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Abstract

Context High-resolution animal movement data are

becoming increasingly available, yet having a multi-

tude of empirical trajectories alone does not allow us

to easily predict animal movement. To answer

ecological and evolutionary questions at a population

level, quantitative estimates of a species’ potential to

link patches or populations are of importance.

Objectives We introduce an approach that combines

movement-informed simulated trajectories with an

environment-informed estimate of the trajectories’

plausibility to derive connectivity. Using the example

of bar-headed geese we estimated migratory connec-

tivity at a landscape level throughout the annual cycle

in their native range.

Methods We used tracking data of bar-headed geese

to develop a multi-state movement model and to

estimate temporally explicit habitat suitability within

the species’ range. We simulated migratory move-

ments between range fragments, and calculated a

measure we called route viability. The results are
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compared to expectations derived from published

literature.

Results Simulated migrations matched empirical

trajectories in key characteristics such as stopover

duration. The viability of the simulated trajectories

was similar to that of the empirical trajectories. We

found that, overall, the migratory connectivity was

higher within the breeding than in wintering areas,

corroborating previous findings for this species.

Conclusions We show how empirical tracking data

and environmental information can be fused for

meaningful predictions of animal movements through-

out the year and even outside the spatial range of the

available data. Beyond predicting migratory connec-

tivity, our framework will prove useful for modelling

ecological processes facilitated by animal movement,

such as seed dispersal or disease ecology.

Keywords Anser indicus � Bar-headed goose �
Empirical random trajectory generator � Migratory

connectivity � Movement model � Stepping-stone

migration model

Introduction

Animal movements and migrations can provide func-

tional connectivity between areas that are separated in

geographical space by transporting biomass, genes,

and less mobile organisms. This connectivity has

wider ecological implications for the species’ popu-

lation structure, and can also provide the dispersal

opportunities for organisms like flowering plants by

moving pollen and seeds, or pathogens (Altizer et al.

2011; Bauer and Hoye 2014). Identifying connectivity

networks and understanding the contribution of animal

movement to such networks is a prime motive in

ecology and is pivotal to our understanding of spatial

structuring processes.

Establishing whether, how, and when animal

movement provides a functional connection in space,

however, is not easily achieved. Capture-mark-recap-

ture techniques have revealed much about dispersal

capabalities of individual animals, thereby providing a

history of observed connectivity between distant

patches. Estimates such as maximum observed dis-

persal distances can be used to infer connectivity

networks where movement has not been observed, yet

there are limitations to their application (Calabrese

and Fagan 2004), as distance alone can be insufficient

to explain patch connectivity. Estimates of effective

distance between patches that incorporate barriers and

facilitations to animal movement can be used to

improve predictions of connectivity. Algorithms like

least-cost paths (e.g., Ferreras 2001; Graham 2001)

and electrical circuit theory (McRae et al. 2008) can,

in combination with spatially explicit predictors of

landscape resistance to movement, provide environ-

mentally informed estimates of connectivity between

patches (e.g. for population genetics Row et al. 2010).

Often, however, the animal location data used to

inform models used for predicting such resistance

surfaces lack a behavioural context. Consequently,

these resistance surfaces might not be representative

of how animals move through the environment

(Keeley et al. 2017).

More recently, use of remote tracking technology

on wild animals has provided great insights into how,

when, and where animals move (Hussey et al. 2015;

Kays et al. 2015). Such data are not only a rich source

of information about the movement and behaviour of

individuals, but can also reveal actual connectivity

between spatially separated areas in great detail. In

combination with environmental information about

the utilised habitat, movement data can provide

detailed insight into habitat connectivity for the

observed individuals (Almpanidou et al. 2014). Con-

nectivity estimates derived from observed movement,

as for example in fragmented landscapes, have been

shown to outperform predictions derived from resis-

tance surfaces (LaPoint et al. 2013). Yet to estimate

connectivity the use of animal movement data is not

without constraints (Calabrese and Fagan 2004).

While the miniaturisation of tracking technologies

permits scientists to follow ever more individuals of

ever smaller species, the cost and effort associated

with animal tracking limit sample size, as well as the

spatial and temporal extent of the data that can be

collected. Thus, the number of individuals that scien-

tists are realistically able to track will remain minus-

cule compared to even the most conservative estimates

of the numbers of moving animals on this planet. The

goal of an increasing number of studies is to utilise the

knowledge from few, well-studied individuals to

estimate the behaviour at a population level. However,

such generalisations are not straightforward, mainly

because the movement behaviour of individuals and
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the observed variation may not be representative of the

population (e.g., Austin et al. 2004). Individual deci-

sion-making is not only influenced by general species

properties, but also by variation between individuals

and their needs and the surrounding environmental

conditions (Nathan et al. 2008). Any kind of move-

ment behaviour is thus to some extent unique to the

individual, and explicit in time, space, and its envi-

ronmental conditions as well as its ecological context.

The literature published on models developed for

capturing animal movement is extensive, and such

models have been shown to provide useful and

sensible estimates of the behaviour of observed as

well as unobserved individuals (e.g., Morales et al.

2004; Codling et al. 2008; Michelot et al. 2017; Péron

et al. 2017). Providing sensible hypotheses of the

routes that animals take might require the contextu-

alisation of observed movement, and the understand-

ing of how animals utilise environmental features for

route decision-making. Consequently, movement

models that incorporate resource-selection functions

(step-selection functions, e.g. Fortin et al. 2005;

Thurfjell et al. 2014) are becoming increasingly

popular. Step-selection functions have been shown

to yield functional estimates of how environmental

features influence an animal’s movement through the

landscape (e.g., Richard and Armstrong 2010), and

have been used to estimate connectivity between

patches (Squires et al. 2013). Such step-selection

functions, representing resource selection during

actual movement, can be used to derive behaviour-

specific predictions for resistance of a landscape to

movement. In combination with least-cost paths or

circuit theory, these context-aware resistance surfaces

provide the means to predict the movement of

individuals through the landscape (e.g., Zeller et al.

2014, 2016).

In many cases, animals use series of different

movement strategies that change in response to the

surrounding environment, or in response to the

different needs an animal has for different behaviour

or life-history stages. Currently, however, even con-

text-aware approaches used for predicting the move-

ment of unstudied individuals often make the

assumption that animals follow a single, constant

decision rule. As shown by Zeller et al. (2016), these

decision rules are considered to be independent of the

supply needs of the individual. We think that realistic

movement simulations should not only take the

environmental context of movement behaviour into

account, but also acknowledge the different movement

strategies expressed by a species (see e.g. Morales

et al. 2004). One example of such a multi-state

movement behaviour with striking differences

between states are the stepping-stone-like migrations

as performed by many migratory bird species that

predominantly use flapping flight for locomotion.

Here, we refer to stepping-stone migrations as per-

formed by large waterbirds like ducks and geese

covering large distances in fast and non-stop flight and

using stopover locations for extended staging periods

to replenish their fat reserves. Context-aware, multi-

state approaches for simulating animal trajectories are

uncommon. An additional difficulty for the simulation

of stepping-stone migratory movements, is that

detailed knowledge about available stopover sites for

staging migrants might be necessary.

Here, we introduce a novel approach that allows for

inferring environmentally informed migratory trajec-

tories from a multi-state discrete movement model.

Using a conditional movement model specifically

designed for generating random trajectories from

template empirical trajectories (Technitis et al.

2016), we developed this approach with stepping-

stone migrations and similar movement strategies in

mind. We extend this movement model to represent

the two major states of stepping-stone migrations, the

non-stop migratory flights and the staging periods,

using a stochastic switch informed by empirical

estimates of typical duration of both behaviours. Our

multi-state movement model can simulate migratory

trajectories that realisticically represent empirically-

collected migratory movements by exclusively sam-

pling from empirical distribution functions. We

develop a measure of route viability that integrates

properties of the simulated trajectory and its environ-

mental context to assess the joint suitability of the

simulated migratory route and timing strategy. For

stepping-stone migrations, we assume that the quality

of stopover sites between the breeding grounds and

wintering areas predominantly determines how prefer-

able a certain route might be (Green et al. 2002; Drent

et al. 2007). While the migration simulation model

and the measure of route viability we introduce here

are tailored for our study system, the approach in

general is flexible and could be applicable to many

other study systems and strategies.
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Specifically, we apply the conditional movement

model on a pronounced long-distance migrant, the bar-

headed goose (Anser indicus, Latham 1790). This

species of waterbird occurs in Central Asia and is well

known for its incredible performance of crossing the

Himalayas during migration. The distribution range of

bar-headed geese is characterised by four distinct

breeding areas which are mirrored by four distinct

wintering areas south of the Himalayas. Previous

tracking studies have revealed that large parts of the

respective populations migrate from their breeding

grounds in Mongolia, northern China and the Tibetan

Plateau over the Himalayas to their wintering grounds

on the Indian subcontinent (e.g., Bishop et al. 1997;

Takekawa et al. 2009; Guo-Gang et al. 2011; Hawkes

et al. 2011; Prosser et al. 2011). But while the crossing

of the Himalayas has been studied in great detail

(Hawkes et al. 2011, 2013; Bishop et al. 2015), less is

known about the connectivity between range frag-

ments both within the wintering and breeding range

(Takekawa et al. 2009). The bar-headed goose thus

provides a suitable study species for our approach. We

establish a model for bar-headed goose migrations

from previously published tracking data, and simulate

migrations of unobserved individuals between all

fragments of the species’ distribution range. We assess

the viability of these trajectories during several times

of year using a segmented habitat suitability model to

derive a dynamic migratory connectivity network. To

assess whether this migratory connectivity network

could serve as a quantitative null hypothesis for bar-

headed goose migration, we test our predictions

against two very simple hypotheses generated from

previously published studies.

Stable isotope analyses suggested that the connec-

tivity within the breeding range of bar-headed geese is

relatively high (Bridge et al. 2015), a notion that has

been supported by tracking data as well (Cui et al.

2010). In the wintering range, however, relatively few

movements have been observed (Kalra et al. 2011).

Based on these findings (Cui et al. 2010; Kalra et al.

2011; Bridge et al. 2015), we expect to find a higher

overall viability of trajectories between the fragments

of the breeding range than within the wintering range.

We further predict that on average, the temporal

variation in viability of simulated migratory routes

within the breeding grounds should be higher than

within the wintering grounds. Overall, we would like

to introduce a new approach for deriving

environmentally informed quantitative null hypothe-

ses for animal movement which can be utilised for

estimating migratory connectivity based on limited

observations (summarised in Fig. 1).

Methods

Tracking data and movement model

Tracking data of bar-headed geese were available to us

from a broader disease and migration ecology study

Fig. 1 General concept for our approach of environmentally

informing simulated stepping-stone migrations: (I) Empirical

tracking data are (IIa) used to derive an informed eRTG to

simulate conditional movement between sites of interest, and

(IIb) combined with environmental correlates to derive predic-

tions of relevant measurements of landscape permeability (here:

suitability of stopover sites). (III) Finally, the simulated

conditional trajectories are evaluated based on characteristics

of the trajectory and permeability using an informed measure of

route viability
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implemented by the Food & Agriculture Organization

of the United Nations (FAO) and U.S. Geological

Survey (USGS). In total, 91 individuals were captured

during the years 2007–2009 in several locations: Lake

Qinghai in China (hereafter termed ‘‘Lake Qinghai’’),

Chilika Lake and Koonthankulum bird sanctuary in

India (hereafter termed ‘‘India’’), and Terkhiin

Tsagaan Lake, Mongolia (hereafter termed ‘‘West

Mongolia’’). All individuals were equipped with

ARGOS-GPS tags which were programmed to record

the animals’ location every 2 h (ARGOS PTT-100;

Microwave Telemetry, Columbia, Maryland, USA).

Eighty of the deployed tags collected and transmitted

data for 241 � 253 ðmean � SDÞ days. In total,

169, 887 fixes could be acquired over the course of

the tracking period (Table 1 and Takekawa et al. 2009;

Hawkes et al. 2011). Individuals that were tracked for

less than a complete year were excluded from the

subsequent analyses, which left a total of 66 individ-

uals (Lake Qinghai: 20, India: 20, West Mongolia: 26).

We pooled data from all capture sites for the analyses.

We used the recently developed the empirical

Random Trajectory Generator (eRTG, Technitis et al.

2016) to simulate the migrations of unobserved

individuals of bar-headed geese. This movement

model is conditional, i.e. simulates the movement

between two end locations with a fixed number of

steps based on a dynamic drift derived from a step-

wise joint probability surface. One main advantage of

the eRTG is that the trajectories it simulates retain the

geometric characteristics of the empirical tracking

data (step length, turning angle, as well as covariance

and auto-correlation of step length and turning angle),

as it relies entirely on empirical distribution functions.

Consequently, if a destination cannot be reached

within the realms of the empirical distributions of e.g.

step lengths and turning angles, the simulation fails

rather than forcing the last step towards the

destination.

We extended this movement model by incorporat-

ing a stochastic switch between the two main states of

bar-headed goose migration, non-stop migratory

flights (‘‘migratory state’’) and movements during

staging periods at stopover locations (‘‘stopover

state’’). We classified the entire tracking data accord-

ing to the individuals’ movement behaviour to identify

these states prior to extracting the empirical distribu-

tions functions for the eRTG. First, we clustered the

locations in the tracking data using an expectation-

maximisation binary clustering algorithm designed for

annotating animal movement data (EMbC, Garriga

et al. 2016). The EMbC divided the trajectories of bar-

headed geese into four behavioural classes (slow speed

& low turning angles, slow speed & high tuning

angles, high speed & low turning angles, and high

speed & high turning angles), which we then re-

classified into two behavioural classes, namely high-

speed movements (combining the two high speed

classes) and low-speed movements (combining the

two low speed classes). Within the high-speed

behavioural cluster, the average speed between loca-

tions was 8:4 � 6:7 m
s

(mean ± SD) whereas the

average speed for the low-speed behavioural cluster

was 0:3 � 1:0 m
s

(mean ± SD). As estimates of speed

and turning angle are highly dependent on the

sampling rate of the data, we removed those parts of

the trajectories that exceeded the average sampling

interval of 2 h. Subsequently, we used the low-speed

locations for the empirical distribution functions for

the stopover state of the two-state eRTG, and the

Table 1 A summary of the catching sites and corresponding sample sizes

Capture site Year of capture Sample size(individuals) First fix Tracking days GPS fixes

Lake Qinghai 2007 13 Mar 25–31 303 ½207; 411� 1; 670 ½682; 2; 565�
2008 10 Mar 30–Apr 4 396 ½260; 845� 2; 211 ½1; 341; 3; 573�

India 2008 17 Dec 10–18 129 ½92; 401� 2; 060 ½1; 578; 2; 714�
2009 7 Jan 27 – Feb 06 134 ½53; 448� 1; 321 ½1; 107; 3; 800�

West Mongolia 2008 19 Jul 13–15 122 ½90; 190� 537 ½366; 1; 312�
2009 14 Jul 05–08 105 ½100; 128� 421 ½330; 473�

The number of tracking days and GPS fixes are listed as a median per individual, with the 25 and 75% quantiles in square brackets.

Eleven out of the total of 91 tags deployed did not transfer any data, and are not included in this table
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locations classified as high-speed for the empirical

distribution functions for the migratory state of the

eRTG (see Figure S2). Finally, we derived the step

lengths and turning angles from each coherent stretch

of data (i.e. only subsequent fixes with a sampling rate

of 2 hours). Following this, we calculated the changes

in step length and turning angle at a lag of one

observation, as well as the covariance between

contemporary observations of step length and turning

angle. We derived the corresponding empirical distri-

bution functions for both movement states and

prepared them for use in the eRTG functions.

Finally, we determined the duration of staging

periods, and the duration and cumulative distance of

individual migratory legs from the tracking data. We

first identified seasonal migration events between

breeding and wintering grounds (and vice versa) in the

empirical trajectories using the behavioural annota-

tion. We then determined migratory legs (sequential

locations classified as migratory state) as well as

stopovers (sequential locations classified as stopover

state, with a duration [ 12h). We used two main

proxies to characterise migratory legs, namely cumu-

lative migratory distance as well as duration, and one

proxy to characterise staging periods, namely stopover

duration. We calculated these proxies for all individ-

uals and migrations, and determined the maximum

observed distance (dmmax) and duration (Tmmax) of a

migratory leg. As we did not distinguish between

extended staging (e.g. during moult, or after unsuc-

cessful breeding attempts) from use of stopover

locations during migration, we calculated the 95%

quantile of the observed stopover durations (Tsmax)

rather than the maximum.

Simulating a bar-headed goose migration

with the two-state eRTG

When simulating a conditional random trajectory

between two arbitrary locations a and z, the two-state

eRTG initially draws from the distribution functions

for the migratory state, producing a fast, directed

trajectory. To determine the time available for moving

from a to z, we assumed the mean empirical flight

speed derived for the migratory state, and calculated

the number of required steps accordingly. While

simulating the trajectory, after each step modelled by

the eRTG, the cumulative distance of the trajectory as

well as the duration since the start of the migratory leg

were calculated. By using cumulative distance and

duration as well as the empirically derived dmmax and

Tmmax, our two-state eRTG was based on a binomial

experiment with two possible outcomes: switching to

the stopover state with a probability of pms, or

resuming migration with a probability of 1 � pms.

We defined pms, the transition probability to switch

from migratory state to stopover state, as

pmsðtÞ ¼
Pt

i¼0ðdmÞ
dmmax

�
Pt

i¼0ðTmÞ
Tmmax

ð1Þ

where dm and Tm represent the distance and duration

between two consecutive locations during a migratory

leg. At step t, the simulation of the migratory

movement can switch to the unconditional stopover

state, corresponding to a correlated random walk, with

a probability of pmsðtÞ. Likewise, the simulation can

switch back from stopover state to migratory state with

the probability psmðtÞ, which we defined as as

psmðtÞ ¼
Pt

i¼0ðTsÞ
Tsmax

� �2

ð2Þ

where Ts represents the duration between two con-

secutive locations during a stopover. This process is

then repeated until the simulation terminates because:

either the trajectory reached its destination, or the step-

wise joint probability surface did not allow for

reaching the destination with the remaining number

of steps (resulting in a dead end or zero probability).

Evaluating the plausibility of simulated migrations

We estimated the plausibility of each simulated

trajectory, representing a unique migratory route,

using a measure we called route viability U aimed to

integrate the ecological context into the movement

simulations. We developed this measure specifically

with the stepping-stone migratory strategy of bar-

headed geese or similar species in mind, and it is

defined by the time spent in migratory mode, the time

spent at stopover sites, and the habitat suitability of the

respective utilised stopover sites. For this specific

measure of route viability, we made two main

assumptions: (1), it is desirable to reach the destina-

tions quickly, i.e. staging at a stopover site comes at

the cost of delaying migration, and (2), the cost

imposed by delaying migration is inversely-propor-

tional to the quality of the stopover site, i.e. the use of
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superior stopover sites can counterbalance the delay.

Our argument for these assumptions is that during

spring migration, the arrival at the breeding grounds

needs to be well-timed with the phenology of their

major food resources (Bauer et al. 2008). Further-

more, the quality of stopover sites has been shown to

be of crucial importance for other species of geese

with similar migratory strategies (Green et al. 2002;

Drent et al. 2007).

Each simulated multi-state trajectory between two

arbitrary locations a and z can be characterised by a

total migration duration sa;z, which consists of the total

flight time sM;a;z and the total staging time at stopover

sites sS;a;z. The total flight time sM;a;z is the sum of the

time spent flying during each migratory leg l, and is

thus sM;a;z ¼
Pn

l¼0 tMðlÞ, with tMðlÞ corresponding to

the time spent flying during migratory leg l. Similarly,

the total staging time sS;a;z consists of the staging times

at all visited stopover sites, corresponding to

sS;a;z ¼
Pn

k¼0 tSðkÞ, where tSðkÞ amounts to the stag-

ing time at stopover site k. For our metric of route

viability, we will consider the time spent staging at

stopover locations sS;a;z as a delay compared to the

time spent in flight. This delay is, however, mediated

by the benefit b an individual gains at the stopover site

from replenishing its fat reserves. We define this

benefit gained by staying at stopover site k, b(k), as

proportional to the time spent at site k, tSðkÞ, and the

habitat suitability of site k, S(k). This habitat suitability

S should range between [0, 1], which allows our

measure of route viability to range between [0, 1] as

well. We further assume the effects of several

sequential stopovers to be cumulative, and thus define

the total benefit of a migratory trajectory between

locations a and z with n stopovers as

Ba;z ¼
Pn

k¼0 SðkÞ � tSðkÞ. Finally, we define the route

viability Ua;z of any trajectory between a and z as:

Ua;z ¼ sM;a;z

sM;a;z þ sS;a;z � Ba;z
¼ sM;a;z

sa;z � Ba;z
ð3Þ

Thus, the viability of a trajectory with no stopovers

and a trajectory with stopovers of the highest possible

quality (SðkÞ ¼ 1) will be equal, and is defined solely

by the time the individual spent in migratory state

(Ua;z ¼ 1). For trajectories with stopovers in less than

optimal sites, however, the viability of trajectories is

relative to both the staging duration and quality of

stopover sites, and should take values of

sM;a;z

sa;z
\Ua;z\1. Using this metric, we assessed simu-

lated trajectories in a way that is biologically mean-

ingful for bar-headed geese. In the next section, we

detail how we calculated the route viability U for each

simulated migration.

A migratory connectivity network for bar-headed

geese

We simulated migrations of bar-headed geese within

the native range of the species which naturally occurs

in Central Asia (68–107�N , 9–52�E). According to

BirdLife International and NatureServe (2013), both

the breeding and wintering range are separated into

four distinct range fragments (see also Figure S1), with

minimum distances between range fragments ranging

from 79 km to 2884 km. For this study, we investi-

gated how well, in terms of an environmentally

informed measure of route viability and the number

of stopovers required to reach a range fragment, these

range fragments can be connected by simulated

migrations of bar-headed geese.

To choose start- and endpoints for the simulated

migrations, we sampled ten random locations from

each of the range fragments indicated in the distribu-

tion data provided by BirdLife International and

NatureServe (2013). We simulated 1000 trajectories

for all pairs of range fragments (100 trajectories per

location pair) and counted the number of successes

(trajectories reach the destination) and failures (tra-

jectories terminate in a dead end). We proceeded to

calculate the viability of simulated routes in the

following way: Initially, we determined the total

duration of the trajectory between locations a and z,

sa;z, the number of stopover sites used, na;z, as well as

the time spent at each stopover site, tSðkÞ, for each of

the total na;z stopovers (corresponding to the number

of steps multiplied with the location interval of 2 h).

We determined the habitat suitability of stopover

locations S(k) using habitat suitability landscapes for

bar-headed geese during five periods of the year (see

Figure S3): winter/early spring (mid-November–Fe-

bruary), mid-spring (mid March–mid April), late

spring/summer (mid April–mid August), early autumn

(mid August–mid September), and late autumn (mid

September–mid November). We identified these peri-

ods using a segmentation by habitat use (van Toor

et al. 2016, for details see Section A in the Electronic
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Supplementary Material (ESM)). The segmentation-

by-habitat-use procedure uses animal location data

and associated environmental information to identify

time periods for which habitat use is consistent.

Habitat suitability models derived for these time

periods should thus reflect differences in habitat use

by bar-headed geese throughout the year. We used

time series of remotely sensed environmental infor-

mation and Random Forest models (Breiman 2001) to

derive habitat suitability models corresponding to

these five time periods, and predicted the correspond-

ing habitat suitability landscapes (Section A in the

ESM). Following the prediction of habitat suitability

landscapes for winter/early spring, mid-spring, late

spring/summer, early autumn, and late autumn, we

annotated all stopover state locations of the simulated

trajectories with the corresponding habitat suitability.

We then calculated the benefit b gained by using a

stopover location k using the mean suitability for each

of the stopover locations, S(k), and the duration spent

at stopover locations, sSðkÞ.
To calculate the route viability Ua;z, we also

required an estimate for duration of migration if a

simulation were exclusively using the migratory state

sM;a;z, without the utilisation of stopover sites. We

used a simple linear model to predict flight time as a

function of geographic distance which we trained on

the empirical data derived from the migratory legs (see

Section B in the ESM for details). By basing the linear

model on the empirical migratory legs rather than

mean flight speed, the estimate for sM retains the

inherent tortuosity of waterbird migrations. For each

simulated trajectory, we then calculated the geo-

graphic distance between its start- and endpoint, and

predicted the expected flight time sM;a;z. Finally, we

calculated route viability Ua;z for all trajectories using

Eq. 3, repeating the process for each of the five

suitability landscapes derived from the segmentation

by habitat use. This resulted in five different values of

Ua;z for every simulated trajectory, corresponding to

winter/early spring, mid-spring, late spring/summer,

early autumn, and late autumn, respectively.

Calculating migratory connectivity as average route

viability

We calculated migratory connectivity between range

fragments as the average route viability Uavg: of all

trajectories connecting two range fragments. We

calculated this average by using non-parametric

bootstrapping on the median route viability Uavg:

(using 1000 replicates), and also computed the corre-

sponding 95% confidence intervals (CI) of the median

route viability Uavg:. We did this for each of the five

time periods represented in the suitability landscapes,

and also computed an overall migratory connectivity

by averaging all five habitat suitability values for each

stopover site prior to calculating U.

We wanted to compare migratory connectivity

within the breeding range and migratory connectivity

in the wintering range to test our first hypothesis

stating that migratory connectivity should be higher

within the breeding range. To do so, we differentiated

between route viability among breeding range frag-

ments (Ubreeding), among the wintering areas

(Uwintering), and between breeding and wintering range

fragments (Umixed). We computed the median and 95%

CIs of route viability with non-parametric bootstrap-

ping with 1000 replicates, using the average habitat

suitability of all five suitability landscapes for all

trajectories within the breeding range, all trajectories

in the wintering range, and all trajectories connecting

breeding range fragments with wintering range

fragments.

To test our second hypothesis, stating that variation

in migratory connectivity throughout the year should

be higher in the breeding range than in the wintering

range, we calculated the standard deviation of route

viability for the five suitability landscapes in the

breeding range and in the wintering range. We did this

by again differentiating trajectories in the wintering

range, trajectories in the breeding range, and trajec-

tories connecting breeding range fragments with

wintering range fragments. We computed route via-

bility U for each of the five suitability landscapes for

all trajectories, and pooled the corresponding values

for Ulate winter=early spring, Umid�spring, Ulate spring=summer,

Uearly autumn, and Ulate autumn for the wintering range,

for the breeding range, and for trajectories connecting

breeding range fragments with wintering range frag-

ments separately. We then used a non-parametric

bootstrapping (1,000 replicates) on the standard devi-

ation over the five time periods, and determined the

corresponding 95% CIs on the standard deviation.
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Calculating route viability for empirical migrations

Following the above described procedure, we anno-

tated the stopover locations of empirical migrations

with the habitat suitability of the corresponding time

period, and calculated the route viability for these

migratory trajectories in the same way as described

above. We then used non-parametric bootstrapping on

the median route viability for all empirical migrations

(Uemp:;total), only spring migrations (Uemp:;spring) and

only autumn migrations (Uemp:;autumn), and computed

95% CIs for the median of Uemp:;total, Uemp:;spring, and

Uemp:;autumn.

Results

Route viability of empirical and simulated

migrations

The simulations resulted in a total of 30,730 simulated

trajectories, of which 8945 trajectories connected

breeding range fragments (simulation success rate:

74:5%), 5393 trajectories connected wintering range

fragments (simulation success rate: 44:9%), and the

remaining 16,392 trajectories connected breeding and

wintering range fragments (simulation success rate:

51:2%; see Figure S4). While all these trajectories

were successful in connecting origin and destination

(i.e. did not result in a dead end), they differed

profoundly in their route viability Usimulated, which

ranged between 0.014 and 0.59. We found that

simulated migrations had a higher route viability for

late spring and summer than for autumn (Fig. 2).

The range of route viability for simulated migra-

tions was comparable to that of the empirical migra-

tions (Uemp:;total: 0.01–0.38). Overall, we found that

route viability of empirical migrations was higher for

spring migrations (Uemp:;spring: [0.0614; 0.1070]; 95%

CIs on the median) than for autumn migrations

(Uemp:;autumn: [0.0270; 0.0514]; 95% CIs on the

median). This was caused both by differences in the

habitat suitability of utilised stopover locations and by

differences in migration duration between spring and

autumn migrations. We found that bar-headed geese

on average stayed longer at stopover locations during

autumn than during spring migrations (spring: 6:8 �
14:2 days, autumn: 11:8 � 12:2 days; mean ± SD).

Migratory connectivity network informed by route

viability

We separated the simulated trajectories into move-

ments within the breeding range, movements within

the wintering range, and movements resembling

seasonal migrations between the breeding and winter-

ing range. Here, we found that viability of trajectories

was highest within the breeding range (95% CIs for

median Ubreeding : ½0:0676; 0:0684�; 95%-quantiles of

median Ubreeding : ½0:1469; 0:1546�), and lowest within

the wintering range (95% CIs for median

Uwintering : ½0:0590; 0:0596�; 95%-quantile of median

Uwintering : ½0:1090; 0:1147�), predicting that move-

ments between range fragments should occur more

often within the breeding than in the wintering areas.

The median route viability for migrations between

breeding and wintering range fragments was interme-

diate (95% CIs for median Umixed : ½0:0618; 0:0622�;
95%-quantile of median Umixed : ½0:1224; 0:1296�).
These patterns are reflected in the simplified network

of average migratory connectivity Uavg: (Fig. 3). We

also identified the single trajectory with the maximum

route viability between range fragments rather than the

median (Figure S5). This network of maximum

migratory connectivity shows that migrations that

connect the breeding and wintering ranges have the

highest route viability. Finally, the number of stopover

locations of movements was proportional to the

geographic distance between range fragments

(Figure S6).

Temporal variability of migratory connectivity

We found that the spatial patterns of migratory

connectivity varied across the five habitat suitability

landscapes representing five periods of consistent

habitat suitability (Fig. 4; see also Figure S3 for details

on the temporal correspondence of the time periods).

For the suitability landscapes derived for winter/early

spring, mid spring, and late spring/summer, the

estimated connectivity predicted that bar-headed

goose migrations are most likely to occur between

the wintering and breeding range, and within the

breeding range. For early autumn, connectivity pat-

terns predicted that movement is most likely between

breeding and wintering areas. For late autumn, we

observed connectivity within the wintering range of
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the species. We calculated the 95% CIs for the overall

migratory connectivity values for each time period

(Fig. 2), which predicted the highest median route

viability for the periods from winter/early spring (mid-

November–February) as well as from late spring/sum-

mer (mid April–mid August). We also compared the

standard deviation of route viability across suitability

landscapes and found the highest variation for the

breeding range (95% CIs for s.d. of Ubreeding:

[0.0124; 0.0133]) and the lowest variation for the

wintering range (95% CIs for s.d. of

Uwintering : ½0:0041; 0:0046�). Again, the trajectories

between breeding and wintering range fragments

showed intermediate values (95% CIs for s.d. of

Umixed : ½0:0084; 0:0089�).

Discussion and conclusions

Using tracking data of bar-headed geese and the

empirical Random Trajectory Generator (eRTG), we

were able to successfully develop a model that

simulates the migratory movements of bar-headed

geese. Our extension of the eRTG with a stochastic

switch between a migratory state and a stopover state

was sufficient to capture the overall migratory strategy

of this species. With this model for bar-headed goose

migrations, we inferred the migrations of unobserved

individuals between all fragments of the species’

distribution range, and used an environmentally-

informed measure of route viability to derive average

estimates of migratory connectivity between range

fragments. We put this simplified predictive network

of migratory connectivity to a simple test using

predictions derived from the literature. Indeed, we

found that the average route viability, as an indicator

of migratory connectivity, was higher within the

species’ breeding range (Ubreeding) than in the winter-

ing areas (Uwintering), confirming the expectations from

the literature (Cui et al. 2010; Kalra et al. 2011;

Bridge et al. 2015). While bar-headed geese are

thought to be philopatric to their breeding grounds

Fig. 2 The route viability U of empirical and simulated

migrations. Here we show U for spring and autumn migrations,

as well as the U for the simulated trajectories across all five

suitability landscapes (Seg. 1: winter/early spring, Seg. 2: mid-

spring, Seg. 3: late spring/summer, Seg. 4: early autumn, Seg. 5:

late autumn). The black bars show the 95% CIs for the

respective medians, and the grey dots and violin plots show the

observed (empirical trajectories) and route viability densities

(simulated trajectories)
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Fig. 3 The median route viability U between range fragments

of bar-headed geese. We summarised U for all pairwise range

fragment trajectories using the median route viability. The

thickness of edges represents the sample size. Blue polygons

show the native breeding area of the species. Green polygons

show the native wintering range. Long edges are curved for sake

of visibility
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(Takekawa et al. 2009), the post-breeding period

seems to be a time of great individual variability and

extensive movements (Cui et al. 2010). This flexibil-

ity in long-distance movements has also been

observed for other Anatidae species (e.g., Gehrold

et al. 2014), and due to the temporary flightlessness

during moult the choice of suitable moulting sites is

critical to many waterfowl species. As the average

route viability within the breeding range and during

the summer months is high, unsuccessful breeders and

individuals in the post-breeding period may not be not

limited by sufficiently suitable stopover locations

when moving between breeding range fragments.

Furthermore, our results confirmed that the temporal

variability of migratory connectivity was higher in the

breeding areas north of the Himalayas than in the

subtropical wintering areas.

Simulating trajectories with multiple movement

states and an element of randomness can be useful to

infer the movements of unobserved individuals. Here,

we simulated migratory trajectories under the assump-

tion that the movements of the tracked individuals are

similar to those of other individuals. While this limits

the informative value of an estimate of migratory

connectivity, through repeated simulations it may be

possible to explore the routes of unobserved individ-

uals according to the movement behaviour observed in

empirical data on the same temporal scale. Indeed,

average route viability corroborated previous studies

on the within-range movements for bar-headed geese

Fig. 4 Temporal dynamics of the route viability U. Here we

show the predicted movements for each of the five suitability

landscapes separately. The visible edges of the network have a

median route viability U that is higher than 75% of the route

viability for the complete network. The respective time periods

associated to these networks is displayed in Figure S3
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even without additional filtering. Consequently, in

combination with relevant environmental and ecolog-

ical information, the simulation of unobserved migra-

tions using a model like our two-state eRTG may

provide a sensible and quantitative null hypothesis for

the migrations of bar-headed geese or species with

similar strategies. While we determined the route

viability using only the habitat suitability of the

stopover locations and measures of migratory dura-

tion, other correlates such as wind support or altitude

profile may easily be incorporated for the migratory

state. Similarly, the transition probabilities that medi-

ate the switch between movement modes may be

extended to include environmental conditions. In

general, our stochastic switch performed reasonably

well in replicating the movement behaviour observed

from recorded tracks. We used simple functions to

determine transition probabilities due to the long fix

interval (2 h) and the amount of missed fixes in the

data. If a larger sample size were available, the

functions we used (see Eqs. 1, 2) could be replaced by

a probability distribution function that more ade-

quately represents the decision-making of bar-headed

geese. Alternatively, algorithms such as state-space

models could be integrated to simulate animal move-

ment with a more complex configuration of movement

states (Morales et al. 2004; Patterson et al. 2008).

With a few modifications specific to the species of

interest, the approach described in this study could be

adapted for other scenarios of animal movement. One

important application for our approach could be to

support capture-mark-recapture data, especially when

tracking data for multiple individuals are hard to

acquire. Simulations from a multi-state movement

model informed by the movements of a few represen-

tative individuals could be used to infer alternative

routes connecting the re-sightings of individually

marked animals. A corresponding relevant measure

of route viability could then be used to explore

alternative strategies from an ecologically informed

perspective. In such a study, it could also be of interest

to use Bayesian approaches to approximate ideal

routes using the environmental context.

Furthermore, our results highlight the importance

of integrating temporal changes in habitat use of

moving animals into measures of landscape connec-

tivity. Zeigler and Fagan (2014) argue that the

ecological function of landscape connectivity through

animal movement is not only determined by where,

but also when the environment provides the conditions

that allow an individual to move from a to z. In our

study, estimates of migratory connectivity were

affected by changes in the predicted habitat suitability

of stopover locations, whereas in other cases, changes

in vegetation density throughout the year or the

temporary freezing of waterbodies can be imagined

to change connectivity between distant sites. Using

time series of environmental information in combina-

tion with an approach that segments a species utilisa-

tion of the environment for moving, as shown here,

could help with the identification of temporal patterns

of landscape connectivity. Accounting for such tem-

poral changes in connectivity could also help to better

understand how for example, diseases can spread

through through a metapopulation (such as white-nose

syndrome, Blehert et al. 2009; Turner et al. 2011, or

Influenza A viruses in birds, Gaidet et al. 2010;

Newman et al. 2012).

Overall, models that incorporate a species’ move-

ment behaviour and its utilisation of the environment

can provide sensible estimates for landscape connec-

tivity. This approach possibly provides the basis for a

wider range of applications, for example the estima-

tion of seed or pathogen dispersal on a population

level. Our approach provides a starting point for

complementing tracking efforts with ecologically

relevant estimates of a species’ potential to migrate

through a landscape and act as a link between patches,

populations, and ecosystems.
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