
Programmable Data Gathering for
Detecting Stegomalware

Alessandro Carrega
CNIT - S3ITI

alessandro.carrega@cnit.it

Luca Caviglione, Matteo Repetto, Marco Zuppelli
CNR - IMATI

{luca.caviglione, matteo.repetto, marco.zuppelli}@ge.imati.cnr.it

Abstract—The “arm race” against malware developers re-
quires to collect a wide variety of performance measurements,
for instance to face threats leveraging information hiding

and steganography. Unfortunately, this process could be time-
consuming, lack of scalability and cause performance degra-
dations within computing and network nodes. In this paper
we propose to take advantage of the joint activities of two
H2020 Projects, namely ASTRID and SIMARGL. To prove the
benefits of the cooperation between the solutions developed by
the two aforementioned projects, this paper reports a preliminary
performance evaluation on the use of the extended Berkeley
Packet Filter to gather data for detecting stegomalware.

Index Terms—eBPF, syscall tracing, stegomalware, covert
channels, detection.

I. INTRODUCTION

Modern business models are increasingly demanding for

more agility in the creation, operation and management of

ICT services. To this aim, new computing paradigms are being

progressively introduced, which leverage virtualization and

cloud, as well as service-oriented architectures to interconnect

software, devices, and data over a pervasive and seamless

computing continuum encompassing different technological

and administrative domains (i.e., IoT, data centers, and telco

infrastructures). Despite of the benefits in terms of time-to-

market and dynamicity, novel paradigms outdate the legacy

security perimeter model and lead to additional threats [1].

The difficulty to effectively deploy cyber-security appliances

in virtualized and cyber-physical systems is making cloud

and network services the preferred target for a wide-range of

novel attacks. As a matter of fact, the growing adoption of

micro-services and service mesh architectures to implement

large digital value chains creates interdependencies among

software processes in different domains and paves the way for

multi-vector attacks that combine together social engineering,

malware, steganography, software bugs, and network vulner-

abilities. The effective detection of threats in such scenarios

requires to collect and correlate even apparently independent

events from multiple subsystems, which is not possible for

legacy standalone security appliances.

According to recent reports from cyber-security vendors,

attacks are becoming ever more complex and stealthy, in

The final publication is available at IEEE Xplore via
https://doi.org/10.1109/NetSoft48620.2020.9165537.

order to elude well-known detection techniques based on

signatures and behavioral patterns. As a paradigmatic example,

steganography can be used to hide the presence of malicious

code in digital media and network traffic is used as the carrier

to covertly exfiltrate data or to stealthily orchestrate nodes of

a botnet. Therefore, many recent attacks are difficult to detect

and such a trend is expected to continue to grow [2].

Under this evolutionary scenario, programmatic access to

data and events is an important requirement to improve the

likelihood of detecting stealthy software and communica-

tions. In this paper, we show how research outcomes from

complementary projects can be joined to this purpose. We

consider the challenging scenario of detecting stegomalware

in virtualized services, which encompass both cloud applica-

tions and network functions virtualization. The platform for

lightweight and programmatic monitoring and inspection is

taken from the ASTRID project1, whereas SIMARGL2 aims at

developing scalable mechanisms to counteract novel malware

endowed with steganographic techniques and crypto-lockers.

While detection of network attacks has been largely discussed

in the literature, information-hiding-capable threats pose new

challenges, as they exploit bandwidth-scarce channels and

their detection is a poorly generalizable process [3]–[5].

In more detail, we investigate the use of the programmable

monitoring and inspection framework developed by ASTRID

to collect data and measurements from virtualized environ-

ments, which are usually difficult to gather in an efficient

way with existing tools. In addition, since the detection of

steganographic threats is tightly coupled with the used carrier

embedding the secret (e.g., the enumeration of sockets, the ac-

quisition of a lock on a file or the manipulation of field within

the header of a protocol), instrumenting virtual machines and

network nodes without impacting their performances could be

a hard and time-consuming task. To this aim, we leverage the

extended Berkeley Packet Filter (eBPF), a framework inte-

grated in the Linux kernel for the inspection of system calls,

e.g., page faults and traffic stimuli [6]. Obtained measures

can be then evaluated with toolkits envisaged in SIMARGL

to reveal malware and hidden Command & Control (C&C)

attempts or attacks targeting virtualized architectures.

1AddreSsing ThReats for virtualIzeD services (ASTRID). URL: https://
www.astrid-project.eu.

2Secure Intelligent Methods for Advanced Recognition of Malware and
Stegomalware (SIMARGL). URL: https://simargl.eu.978-1-7281-5684-2/20/$31.00 © 2020 IEEE

Summarizing, the contributions of this paper are: i) the

review of works enforcing security through virtualization; ii)

the design of an architectural blueprint to integrate ASTRID

and SIMARGL; iii) the identification of new threats taking

advantage of steganography; iv) a preliminary experimental

campaign on the use of eBPF to gather data for the detection

of stegomalware.

The remainder of the paper is structured as follows. Section

II reviews previous works on virtualization and security, while

Section III deals with the architecture to combine the features

of ASTRID and SIMARGL. Section IV portraits threats using

steganography and Section V discusses technical aspects of the

detection. Section VI showcases a preliminary performance

evaluation on the use of eBPF to gather data for detecting

stegomalware. Section VII concludes the paper and hints at

some possible future developments.

II. RELATED WORKS

The use of virtualization to support security-related duties

and the mitigation of attacks targeting virtual services have

been already partially investigated in the literature. For in-

stance, the approaches proposed in [7], [8] take advantage

of an orchestrator for controlling pervasive and lightweight

security hooks embedded in the virtual layers at the basis of

cloud applications. The work in [9] discusses a mechanism

to enhance a network hypervisor with new functions for

implementing a flexible monitoring service. The proposed

approach can ease the engineering of monitoring and security-

related services, especially when in the presence of complex

architectures based on micro services or cloud technologies.

For the case of cybersecurity applied to networking, Deep

Packet Inspection (DPI) is an important technique as it allows

to evaluate several aspects of a flow, including alterations in the

header at the basis of many covert channels [3], [10]. Indeed,

network virtualization is often at the basis of large-scale

scenarios where engines responsible of performing DPI can

be deployed as software components on commodity hardware.

To this aim, [11] proposes an approach for their dynamic

placement to contain power consumptions and costs while

delivering suitable degrees of scalability and performance. A

more comprehensive framework is discussed in [12], where au-

thors propose a virtualized security architecture to enforce in-

tegrity of virtual machines, isolate higher software layers, and

provide adaptive network security appliances (e.g., intrusion

detection systems and firewalls) encapsulated within virtual

machines. Another important aspect concerns the definition

and the implementation of effective orchestration policies.

A possible idea could exploit meta-functions to dynamically

construct security services able to satisfy various security

requirements [13].

Concerning the detection of steganographic malware, at the

best of our knowledge, there are not any works taking advan-

tage of virtualization to gather data or neutralize attacks. In

fact, literature abounds of works on the sanitization of carriers

or the normalization of network traffic (see, e.g., references

[5] and [3] and the references therein) but not any prior

work investigates how a covert channel or a steganographic

threat could be detect or prevented by means of virtualiza-

tion. A variety of works address the security of virtualized

architectures, but they mainly focus on the following classes

of hazards [14]: access control of resources, DoS and DDoS

attacks, virtualization to build the network infrastructure, and

security management of virtualized assets. Even if the security

risks caused by mobility, migration and hopping of virtual

machines are well understood [15], steganographic threats are

solely discussed without considering the overall architecture

or the peculiarities of large-scale virtualized network scenario.

Rather, they are addressed for very specific cases, e.g., collud-

ing containers or virtual machines, but without gathering data

via agents automatically deployed [10], [16].

III. A PLATFORM FOR SOCAAS

Following the general trend towards Everything-as-a-

Service models (XaaS), ASTRID implements the concept of

Security Operation Centres-as-a-Service (SOCaaS). Looking

at the growing number of complementary appliances and

the tighter integration required for the effective detection

of stealthy threats in complex ICT systems, the ASTRID

approach is based on the delivery of a common platform

to run multiple security services. As depicted in Figure 1,

the platform is conceived as a mediation layer between the

detection and analysis logic and the physical and virtualiza-

tion environments where cloud applications run. Differently

from a bare Security Information and Event Management

system (SIEM), which sends an overwhelming number of

alerts to team members of the organization running the ser-

vice/infrastructure, ASTRID enables security specialists to

carry out deep analysis and investigation in a very flexible

way, by selecting multiple complementary algorithms for each

specific situation. The distinctive and innovative approach of

ASTRID is the integration with software orchestration tools to

automate the deployment and management of security agents,

in order to overcome one of the main barrier to the adoption

of SOC services.

Recent cybersecurity appliances and tools are quite flexible

in the definition of the context to be collected (i.e., logs from

specific applications, packet filters, event notifications, etc.),

but are rather rigid in management. If a monitoring tool (e.g.,

a log collector or a packet classifier) is not available in the

system, manual intervention from humans is required. In a

similar way, reaction is often limited to traffic diversion, packet

filtering, and changes in access rules. However, there is a

little chance to automatically recover compromised systems,

infrastructures, and services. In ASTRID, the integration with

software orchestration tools will enable run-time management

of virtual services, both to deploy additional inspection and

monitoring processes and to trigger response and mitigation

actions.

The deployment of capillary and pervasive security agents

throughout the ICT infrastructure (network devices, servers,

terminals of users, and smart things) is among the most critical

issues for the realization of SOCs. ASTRID provides a set of

FileBeat

PacketBeat

MetricBeat

Logstash

REST interface

eBPF VM

Userspace

Kernelspace

Logstash

Local security sidecar

Kafka

Logstash

Beat

Elastic

Search

API #1

Time

Series

Context Manager

ASTRID Platform

BpfProcessing ...

Slow Path ...

...
Kubernetes

API #1

SIMARGL

steganomalware

detection API #2

API #2

Programs

...

Fig. 1. Software architecture of the ASTRID platform.

security agents for collecting security-related information from

the operating system, libraries, applications, and the network,

hence fulfilling the need of different security algorithms for

detection of intrusions, malware, and network anomalies.

Moreover, agents can be used both for cloud applications and

Network Functions Virtualization (NFV) services [17], [18].

The design used in ASTRID allows to disaggregate detec-

tion and analysis algorithms from the necessary hooks in the

monitored system, but the resulting framework is not a full-

fledged solution. Rather, it provides all architectural elements

for programmatic access to the security context and adaptation

of the security agents through programmability, but does not

deliver the full stack of detection, analysis and assessment

algorithms that are expected by security analysts. In this

respect, it stands as a perfect platform to feed the SIMARGL

toolkit in an effective way. Figure 1 shows the software

architecture of the ASTRID framework integrated with the

functionalities provided by SIMARGL. As shown, it includes

local agents deployed in each virtual function as security

sidecars and a centralized platform for collection and analysis

of security-related data and measurements orchestrated over

Kubernetes. The framework largely builds on the proven

Elastic Stack framework, and extends it with an additional

beat to run eBPF programs and a control/management plane.

Through the Context Broker, it is possible to change the

configuration of Elastic beats, load Logstash pipelines, and

inject eBPF programs into the local environment. The Context

Broker implements an abstraction of the service topology and

current configuration of security agents allowing to know the

type and structure of data that are delivered through Kafka.

Additional elements are present in the framework to interact

with software orchestration tools, to automate management

and reaction operations, and to implement a graphical user

interface, but they have been omitted for the sake of clarity

(see [17], [18], for more details).

The needed data is provided to the SIMARGL toolkit by

the ASTRID platform. Algorithms/software agents listen on

the Kafka bus for notification of events and measurements,

but they can also query the Timeseries database for historical

data. The most important aspect is that such algorithms can

define at run-time the needed measurements, and they can even

load into ASTRID new eBPF programs for tailored data and

statistics.

IV. STEGOMALWARE AND EMERGING THREATS

Despite a unique and precise definition is missing, the

term stegomalware is used in SIMARGL to identify malware

endowed with steganographic functionalities or able to exploit

a covert channel [4]. In general, an attacker deploys steganog-

raphy for the following use-cases.

Colluding Entities: they are those trying to create a covert

channel to exchange data within the single host, mainly to

bypass the security policies deployed in the underlying soft-

ware and hardware layers, the guest OS or the hypervisor [5],

[21]. Consequently, colluding applications implement a sort

of unauthorized inter-process communication service between

several software entities, for instance, virtual machines and

containerized applications, as well as regular applications and

processes. To exchange data, the typical approach set a local

covert channel built by modulating the space available in the

file-system, the CPU load or the state of TCP sockets. To

detect such communications, two possible techniques can be

used: monitor the syscalls handling the I/O or the access to the

used carrier (e.g., a temporary file) or evaluate the sleep/wake

patterns of processes as to identify those having overlapping

behaviors, thus possibly colluding. In general, this attack can

be used to exfiltrate data from an entity to another, e.g.,

to allow a containerized application handling sensitive data

without network privileges to push the stolen information to

another container with less constraints [16]. Moreover, virtual

machines could also cooperate for reconnaissance purposes,

such as to allow the malware to determine if it is confined on

a honeypot or to map the underlying physical infrastructure

[24].

Network Covert Channels: they allow to covertly transfer

data by injecting the information within a network artifact

TABLE I
MEASURE OF INTEREST TO BE PERFORMED VIA ASTRID TO FEED THE SIMARGL TOOLKIT TO COUNTERACT STEGOMALWARE AND CRYPTLOCKERS.

Threat Behavior of Interest Sample Measures Refs.

Colluding Applications Activation statistic of processes or threads stack trace of waker, total blocked time [19], [20]

Colluding Apps. or Containers Monitoring type and number of calls to VFS type of VFS func, count [16], [21]

Colluding Virtual Machines Memory usage to infer anomalies page cache hit/miss, read and write hit [16], [22]

CC manipulating file-system Processes that are performing disk I/O type of op, disk, number of op [3], [10], [19]

CC manipulating CPU Time spent using the CPU duration, count, load distribution [3], [10], [19]

CC manipulating files Reads and writes performed reads, writes, r kb, w kb, type [3], [10], [19]

CC enumerating sockets TCP state change information socket address, pid, cmd, state, duration [3], [10], [19]

Miners, Cryptolockers and CC Block disk I/O activity and performance I/O latency, duration and count of operations [4], [5]

Cryptolockers Type of disk I/O operations and CPU usage type of op, kbytes in R/W [23]

acting as the carrier. To this aim, the sender can modulate the

content of packets or alter some traffic features, e.g., he/she

encodes information by manipulating the inter-packet time

with proper delays. For the case of malware, network cover

channels are typically used for: data exfiltration, implementa-

tion of a C&C infrastructure, development of cloaked transfer

services for retrieving additional software components, botnet

orchestration, and elusion of firewall rules [3], [5], [10].

Cycle-stealing threats, ransomware and cryptolockers. De-

spite their precise characterization is still an open problem,

such threats share the aggressive usage of resources when

attacking [25]. For instance, malicious code used for mining

cryptocurrencies or orchestrating a botnet will impact on the

average usage of computing or network resources, while the

encryption of content stored on the file-system accounts for a

significant volume of syscalls handling I/O operations. There-

fore, being able to filter and monitor specific events within the

kernel is a prime requirement for building effective indicators.

This is even more important since many malware increase their

stealthiness by adopting “time bomb” mechanisms triggering

their execution after a predefined period of time. Such features

reduce the chance of spotting the attack via a cause-effect

observation (e.g., a lag in the graphical user interface due

to excessive loads on the CPU) [26]. Similarly to the case

of stegomalware, also cycle-stealing threats and ransomware

require the access to different usage statistics, which are

difficult to define a priori. A possible idea is to exploit abstract

indicators, such as the used power [19]. Hence, being able to

perform measurements “close” to the device driver or within

the kernel is definitely important.

Another goal of SIMARGL is to develop detection methods

for obfuscation, which is an umbrella term for many tech-

niques enabling an application to look benign, even if endowed

with malicious code. A prime class of methods embraces

those using digital images as the carrier. For instance, some

malware hides shell scripts by simply renaming them to mimic

images (e.g., install.png) [27] or exploits steganography to

embed malicious code within images, as well as configuration

data, list of IP addresses to inspect or URL to contact for

retrieving additional code as to implement multi-stage loading

mechanisms [4].

Table I resumes the most popular attacks discussed in the

literature, the behavior of interest, as well as some possible

measurements to perform detection. For instance, in order to

detect colluding applications or containers, a possible approach

could monitor the behavior of the Virtual File System (VFS).

In this case, by looking for the type of VFS functions

called and their distribution it could possible characterizing

the workload and spot anomalous bursts of operations. Other

measures of interest could be those related to the I/O activity,

such as the latency or the distribution of the size of the block

of data (i.e., the block disk I/O). These values can provide

relevant statistical indicators to detect miners or cryptolockers.

V. DETECTING STEGOMALWARE THROUGH ASTRID

The broad range of potential covert channels and carrier

to be used for steganographic purposes make the detection of

stegomalware a challenging task. As a matter of fact, stego-

malware may leverage network packets, file system properties,

memories and caches, CPU performance, and so on. Common

detection mechanisms based on the analysis of log files and

network statistics could be largely ineffective in this respect.

The detection of stegomalware requires temporal and spacial

correlation of fine-grained system properties and actions. DPI

can be used to spot anomalous usage of some header fields,

while system tracing is required to analyze the behavior of

the operating system. For example, by only narrowing the

discussion to the most popular attacks targeting the single

host/node, we can report the following considerations:

• Colluding Entities: typical attacks modulate the space

available in the file-system, the CPU load or the state

of TCP sockets. To detect them, two possible techniques

can be used: i) monitor the syscalls handling the I/O or

the access to the used carrier (e.g., a temporary file) or

ii) evaluate the sleep/wake patterns of processes as to

identify those having overlapping behaviors, thus possibly

colluding.

TABLE II
EXAMPLES OF BCC TOOLS THAT CAN BE USED TO DETECT COVERT CHANNELS.

Attack BCC tools

Colluding Applications execsnoop, offwaketime, wakeuptime

Colluding Apps. or Containers vfscount, vfsstat, biotop, ext4/xfs/zfsdist, ext4/xfs/xsflower, vfsreadlatency

Colluding Virtual Machines cachestat, cachetop, biosnoop, bitesize, dcsnoop, dcstat, llcstat

CC manipulating file-system biotop, biosnoop, bitesize, disksnoop, filteop

CC manipulating CPU pidperscc, cachestat, cachetop, cpudist

CC manipulating files filelife, filetop, filesnoop

CC enumerating sockets tcpv4connect, opensnoop, solisten, tcpconnect, tcpstates, tcplife, tcpaccept, sofdsnoop

Miners, Cryptolockers and CC biolatency, vfscount, biotop, biosnoop, funccount, funclatency, profile

Cryptolockers biotop, biosnoop, bitesize

• Cryptolockers (or ransomware): in general, such threats

generate a huge load on the filesystem to encrypt its

content. Thus, monitoring operations on the I/O could

be an effective indicator.

Several data sources are already present in the kernel to

follow the execution of system calls and internal functions:

kprobes3, uprobes4, tracepoints5, dtrace-probes [28], and lttng-

ust. Multiple tools are available to collect information from

these tracing hooks (ftrace, perf, sysdig, SystemTap, LTTng),

but eBPF is probably the most powerful framework for gath-

ering data in the perspective of detecting information-hiding-

capable threats. Specifically, there are no additional modules

to install in the kernel, custom programs can be defined and

attached to tracing hooks to do any kind of aggregation and

lightweight processing. As a concrete example of the broad

range of applicability of the eBPF framework, Table II lists

existing programs from the BPF Compiler Collection6 (BCC)

that could be used to detect some well-known covert channels.

Put briefly, BCC is a toolkit for creating efficient kernel trac-

ing and manipulation programs, and already includes several

useful tools for tracing the most common features. Besides, it

allows writing eBPF programs in C language and compiling

them with LLVM. It also includes front-ends in Python and

Lua. ASTRID improves this framework by feeding Elastic

Stack with the output from eBPF programs.

This framework can be used to implement an effective suite

of probes to gather the data needed by the SIMARGL toolkit

for detecting stegomalware. Through ASTRID, investigation

should start from eBPF programs to detect high-level indica-

tors, while additional programs are then injected as soon as the

scope is narrowed. Since there is no dependency on a specific

set of programs, new programs can be implemented at run-

time to cope with new or unknown covert channel and threats

using information hiding.

VI. EXPERIMENTAL RESULTS

To prove the effectiveness of eBPF-based tracing, we se-

lected a colluding applications threat where two endpoints ex-

change data through the chmod-stego technique. The chmod-

stego is a covert channel that injects secrets in Unix file

privilege numbers. The application is made of two peers, a

sender and a receiver. The sender encodes data in the privilege

of a set of files within a given directory, while the receiver

listens for the specified file permissions and, according to

changes, it decodes the secret message.

Since the chmod-stego technique is based on the manipula-

tion of the file-system, the most straightforward way to design

a detection strategy is by tracing the __x64_sys_chmod

kernel function, which provides better indications than more

generic I/O activity (e.g., read/write operations through

__x64_sys_read and __x64_sys_write).

To validate such an idea, we investigated if and under what

conditions a steganographic transmission could be detectable

during system activity. We created an experimental setup

composed of a Virtual Machine with Debian GNU/Linux 10

(buster) running the Linux kernel 4.20.9 and the aforemen-

tioned chmod-stego7 steganographic method. A kernel compi-

lation was run as the main system activity, which entails many

I/O system calls and can be easily replicated for comparison.

To gather data, a simple eBPF filter was injected to trace

invocations of the __x64_sys_chmod kernel function and

to report its relevant parameters, i.e., file and permissions, the

Process ID (PID), and the Thread ID (TID).

We performed two different tests. The first aimed at eval-

uating the tradeoff between the steganographic bandwidth of

the covert channel and its detectability. To this aim, we fixed

the length L of the secret message to be transmitted and we

varied the time between the transmission of two consecutive

characters, denoted as ∆t. Specifically, we conducted trials

3https://lwn.net/Articles/132196/.
4http://www.brendangregg.com/blog/2015-06-28/linux-ftrace-uprobe.html.
5https://lwn.net/Articles/379903/.
6https://github.com/iovisor/bcc.
7https://github.com/operatorequals/chmod-stego.

(a) Cumulative time evolution (b) Instantaneous time evolution

Fig. 2. Detected invocation of the __x64_sys_chmod kernel function with L = 30 and ∆t = 0.5, 5, 10, 20 s.

(a) Cumulative time evolution (b) Instantaneous time evolution

Fig. 3. Detected invocation of the __x64_sys_chmod kernel function with ∆t = 5 s and L = 30, 60, 90, 120.

with L = 30 and ∆t = 0.5, 5, 10, 20 s. In the second round

of tests, we investigated the influence of the size of the data

exchanged between the two colluding applications. Hence, we

set ∆t = 5 s and we performed trials with L = 30, 60, 90, 120

characters, which may be representative of the exfiltration of a

PIN, a cryptographic key or the information of a credit card.

In both tests, the “clean” configuration has been considered

the one characterized by the load of traced kernel functions

due to the compilation of the Linux kernel 5.5.5. All the trials

lasted 10 minutes.

Figure 2 depicts the results of the first round of tests. As

shown, the presence of an exchange of information through

a covert channel (denoted as CC in the figure) affects both

the number and the distribution of the __x64_sys_chmod

kernel functions. Specifically, the higher the steganographic

bandwidth (i.e., ∆t decreases) the higher the load of

__x64_sys_chmod kernel functions at the begin. In fact,

higher transmission rates reduce the time needed to transmit

the secret message. This can be viewed in Figure 2(b), where

the instantaneous time evolution is shown. Similar results

have been observed for the second set of experiments, which

are showcased in Figure 3. In this case, the steganographic

bandwidth is fixed and the length of the message is the unique

factor that makes the transmission more or less detectable.

For what concerns detection, in general, channels with a

higher steganographic bandwidth and longer messages are

easier to detect. Indeed, they imply either sudden peaks

or larger volumes of __x64_sys_chmod kernel functions.

Clearly, on-line detection is not straightforward, because of

the difficulty to find an effective decision rule able to discrim-

inate between legitimate usage and the presence of hidden

transmissions for different use cases. Luckily, for the case

of chmod-stego technique, a possible signature is given by

a quick change in the volume of __x64_sys_chmod kernel

functions at the end of the trials. This is due to the sender that

restores the original file permissions, as to avoid the detection

by common file system monitoring tools. Moreover, taking

into account additional parameters available from tracing (e.g.,

the file names) can be used to further improve the likelihood

of the detection. In this perspective, the SIMARGL toolkit will

take into account multiple complementary indicators, possibly

independent of the specific threat.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we showcased how the framework developed

within ASTRID can be used by the SIMARGL toolkit for

the detection of novel threats, such as stegomalware and

cryptlockers. To prove the effectiveness of this vision, we

presented a preliminary performance evaluation on the use of

the eBPF to collect variable of interests. The provided data

can then be used to feed detection models or create datasets

to train machine-learning-capable techniques.

Future works aim at refining the approach. In particular,

the main objective is the definition of a more programmatic

process to progressively narrow down the scope from generic

indicators to fine-grained tracing of execution patterns for

specific covert channels or information-hiding-capable threats.

In this respect, ongoing research deals with the development

of threat-independent signatures such as energy consumption,

RAM usage patterns, and the time statistics of running pro-

cesses.

ACKNOWLEDGMENT

This work has been supported by the EU Project ASTRID,

Grant Agreement No 786922, and by the EU Project

SIMARGL, Grant Agreement No 833042.

REFERENCES

[1] R. Rapuzzi and M. Repetto, “Building situational awareness for network
threats in fog/edge computing: Emerging paradigms beyond the security
perimeter model,” Future Generation Computer Systems, vol. 85, pp.
235–249, August 2018.

[2] K. Cabaj, L. Caviglione, W. Mazurczyk, S. Wendzel, A. Woodward, and
S. Zander, “The new threats of information hiding: The road ahead,” IT

Professional, vol. 20, no. 3, pp. 31–39, 2018.
[3] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels

and countermeasures in computer network protocols,” IEEE Communi-

cations Surveys & Tutorials, vol. 9, no. 3, pp. 44–57, 2007.
[4] W. Mazurczyk and L. Caviglione, “Information hiding as a challenge

for malware detection,” IEEE Security & Privacy, vol. 13, no. 2, pp.
89–93, 2015.

[5] ——, “Steganography in modern smartphones and mitigation tech-
niques,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp.
334–357, 2014.

[6] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-

mance Switching and Routing (HPSR). IEEE, 2018, pp. 1–8.
[7] M. Repetto, A. Carrega, and G. Lamanna, “An architecture to manage

security services for cloud applications,” in 2019 4th International

Conference on Computing, Communications and Security (ICCCS).
IEEE, 2019, pp. 1–8.

[8] S. Covaci, M. Repetto, and F. Risso, “A new paradigm to address threats
for virtualized services,” in 2018 IEEE 42nd Annual Computer Software

and Applications Conference (COMPSAC), vol. 2. IEEE, 2018, pp.
689–694.

[9] Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-service for
microservices-based cloud applications,” in 2015 IEEE 7th International

Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2015, pp. 50–57.

[10] S. Wendzel, S. Zander, B. Fechner, and C. Herdin, “Pattern-based
survey and categorization of network covert channel techniques,” ACM

Computing Surveys (CSUR), vol. 47, no. 3, pp. 1–26, 2015.
[11] M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of virtualized

deep packet inspection functions in sdn,” in MILCOM 2013-2013 IEEE

Military Communications Conference. IEEE, 2013, pp. 992–997.
[12] J. Li, B. Li, T. Wo, C. Hu, J. Huai, L. Liu, and K. Lam, “Cyberguarder:

A virtualization security assurance architecture for green cloud comput-
ing,” Future Generation Computer Systems, vol. 28, no. 2, pp. 379–390,
2012.

[13] Z. Lin, D. Tao, and Z. Wang, “Dynamic construction scheme for
virtualization security service in software-defined networks,” Sensors,
vol. 17, no. 4, p. 920, 2017.

[14] X. Luo, L. Yang, L. Ma, S. Chu, and H. Dai, “Virtualization security
risks and solutions of cloud computing via divide-conquer strategy,”
in 2011 Third International Conference on Multimedia Information

Networking and Security. IEEE, 2011, pp. 637–641.
[15] H.-Y. Tsai, M. Siebenhaar, A. Miede, Y. Huang, and R. Steinmetz,

“Threat as a service?: Virtualization’s impact on cloud security,” IT

professional, vol. 14, no. 1, pp. 32–37, 2011.
[16] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Contain-

erleaks: Emerging security threats of information leakages in container
clouds,” in 2017 47th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN). IEEE, 2017, pp. 237–248.
[17] M. Repetto, A. Carrega, and G. Lamanna, “An architecture to manage

security services for cloud applications,” in 4th IEEE International

Conference on Computing, Communication & Security (ICCCS-2019),
Rome, Italy, Oct., 10th–12th, 2019.

[18] ——, “Towards novel security architectures for network functions vir-
tualization,” in IEEE Conference on Network Function Virtualization

and Software Defined Networks (IEEE NFV-SDN), Dallas, Texas, USA,
Nov., 12th–14th, 2019.

[19] L. Caviglione, M. Gaggero, J.-F. Lalande, W. Mazurczyk, and
M. Urbański, “Seeing the unseen: revealing mobile malware hidden
communications via energy consumption and artificial intelligence,”
IEEE Transactions on Information Forensics and Security, vol. 11, no. 4,
pp. 799–810, 2015.

[20] M. Urbanski, W. Mazurczyk, J.-F. Lalande, and L. Caviglione, “Detect-
ing local covert channels using process activity correlation on android
smartphones,” International Journal of Computer Systems Science and

Engineering, vol. 32, no. 2, pp. 71–80, 2017.
[21] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis of

the communication between colluding applications on modern smart-
phones,” in Proceedings of the 28th Annual Computer Security Appli-

cations Conference, 2012, pp. 51–60.
[22] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side

channels and their use to extract private keys,” in Proceedings of the

2012 ACM conference on Computer and communications security, 2012,
pp. 305–316.

[23] N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “Cryptolock (and
drop it): stopping ransomware attacks on user data,” in 2016 IEEE 36th

International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2016, pp. 303–312.

[24] P. Wang, L. Wu, R. Cunningham, and C. C. Zou, “Honeypot detection
in advanced botnet attacks,” International Journal of Information and

Computer Security, vol. 4, no. 1, pp. 30–51, 2010.
[25] K. Liao, Z. Zhao, A. Doupé, and G.-J. Ahn, “Behind closed doors:

measurement and analysis of cryptolocker ransoms in bitcoin,” in 2016

APWG Symposium on Electronic Crime Research (eCrime). IEEE,
2016, pp. 1–13.

[26] R. Andriatsimandefitra and V. V. T. Tong, “Detection and identification
of android malware based on information flow monitoring,” in 2015

IEEE 2nd International Conference on Cyber Security and Cloud

Computing. IEEE, 2015, pp. 200–203.
[27] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and

L. Cavallaro, “Droidsieve: Fast and accurate classification of obfuscated

android malware,” in Proceedings of the Seventh ACM on Conference

on Data and Application Security and Privacy, 2017, pp. 309–320.
[28] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic in-

strumentation of production systems,” in Proceedings of the annual

conference on USENIX Annual Technical Conference (ATEC ’04), June
2004.

