order of a single pair of lock-acquire events. Thus, Theorem 3.1 and

Theorem 3.4 establish a tight dichotomy on the tractability of the problem, based on the number

of synchronization reversals: the problem is as hard as in the general case for just 1 reversal,

while it is efficiently solvable for no reversals.

(2) The general problem of dynamic race prediction was shown to be W[1]-hard in [Mathur et al.

2020]. However, that proof requires traces with Ω(N) critical sections, and hence it applies to

traces that essentially comprise of synchronization events entirely. In contrast to, the class of

traces in Theorem 3.4 have the smallest level of synchronization possible, i.e., just a single lock

and two critical sections on that lock. Hence, Theorem 3.4 shows that any amount of lock-based

synchronization suffices to make the problem as hard as in the general case.

Together, Theorem 3.1, Theorem 3.2 and Theorem 3.4 characterize exactly the tractability boundary

of race prediction, and show that our algorithm is time and space optimal for the tractable side.

4 DETECTING SYNC-REVERSAL FREE RACES
In this section, we discuss our algorithm SRFree for detecting sync-reversal free data races. The

complete algorithm is presented in Section 4.4. The algorithm may appear complex at first glance

and to make the presentation simple, we first present a high-level overview of the algorithm

in Section 4.1. In the overview, we highlight important observations and algorithmic insights for

solving smaller subproblems of the main problem of sync-reversal free race prediction. Section 4.2

and Section 4.3 present details of the algorithms for the smaller subproblems, and pave the way for

the final algorithm in Section 4.4. In Section 4.5, we present a matching space lowerbound result

for detecting sync-reversal free races, thereby showing the optimality of our algorithm.

4.1 Insights and Overview of the Algorithm
Our algorithm, SRFree, relies on several important observations that are crucial for detecting

sync-reversal free races in linear time. In order to present these observations, it would be helpful

to define intermediate subproblems.

Problem 3 (Sync-Reversal Free Race Prediction Given Pair). Given a trace 𝜎 and a pair of conflict-

ing events (𝑒1, 𝑒2) of 𝜎 , determine if (𝑒1, 𝑒2) is a sync-reversal free data race of 𝜎 .

Problem 4 (Sync-Reversal Free Race Prediction Given Event and Thread). Given a trace 𝜎 , an

event 𝑒 in 𝜎 and a thread 𝑡 ≠ thr(𝑒), check if there is an event 𝑒 ′ ≤𝜎tr 𝑒 such that thr(𝑒 ′) = 𝑡 and
(𝑒 ′, 𝑒) constitutes a sync-reversal free race of 𝜎 .

Observe that a trace with N events can have 𝑂 (N 2) conflicting pair of events. Thus, an algorithm

for Problem 3 that runs in time 𝑂 (𝑇 (N)) can be used to obtain an algorithm for Problem 4 (resp.

Problem 2) that runs in time𝑂 (N ·𝑇 (N)) (resp.𝑂 (N 2 ·𝑇 (N))) by checking if every other event of
the given thread 𝑡 that conflicts with 𝑒 is also in race with 𝑒 (resp. every conflicting pair of events

is a race). We will, however, present algorithms for all three problems that run in 𝑂 (N) time.

4.1.1 Solving Problem 3. .We first observe that when checking for the existence of a sync-reversal free

reordering (of a trace 𝜎) that witnesses a race on a given pair (𝑒1, 𝑒2), it, in fact, suffices to only

search for those reorderings 𝜌 which impose the same order on all of its events (and not just critical
section) as in 𝜎 . We formalize this in Lemma 4.1.

Lemma 4.1. If (𝑒1, 𝑒2) is a sync-reversal free race of 𝜎 , then there is a correct reordering 𝜌 of 𝜎 such
that both 𝑒1, 𝑒2 are 𝜎-enabled in 𝜌 and ≤𝜌tr⊆≤𝜎tr.
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The implication of Lemma 4.1 is the following. If we want to search for a correct reordering

𝜌 of 𝜎 that witnesses a race (𝑒1, 𝑒2), and further, if we already have access to the set of events

𝑆 ⊆ Events𝜎 of a candidate reordering 𝜌 , a simple check suffices – does 𝑆 form a correct reordering

of 𝜎 when linearized according to ≤𝜎tr? In other words, we do not need to enumerate and check all the

(exponentially many) permutations of events in 𝑆 . Thus, Problem 3 — ‘search for a sync-reversal free

correct reordering 𝜌’ — reduces to a simpler problem — ‘search for an appropriate set of events’. Of

course, not all sets 𝑆 ⊆ Events𝜎 of events can be linearized (according to ≤𝜎tr) to obtain a correct

reordering of 𝜎 . At the very least, 𝑆 should satisfy some sanity conditions which we outline next.

Definition 1 (Thread-Order and Last-Write Closure). Let 𝜎 be a trace. A set 𝑆 ⊆ Events𝜎 is said to

be (≤𝜎TO, lw𝜎 )-closed if (a) 𝑆 is downward-closed with respect to ≤𝜎TO, and (b) for any read event

𝑟 ∈ Events𝜎 , if 𝑟 ∈ 𝑆 and if lw𝜎 (𝑟 ) exists, then lw𝜎 (𝑟 ) ∈ 𝑆 .
The (≤𝜎TO, lw𝜎 )-closure of a set 𝑆 ⊆ Events𝜎 , denoted TLClosure𝜎 (𝑆) is the smallest set 𝑆 ′ ⊆ Events𝜎
such that 𝑆 ⊆ 𝑆 ′ and 𝑆 ′ is (≤𝜎TO, lw𝜎 )-closed.

We remark that any correct reordering 𝜌 of 𝜎 that contains events in the set 𝑆 must also contain all

the events in TLClosure𝜎 (𝑆).

Definition 2 (Sync-Reversal Free Closure). Let 𝜎 be a trace. A set 𝑆 ⊆ Events𝜎 is said to be

sync-reversal free closed if

(a) 𝑆 is (≤𝜎TO, lw𝜎 )-closed, and
(b) for any two acquire events 𝑎1, 𝑎2 ∈ Acquires𝜎 (ℓ) acquiring the same lock ℓ with 𝑎1 ≤𝜎tr 𝑎2, if

both 𝑎1, 𝑎2 ∈ 𝑆 , then match𝜎 (𝑎1) ∈ 𝑆
The sync-reversal free closure of a set 𝑆 ⊆ Events𝜎 , denoted SRFClosure𝜎 (𝑆) is the smallest set

𝑆 ′ ⊆ Events𝜎 such that 𝑆 ⊆ 𝑆 ′ and 𝑆 ′ is sync-reversal free closed.

Intuitively, the set 𝑆 ′ = SRFClosure𝜎 (𝑆) captures the additional set of events that must be present

in any sync-reversal free correct reordering 𝜌 of 𝜎 given that 𝜌 contains all events in 𝑆 . First, any

correct reordering of 𝜎 containing 𝑆 will contain TLClosure𝜎 (𝑆) and thus TLClosure𝜎 (𝑆) ⊆ 𝑆 ′ (Con-
dition a). Second, if a correct reordering 𝜌 is sync-reversal free and contains two acquires 𝑎1 ≤𝜎tr 𝑎2
on the same lock ℓ , then we must also have 𝑎1 ≤𝜌tr 𝑎2. Then, in order to ensure well-formedness of 𝜌 ,

CS𝜎 (𝑎1) must also finish entirely before 𝑎2 in 𝜌 , and thus 𝜌 must containmatch𝜎 (𝑎1) (Condition b).

For two events 𝑒1, 𝑒2 ∈ Events𝜎 , we define

SRFIdeal𝜎 (𝑒1, 𝑒2) = SRFClosure𝜎 ({prev𝜎 (𝑒1)} ∪ {prev𝜎 (𝑒2)}),

where, for an event 𝑒 , {prev𝜎 (𝑒)} = ∅ if prev𝜎 (𝑒) does not exist. In essence, SRFIdeal𝜎 (𝑒1, 𝑒2)
contains the necessary set of events that must be present in any sync-reversal free correct reordering

that witnesses the race (𝑒1, 𝑒2). We next show that, in fact, it is also a sufficient set of events, given

that it is disjoint from {𝑒1, 𝑒2}.

Lemma 4.2. (𝑒1, 𝑒2) is a sync-reversal free race of 𝜎 iff {𝑒1, 𝑒2} ∩ SRFIdeal𝜎 (𝑒1, 𝑒2) = ∅.

Lemma 4.2, therefore, gives us a straightforward algorithm for solving Problem 3 — compute

𝐼 = SRFIdeal𝜎 (𝑒1, 𝑒2) and check if neither 𝑒1 nor 𝑒2 is in 𝐼 . In Section 4.2 we outline how to perform

this computation in linear time.

4.1.2 Efficiently Solving Problem 3. As noted before, a linear time algorithm for Problem 3 guar-

antees a quadratic time algorithm for Problem 4. In order to design a more efficient linear time
algorithm, we will exploit monotonicity of SRFIdeal𝜎 (·, ·), which we formalize next.
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Lemma 4.3. Let 𝜎 be a trace and let 𝑒1, 𝑒2, 𝑒 ′1, 𝑒
′
2
∈ Events𝜎 such that 𝑒1 <𝜎

TO 𝑒
′
1
and 𝑒2 <𝜎

TO 𝑒
′
2
. Then,

SRFIdeal𝜎 (𝑒1, 𝑒2) ⊆ SRFIdeal𝜎 (𝑒 ′1, 𝑒 ′2).

Our linear time algorithm for Problem 4 exploits Lemma 4.3 as follows. Suppose we are checking

if a given event 𝑒 in the given trace 𝜎 is in sync-reversal free race with some earlier conflicting

event of thread 𝑡 . To accomplish this, we can scan 𝜎 and enumerate the list 𝐿 of events that

belong to 𝑡 and conflict with 𝑒 . When checking for race with the first such event 𝑒 ′
first

, we compute

𝐼first = SRFIdeal𝜎 (𝑒 ′
first
, 𝑒). If a race is found, we are done. Otherwise, we analyze the next event

𝑒 ′
next

in 𝐿 and compute 𝐼next = SRFIdeal𝜎 (𝑒 ′next, 𝑒). Here Lemma 4.3 ensures that 𝐼first ⊆ 𝐼next. Our
algorithm exploits this observation by computing the latter set 𝐼next incrementally, spending time

that is proportional only to the number of extra events (cardinality of 𝐼next \ 𝐼first). This principle is
applied repeatedly to subsequent events of 𝐿, giving us an overall linear time algorithm (Section 4.3).

4.1.3 Efficiently solving Problem 2. A final ingredient in our incremental linear time algorithm

for Problem 2 is the following observation which builds on Lemma 4.3.

Lemma 4.4. Let 𝜎 be a trace and let 𝑒1, 𝑒2, 𝑒 ′2 ∈ Events𝜎 such that 𝑒1 ≤𝜎tr 𝑒2 ≤𝜎TO 𝑒
′
2
, 𝑒1 ≍ 𝑒2 and 𝑒1 ≍ 𝑒 ′2.

If (𝑒1, 𝑒2) is not a sync-reversal free race, then (𝑒1, 𝑒 ′2) is also not a sync-reversal free race of 𝜎 .

Intuitively, this observation suggests the following. Suppose thatwhen looking for a sync-reversal free

race, the algorithm determines that 𝑒2 is not in race with any earlier conflicting event. Then, for

an event 𝑒 ′
2
(that appears later in the thread of 𝑒2), we only need to investigate if 𝑒 ′

2
is in race with

conflicting events 𝑒 ′
1
that appear after 𝑒2 in the trace (i.e., 𝑒2 ≤tr 𝑒 ′1 ≤tr 𝑒2), instead of additionally

looking for races (𝑒 ′′
1
, 𝑒 ′

2
) where 𝑒 ′′

1
≤tr 𝑒2.

Equipped with Lemma 4.3 and Lemma 4.4, we can now describe our incremental algorithm

for Problem 2 that works in linear time. For ease of explanation, let us focus on the question

—- is there a write-write race on some fixed variable 𝑥 ∈ Vars when accessed in two fixed threads

𝑡1, 𝑡2 ∈ Vars. The algorithm scans the trace in a streaming forward pass and analyzes every access

event 𝑒 = ⟨𝑡2, w(𝑥)⟩, checking if there is an earlier conflicting event 𝑒 ′ = ⟨𝑡1, w(𝑥)⟩ ≤tr 𝑒 so that

(𝑒 ′, 𝑒) is a sync-reversal free race. In doing so, it computes 𝐼 = SRFIdeal𝜎 (𝑒 ′, 𝑒) in linear time and

checks if 𝑒 ′ ∉ 𝐼 . If not, (𝑒 ′, 𝑒) is not a race and the algorithm checks if there is a different event

𝑒 ′
next
≤tr 𝑒 so that (𝑒 ′

next
, 𝑒) is a race. This continues until there are no earlier events remaining

that conflict with 𝑒 . Each time, the ideal computation is performed incrementally, by using the

previously computed ideals. After this, the algorithm moves to the event 𝑒next⟨𝑡2, w(𝑥)⟩ in 𝑡2 and
checks if it is in race with some earlier event 𝑒 ′′, where this time, 𝑒 ′′ appears after the previously
discarded event 𝑒 of 𝑡2. Again, the closed set SRFIdeal𝜎 (𝑒 ′′, 𝑒next) is done incrementally based on

previously computed ideals. We show that all the incremental computation can be performed

efficiently and present an outline for our algorithm for Problem 2 in Section 4.4.

Next, we present high-level descriptions of the intermediate steps that we outlined above, and

discuss important algorithmic insights and data-structures that help achieve efficiency.

4.2 Checking if a given pair of conflicting events is a sync-reversal free race
Algorithm 1 outlines our solution to Problem 3 (check if a given pair of events (𝑒1, 𝑒2) is a

sync-reversal free race of 𝜎). This algorithm computes the closure SRFClosure𝜎 (𝑒1, 𝑒2) in an itera-

tive fashion and checks if it contains neither 𝑒1 nor 𝑒2 (see Lemma 4.2).We remark thatwhen 𝑒1 ≤𝜎tr 𝑒2,
Definition 2 ensures that 𝑒2 ∉ SRFIdeal𝜎 (𝑒1, 𝑒2). Consequently, the check ‘𝑒1 ∉ SRFClosure𝜎 (𝑒1, 𝑒2)’
(Line 9 in Algorithm 1) is equivalent to the condition ‘{𝑒1, 𝑒2} ∩ SRFClosure𝜎 (𝑒1, 𝑒2) = ∅’ (due
to Lemma 4.2). The function ComputeSRFClosure performs a fixpoint computation, starting from
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Algorithm 1: Checking if a given conflicting pair constitutes a Sync-Reversal Free race
Input: Trace 𝜎 , Conflicting events 𝑒1 and 𝑒2 with 𝑒1 ≤𝜎tr 𝑒2

1 function ComputeSRFClosure(𝜎 , 𝑒1, 𝑒2, 𝐼0)
2 𝐼 ← 𝐼0 ∪ TLClosure𝜎 ({prev𝜎 (𝑒1)}) ∪ TLClosure𝜎 ({prev𝜎 (𝑒2)})
3 repeat
4 if ∃ℓ ∈ Locks𝜎 , ∃𝑎1, 𝑎2 ∈ Acquires𝜎 (ℓ) such that 𝑎1 ≤𝜎tr 𝑎2 and 𝑎1, 𝑎2 ∈ 𝐼 then
5 𝐼 ← 𝐼 ∪ TLClosure𝜎 ({match𝜎 (𝑎1))}
6 until 𝐼 does not change
7 return 𝐼

8 𝐼 ← ComputeSRFClosure(𝜎 , 𝑒1, 𝑒2, ∅)
9 if 𝑒1 ∉ 𝐼 then
10 declare ‘race’

the set 𝐼 =
⋃

𝑖∈{1,2} TLClosure𝜎 (prev𝜎 (𝑒𝑖 )) (when 𝐼0 = ∅). The correctness of the algorithm follows

from the correctness of the function ComputeSRFClosure, which we formalize below.

Lemma 4.5. Let 𝜎 be a trace, 𝑒1, 𝑒2 ∈ Events𝜎 and 𝐼0 ⊆ Events𝜎 be a (≤𝜎TO, lw𝜎 )-closed set. Let 𝐼 be
the set returned by ComputeSRFClosure (𝜎, 𝑒1, 𝑒2, 𝐼0) in Algorithm 1. Then, 𝐼 = SRFClosure𝜎 (𝐼0 ∪
{prev𝜎 (𝑒1)} ∪ {prev𝜎 (𝑒2)}).

Let us discuss the data-structures we use to ensure that Algorithm 1 runs in linear time and space.

4.2.1 Vector Timestamps. Vector timestamps [Fidge 1991; Mattern 1988] are routinely exploited

in distributed computing and also prior work on race prediction [Flanagan and Freund 2009;

Kini et al. 2017; Pozniansky and Schuster 2003; Roemer et al. 2018]. We use vector timestamps

to represent sets of events that are (≤𝜎TO, lw𝜎 )-closed; a formal definition of vector timestamps

is deferred to Section 4.4. In Algorithm 1, the sets TLClosure𝜎 ({prev𝜎 (𝑒𝑖 )}) are (≤TO, lw)-closed
(Line 2). Further, if the input 𝐼0 is also assumed to be (≤TO, lw)-closed, then all subsequent values

of 𝐼 in ComputeSRFClosure will also be (≤TO, lw)-closed. All these sets can then be represented as

vector timestamps. The advantage of using vector timestamps is two-folds. First, these timestamps

provide a succinct representation of sets — instead of representing a set explicitly as a collection of

events, a vector timestamp only uses T integers (where T = |Thr𝜎 |). Second, the vector timestamps

for (≤𝜎TO, lw𝜎 )-closed sets can be computed in a streaming fashion, incrementally, using vector

timestamps of smaller subsets.

4.2.2 Projecting trace to threads and locks. Let us consider the check in Line 4. Here, we look for

two acquire events 𝑎1 ≤𝜎tr 𝑎2 in the current ideal 𝐼 that acquire the same lock ℓ . How do we discover

two such acquires? A straightforward way is to enumerate all pairs of events in 𝐼 and check if they

are acquire events of the above kind. But this can take 𝑂 (N 3), where N = |Events𝜎 | because the
number of such pairs can be𝑂 (N 2) in the worst case and the number of times the ideal can change

is 𝑂 (N). Instead, we rely on the following observation:

Proposition 4.6. Let 𝐼 ⊆ Events𝜎 be downward closed with respect to ≤𝜎TO. For every 𝑡 ∈ Thr𝜎
and every ℓ ∈ Locks𝜎 , there is at most one acquire event 𝑎 = ⟨𝑡, acq(ℓ)⟩ such that 𝑎 ∈ 𝐼 and
match𝜎 (𝑎) ∉ 𝐼 . When such an event 𝑎 exists, thenmatch𝜎 (𝑎′) ∈ 𝐼 for every other acquire 𝑎′ <𝜎

TO 𝑎 of
the form 𝑎′ = ⟨𝑡, acq(ℓ)⟩.

The above observation can be exploited as follows. Let 𝑒𝐼𝑡,ℓ be the last acquire on lock ℓ performed by

thread 𝑡 such that 𝑒𝐼𝑡,ℓ ∈ 𝐼 . Let Acq𝐼ℓ = {𝑒𝐼𝑡,ℓ }𝑡 ∈Thr𝜎 and let 𝑒𝐼ℓ be the last event (according to trace order
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≤𝜎tr) in Acq𝐼ℓ . Then, for every other acquire 𝑒 ′ ∈ Acq𝐼ℓ \ {𝑒𝐼ℓ }, the matching release match𝜎 (𝑒 ′) must

be included in 𝐼 . Hence, if we can efficiently determine the events 𝑒𝐼𝑡,ℓ each time, then we can also

efficiently determine 𝑒𝐼ℓ and thus efficiently perform the closure each time. So, how do we determine

𝑒𝐼𝑡,ℓ efficiently each time? We achieve this by maintaining lists of the form {CSHist𝑡,ℓ }𝑡 ∈Thr𝜎 ,ℓ∈Locks𝜎 .
Each such listCSHist𝑡,ℓ is a sequence of entries corresponding to the critical sections on ℓ performed

by thread 𝑡 , in the order in which they were performed in the trace 𝜎 . Every entry (corresponding

to critical section with acquire 𝑎) is a pair (TLClosure𝜎 (𝑎), TLClosure𝜎 (match𝜎 (𝑎))), represented
as a pair of vector timestamps. We can now traverse each list in CSHist𝑡,ℓ (𝑡 ∈ Thr𝜎 ), until the entry
corresponding to the last acquire 𝑒𝐼𝑡,ℓ that belongs to 𝐼 (this corresponds to a simple timestamp

comparison). All entries in CSHist𝑡,ℓ prior to the identified event 𝑒𝐼𝑡,ℓ can then be discarded from

CSHist𝑡,ℓ , because the ideal now contains them and only grows monotonically through the course

of the fixpoint computation. Since every entry in the lists {CSHist𝑡,ℓ }𝑡,ℓ is traversed only once, the

overall fixpoint computation runs in linear time when the number of T is constant.

4.3 Checking for a Sync-Reversal Free race on a given event with a given thread

Algorithm 2: Checking if there is a sync-reversal free race on a given event with a given
thread
Input: Trace 𝜎 , Event 𝑒 = ⟨𝑡, 𝑎(𝑥)⟩, Thread 𝑢

1 for each 𝑏 ∈ {r, w} such that 𝑏 ≍ 𝑎4
2 let 𝐿𝑏 be the list of events 𝑒 ′ of the form ⟨𝑢,𝑏 (𝑥)⟩ such that 𝑒 ′ ≤𝜎tr 𝑒
3 for each 𝑏 ∈ {r, w} such that 𝑏 ≍ 𝑎
4 𝐼𝑏 ← ∅
5 for each 𝑒 ′ ∈ 𝐿𝑏
6 𝐼𝑏 ← ComputeSRFClosure(𝜎 , 𝑒 ′, 𝑒 , 𝐼𝑏)
7 if 𝑒 ′ ∉ 𝐼𝑏 then
8 declare ‘race’ and exit

Let us now consider Algorithm 2. This algorithm takes as input a trace 𝜎 , an event 𝑒 = ⟨𝑡, 𝑎(𝑥)⟩
and a threads 𝑢 ≠ 𝑡 , and checks if there is an event 𝑒 ′ of thread 𝑢 such that 𝑒 ′ ≤𝜎tr 𝑒 and (𝑒 ′, 𝑒)
is is a sync-reversal free race. Algorithm 2 works as follows. For the sake of simplicity, assume

that 𝑒 is a read event, i.e., 𝑎 = r. The algorithm assumes access to the list 𝐿w of write events

𝑒 ′ = ⟨𝑢, w(𝑥)⟩ that appear prior to 𝑒 (Line 2); these lists can be constructed in linear time, in a single

pass traversal of the trace. The algorithm simply traverses 𝐿w (according to trace order ≤𝜎tr) and
checks for races with each event in 𝐿w, by computing the fixpoint closure sets as in Algorithm 1.

Instead of computing the ideal from scratch, the algorithm exploits the monotonicity property

outlined earlier in Lemma 4.3 by reusing the ideal 𝐼w computed so far. As with Algorithm 1, this

algorithm also uses vector timestamps and maintains lists {CSHist𝑡,ℓ }𝑡 ∈Thr,ℓ∈Locks for computing

successive ideals efficiently. Overall again, each entry in {CSHist𝑡,ℓ }𝑡 ∈Thr,ℓ∈Locks is visited a constant
number of times and thus Algorithm 2 runs uses linear time and space.

4.4 Algorithm SRFree for Sync-Reversal Free Race Prediction
The pseudo-code for SRFree is presented in Algorithm 3. This is a one pass streaming algorithm

that processes events as they appear in the trace, modifying its state and detecting races on the

4𝑏 ≍ 𝑎 whenever not both 𝑏 and 𝑎 are read (r) operations

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Anon.

Algorithm 3: Detailed Streaming Algorithm for Checking Sync-Reversal Free races

1 function Initialization()
2 foreach 𝑡 ∈ Thr · do
3 C𝑡 := ⊥
4 foreach 𝑥 ∈ Vars · do
5 LW𝑥 := ⊥
6 foreach ℓ ∈ Locks · do
7 gℓ := 0

8 foreach 𝑡1, 𝑡2 ∈ Thr, 𝑎1, 𝑎2 ∈ {r, w}, 𝑥 ∈ Vars do
9 I⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩ := ⊥

10 foreach 𝑡 ∈ Thr, ℓ ∈ Locks do
11 CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩

𝑡,ℓ
:= ∅

12 foreach 𝑢 ∈ Thr do
13 foreach 𝑡 ∈ Thr, 𝑎 ∈ {r, w}, 𝑥 ∈ Vars do
14 AccessHist⟨𝑢 ⟩𝑡,𝑎,𝑥 := ∅

15 function maxLowerBound(𝑈 , 𝐿𝑠𝑡)
16 (𝑔max,𝐶max,𝐶

′
max
) := (0,⊥,⊥)

17 while not𝐿𝑠𝑡 • isEmpty() do
18 (𝑔,𝐶,𝐶 ′) := 𝐿𝑠𝑡 • first()
19 if 𝐶 ⊑ 𝑈 then
20 (𝑔max,𝐶max,𝐶

′
max
) := (𝑔,𝐶,𝐶 ′)

21 else
22 break

23 𝐿𝑠𝑡 • removeFirst()

24 return (𝑔max,𝐶max,𝐶
′
max
)

25 function ComputeSRFClosure(𝐼 , ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩)
26 repeat
27 foreach ℓ ∈ Locks do
28 foreach 𝑡 ∈ Thr do
29 (𝑔ℓ,𝑡 ,𝐶ℓ,𝑡 ,𝐶

′
ℓ,𝑡
) := maxLowerBound(𝐼 ,

CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ

)

30 𝑡max := argmax𝑡 ∈Thr {𝑔ℓ,𝑡 }
31 𝐼 := 𝐼 ⊔ ⊔

𝑡≠𝑡max∈Thr 𝐶
′
ℓ,𝑡

32 until 𝐼 does not change
33 return 𝐼

34 function checkRace(𝐿𝑠𝑡 , 𝐼 , ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩)
35 while not𝐿𝑠𝑡 • isEmpty() do
36 (𝐶prev ,𝐶) := 𝐿𝑠𝑡 • first()

37 𝐼 := ComputeSRFClosure(𝐼 ⊔𝐶prev ,
⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩)

38 if 𝐶 ′ ̸⊑ 𝐼 then
39 declare ‘(𝑎1, 𝑎2) race on 𝑥 ’
40 break

41 𝐿𝑠𝑡 • removeFirst()

42 return 𝐼

43 handler read(𝑡 , 𝑥)
44 𝐶prev := C𝑡
45 C𝑡 := C𝑡 [𝑡 ↦→ C𝑡 (𝑡) + 1] ⊔ LW𝑥

46 foreach 𝑢 ∈ Thr, 𝑥 ∈ Vars do
47 AccessHist⟨𝑢 ⟩𝑡,r,𝑥

• addLast((𝐶prev, C𝑡))

48 foreach 𝑢 ≠ 𝑡 ∈ Thr do
49 𝐼 := I⟨𝑢,𝑡,w,r,𝑥 ⟩ ⊔𝐶prev
50 I⟨𝑢,𝑡,w,r,𝑥 ⟩ := checkRace(AccessHist⟨𝑢 ⟩𝑢,w,𝑥 , 𝐼 ,

⟨𝑢, 𝑡, w, r, 𝑥⟩)

51 handler write(𝑡 , 𝑥)
52 𝐶prev := C𝑡
53 C𝑡 := C𝑡 [𝑡 ↦→ C𝑡 (𝑡) + 1]; LW𝑥 := C𝑡
54 foreach 𝑢 ∈ Thr, 𝑥 ∈ Vars do
55 AccessHist⟨𝑢 ⟩𝑡,w,𝑥

• addLast((𝐶prev, C𝑡))

56 foreach 𝑢 ≠ 𝑡 ∈ Thr, 𝑎 ∈ {r, w} do
57 𝐼 := I⟨𝑢,𝑡,𝑎,w,𝑥 ⟩ ⊔𝐶prev
58 I⟨𝑢,𝑡,𝑎,w,𝑥 ⟩ := checkRace(AccessHist⟨𝑢 ⟩𝑢,𝑎,𝑥 , 𝐼 ,

⟨𝑢, 𝑡, 𝑎, w, 𝑥⟩)

59 handler acquire(𝑡 , ℓ)
60 C𝑡 := C𝑡 [𝑡 ↦→ C𝑡 (𝑡) + 1]; gℓ := gℓ + 1
61 foreach 𝑡1, 𝑡2 ∈ Thr, 𝑎1, 𝑎2 ∈ {r, w}, 𝑥 ∈ Vars do
62 CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩

𝑡,ℓ
• addLast((gℓ ,C𝑡 ,⊥))

63 handler release(𝑡 , ℓ)
64 C𝑡 := C𝑡 [𝑡 ↦→ C𝑡 (𝑡) + 1]
65 foreach 𝑡1, 𝑡2 ∈ Thr, 𝑎1, 𝑎2 ∈ {r, w}, 𝑥 ∈ Vars do
66 CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩

𝑡,ℓ
• last() •

updateRelease(C𝑡)

fly. The algorithm maintains several data structures including vector clocks and FIFO queues in

its state. We will first describe these data structures, then discuss how the algorithm initializes

and modifies them as it processes the trace, and finally discuss the time and space usage for this

algorithm; many of these details have already been spelt out in Sections 4.1-4.3.
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Let us first briefly explain the notion of vector timestamps and vector clocks [Fidge 1991; Mattern

1988]. A vector timestamp is amapping𝑉 : Thr𝜎 → N from the threads of a trace to natural numbers,

and can be represented as a vector of length |Thr𝜎 |. The join of two vector timestamps 𝑉1 and 𝑉2,

denoted 𝑉1 ⊔𝑉2 is the vector timestamp 𝜆𝑡,max(𝑉1 (𝑡),𝑉2 (𝑡)). Vector timestamps can be compared

in a pointwise fashion: 𝑉1 ⊑ 𝑉2 iff ∀𝑡,𝑉1 (𝑡) ≤ 𝑉2 (𝑡). The minimum timestamp is denoted by ⊥ —

⊥ = 𝜆𝑡, 0. For a scalar 𝑐 ∈ N, we use𝑉 [𝑡 ↦→ 𝑐] to denote the timestamp 𝜆𝑢, if 𝑢 = 𝑡 then 𝑐 else 𝑉 (𝑢).
Vector clocks are variables that take values from the space of vector timestamps. All operations on

vector timestamps also apply to clocks. We will use normal font for timestamps (𝐶,𝐶 ′, 𝐼 . . .) and
boldfaced font for vector clocks (C,LW, I, . . .).

Data structures and Initialization. The algorithm maintains the following data structures.

(1) Vector Clocks. The algorithm uses vector clocks primarily for two purposes. First, we assign

timestamps to all events in the trace and use the following vector clocks for this purpose —

for every thread, a dedicated clock C𝑡 , and for every variable 𝑥 , a dedicated clock LW𝑥 . The

timestamp of an event 𝑒 is essentially a succinct representation of the set TLClosure (𝑒). Next, the
algorithm computes SRFClosure (·, ·) sets and represents them as timestamps. These are stored

in vector clocks I⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩ , one for every tuple (𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥) ∈ Thr×Thr×{r, w}×{r, w}×Vars.
All vector clocks are initialized with the timestamp ⊥ = 𝜆𝑡, 0.

(2) Scalars. For every lock ℓ , the algorithm maintains a scalar variable gℓ to record the index of

the last acquire on ℓ seen in the trace seen so far. Each such scalar is initialized with 0.

(3) FIFO Queues. The algorithm maintains several FIFO queues, whose entries correspond to

different events in the trace. The algorithm ensures that an event appears only once, and

additionally ensures that the entries respect the order of appearance of the corresponding

events in the trace. The first kind of FIFO queues are used in the fixpoint computation. For

this, the algorithm maintains queues CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ

, one for every thread 𝑡 , lock ℓ and tuple

(𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥). Each entry of CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ

is a triplet (𝑔𝑒 ,𝐶𝑒 ,𝐶
′
𝑒 ) and corresponds to an

acquire event 𝑒 of the form ⟨𝑡, ℓ⟩ — here, 𝑔𝑒 is the index of 𝑒 in the trace, 𝐶𝑒 is the timestamp of

𝑒 and 𝐶 ′𝑒 is the timestamp of the matching release match (𝑒). The second kind of queues are

of the form AccessHist⟨𝑢 ⟩𝑡,𝑥 , one for each 𝑡,𝑢 ∈ Thr, 𝑎 ∈ {r, w} and 𝑥 ∈ Vars. Entry in such a

FIFO queue corresponds to access events of the form 𝑒 = ⟨𝑡, 𝑎(𝑥)⟩. Each entry is of the form

(𝐶prev (𝑒) ,𝐶𝑒 ) where 𝐶prev (𝑒) is the timestamp of prev (𝑒) (and ⊥ if prev (𝑒) does not exist) and
𝐶𝑒 is the timstamp of 𝑒 . All FIFO queues are empty (∅) in the beginning. We write 𝐿 • first()
and 𝐿 • last() to denote the first and last elements of the FIFO queue 𝐿. Further, 𝐿 • isEmpty(),
𝐿 • addLast() and 𝐿 • removeFirst() respectively represent functions that check for emptiness

of 𝐿, add an element at the end of 𝐿 and remove the earliest (first) element of 𝐿.

Let us now describe the working of SRFree. The algorithm works in a streaming fashion and

processes each event 𝑒 as soon as it appears, by calling the appropriate handler depending upon

the operation performed in 𝑒 (read, write, acquire or release). The argument for each handler

is the thread performing the event and the object (variable or lock) accessed in the event. In each

handler, the algorithm updates vector clocks to correctly compute timestamps, and maintains the

invariants of the FIFO queues. In addition, inside read and write handler events, the algorithm
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also checks for races using a fixpoint computation (function ComputeSRFClosure). We explain

some of these briefly.

Computing Vector Timestamps. The algorithm computes the timestamp of an event 𝑒 , denoted

𝐶𝑒 when processing the event 𝑒 . The algorithm maintains the following invariant -

∀𝑡 ∈ Thr,𝐶𝑒 (𝑡) = |{𝑓 ∈ Events | thr(𝑓 ) = 𝑡, 𝑓 ∈ TLClosure (𝑒)}|
Observe that, with this invariant, we have𝐶𝑒 ⊑ 𝐶𝑒′ iff 𝑒 ∈ TLClosure (𝑒 ′). The algorithm uses vector

clocks {C𝑡 }𝑡 ∈Thr and {LW𝑥 }𝑥 ∈Vars and ensures that after processing an event 𝑒 , (1) C𝑡 stores the
timestamp 𝐶𝑒𝑡 , where 𝑒𝑡 is the last event by thread 𝑡 that occurs before 𝑒 , and (2) LW𝑥 stores the

timestamp 𝐶𝑒𝑥 , where 𝑒𝑥 is the last event with op(𝑒𝑥 ) = w(𝑥) that occurs before 𝑒 . The algorithm
correctly maintains these values by appropriate vector clock operations on Lines 45, 53, 60 and 64.

Checking Races. When processing an access event 𝑒 = ⟨𝑡, 𝑎(𝑥)⟩, the algorithm checks for a race

as follows. For every other thread 𝑢 and for every other conflicting type 𝑏 ≍ 𝑎, the algorithm calls

checkRace with the list 𝐿𝑠𝑡 = AccessHist⟨𝑡 ⟩
𝑢,𝑏,𝑥

and the timestamp representation of the current

ideal as argument. This function, similar to Algorithm 2, scans 𝐿𝑠𝑡 and reports races by repeatedly

performing fixpoint computations and checking membership in some set (using the timestamp

comparison in Line 38). The closure computation is performed using the optimizations discussed

in Section 4.2 (use of FIFO queues CSHist⟨·· ·⟩
𝑡,ℓ

).

Space Optimizations. Observe that, for a given thread 𝑡 and lock ℓ , the algorithm, as presented,

maintains 4T 2·V FIFO queues {CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ

}𝑡1,𝑡2∈Thr,𝑎1,𝑎2∈{r,w},𝑥 ∈Vars . The total number of

entries across these queues will then be 𝑂 (A · 4T 2·V). To this end, we observe that all the above

data structures essentially have the same content, and are suffixes of a common queue corresponding

to the critical sections on ℓ in thread 𝑡 . Indeed, we exploit this redundancy and instead maintain a

common underlying data-structure that stores all entries corresponding to acquires and releases on ℓ

in 𝑡 , and maintain a pointer for each ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩. Such a pointer keeps track of the starting index

of the FIFO queue CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ

. With this space optimization, we only store 𝑂 (A) entries
along with additional 4·T 3·V·L pointers, one for every tuple ⟨𝑡1, 𝑡2, 𝑎1, 𝑎2, 𝑥⟩ and every shared

queue indexed by (𝑡, ℓ). The same observations also apply to the FIFO queues {AccessHist⟨𝑢 ⟩𝑡,𝑎,𝑥 }𝑢∈Thr

Lemma 4.7 (Correctness). For every access event 𝑒 in the input trace 𝜎 , Algorithm 3 declares a race
when processing 𝑒 iff there is an event 𝑒 ′ such that 𝑒 ′ ≤𝜎tr 𝑒 and (𝑒 ′, 𝑒) is a sync-reversal free-race of 𝜎 .

The proof of Lemma 4.7 follows directly from the correctness of the semantics of clocks and other

observations outlined in Section 4.1.

The time complexity of the algorithm can be determined as follows. The algorithm visits each entry

in the FIFO queues AccessHist⟨𝑢 ⟩𝑡,𝑎,𝑥 once, performing constant number of vector clock operations,

each running in 𝑂 (T ) time. The total length of all these queues is 𝑂 (T ·N) (more precisely, the

number of access events in the trace). Similarly, the algorithm visits each entry in the FIFO queues

CSHist⟨𝑡1,𝑡2,𝑎1,𝑎2,𝑥 ⟩
𝑡,ℓ

once, performing constantly many vector clock operations. The total number of

entries in these queues is 𝑂 (T 2·V·A). This gives us the following complexity for SRFree.

Lemma 4.8 (Complexity). Let 𝜎 be a trace with T threads, L locks,V variables and N events, of
which A are acquire events. Then, Algorithm 3 runs in time 𝑂 (N · T 2 + A · V · T 3) and uses space
𝑂 (N + T 3 · V · L) on input 𝜎 .

The proof of Theorem 3.1 follows from Lemma 4.7 and Lemma 4.8.
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𝑡1 𝑡2

1 acq(𝑏1)
2 acq(𝑏2)
3 acq(𝑐)
4 w1 (𝑥)
5 rel(𝑐)
6 rel(𝑏2)
7 rel(𝑏1)
8 acq(𝑎1)
9 acq(𝑏2)
10 r2 (𝑥)
11 rel(𝑏2)
12 rel(𝑎1)

𝑡1 𝑡2

13 acq(𝑎2)
14 acq(𝑏1)
15 r3 (𝑥)
16 rel(𝑏1)
17 rel(𝑎2)
18 acq(𝑎1)
19 acq(𝑎2)
20 acq(𝑐)
21 w4 (𝑥)
22 rel(𝑐)
23 rel(𝑎2)
24 rel(𝑎1)

𝑡1 𝑡2

25 acq(𝑎1)
26 acq(𝑎2)
27 acq(𝑐)
28 w1 (𝑥)
29 rel(𝑐)
30 rel(𝑎2)
31 rel(𝑎1)
32 acq(𝑏1)
33 acq(𝑎2)
34 r2 (𝑥)
35 rel(𝑎2)
36 rel(𝑏1)

𝑡1 𝑡2

37 acq(𝑏2)
38 acq(𝑎1)
39 acq(𝑐)
40 w3 (𝑥)
41 rel(𝑐)
42 rel(𝑎1)
43 rel(𝑏2)
44 acq(𝑏1)
45 acq(𝑏2)
46 acq(𝑐)
47 w4 (𝑥)
48 rel(𝑐)
49 rel(𝑏2)
50 rel(𝑏1)

Fig. 4. Construction of the trace 𝜎 on input 𝑠 = 𝑢#𝑣 where 𝑢 = 1001 and 𝑣 = 1011. Observe that (𝑒15, 𝑒40) is a
sync-reversal free race, which encodes that 𝑒 [3] ≠ 𝑣 [3].

4.5 Linear Space Lower Bound
In this section we prove the lower-bounds of Theorem 3.2 and Theorem 3.3, i.e., that any streaming

algorithm for sync-reversal free race prediction must essentially use linear space, while the time-

space product of any (not necessarily streaming) algorithm for the problem must be quadratic in

the length of the input trace.

The language L𝒏. Given a natural number 𝑛, we define the equality language L𝑛 = {𝑢#𝑣 : 𝑢, 𝑣 ∈
{0, 1}𝑛 and 𝑢 = 𝑣}, i.e., it is the language of two 𝑛-bit strings that are separated by # and are equal.

Lemma 4.9. Any streaming algorithm that recognizes L𝑛 uses Ω(𝑛) space.

Proof. Assume towards contradiction otherwise, i.e., there is a streaming algorithm that uses

𝑜 (𝑛) space. Hence the state space of the algorithm is 𝑜 (2𝑛). Then, there exist two distinct 𝑛-bit

strings 𝑢1 ≠ 𝑢2, such that the algorithm is in the same state after parsing 𝑢1 and 𝑢2. Hence, for any

𝑛-bit string 𝑣 , the algorithm gives the same answer on inputs 𝑢1#𝑣 and 𝑢2#𝑣 . Since the algorithm is

correct, it reports that 𝑢1#𝑢1 belongs to L𝑛 . But then the algorithm reports that 𝑢2#𝑢1 also belongs

to L𝑛 , a contradiction. The desired result follows. □

Reduction from L𝒏 recognition to Sync-Reversal Free race prediction. Consider the lan-

guage L𝑛 for some 𝑛. We describe a transducer A𝑛 such that, on input a string 𝑠 = 𝑢#𝑣 , the output

A𝑛 (𝑠) is a trace 𝜎 with 2 threads, 𝑂 (𝑛 · log𝑛) events, 2 · log𝑛 + 1 locks and a single variable such

that the following hold.

(1) If 𝑠 ∉ L𝑛 , then 𝜎 has no predictable race.

(2) If 𝑠 ∈ L𝑛 , then 𝜎 has a single predictable race, which is a sync-reversal free race.

Moreover, A𝑛 uses 𝑂 (log𝑛) working space. The transducer A𝑛 uses a single variable 𝑥 , two sets

of locks 𝐴 = {𝑎1, . . . , 𝑎log𝑛} and 𝐵 = {𝑏1, . . . , 𝑏log𝑛}, plus one additional lock 𝑐 . The trace 𝜎 consists

of two local traces 𝜋1, 𝜋2 of threads 𝑡1 and 𝑡2 which encode the bits of 𝑢 and 𝑣 , respectively.

(1) The local trace 𝜋1 is constructed as follows. For every 𝑖 ∈ [𝑛], 𝜋1 contains an event 𝑒1𝑖 , which is

a write event w(𝑥) if 𝑢 [𝑖] = 1, and a read event r(𝑥) otherwise. The events 𝑒1𝑖 are surrounded
by locks from 𝐴 and 𝐵 arbitrarily, as long as the following holds. For any 𝑖 < 𝑗 , we have

locksHeld𝜎 (𝑒1𝑗 ) ∩𝐴 ⊈ locksHeld𝜎 (𝑒1𝑖 ) ∩𝐴and locksHeld𝜎 (𝑒1𝑖 ) ∩ 𝐵 ⊈ locksHeld𝜎 (𝑒1𝑗 ) ∩ 𝐵 .
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Here, the locks held at an event 𝑒 has the obvious meaning : locksHeld𝜎 (𝑒) = {ℓ ∈ Locks𝜎 | ∃𝑎 ∈
Acquires𝜎 (ℓ) such that 𝑒 ∈ CS𝜎 (𝑎)}.
The above property can be easily met, for example, by making A𝑛 perform a breadth-first

traversal of the subset-lattice of 𝐴 (resp., 𝐵) starting from the top (resp., bottom). Given the

current 𝑖 , the transducer surrounds 𝑒1𝑖 with the locks of the current element in the corresponding

lattice. Finally, every write event 𝑒1𝑖 is surrounded by the lock 𝑐 .

(2) The local trace 𝜋2 is similar to 𝜋1, i.e., we have an event 𝑒2𝑖 for each 𝑖 ∈ [𝑛], which is a write

event w(𝑥) if 𝑢 [𝑖] = 1, otherwise it is a read event r(𝑥). The locks that surround 𝑒2𝑖 are such that

locksHeld𝜎 (𝑒2𝑖 ) ∩ (𝐴 ∪ 𝐵) = 𝐴 ∪ 𝐵 \ locksHeld𝜎 (𝑒1𝑗 ) .

Finally, similarly to 𝜋1, every write event 𝑒1
2
is surrounded by the lock 𝑐 .

See Figure 4 for an illustration. Observe that A𝑛 uses 𝑂 (log𝑛) bits of memory, for storing a bit-set

of locks for each set 𝐴 and 𝐵 that must surround the current event 𝑒1𝑖 and 𝑒
2

𝑖 .

Any two events 𝑒1𝑖 , 𝑒
2

𝑗 are surrounded by a common lock from the set 𝐴 ∪ 𝐵 iff 𝑖 ≠ 𝑗 . Hence, (𝑒1𝑖 , 𝑒2𝑗 )
may be a predictable race of 𝜎 only if 𝑖 = 𝑗 . In turn, if 𝑢 [𝑖] = 𝑣 [ 𝑗], then either both events are read

events, or both are write events. In the former case the events are not conflicting, while in the latter

case the two events are surrounded by lock 𝑐 . In both cases no race occurs between 𝑒1𝑖 and 𝑒
2

𝑗 .

Lemma 4.10. The following assertions hold.
(1) If 𝑠 ∈ L𝑛 , then 𝜎 has no predictable race.
(2) If 𝑠 ∉ L𝑛 , then 𝜎 has a single predictable race, which is a sync-reversal free race.

Proof of Theorem 3.2. Consider any algorithm𝐴1 for sync-reversal free race prediction, executed

in the family of traces 𝜎 constructed in our above reduction. Let𝑚 = 𝑛/log𝑛, and assume towards

contradiction that 𝐴1 uses 𝑜 (𝑚) space. Then we can pair 𝐴1 with the transducer A𝑚 , and obtain a

new algorithm 𝐴2 for recognizing L𝑚 . Since A𝑚 uses 𝑂 (log𝑚) space, the space complexity of 𝐴2

is 𝑜 (𝑚). However, this contradicts Lemma 4.9. The desired result follows. □

5 BEYOND SYNCHRONIZATION-REVERSAL FREE RACES
In this section we explore the problem of dynamic race prediction beyond sync-reversal free. We

show Theorem 3.4, i.e., that even when just two critical sections are present in the input trace,

predicting races with witnesses that might reverse the order of the critical sections becomes

intractable. Our reduction is from the realizability problem of Rf-posets, which we present next.

Rf-posets. An rf-poset is a triplet P = (𝑋, 𝑃, RF), where 𝑋 is a set of read and write events, 𝑃

defines a partial order ≤𝑃 over 𝑋 , and RF: Rds(𝑋 ) →Wts(𝑋 ) is a reads-from function that maps

every read event of 𝑋 to a write event of 𝑋 . Given two distinct events 𝑒1, 𝑒2 ∈ 𝑋 , we write 𝑒1 ∥𝑃 𝑒2
to denote 𝑒1 ≮𝑃 𝑒2 and 𝑒2 ≮𝑃 𝑒1. Given a set 𝑌 ⊆ 𝑋 , we denote by 𝑃 |𝑌 the projection of 𝑃 on 𝑌 , i.e.,

we have ≤𝑃 |𝑌⊆ 𝑌 ×𝑌 , and for all 𝑒1, 𝑒2 ∈ 𝑌 , we have 𝑒1 ≤𝑃 |𝑌 𝑒2 iff 𝑒1 ≤𝑃 𝑒2. Given a partial order𝑄

over 𝑋 , we say that 𝑄 refines 𝑃 denoted 𝑄 ⊑ 𝑃 if for every two events 𝑒1, 𝑒2 ∈ 𝑋 , if 𝑒1 ≤𝑃 𝑒2 then
𝑒1 ≤𝑄 𝑒2. We consider that each event of 𝑋 belongs to a unique thread, and there is thread order

≤TO that defines a total order on the events of 𝑋 that belong to the same thread, and 𝑃 agrees with

≤TO. The number of threads of P is the number of threads of the events of 𝑋 .

The Realizability Problem of Rf-posets. Given an rf-poset P = (𝑋, 𝑃, RF), the realizability problem is

to decide whether 𝑃 can be linearized to a total order 𝜎 such that lw𝜎 = RF. It has long been known

that the problem is NP-complete [Gibbons and Korach 1997], while it was recently shown that it is

even W[1]-hard [Mathur et al. 2020].
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(a) An instance of rf-poset realizability.
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(b) The reduction to reverse rf-poset realizability.
Fig. 5. Reduction of rf-poset realizability (5a) to reverse rf-poset realizability (5b).

Our proof of the lower bound of Theorem 3.4 is by a two-step reduction. First we define a variant of

the realizability problem for rf-posets, namely reverse rf-realizability, and show that it is W[1]-hard
when parameterized by the number of threads. Afterwards, we reduce reverse rf-realizability to

the decision problem of dynamic race prediction, which concludes the hardness of the latter.

Rf-triplets. Given an RF-poset P = (𝑋, 𝑃, RF), an rf-triplet of P is a tuple 𝜆 = (w, r, w′) such that

(i) r is a read event, (ii) RF(r) = w, and (iii) w ≍ w′. We refer to w, r and w′ as the write, read, and
interfering write event of 𝜆, respectively. We denote by Triplets(P) the set of rf-triplets of P.
We next define a variant of rf-poset realizability, and show that, like the original problem, it is

W[1]-hard parameterized by the number of threads.

Reverse rf-poset Realizability. The input is a tuple (P, 𝜆, 𝜎), where P = (𝑋, 𝑃, RF) is an rf-poset,

𝜆 = (w, r, w′) is a distinguished triplet of P, and 𝜎 is a witness to the realizability of P such that

w′ <𝜎 w. The task is to determine whether P has a linearization 𝜎 ′ with w <𝜎′ w
′
. In words, P is

already realizable by a witness that orders w′ before w, and the task is to decide whether P also has

a witness in which this order is reversed.

Hardness of Reverse Rf-poset Realizability. We show that the problem is W[1]-hard when

parameterized by the number of threads of the rf-poset. Our reduction is from rf-realizability. We

first present the construction and then argue about its correctness.

Construction. Consider an rf-poset P = (𝑋, 𝑃, RF) with 𝑘 threads, and we construct an instance of

reverse rf-poset realizability (P ′ = (𝑋 ′, 𝑃 ′, RF′), 𝜆, 𝜎) with 𝑘 ′ = 𝑂 (𝑘2) threads. We refer to Figure 5

for an illustration. For simplicity of presentation, we assume wlog that the following hold.

(1) 𝑋 contains only the events of the triplets of P.
(2) For every read event r, we have thr(r) = thr(w), i.e., every read observes a local write event.

Let {𝑋𝑖 }1≤𝑖≤𝑘 be a partitioning of 𝑋 such that each 𝜋𝑖 = 𝑃 |𝑋𝑖 is a total order containing all events

of thread 𝑖 (i.e., it is the thread order for thread 𝑖). We first construct the rf-poset P ′ = (𝑋 ′, 𝑃 ′, RF′).
The threads of P ′ are defined implicitly by the sets of events for each thread. In particular, 𝑋 ′

is partitioned in the sets 𝑋𝑖 (which are the events of P), as well as two sets 𝑋
𝑗

𝑖
and 𝑌

𝑗

𝑖
for each

𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , where each such 𝑋
𝑗

𝑖
and 𝑌

𝑗

𝑖
contains events of a unique thread of P ′.

Finally, we have two threads containing the events of the distinguished triplet 𝜆. Hence, P ′ has
𝑘 ′ = 𝑘 + 𝑘 · (𝑘 − 1) + 2 = 𝑘2 + 2 threads.
We first define the set of triplets Triplets(P), which defines the event set 𝑋 ′ and the observation

function RF
′
.We have𝑋 ⊆ 𝑋 ′ and Triplets(P) ⊆ Triplets(P ′). In addition, we create a distinguished

triplet 𝜆 = (w, r, w′), and all its events are in 𝑋 ′. Finally, for every 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , we

have 𝑋
𝑗

𝑖
, 𝑌

𝑗

𝑖
⊆ 𝑋 ′, where the sets 𝑋 𝑗

𝑖
and 𝑌

𝑗

𝑖
are constructed as follows. We call a pair of events
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(𝑒1, 𝑒2) ∈ 𝑋𝑖 × 𝑋 𝑗 with 𝑒1 <𝑃 𝑒2 dominant if for any pair (𝑒 ′
1
, 𝑒 ′

2
) ∈ 𝑋𝑖 × 𝑋 𝑗 such that 𝑒1 ≤𝑃 𝑒 ′1, and

𝑒 ′
2
≤𝑃 𝑒2, and 𝑒 ′1 <𝑃 𝑒

′
2
, we have 𝑒 ′𝑖 = 𝑒𝑖 for each 𝑖 ∈ [2]. In words, a dominant pair identifies an

ordering in 𝑃 that cannot be inferred transitively by other orderings. For every dominant pair

(𝑒1, 𝑒2) ∈ 𝑋𝑖 × 𝑋 𝑗 we create a triplet (w𝑒1,𝑒2 , r𝑒1,𝑒2 , w′𝑒1,𝑒2 ), and let w𝑒1,𝑒2 , r𝑒1,𝑒2 ∈ 𝑋
𝑗

𝑖
and w′𝑒1,𝑒2 ∈ 𝑌

𝑗

𝑖
.

We now define the partial order 𝑃 ′. For every triplet (w, r, w′) of P ′, we have w <𝑃 ′ r. For every
𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 , for every two events 𝑒1, 𝑒

′
1
∈ 𝑋𝑖 such that 𝑒1 <𝑃 𝑒

′
1
, for every two events

𝑒2, 𝑒
′
2
∈ 𝑋 𝑗 such that 𝑒2 <𝑃 𝑒 ′

2
, if r𝑒1,𝑒2 and w𝑒′

1
,𝑒′
2

are events of 𝑋 ′ (i.e., (𝑒1, 𝑒2) and (𝑒 ′1, 𝑒 ′2) are
dominant pairs), we have (i) r𝑒1,𝑒2 <𝑃 ′ w𝑒′

1
,𝑒′
2

and (ii) w′𝑒1,𝑒2 <𝑃 ′ w
′
𝑒′
1
,𝑒′
2

. Finally, for every triplet of the

form (w𝑒1,𝑒2 , r𝑒1,𝑒2 , w′𝑒1,𝑒2 ), we have
𝑒1 <𝑃 ′ r𝑒1,𝑒2 and w′𝑒1,𝑒2 <𝑃 ′ 𝑒2 and w𝑒1,𝑒2 <𝑃 ′ r and w′ <𝑃 ′ w

′
𝑒1,𝑒2

.

The following lemma establishes that 𝑃 ′ is indeed a partial order.

Lemma 5.1. 𝑃 ′ is a partial order.

We now turn our attention to the solution 𝜎 of P ′, which is constructed in two steps. First, we

construct a partial order 𝑄 ⊑ 𝑃 ′ over 𝑋 ′ which orders in every triplet the interfering write before

the write of the triplet. That is, for every triplet (w, r, w′) of P ′, we have w′ <𝑄 w. Then, we obtain
𝜎 by linearizing 𝑄 arbitrarily. The following lemma states that 𝜎 witnesses the realizability of P ′.

Lemma 5.2. The trace 𝜎 realizes P ′.

Observe that the size ofP ′ is polynomial in the size ofP. The following lemma states the correctness

of the reduction. We refer to Appendix B for the detailed proof, while here we sketch the intuition

behind the correctness.

Lemma 5.3. Reverse rf-poset realizability isW[1]-hard parameterized by the number of threads.

Correctness. We now present the key insight behind the correctness of the reduction. Consider any

dominant pair of events (𝑒1, 𝑒2) in the initial rf-poset, i.e., we have 𝑒1 <𝑃 𝑒2. Observe that the two

events are unordered in 𝑃 ′. Now consider any trace 𝜎∗ that solves the reverse rf-poset realizability
problem for P ′. By definition, 𝜎∗ must reverse the order of the two writes of the conflicting triplet,

i.e., we must have w <𝜎∗ w
′
.

(1) Since, w <𝜎∗ w
′
we must also have r <𝜎∗ w

′
, so that the last write of r is not violated in 𝜎∗.

(2) Since w𝑒1,𝑒2 <𝑃 ′ 𝑟𝑑 , by the previous item we also have transitively w𝑒1,𝑒2 <𝑃 ′ w
′
, and since

w′ <𝑃 ′ w
′
𝑒1,𝑒2

, we have , transitively w𝑒1,𝑒2 <𝜎∗ w
′
𝑒1,𝑒2

.

(3) Since w𝑒1,𝑒2 <𝜎∗ w
′
𝑒1,𝑒2

, we also have r𝑒1,𝑒2 <𝜎∗ w
′
𝑒1,𝑒2

, so that the last write of r𝑒1,𝑒2 is not violated
in 𝜎∗.

(4) Finally, since 𝑒1 < 𝑃
′r𝑒1,𝑒2 and w′𝑒1,𝑒2 < 𝑒2, we also have, transitively, that 𝑒1 <𝜎∗ 𝑒2.

Hence, the witness 𝜎∗ also respects the partial order 𝑃 , and thus also serves as a witness of the

realizability of P (when projected to the set of events 𝑋 ). Thus, if reverse rf-poset realizability

holds for P ′, then rf-poset realizability holds for P. The inverse direction is similar.

Hardness of Dynamic Race Prediction.We are now ready to prove our second step of the re-

duction, i.e., to establish an FPT reduction from reverse rf-poset realizability to the decision problem

of dynamic race prediction. We first describe the construction and then prove its correctness.

Consider an instance (P = (𝑋, 𝑃, RF), 𝜆 = (w, r, w′), 𝜎) of reverse rf-poset realizability, and we

construct a trace 𝜎 ′ such a specific event pair of 𝜎 ′ is a predictable race iff P is realizable by a

witness that reverses 𝜆. We assume wlog that 𝑋 contains only events that appear in triplets of P.
We construct 𝜎 ′ by inserting various events in 𝜎 , as follows. Figure 6 provides an illustration.
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𝜆 = (w(𝑥2), r(𝑥2), w′(𝑥2))

𝑡1 𝑡2 𝑡3 𝑡4

1 w′(𝑥2)
2 w′(𝑥1)
3 w(𝑥2)
4 r(𝑥2)
5 w(𝑥1)
6 r(𝑥1)

≤𝑃

(a) An instance of reverse rf-poset realiz-
ability (P = (𝑋, 𝑃, RF), 𝜆, 𝜎). The figure
shows 𝜎 , and 𝑃 is defined as the thread or-
der together with the cross-thread ordering
w′(𝑥2) <𝑃 w′(𝑥1).

𝑡1 𝑡2 𝑡3 𝑡4

1 acq
1
(ℓ)

2 w′(𝑥2)
3 w

(
𝑥w′ (𝑥2),w′ (𝑥1)

)
4 w(y)
5 rel1 (ℓ)
6 r

(
𝑥w′ (𝑥2),w′ (𝑥1)

)
7 w′(𝑥1)
8 w(𝑥3)
9 acq

2
(ℓ)

10 w(𝑥2)
11 rel2 (ℓ)
12 r(𝑥2)
13 w(𝑥1)
14 r(𝑥1)
15 w(𝑥1)
16 r(𝑥1)
17 r(𝑥3)
18 r(y)

(b) The instance of race prediction using our reduction.
Fig. 6. Example of our reduction of an instance of reverse rf-poset realizability (Figure 6a) to an instance of
dynamic data-race prediction (Figure 6b) on the event pair (𝑒4, 𝑒18).

(1) For every dominant pair (𝑒1, 𝑒2) of P, we introduce a new variable 𝑥𝑒1,𝑒2 , and a write event

w(𝑥𝑒1,𝑒2 ) and a read event r(𝑥𝑒1,𝑒2 ). We make thr(w(𝑥𝑒1,𝑒2 )) = thr(𝑒1) and thr(r(𝑥𝑒1,𝑒2 )) = thr(𝑒2).
Finally, we thread-order w(𝑥𝑒1,𝑒2 ) after 𝑒1 and r(𝑥𝑒1,𝑒2 ) before 𝑒2. Notice that any correct reorder-
ing 𝜎∗ of 𝜎 ′ must order w(𝑥𝑒1,𝑒2 ) ≤𝜎

∗
tr r(𝑥𝑒1,𝑒2 ), and thus, transitively, also order 𝑒1 ≤𝜎

∗
tr 𝑒2.

(2) For every thread 𝑡𝑖 ≠ thr(w), 𝑡𝑖 ≠ thr(w′), we introduce a new variable 𝑥𝑖 , and a write event

w(𝑥𝑖 ) and a read event r(𝑥𝑖 ). We make thr(w(𝑥𝑖 )) = 𝑡𝑖 and thr(r(𝑥𝑖 )) = thr(r). Finally, we
thread-order each w(𝑥𝑖 ) as the last event of 𝑡𝑖 , and thread-order all r(𝑥𝑖 ) as final events of thr(r)
so far.

(3) We introduce a new variable 𝑦, and a write event w(𝑦) and a read event r(𝑦). We make

thr(w(𝑦)) = thr(w′) and thr(r(𝑦)) = thr(w). Finally, we thread-order w(𝑦) and r(𝑦) at the
end of their respective threads. In particular, r(𝑦) is thread-ordered after the events r(𝑥𝑖 )
introduced in the previous item. Notice that because of this ordering and the previous item, any

correct reordering 𝜎∗ of 𝜎 ′ must contain all events of 𝑋 ′.
(4) We introduce a lock ℓ and two pairs of lock-acquire and lock-release events (acq𝑖 (ℓ), rel𝑖 (ℓ)),

for each 𝑖 ∈ [2]. We make thr(acq𝑖 (ℓ)) = thr(rel𝑖 (ℓ)) = 𝑡 𝑗 , where 𝑡 𝑗 = thr(w′) if 𝑖 = 1 and

𝑡 𝑗 = thr(w) otherwise. Finally, we surround with the critical section of acq
1
(ℓ), rel1 (ℓ) all

events of the corresponding thread, and surround with the critical section of acq
2
(ℓ), rel2 (ℓ)

the event w. Notice that any correct reordering 𝜎∗ that witnesses a race on (w(𝑦), r(𝑦)) is missing

rel1 (ℓ), and thus must order rel2 (ℓ) ≤𝜎
∗

tr acq
1
(ℓ). In turn, this leads to a transitive ordering

w ≤𝜎∗tr w′, and since the last write of r must be lw𝜎∗ (r) = w, we must also have r ≤𝜎∗tr w′.

We now outline the correctness of the reduction (see Appendix B for the proof). Consider any

correct reordering 𝜎∗ that witnesses a predictable race (w(𝑦), r(𝑦)) on 𝜎 ′. Item 2 and Item 3 above

guarantee that 𝑋 ⊆ Events𝜎∗ , while Item 1 guarantees that 𝜎∗ linearizes 𝑃 , and Item 4 guarantees

that 𝜎∗ reverses 𝜆, i.e., r ≤𝜎∗tr w′. Finally, note that 𝜎 ′ has size that is polynomial in 𝑛, while the

number of threads of 𝜎 ′ equals the number of threads of P. This concludes the proof of Theorem 3.4.
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6 EXPERIMENTS
In this section we report on an implementation and experimental evaluation of the techniques

presented in this work. Our objective is two-fold. The first goal is to quantify the practical relevance

of sync-reversal freeness, i.e., whether in practice the definition captures races that are missed by

the standard notion of happens-before and WCP [Kini et al. 2017] races. The second goal is to

evaluate the performance of our algorithm SRFree for detecting sync-reversal free races.

6.1 Experimental Setup
We have implemented SRFree (Algorithm 3) for predicting all sync-reversal free races in Java, and

evaluated its performance on a standard set of benchmarks.

Benchmarks. Our benchmark set consists of standard benchmarks found in the recent litera-

ture [Huang et al. 2014; Kini et al. 2017; Mathur et al. 2018; Pavlogiannis 2019; Roemer et al. 2018; Yu

et al. 2018]. It consists of 30 concurrent programs taken from standard benchmark suites: (i) the IBM

Contest benchmark suite [Farchi et al. 2003], (ii) the Java Grande forum benchmark suite [Smith and

Bull 2001], (iii) the DaCapo benchmark suite [Blackburn et al. 2006], (iv) the Software Infrastructure

Repository [Do et al. 2005], and (v) some standalone benchmarks. For each benchmark, we used

the tool RV-Predict [Rosu 2018] to instrument it and monitor its execution, which created a single

trace per program. The same trace was used for evaluating all algorithms.

Compared Methods. We compare our algorithm with state-of-the-art sound race detectors,

namely, SHB [Mathur et al. 2018], WCP [Kini et al. 2017] and M2 [Pavlogiannis 2019]. Recall

that SHB and WCP are linear-time algorithms that perform a single pass of the input trace 𝜎 . SHB
computes happens-before races and is sound even beyond the first race. On the other hand, WCP
is only sound for the first race report. In order to allow WCP to soundly report more than one race,

whenever a race is reported on an event pair (𝑒1, 𝑒2) (i.e., we have 𝑒1 ∥𝜎WCP 𝑒2), we force an order

𝑒1 ≤𝜎WCP 𝑒2 before proceeding with the next event of 𝜎 . This is a standard practice that has been

followed in other works, e.g.,[Pavlogiannis 2019; Roemer et al. 2018]. Finally, M2 is a heavyweight

algorithm that makes sound reports for all races by design, though its running time is a large

polynomial (of order 𝑛4) [Pavlogiannis 2019].

Optimizations. In general, the benchmark traces can be huge and often scale to sizes of order as

large as 10
8
. A closer inspection shows that many events, even though they perform accesses to

shared memory, are non-racy and even totally ordered by fork-join mechanisms and data flows in

the trace. We have implemented a lightweight, linear-time, single-pass optimization of the input

trace 𝜎 that filters out such events. The optimization simply identifies memory locations 𝑥 whose

conflicting accesses are totally ordered in 𝜎 by thread and data-flow orderings, and ignores all such

accesses in 𝜎 . For a fair comparison, we employ the optimization in all compared methods.

Reported Results. Each of the compared methods is evaluated on the same input trace 𝜎 . For

every such input, the respective method reports the following race warnings.

(1) Racy events. We report the number of events 𝑒2 such that there is an event 𝑒1 with 𝑒1 <tr 𝑒2
for which a race (𝑒1, 𝑒2) is detected. We remark that this is the standard way of reporting race

warnings [Flanagan and Freund 2009; Genç et al. 2019; Kini et al. 2017; Mathur et al. 2018;

Roemer et al. 2018], as it allows for one-pass, linear-time algorithms that avoid the overhead of

testing for races between all possible Θ(𝑛2) pairs of events.
(2) Racy source-code lines. We report the number of distinct source-code lines which correspond to

events 𝑒2 that are found as racy in Item 1. This is a meaningful measure, as the same source-code

line might be reported by many different events 𝑒2.
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Table 1. Dynamic race reports in our benchmarks. N and T denote the number of events and number of
threads in the respective trace. For races, an entry ‘𝑟 (𝑠)’ denotes the number 𝑟 of events 𝑒2 found to be in race
with an earlier event 𝑒1, as well as the number 𝑠 of unique source-code lines corresponding to such events 𝑒2.
Bold-face entries highlight cases where there are sync-reversal free races that are not happens-before races.

Benchmark N T SHB WCP M2 SRFree

Races Time Races Time Races Time Races Time
array 51 4 0 (0) 0.02s 0 (0) 0.03s 0 (0) 0.09s 0 (0) 0.04s

critical 59 5 3 (3) 0.19s 1 (1) 0.03s 3 (3) 0.11s 3 (3) 0.07s

account 134 5 3 (1) 0 3 (1) 0.06s 3 (1) 0.23s 3 (1) 0.09s

airtickets 140 5 8 (3) 0.02s 5 (2) 0.03s 8 (3) 0.13s 8 (3) 0.05s

pingpong 151 7 8 (3) 1.09s 8 (3) 0.04s 8 (3) 0.17s 8 (3) 0.06s

twostage 193 13 4 (1) 0.02s 4 (1) 0.09s 4 (1) 0.20s 4 (1) 0.10s

wronglock 246 23 12 (2) 0.02s 3 (2) 0.09s 25 (2) 0.43s 25 (2) 0.15s

bbuffer 332 3 3 (1) 0.01s 1 (1) 0.05s 3 (1) 0.11s 3 (1) 0.06s

prodcons 658 9 1 (1) 0.03s 1 (1) 0.09s 1 (1) 0.20s 1 (1) 0.10s

clean 1.0K 10 59 (4) 0.04s 33 (4) 0.14s 110 (4) 0.85s 60 (4) 0.17s

mergesort 3.0K 6 1 (1) 11m10s 1 (1) 0.12s 5 (2) 0.96s 3 (1) 0.13s

bubblesort 4.0K 13 269 (5) 0.03s 100 (5) 0.27s 374 (5) 8.05s 269 (5) 0.50s

lang 6.0K 8 400 (1) 0.10s 400 (1) 0.23s 400 (1) 1.31s 400 (1) 0.31s

readswrites 11K 6 92 (4) 0.12s 92 (4) 0.41s 228 (4) 12.74s 199 (4) 0.77s

raytracer 15K 4 8 (4) 0.02s 8 (4) 0.30s 8 (4) 0.40s 8 (4) 0.30s

bufwriter 22K 7 8 (4) 0.10s 8 (4) 0.70s 8 (4) 2.65s 8 (4) 0.84s

ftpserver 49K 12 69 (21) 6.91s 69 (21) 1.34s 85 (21) 4.11s 85 (21) 4.69s

moldyn 200K 4 103 (3) 0.05s 103 (3) 1.83s 103 (3) 1m25s 103 (3) 1.86s

linkedlist 1.0M 13 5.0K (4) 7.25s 5.0K (3) 27.07s TO TO 7.0K (4) 5m19s

derby 1.0M 5 29 (10) 0.01s 28 (10) 16.48s 30 (11) 22.49s 29 (10) 24.07s

jigsaw 3.0M 12 4 (4) 0.41s 4 (4) 19.53s 6 (6) 11.69s 6 (6) 17.30s

sunflow 11M 17 84 (6) 39.66s 58 (6) 47.14s 130 (7) 50.24s 119 (7) 55.30s

cryptorsa 58M 9 11 (5) 3m4s 11 (5) 6m35s TO TO 35 (7) 9m42s

xalan 122M 7 31 (10) 0.15s 21 (7) 15m30s TO TO 37 (12) 10m44s

lufact 134M 5 21K (3) 7m26s 21K (3) 14m57s TO TO 21K (3) 10m38s

batik 157M 7 10 (2) 9m49s 10 (2) 22m56s TO TO 10 (2) 11m59s

lusearch 217M 8 232 (44) 12.63s 119 (27) 13m40s 232 (44) 27m9s 232 (44) 14m5s

tsp 307M 10 143 (6) 15m2s 140 (6) 29m10s TO TO 143 (6) 20m19s

luindex 397M 3 1 (1) 24m40s 2 (2) 31m6s TO TO 15 (15) 31m46s

sor 606M 5 0 (0) 38m38s 0 (0) TO TO TO 0 (0) 44m36s

Totals 2.0B - 29520 (157) 1h51m 29133 (134) ≥ 3h15m 1846 (131) ≥ 8h30m 30862 (178) 2h40m

(3) Racy memory locations. We report the number of different memory locations that are accessed

by all the events 𝑒2 that are found as racy in Item 1.

(4) Running time.We measure the time of the algorithm required to process each benchmark, while

imposing a 1-hour timeout (TO).

6.2 Experimental Results
We now turn our attention to the experimental results. Table 1 shows the races and running times

reported by each method on each benchmark.

Coverage of Sync-reversal Freeness. We first discuss the coverage of sync-reversal free races.

We find that every race reported by SHB or WCP is a sync-reversal free race, also reported by
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Table 2. Numbers of different memory locations
that are detected as racy.

Benchmark SHB WCP SRFree
ftpserver 49 49 50

jigsaw 4 4 5

xalan 7 6 9

cryptorsa 4 4 5

luindex 1 2 9

sunflow 14 10 17

linkedlist 927 927 932

Total 1006 1002 1027

Table 3. Maximum race distances.
Benchmark SHB WCP SRFree

tsp 11K 11K 224M

batik 1.7M 1.7M 4.8M

cryptorsa 7.9M 7.9M 8.3M

jigsaw 428 428 121K

sunflow 10M 1.0M 10M

xalan 4K 4K 13K

ftpserver 11K 11K 11K

linkedlist 165K 165K 165K

luindex 783 783 6.9K

mergesort 57 57 1.4K

clean 355 47 1.2K

readswrites 13 13 696

wronglock 50 6 113

SRFree. On the other hand, bold-face entries highlight benchmarks which have sync-reversal free

races that are not happens-before races. We see that such races are found in 11 out of 30 benchmarks.

Interestingly, in the 5 most challenging out of these 11 benchmarks, the same pattern occurs if

we focus on source-code lines (i.e., the entries in the parentheses). Hence, for these benchmarks,

sync-reversal freeness is necessary to capture many racy source-code lines, which happens-before

would completely miss. We also remark that the more heavyweight analysis M2 misses several of

these races due to frequent timeouts. In total, we have 18 unique source-code lines that are racy

but only detected by SRFree. On the other hand, there are only 2 source-code lines that are caught

by M2 but not by SRFree.
Running Times. Our experimental times indicate that SRFree is quite efficient in practice. Among

all algorithms, SRFree is the second fastest, being about 1.4 times slower that the fastest, lightweight

SHB, while at the same time, being able to detect considerably more races the SHB (i.e., 1342 more

racy events, and 21 more racy source-code lines). On the other hand, SRFree detects even more

races than M2, due to timeouts, and even has almost equal detection capability with M2 on the

cases that M2 does not time out. Due to the slow performance of M2 (i.e., over 8.5 hours and with

several timeouts), we exclude it from the more refined analysis that follows.

Racy Memory Locations.We next proceed to evaluate the capability of SRFree in detecting racy

memory locations. As all races detected by SHB orWCP are sync-reversal free, the same follows for

the racy memory locations, i.e., they are all detected as racy by SRFree. On the other hand, Table 2

shows a few cases in which SRFree has discovered racy variables that are missed by SHB andWCP.
Hence, sync-reversal freeness is more adequate to capture not only racy program locations, but

also racy memory locations.

Race Distances. Finally, we examine the capability of SRFree to detect races that are far apart

in the input trace. Table 3 shows maximum race distance of races (𝑒1, 𝑒2) in various benchmarks,

including the ones that contains sync-reversal free races that are missed by happens-before. In each

case, the distance is counted as the number of events in the input trace between 𝑒1 and 𝑒2, for every

event 𝑒2 reported as racy. We see a sharp contrast between SHB/WCP and SRFree, with the latter

being able to detect races that are far more distant in the input. This is in direct alignment with our

theoretical observations already illustrated earlier in Section 1 (see Figure 1c). Indeed, as partial

orders, SHB/WCP can only detect races between conflicting accesses that are successive in the

input trace. On the other hand, sync-reversal free races may be interleaved with arbitrarily many

conflicting, non-racy accesses, and our complete algorithm SRFree is guaranteed to detect them.

Overall, all our experimental observations suggest that sync-reversal freeness is an elegant notion:
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it finely characterizes almost all races that are efficiently detectable, while it captures several races

that are beyond the standard happens-before relation.

7 RELATEDWORK
Happens-before has been the standard approach to sound dynamic race detection. The respective

partial order is computable in linear time [Mattern 1988] and has formed the basis of many race

detectors in the literature [Bond et al. 2010; Christiaens and Bosschere 2001; Flanagan and Freund

2009; Pozniansky and Schuster 2003; Schonberg 1989]. As we have seen in this work, happens-before

only characterizes a small subset of predictable races, and several works have tried to increase

coverage at only a small increase of computational resources [Genç et al. 2019; Kini et al. 2017;

Pavlogiannis 2019; Roemer et al. 2018, 2020; Smaragdakis et al. 2012].

Another direction to dynamic race prediction is symbolic techniques that typically rely on SAT/SMT

encodings of the condition of a correct reordering, and dispatch such encodings to the respective

solver [Huang et al. 2014; Liu et al. 2016; Said et al. 2011; Wang et al. 2009]. The encodings are typi-

cally sound and complete in theory, but the solution takes exponential time. In practice, windowing

techniques are used to fragment the trace into chunks, and analyze each chunk independently.

This introduces incompleteness, as races between events of different chunks are naturally missed.

Dynamic techniques have also been used for predicting other types of errors, such as deadlocks,

atomicity violations and synchronization errors [Chen et al. 2008; Farzan and Madhusudan 2009;

Farzan et al. 2009; Flanagan et al. 2008; Kalhauge and Palsberg 2018; Mathur and Viswanathan 2020;

Sen et al. 2005; Sorrentino et al. 2010].

Another common approach to race prediction is via lockset-based methods. At a high level, a lockset

is a set of locks that guards all accesses to a given memory location. Such techniques report races

when they discover a write access to a memory location which has not been consistently protected

by a common lock (i.e., whose lockset is empty). They were introduced in [Dinning and Schonberg

1991] and equipped the Eraser [Savage et al. 1997]. The lockset criterion is a complete one, as all

races are required to meet it. However, it is unsound, and various works attempt to reduce false

positives by enhancements such as random testing [Sen 2008] and static analysis [Choi et al. 2002;

von Praun and Gross 2001].

8 CONCLUSION
In this work, we have introduced the new notion of synchronization-reversal free races. Conceptu-

ally, this is a completion of the principle behind happens-before races, namely that such races can

be witnessed without reversing the order in which synchronization operations are observed. We

have shown that sync-reversal freeness strictly subsumes happens-before, and can detect races

that are far apart in the input trace. We have developed a new algorithm SRFree that is sound and

complete for sync-reversal free races, and has nearly linear time and space complexity. Moreover,

we have shown that linear space complexity is necessary for detecting sync-reversal free races, and

thus our algorithm is optimal. In addition, we have shown that relaxing our definition even slightly,

i.e., by allowing a single synchronization reversal suffices to make the problem W[1]-hard, i.e., as
hard as in the general case. Finally, we have performed an extensive experimental evaluation of

SRFree on a standard set of benchmarks. Our experiments show that sync-reversal freeness is an

elegant notion that characterizes almost all races that are efficiently detectable, while it captures

several races that are beyond the standard happens-before. Given the demonstrated relevance of

this new notion, we identify as important future work the development of more efficient race

detectors for sync-reversal free races, in a similar manner that happens-before race detectors have

been refined over the years.
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A PROOFS FROM SECTION 4
Lemma 4.1. If (𝑒1, 𝑒2) is a sync-reversal free race of 𝜎 , then there is a correct reordering 𝜌 of 𝜎 such
that both 𝑒1, 𝑒2 are 𝜎-enabled in 𝜌 and ≤𝜌tr⊆≤𝜎tr.

Proof. Let 𝜋 be a sync-reversal free correct reordering of 𝜎 . Let 𝐸 = Events𝜋 . Observe that 𝐸 is

(≤𝜎TO, lw𝜎 )-closed because 𝜋 is a correct reordering of 𝜎 . We note a few observations about 𝐸. First,

𝐸 ⊆ Events𝜎 . Second, 𝐸 is downward closed with respect to ≤𝜎TO. Third, for every read event 𝑒 ∈ 𝐸,
we have lw𝜎 (𝑒) ∈ 𝐸. Fourth, for every lock ℓ , there is at most one acquire 𝑎 of ℓ such that 𝑎 ∈ 𝐸 but

match𝜎 (𝑎) ∉ 𝐸.
Now, consider the sequence 𝜌 obtained by linearizing 𝐸 according to the total order of ≤𝜎tr (i.e., 𝜌 is

the projection of 𝜎 onto the set 𝐸). We first argue that 𝜌 is a well-formed trace. This follows because

for every lock ℓ , there is at most one unmatched acquire event 𝑒 in 𝐸 of lock ℓ , and all the other

acquires are earlier than 𝑒 in 𝜎 (and hence in 𝜌). Next, 𝜌 respects ≤𝜎TO because 𝐸 is downward closed

with respect to ≤𝜎TO and respects ≤𝜎tr. For the same reason, for every read event 𝑒 ∈ 𝐸, we have
lw𝜌 (𝑒) = lw𝜎 (𝑒). Thus, 𝜌 is a correct reordering of 𝜎 . Further, 𝜌 is trivially a sync-reversal free

correct reordering of 𝜎 . □

Lemma 4.2. (𝑒1, 𝑒2) is a sync-reversal free race of 𝜎 iff {𝑒1, 𝑒2} ∩ SRFIdeal𝜎 (𝑒1, 𝑒2) = ∅.

Proof. (⇒) Assume SRFIdeal𝜎 (𝑒1, 𝑒2) ∩ {𝑒1, 𝑒2} ≠ ∅. Then we must have 𝑒1 ∈ SRFIdeal𝜎 (𝑒1, 𝑒2)
and in particular 𝑒1 ∈ SRFClosure𝜎 (prev𝜎 (𝑒2)) (and thus 𝑒 = prev𝜎 (𝑒2) ≠ ⊥). Then, either 𝑒1 ≤𝜎TO 𝑒
or there is a release event 𝑒 ′ such that 𝑒1 ≤𝜎TO 𝑒

′
and 𝑒 ′ ∈ SRFClosure𝜎 (𝑒). In either case, 𝑒1 cannot

be enabled in a sync-reversal free correct reordering containing 𝑒 .

(⇐) Let 𝐸 = SRFIdeal𝜎 (𝑒1, 𝑒2) and let 𝜌 be the sequence obtained by linearizing 𝐸 as per ≤𝜎tr. Observe
that 𝜌 is well formed, respects ≤𝜎TO and lw𝜎 and thus is a correct reordering of 𝜎 . Further, the order

of all critical sections is the same. Also, 𝑒1 and 𝑒2 are both enabled in 𝜌 . □

Lemma 4.3. Let 𝜎 be a trace and let 𝑒1, 𝑒2, 𝑒 ′1, 𝑒
′
2
∈ Events𝜎 such that 𝑒1 <𝜎

TO 𝑒
′
1
and 𝑒2 <𝜎

TO 𝑒
′
2
. Then,

SRFIdeal𝜎 (𝑒1, 𝑒2) ⊆ SRFIdeal𝜎 (𝑒 ′1, 𝑒 ′2).

Proof. Proof follows from the following observations. 𝑒1 ≤𝜎TO prev𝜎 (𝑒 ′1), 𝑒2 ≤𝜎TO prev𝜎 (𝑒 ′2) and
SRFClosure𝜎 (𝑆) is downward closed with respect to (≤𝜎TO) and sync-reversal free-closed. □

Lemma 4.10. The following assertions hold.
(1) If 𝑠 ∈ L𝑛 , then 𝜎 has no predictable race.
(2) If 𝑠 ∉ L𝑛 , then 𝜎 has a single predictable race, which is a sync-reversal free race.

Proof. We prove each item separately.

1. 𝑠 ∈ L ′𝑛 . First, notice that by construction, for every 𝑖 ∈ [𝑛], the pair (𝑒1𝑖 , 𝑒2𝑖 ) is not a predictable
race of 𝜎 , as we have 𝑢 [𝑖] = 𝑣 [𝑖] and thus either both events are read events or both are write

events and thus each is protected by the lock 𝑐 . It remains to argue that 𝑒 (1𝑖 , 𝑒2𝑗 ) is not a predictable
race for any 𝑖, 𝑗 ∈ [𝑛] with 𝑖 ≠ 𝑗 . It suffices to show that locksHeld𝜎 (𝑒1𝑖 )) ∩ locksHeld𝜎 (𝑒2𝑗 ) ≠ ∅.
We split cases based on the relation between 𝑖 and 𝑗 .

𝑖 < 𝑗 . By construction, we have locksHeld𝜎 (𝑒1𝑗 ) ∩ 𝐵 ⊈ locksHeld𝜎 (𝑒1𝑖 ) ∩ 𝐵. Moreover, we have

(𝑒2𝑗 ) ∩ 𝐵 = 𝐵 \ locksHeld𝜎 (𝑒1𝑗 ). Thus, we have locksHeld𝜎 (𝑒1𝑖 )) ∩ locksHeld𝜎 (𝑒2𝑗 ) ∩ 𝐵 ≠ ∅, as
desired.
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𝑗 < 𝑖 . By construction, we have locksHeld𝜎 (𝑒1𝑖 ) ∩ 𝐴 ⊈ locksHeld𝜎 (𝑒1𝑗 ) ∩ 𝐴. Moreover, we have

(𝑒2𝑖 ) ∩ 𝐴 = 𝐴 \ locksHeld𝜎 (𝑒1𝑖 ). Thus, we have locksHeld𝜎 (𝑒1𝑖 )) ∩ locksHeld𝜎 (𝑒2𝑗 ) ∩ 𝐴 ≠ ∅, as
desired.

2. 𝑠 ∉ L ′𝑛 . First, notice that by construction, one of 𝑒1𝑖 and 𝑒2𝑖 is a read event and the other is a write
event. Hence, at least one of them is not surrounded by lock 𝑐 . Finally, by construction we have

(𝑒2𝑖 ) ∩ (𝐴 ∪ 𝐵) = 𝐴 ∪ 𝐵 \ locksHeld𝜎 (𝑒1𝑗 ), and thus locksHeld𝜎 (𝑒1𝑖 )) ∩ locksHeld𝜎 (𝑒2𝑗 ) = ∅.
The desired result follows. □

The set-equality problem. Finally, we turn our attention to Theorem 3.3. Our proof uses the

set-equality problem, i.e., given two bit-sets 𝑢, 𝑣 ∈ {0, 1}𝑛 , the task is to decide whether 𝑢 = 𝑣 . The

problem has a Ω(𝑛) lower-bound for communication complexity [Yao 1979], i.e., if 𝑢 and 𝑣 is given

separately to Alice and Bob, respectively, the two parties need to exchange Ω(𝑛) bits of information

in order to decide whether 𝑢 = 𝑣 .

Proof of Theorem 3.3. Consider the language L ′𝑛 = {𝑢#𝑛𝑣 : 𝑢, 𝑣 ∈ {0, 1}𝑛 and 𝑢 = 𝑣}, and any

Turing Machine 𝑀 that decides L ′𝑛 using 𝑇𝑀 (𝑛) time and 𝑆𝑀 (𝑛) space. Let 𝐾𝑀 (𝑛) be an upper-

bound on the number of “passes” that 𝑀 makes over the sequence #
𝑛
as it decides membership

in L ′𝑛 . In each pass,𝑀 “communicates” at most 𝑆𝑀 (𝑛) bits of information. Since the set-equality

problem has communication complexity Ω(𝑛) [Yao 1979], we have 𝐾𝑀 (𝑛) · 𝑆𝑀 (𝑛) = Ω(𝑛), i.e.,𝑀
makes Ω(𝑛/𝑆𝑀 (𝑛)) passes. Since each pass has to traverse 𝑛 symbols #, each pass costs time Ω(𝑛).
Hence, the total time is 𝑇𝑀 (𝑛) = Ω(𝑛 · 𝐾𝑀 (𝑛)), and thus 𝑇𝑀 (𝑛) · 𝑆𝑀 (𝑛) ≥ 𝑛2.
We now turn our attention to sync-reversal free race prediction. Let𝑚 = 𝑛/log𝑛 Using essentially

the same reduction as above, we reduce the membership problem for L ′𝑚 to the sync-reversal free

race prediction problem on a trace 𝜎 with 2 threads, 𝑛 events and 𝑂 (log𝑛) locks. Lemma 4.10

guarantees that 𝜎 has a predictable race iff 𝑢 ≠ 𝑣 , and if so, then it is a sync-reversal free race.

Hence, any algorithm that solves sync-reversal free race prediction on 𝜎 in time 𝑇 (𝑛) and space

𝑆 (𝑛) must satisfy that 𝑇 (𝑛) · 𝑆 (𝑛) = Ω(𝑚2) = Ω(𝑛2/log2 𝑛). The desired result follows. □

B PROOFS FROM SECTION 5
In this section we present the proofs of Section 5, i.e., Lemma 5.1, Lemma 5.2 and Lemma B.1.

Lemma 5.1. 𝑃 ′ is a partial order.

Proof. Assume towards contradiction otherwise, hence 𝑃 ′ has a cycle 𝑒1 <𝑃 ′ 𝑒2 <𝑃 ′ · · · <𝑃 ′ 𝑒1. Let

𝐶 = {𝑒𝑖 : 𝑒𝑖 ∈ 𝑋 ′ \ 𝑋 }, and note that 𝐶 ≠ ∅ as 𝑃 ⊑ 𝑃 ′ |𝑋 . Observe that 𝐶 cannot contain any event

of the distinguished triplet 𝜆, as every event of 𝜆 is either minimal or maximal in 𝑃 ′. On the other

hand, 𝐶 cannot contain any event of any set 𝑌
𝑗

𝑖
, as every such event only has predecessors that are

either in 𝑌
𝑗

𝑖
or in 𝜆, and clearly 𝑃 ′ |𝑌 𝑗

𝑖
is acyclic. Finally, 𝐶 cannot contain any event of any set 𝑋

𝑗

𝑖
,

as every such event only has successors that are either in 𝑋
𝑗

𝑖
or in 𝜆, and clearly 𝑃 ′ |𝑋 𝑗

𝑖
is acyclic.

Hence 𝐶 = ∅, a contradiction.
The desired result follows. □

Lemma 5.2. The trace 𝜎 realizes P ′.

Proof. We argue that 𝑄 is indeed a partial order, from which follows that 𝜎 is a witness of the

realizability ofP ′. Observe that for every interfering write event w′ of each triplet, every predecessor
w′′ of w′ is also an interfering write event of some triplet. On the other hand, every new successor

of w′ in𝑄 is not an interfering write event of any triplet. Hence, since 𝑃 ′ is acyclic,𝑄 is also acyclic.
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The desired result follows. □

Lemma B.1. Reverse rf-poset realizability is W[1]-hard parameterized by the number of threads.

Proof. Here we argue that P has a witness 𝜎1 iff P ′ has a witness 𝜎2.
(⇒). Consider the witness 𝜎1 forP, and we show how to obtain the witness 𝜎2 forP ′. We construct a

partial order𝑄 over𝑋 ′ such that (i)𝑄 ⊑ 𝑃 ′, (ii) for every triplet (w, r, w′) ∈ Triplets(S)\Triplets(P),
we have r <𝑄 w′, and (iii)𝑄 |𝑋 = 𝜎1 (i.e.,𝑄 totally orders the events of𝑋 according to𝜎1). Afterwards,

we construct 𝜎2 by linearizing 𝑄 arbitrarily. Note that (ii) makes 𝑄 |𝑋 = 𝑃 , hence the linearization

in (iii) is well defined.

(⇐). Consider the witness 𝜎2 for P ′, and we show how to obtain the witness 𝜎1 for P. We construct

𝜎1 simply as 𝜎1 = 𝜎2 |𝑋 . To see that 𝜎1 is a linearization of (𝑋, 𝑃), consider any two events 𝑒, 𝑒 ′ ∈ 𝑋
such that 𝑒 <𝑃 𝑒 ′. Consider the triplet (w𝑒,𝑒′, r𝑒,𝑒′, w′𝑒,𝑒′) of P ′, and we have w𝑒,𝑒′ <𝜎2 w′

𝑒,𝑒′ , thus

r𝑒,𝑒′ <𝜎2 w
′
𝑒,𝑒′ . This leads to 𝑒 <𝜎2 𝑒

′
, and thus 𝑒 <𝜎1 𝑒

′
, as desired.

The desired result follows. □

Theorem 3.4. Dynamic race prediction on traces with a single lock and two critical sections is W[1]-
hard parameterized by the number of threads.

Proof. We argue that P has a witness 𝜎1 iff (w(𝑦), r(𝑦)) is a predictable data race of 𝜎 ′, witnessed
by a trace 𝜎2.

(⇒). Consider the witness 𝜎1, hence r <𝜎1 w
′
for the distinguished triplet 𝜆 = (w, r, w′). The witness

trace 𝜎2 is constructed as follows.

(1) We insert in 𝜎1 all events that where inserted in 𝜎 to produce 𝜎 ′, in the same order.

(2) We remove from 𝜎1 the events {rel1, w(𝑦), r(𝑦)}.
It follows easily that 𝜎2 is a correct reordering of 𝜎 ′, in which w(𝑦) and r(𝑦) are enabled, hence
(w(𝑦), r(𝑦)) is a predictable data race of 𝜎 ′.
(⇐). Consider the witness 𝜎2, and it is straightforward that Events𝜎2 = Events𝜎′ \ {rel2, w, r}.
Hence rel1 <𝜎2 acq2 and thus r < w′ for the distinguished triplet 𝜆 = (w, r, w′). The witness 𝜎1
is constructed as 𝜎1 = 𝜎2 |𝑋 , i.e., by removing from 𝜎2 all the events that we inserted when we

constructed 𝜎 ′ from 𝜎 . It follows easily that 𝜎1 is a linearization of the rf-poset (𝑋, 𝑃, RF) and
r <𝜎1 w

′
.

The desired result follows. □

C COMPARISONWITH OTHER RACE PREDICTION ALGORITHMS
Here, we discuss recent advances in data race prediction and characterize their prediction power

with respect to sync-reversal free races. We focus our attention to sound race prediction techniques.

Specifically, we compare sync-reversal free race detectionwith race prediction based on the happens-
before (HB) partial order, the schedulable-happens-before (SHB) partial order [Mathur et al. 2018],

the causally precedes partial order (CP) [Smaragdakis et al. 2012], the weak causally precedes partial
order (WCP) [Kini et al. 2017], and the does not commute partial order (DC) [Roemer et al. 2018].

The recently introduced partial order strong-dependently-precedes (SDP) [Genç et al. 2019], while
claimed to be sound in that paper, is actually unsound. In Appendix D, we show a counter-example

to the soundness theorem of SDP.
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C.1 Comparison with HB and SHB
The happens-before (≤HB) order is a classic partial order employed in popular race detectors like

ThreadSanitizer [Serebryany and Iskhodzhanov 2009] and FastTrack [Flanagan and Freund 2009].

The main idea behind race detectors based on ≤HB is to determine the existence of conflicting pairs

of events that are unordered by ≤HB, defined as follows.

Definition 3 (Happens-Before). The happens-before order defined given a trace 𝜎 is the smallest

partial order ≤𝜎HB on Events𝜎 such that ≤𝜎TO⊆≤
𝜎
HB and for every lock ℓ ∈ Locks𝜎 and for every two

events 𝑒1 ≤𝜎tr 𝑒2 such that 𝑒1 ∈ Releases𝜎 (ℓ) and 𝑒2 ∈ Acquires𝜎 (ℓ), we have 𝑒1 ≤𝜎HB 𝑒2.

A pair (𝑒1, 𝑒2) of conflicting events of 𝜎 is said to be an ≤HB-race if 𝑒1 ∥𝜎HB 𝑒2. The soundness

guarantee of ≤HB states that if 𝜎 has an ≤HB-race, then 𝜎 also has a predictable data race. The

partial order ≤HB is known to miss the existence of predictable data races, or, in other words, it is

incomplete. Further, as noted in as noted in [Mathur et al. 2018], while ≤HB is sound for checking

the existence of a data race, the soundness guarantee only applies to the first such race identified,

beyond which, conflicting pairs of events unordered by ≤HB may not be predictable races. The

partial order ≤SHB [Mathur et al. 2018], defined below, overcomes this problem.

Definition 4 (Schedulable-Happens-Before [Mathur et al. 2018]). The schedulable-happens-before
order defined given a trace 𝜎 is the smallest partial order ≤𝜎SHB on Events𝜎 such that ≤𝜎HB⊆≤

𝜎
SHB

and for every variable 𝑥 ∈ Locks𝜎 and for every read event 𝑒1 ≤𝜎tr 𝑒2 such that 𝑒1 ∈ Releases𝜎 (ℓ)
and 𝑒2 ∈ Acquires𝜎 (ℓ), we have 𝑒1 ≤𝜎HB 𝑒2.

A pair of conflicting events (𝑒1, 𝑒2) in 𝜎 is an ≤SHB-race if either prev𝜎 (𝑒2) = ⊥ or 𝑒1 ∥𝜎SHB prev𝜎 (𝑒2).
The soundness theorem for SHB states that every ≤SHB-race of a trace 𝜎 is also a predictable data

race of 𝜎 [Mathur et al. 2018], and further the first race identified by ≤HB (for which soundness of

≤HB holds) is also reported by ≤SHB.
We next make the following observation. The proof follows directly from the soundness proof of

SHB [Mathur et al. 2018].

Lemma C.1. For a trace 𝜎 and a conflicting pair of events (𝑒1, 𝑒2) of 𝜎 , if (𝑒1, 𝑒2) is an SHB-race, then
(𝑒1, 𝑒2) is a sync-reversal free predictable race of 𝜎 .

Proof. Let 𝜎 be a trace and let (𝑒1, 𝑒2) be an SHB-race of 𝜎 such that 𝑒1 ≤𝜎tr 𝑒2. Let 𝑆𝑖 = {𝑒 ∈
Events𝜎 | 𝑒 <𝜎

SHB 𝑒𝑖 } and let 𝑆 = 𝑆1 ∪ 𝑆2. We observe that {𝑒1, 𝑒2} ∩ 𝑆 = ∅. Next, consider the
sequence 𝜌 ′ obtained by linearizing the events in 𝑆 as per ≤𝜎tr and let 𝜌 = 𝜌 ′ · 𝑒1 · 𝑒2. We remark

that 𝑆 is downward closed with respect to ≤𝜎SHB and thus 𝜌 is a correct reordering of 𝜎 . Further,

since ≤𝜌tr⊆≤𝜎tr, 𝜌 is also a sync-reversal free correct reordering of 𝜎 . □

Example 6. Consider the trace 𝜎1 in Figure 1a. Both ≤𝜎1HB and ≤𝜎1SHB order all events in 𝜎1, and thus

there is no HB or SHB race in 𝜎 . Nevertheless, the correct reordering 𝜎CR
1

is a sync-reversal free

correct reordering that witnesses the race (𝑒1, 𝑒6). Notice that the earlier critical section in 𝜎1 on

lock ℓ (performed in thread 𝑡1) is not present in the correct reordering.

Based on Lemma C.1 and Example 6, we have the following.

Observation 1. The prediction power of sync-reversal free race prediction is strictly better than

SHB race prediction.
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1:34 Anon.

𝑡1 𝑡2

1 w(x)
2 acq(ℓ)
3 w(𝑧)
4 rel(ℓ)
5 acq(ℓ)
6 w(𝑧)
7 rel(ℓ)
8 w(x)

≺
W
CP

(a) 𝜎7 with no ≤WCP-race.

𝑡1 𝑡2 𝑡3

1 w(x)
2 acq(ℓ)
3 w(𝑧)
4 rel(ℓ)
5 acq(ℓ)
6 r(𝑧)
7 rel(ℓ)
8 acq(ℓ)
9 rel(ℓ)
10 w(x)

≺
W
CP ≤

HB

(b) Trace 𝜎8 with no ≤WCP-race.

Fig. 7. Traces 𝜎7 and 𝜎8 have sync-reversal free-races. But ≤WCP does not report any races.

C.2 Comparison with CP and WCP
The partial orders causally precedes (denoted ≤CP) [Smaragdakis et al. 2012] and weak causally
precedes (denoted ≤WCP) [Kini et al. 2017] are two recent partial orders, proposed for data race

prediction. Both partial orders are sound and can report races missed by ≤HB (and ≤SHB). More

precisely, ≤CP can predict races on strictly more traces than ≤HB, and ≤WCP can, in turn, predict

strictly more races than ≤CP. Further, ≤WCP has a more efficient race detection algorithm than ≤CP.
We define ≤WCP below; the precise definition of ≤CP is similar to that of ≤WCP and not important

for our discussion here. Here, we say that two acquire events 𝑎1 and 𝑎2 are conflicting if there is a

common lock ℓ such that op(𝑎1) = op(𝑎2) = acq(ℓ).

Definition 5 (Weak Causal Precedence). For a trace 𝜎 , ≤𝜎WCP=≺
𝜎
WCP ∪ ≤

𝜎
TO, where ≺

𝜎
WCP is the

smallest transitive order such that the following hold:

(a) For two conflicting acquire events 𝑎1, 𝑎2, if there are events 𝑒1 ∈ CS𝜎 (𝑎1) and 𝑒2 ∈ CS𝜎 (𝑎2)
such that 𝑒1 ≍ 𝑒2, then match𝜎 (𝑎1) ≺𝜎WCP 𝑒2.

(b) For two conflicting acquire 𝑎1, 𝑎2 events, if 𝑎1 ≺𝜎WCP 𝑎2, then match𝜎 (𝑎1) ≺𝜎WCP match𝜎 (𝑎2).
(c) For any three events 𝑒1, 𝑒2, 𝑒3, if either 𝑒1 ≺𝜎WCP 𝑒2 ≤𝜎HB 𝑒3, or 𝑒1 ≤𝜎HB 𝑒2 ≺𝜎WCP 𝑒3, then

𝑒1 ≺𝜎WCP 𝑒3.

The partial order ≤CP is defined in a similar manner, except that it orders the second conflicting

acquire event 𝑎2 in rules a and b in Definition 5. For a trace 𝜎 , a ≤WCP-race (resp. ≤CP-race) is a
pair of conflicting events (𝑒1, 𝑒2) in 𝜎 unordered by ≤𝜎WCP (resp. ≤

𝜎
CP).

The soundness guarantee of ≤WCP (and ≤CP) is that of weak soundness—if a trace 𝜎 has a ≤WCP-race

(or ≤CP-race), then 𝜎 has a predictable data race or a predictable deadlock
5
. We remark that, as

with ≤HB, not every ≤WCP-race is a predictable race, and the weak soundness guarantee applies

only to the first ≤WCP-race identified.

Let us now consider how ≤WCP-race prediction compares with sync-reversal free race prediction.

Example 7. Consider trace 𝜎7 in Figure 7a. Here, we have 𝑒4 ≺𝜎7WCP 𝑒6 due to rule a. Together

with composition with ≤𝜎7HB (rule c), we have that 𝑒1 ≤𝜎7WCP 𝑒8 and thus there is no ≤WCP-race in 𝜎7.

However, the trace 𝜎CR
7

= 𝑒5·𝑒6·𝑒7·𝑒1·𝑒8 is a sync-reversal free correct reordering of 𝜎7 that exposes

the predictable race (𝑒1, 𝑒8).

We remark that ≤WCP misses the race in Example 7 because of the ordering 𝑒4 ≺𝜎7WCP 𝑒6, which

is a spurious ordering and correct reorderings may not necessarily respect it. We next highlight

5
A trace 𝜎 has a predictable deadlock, if there is a correct reordering of 𝜎 that witnesses a deadlock.
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𝑡1 𝑡2

1 acq(ℓ)
2 w(x)
3 rel(ℓ)
4 acq(ℓ)
5 rel(ℓ)
6 w(x)

(a) Trace 𝜎9 with predictable race reported by ≤WCP

𝑡1 𝑡2

1 acq(ℓ)
2 w(𝑥)
3 rel(ℓ)
4 acq(ℓ)
5 w(𝑥)
6 rel(ℓ)
7 w(𝑥)

(b) Trace 𝜎10 with predictable race missed by ≤WCP
Fig. 8. Traces with no sync-reversal free races. ≤WCP predicts race in 𝜎9 but misses in 𝜎10

another source of imprecision in ≤WCP arising due to the ≤HB-composition rule of ≤WCP (rule c in

Definition 5).

Example 8. Consider trace 𝜎8 in Figure 7b. Here, due to rule a, we have 𝑒4 ≺𝜎8WCP 𝑒6. Further,

we have 𝑒1 ≤𝜎8HB 𝑒4 and 𝑒6 ≤
𝜎8
HB 𝑒10, giving us 𝑒1 ≺𝜎8WCP 𝑒10 due to rule c As a result, there is no

≤WCP-race in 𝜎8. However, the pair (𝑒1, 𝑒10) is, in fact, a sync-reversal free race witnessed by the

correct reordering 𝜎CR
8

= 𝑒8·𝑒9·𝑒1·𝑒10 that completely drops the critical sections in 𝑡1 and 𝑡3.

Of course, there are predictable races that are neither ≤WCP-races, nor sync-reversal free races.

Example 9. The trace 𝜎10 in Figure 8b has a predictable race (𝑒2, 𝑒7) which is witnessed by the

(only) correct reordering 𝜎CR
10

= 𝑒4·𝑒5·𝑒6·𝑒1. Notice that this is not a sync-reversal free correct

ordering. Further, ≤WCP misses this race as well — 𝑒3 ≺𝜎10WCP 𝑒5 (rule a), giving 𝑒1 ≤
𝜎10
WCP 𝑒7.

In the next example, we illustrate that ≤WCP can predict races that are not sync-reversal free races.

Example 10. Consider trace 𝜎9 in Figure 8a. Here, (𝑒2, 𝑒6) is a predictable data race witnessed by the
(only) correct reordering 𝜎CR

9
= 𝑒4·𝑒5·𝑒1·𝑒2·𝑒6. Observe that 𝜎CR9

is not a sync-reversal free correct

reordering of 𝜎9 and thus 𝜎9 does not have any sync-reversal free race. At the same time, 𝑒2 ∥𝜎WCP 𝑒6
and thus this predictable race is identified by ≤WCP.

We summarize our comparison with ≤WCP as follows.

Observation 2. The prediction power of ≤WCP-race prediction and sync-reversal free race predic-

tion are incomparable. Further, ≤WCP offers a weak soundness guarantee, i.e., a ≤WCP-race may

sometimes imply no predictable race but only a predictable deadlock, whereas sync-reversal free

race prediction is strongly sound. Finally, ≤WCP is sound only until the first race, whereas all

sync-reversal free-races reported are true races.

C.3 Comparison with DC
Finally, we briefly outline how sync-reversal free races compare with the methods DC. The DC
partial order was introduced in [Roemer et al. 2018] as an unsound weakening to WCP. The
difference between the two is that DC does not compose with HB, i.e., it lacks c in the definition

of WCP above, and instead only composes with the thread order. Due to its similarity with WCP,
DC also misses sync-reversal free races. For example, in the trace of Figure 7a, DC forces the same

ordering as WCP, and thus misses the sync-reversal free race (𝑒1, 𝑒8).
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D A NOTE ON THE SOUNDNESS OF SDP
The SDP partial order was recently introduce in [Genç et al. 2019] for dynamic race prediction.

[Genç et al. 2019, Theorem p12] states that SDP is sound, i.e., if a trace 𝜎 has an SDP-race and 𝜎
has a predictable race. In this section we construct a counterexample to soundness.

𝑡1 𝑡2

1 acq(ℓ1)
2 acq(ℓ2)
3 acq(ℓ3)
4 w(𝑥)
5 rel(ℓ3)
6 rel(ℓ2)
7 acq(ℓ4)
8 rel(ℓ4)
9 w(𝑦)
10 rel(ℓ1)
11 acq(ℓ2)
12 w(𝑥)
13 rel(ℓ2)
14 acq(ℓ1)
15 rel(ℓ1)
16 acq(ℓ4)
17 acq(ℓ3)
18 r(𝑥)
19 rel(ℓ3)
20 r(𝑦)
21 rel(ℓ4)

≤
SD

P

(a) A trace 𝜎 with an SDP-race but no predictable
race.

𝑡1 𝑡2

1 acq(ℓ1)
2 acq(ℓ2)
3 acq(ℓ3)
4 w(𝑥)
5 rel(ℓ3)
6 rel(ℓ2)
7 acq(ℓ4)
8 rel(ℓ4)
9 w(𝑦)
10

11 acq(ℓ2)
12 w(𝑥)
13 rel(ℓ2)
14 acq(ℓ1)
15 rel(ℓ1)
16 acq(ℓ4)
17 acq(ℓ3)
18 r(𝑥)
19 rel(ℓ3)
20 r(𝑦)
21

(b) Attempt for a correct reordering of 𝜎 with a
race on (𝑒9, 𝑒20).

Fig. 9. Counterexample to the soundness of SDP.

Counterexample to SDP soundness. Our counterexample is shown in Figure 9. First, we argue

that the trace 𝜎 has an SDP-race. Second, we argue that 𝜎 has no predictable race.

(1) Observe that 𝑒9 and 𝑒20 are conflicting and are not protected by the same lock. Hence, it suffices

to argue that 𝑒9 ≰
𝜎
SDP 𝑒20. Since the two critical sections on ℓ2 contain the w(𝑥) conflicting events

𝑒4 and 𝑒12, SDP will order 𝑒6 ≤𝜎SDP 𝑒18, as 𝑒18 is a r(𝑥) event that is thread-ordered after 𝑒12. At

this point, SDP will insert no orderings, hence 𝑒9 ≰
𝜎
SDP 𝑒20, and (𝑒9, 𝑒20) is an SDP-race.

(2) There are three conflicting event pairs that may constitute a predictable data race, namely,

(i) (𝑒4, 𝑒12), (ii) (𝑒4, 𝑒17), and (iii) (𝑒9, 𝑒20). Observe that (𝑒4, 𝑒12) and (𝑒4, 𝑒17) cannot yield a

predictable race, as the event pairs are protected by the same locks ℓ2 and ℓ3, respectively. For

(𝑒9, 𝑒20), consider an attempt for constructing a correct reordering 𝜎∗ that witnesses the race,
as shown in Figure 9b. Observe that 𝜎∗ is missing the rel(ℓ1) event 𝑒10 and rel(ℓ4) event 𝑒21.
Since 𝜎∗ must respect lock semantics, it must satisfy the two orderings shown in Figure 9b.

Note, however, that these two orderings necessarily violate the observation of the r(𝑥) event
𝑒18. Thus, RF𝜎 ≠ RF𝜎∗ , and 𝜎

∗
cannot be a correct reordering of 𝜎 .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Sync-Reversal Free Data Races

	3 Summary of Main Results
	4 Detecting SYNC-REVERSAL FREE Races
	4.1 Insights and Overview of the Algorithm
	4.2 Checking if a given pair of conflicting events is a sync-reversal free race
	4.3 Checking for a Sync-Reversal Free race on a given event with a given thread
	4.4 Algorithm SRFree for Sync-Reversal Free Race Prediction
	4.5 Linear Space Lower Bound

	5 Beyond Synchronization-Reversal Free Races
	6 Experiments
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References
	A Proofs from Section 4
	B Proofs from Section 5
	C Comparison with Other Race Prediction Algorithms
	C.1 Comparison with HB and SHB
	C.2 Comparison with CP and WCP
	C.3 Comparison with DC

	D A Note on the Soundness of SDP

