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ABSTRACT 24 

 25 

 The transient diffusion of cationic and anionic tracers through clay-rocks is usually 26 

modeled with parameters like porosity, tortuosity (and/or constrictivity), sorption coefficients, 27 

and anionic exclusion. Recently, a new pore scale model has been developed by Revil and 28 

Linde (2006). This model is based on a volume-averaging approach of the Nernst-Planck 29 

equation. In this model, the influence of the electrical diffuse layer is accounted for by a 30 

generalized Donnan equilibrium model that is valid for a multicomponent electrolyte. This 31 

new model is able to reproduce a number of observations including the determination of the 32 

composition of the pore water of the Callovo-Oxfordian argillite, the determination of the 33 

osmotic efficiency of bentonite as a function of salinity, the osmotic pressure, and the 34 

streaming potential coupling coefficient of clay-rocks. This pore scale model is used here to 35 

model the transient diffusion of ionic tracers (22Na+, 36Cl-, and 35SO4
2-) through the Callovo-36 

Oxfordian low-porosity argillite. Using experimental data from the literature, we show that all 37 

the parameters required to model the flux of ionic tracers (especially the mean electrical 38 

potential of the pore space and the formation factor) are in agreement with a previous 39 

evaluation of these parameters using totally independent rock properties including the osmotic 40 

pressure and HTO diffusion experiments. This confirms that the pore scale model of Revil 41 

and Linde (2006) is able to model a high number of transport phenomena into a unified 42 

framework. 43 

44 
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1. INTRODUCTION 45 

 The diffusion of ions in charged porous media like clay materials has been studied by 46 

a number of researchers for a variety of geoenvironmental applications including ground 47 

water contamination from clay-lined landfills (Malusis and Shackelford, 2003) and the 48 

spreading of contaminants from canisters containing nuclear wastes (Chatterji, 2004). The 49 

possibility to use clay-rocks as a potential host for the long-term isolation of nuclear wastes 50 

has recently driven new researches in this field. The French Nuclear Waste Agency (ANDRA) 51 

is presently studying the long-term storage of high-level long-lived nuclear wastes in the 52 

Callovo-Oxfordian  (Cox) clay-rock formation in the East portion of the Paris basin (ANDRA, 53 

2005). The Cox clay-rock is composed of clay-minerals (between 20 and 50 % in mass 54 

fraction), silica, and carbonates. Because of the very low intrinsic permeability of this 55 

formation (in the range 10-19 to 10-21 m2, see Escoffier et al., 2000; Gasc-Barbier et al., 2004 ), 56 

diffusion of ions is considered to be the major mechanism of the potential spread of ionic 57 

species in the bentonite and in the clay-rock formation.  58 

 To understand the diffusion of ions in such a complex material, new experiments were 59 

performed recently to evaluate the diffusion and the sorption of radio-isotopic elements 60 

(Melkior et al. 2004, 2005, 2007; Bazer-Bachi et al. 2005, 2007 and references therein). 61 

However, these authors used phenomenological models and empirical parameters to explain 62 

why the diffusion coefficient of some sorbed cationic species (like Na+, K+, or Cs+) are higher 63 

than diffusion coefficient of anions (e.g. chloride). Their approach does not take into account 64 

explicitly the influence of the microstructure and electrochemical properties of the 65 

mineral/water interface on the diffusivity of ions. 66 

 Recently, Appelo and Wersin (2007) used a generalized Donnan equilibrium model to 67 

include the effect of the diffuse layer at the mineral/water interface of clay materials upon the 68 

diffusivity of ionic species. However, their model does not consider the existence of the Stern 69 
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layer where most of the charged counterions are located (Leroy and Revil, 2004; Leroy et al., 70 

2007, 2008). Their macroscopic transport model is also not explicitly connected to the 71 

microscopic phenomena at the mineral/water interface. 72 

 In this paper, we are interested to test the approach developed recently by Revil and 73 

Linde (2006), Revil (2007), and Leroy et al. (2007). Revil and Linde (2006) and Revil (2007) 74 

developed a unifying model of transport properties of water and ions in charged microporous 75 

materials. This model is obtained by upscaling the local constitutive equations (Nernst-Planck 76 

and Navier-Stokes equations) using a volume-averaging operator. Consequently, the 77 

constitutive equations established some simple, and theoretically-based, relationships between 78 

the measurable material properties, the key-microstructural parameters of the porous medium 79 

(formation factor and intrinsic permeability), and to the electrochemical properties of the 80 

double layer coating the clay particles. This model was recently extended to include the effect 81 

of partial saturation upon electrokinetic properties (Linde et al., 2007;Revil et al., 2007) and 82 

the diffusion of ions in a concentration field for partially saturated media (Revil and Jougnot, 83 

2008). Leroy et al. (2007) have also modeled the composition of the pore water of the 84 

Callovo-Oxfordian clay-rock using a extension of this model. 85 

In the present paper, we adapt this modeling approach in order to study the diffusion of 86 

radioactive tracers in a clay-rock. After a rapid review of the classical diffusion models used 87 

in the literature to interpret such type of data, we will present the microscopic description and 88 

underlying assumptions of our tracer diffusion model. This model will be tested against recent 89 

experimental data using a variety of 3 radioactive tracers (22Na+, 36Cl-, 35SO4
2-) on different 90 

samples of the Callovo-Oxfordian clay-rock in the porosity range 0.03-0.15. The model will 91 

show also a consistency between the mean electrical potential existing in the pore space of the 92 

clay-rock and the electrical potential needed to explain the osomotic pressure in the Cox 93 

formation.  94 
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 95 

2. STATE OF THE ART 96 

 97 

 The diffusion of ions through a porous material is classically based on the Fick 98 

constitutive equation. The flux of the species i through a porous material, iJ  (in mol m-2 s-1) is 99 

usually described by the first Fick's law, 100 

iii CD ∇−=J ,      (1) 101 

where iD  is the effective diffusion coefficient in the medium (in m2 s-1) and iC  the 102 

concentration of species i in the porous medium (in mol m-3). The concentrations, usually 103 

expressed in mol L-1, are expressed below in m-3 in the metric system. Several models have 104 

been developed to express iD  in terms of the textural properties of the porous material (see 105 

Bourg et al., 2003, Bourg, 2004 for some phenomenological models and Melkior et al., 2007 106 

for a short review of the literature). It is notoriously known that porosity cannot be used alone 107 

to determine the diffusion coefficient. Additional fitting parameters, such as tortuosity or 108 

constrictivity, have been introduced to account for the fact that only a fraction of the porosity 109 

is used by the migration of ions through the pore space or to account for the tortuous path of 110 

the ions during their migration through the pore space. One of the most popular models to 111 

account for tortuosity was developed by Van Brakel and Heertjes (1974). It yields, 112 

2τ
δφ f

ii DD = ,      (2) 113 

where f
iD  (in m2 s-1) is the self-diffusion coefficient of species i in the bulk pore water, φ  is 114 

the porosity, τ  is the tortuosity of the bulk pore space, and δ is the constrictivity. Further in 115 

this paper, we will propose to distinguish two components in the constrictivity parameter: an 116 
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geometrical constrictivity (δg) for the pore space topography and an electrostatic constrictivity 117 

(δel) for the electrostatic interactions between ions and charged mineral surfaces. 118 

 The continuity equation for the species i, in a porous medium, can be expressed by the 119 

second Fick’s law: 120 

( ) i

S
i

g
i

t
C

t
C

J⋅−∇=
∂

∂
−+

∂
∂ ρφφ 1 ,    (3) 121 

with S
iC  the concentration of ions i that are sorbed onto the mineral surface (in mol kg-1), gρ  122 

the grain density (in kg m-3), and t the time (in s). The second term of Eq. (3) corresponds to a 123 

source / sink term that is associated with the interactions of the solution with the surface of the 124 

minerals. Sorption of solutes in a porous medium can be modeled by simple isotherms (see 125 

Limousin et al., 2007 for a recent review) or models accounting for electrical double or triple 126 

layer theory (Leroy and Revil, 2004; Leroy et al., 2007). Assuming that the ratio between the 127 

sorbed concentration and solution concentration is constant with time, it is customary to 128 

introduce a distribution or partitioning coefficient defined by i
S
i

i
d CCK /=  (in m3 kg-1) (e.g., 129 

Limousin et al., 2007). Using this definition, Eq (3) can be written as follow: 130 

( )[ ] i
ii

dg t
C

K J⋅−∇=
∂

∂
−+ ρφφ 1 .    (4) 131 

Introducing the effective sorption and the first Fick’s law in Eq. (4) yields the classical 132 

diffusion equation in this equation, 133 

( )ii
i C

t
C

∇⋅∇=
∂

∂ η       (5) 134 

where iη , the apparent diffusivity of ion i, is defined by, 135 

( )[ ]i
dg

i
i K

D
ρφφ

η
−+

=
1

.     (6) 136 

Note that in this paper, we use the expression “diffusion coefficient” to describe the material 137 

properties arising in first Fick law (which is the constitutive equation) and the term 138 
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“diffusivity” to describe the material properties arising in the diffusion equation obtained by 139 

combining the first and second Fick’s law. If sorption can be neglected for a given tracer, the 140 

diffusivity of this tracer is equal to the ratio between the effective diffusion coefficient and the 141 

porosity φη ii D=  (Revil and Leroy, 2004; Revil et al., 2005). 142 

 The previous model is however too simplistic. It does not account for the 143 

concentrations of the ionic species in the micropores because of the existence of the electrical 144 

diffuse layer. To account for this effect, Muurinen et al. (1988) proposed the introduction of 145 

an effective porosity effφ  in the mass conservation equation. This yields: 146 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∇⋅∇=

∂
∂

i

f
iieffi

ieff C
D

t
C

2τ

φ
φ .    (7) 147 

For anions, this effective porosity can also be modeled by using a negative value of the 148 

distribution coefficient. This very popular approach is however phenomenological in nature 149 

and effφ  is a fitting parameter that takes different values for different ions. 150 

 Bourg (2004) proposed a diffusion model in bentonite. This model divides the medium 151 

in three parallel pore networks: a macroporous one and two microporous (a two-layer and a 152 

three-layer water molecule in clay’s interlayer). Each pore diffusion is described with a 153 

tortuosity τ (purely geometrical) and a constrictivity δ (which take into account pore section 154 

variability, steric effect, viscosity effect). He considered the same tortuosity for the three 155 

networks. The total diffusion flux is the sum of the fluxes for each pore network.  156 

 Other authors consider the division of the connected porosity into compartments: one 157 

for the sorbed species and the bulk water. According to Kim et al. (1993) and Eriksen at al. 158 

(1999), these two compartments contain mobile charges. Therefore two diffusion coefficients 159 

have to be considered: the bulk diffusion coefficient iD  and the surface diffusion coefficient 160 
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S
iD  (in m2 s-1). Introducing this surface diffusion coefficient in the constitutive equation 161 

yields, 162 

( )[ ] i
S
i

i
dgii CDKD ∇−+−= ρφ1J .    (8) 163 

 164 
This model was used by Muurinen (1994) to model the diffusion of cations in charged porous 165 

media. He found that iD  is generally stronger than S
iD  by at least one order of magnitude. 166 

This result is consistent with the fact that the electromigration mobility of the counterions in 167 

the Stern layer is usually smaller than the mobility of the ions in the bulk pore water by one 168 

order of magnitude (Revil et al., 1998; Revil, 1999). However, there is no reason that surface 169 

diffusion would act in parallel to the bulk diffusion. We know, from electrical conductivity 170 

models, that the electromigration of the ions follows very different paths between the bulk 171 

pore space and the surface of the pores (Bernabé and Revil, 1995). In addition, there is no 172 

clear picture of surface diffusion in the Stern layer. Models for the electromigration of the 173 

counterions in the Stern layer predict no migration of the counterions in this layer at zero 174 

frequency (Leroy et al., 2008). Because of the intrinsic connection between diffusion and 175 

electromigration, this implies that the diffusion of the counterions in the Stern layer is 176 

physically not possible because it is not possible to build surfaces concentration gradients in 177 

the Stern Layer. In addition, the fraction of counterions between the Stern Layer and the 178 

diffuse layer is relatively independent on the salinity of the pore water (see Leroy and Revil, 179 

2004). 180 

 The main problem with the previous approaches is that they do not take in 181 

consideration the influence of the electrical diffuse layer upon the concentrations of the ionic 182 

species in the micropores (see Leroy et al., 2007). Some diffusion models, however, are 183 

partially based on the properties of the electrical double layer. Several authors proposed to 184 

divide the pore space into three compartments (i) the Stern layer with immobile sorbed ions, 185 

(ii) the diffuse layer with mobile ions (but with concentrations determined by solving the 186 
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Poisson-Boltzmann differential equation), and (iii) the bulk water of the pore which contains 187 

free ions. Sato et al. (1995) proposed for example to introduce the contribution of ion located 188 

in the diffuse double layer with an electrostatic constrictivity elδ : 189 

iieli CD ∇−= δJ .     (9) 190 

This electrostatic constrictivity is the ratio between the average concentration of ion in the 191 

diffuse layer )(xCd
i  and the concentration in the bulk water iC  (Sato et al., 1995), 192 

∫=
R d

i
i

el dxxC
RC 0

)(1δ ,    (10) 193 

where R is the mean pore radius, x is the distance normal to the surface of the pores, and 194 

)(xC d
i  is the local concentration of species i determined by solving the Poisson-Boltzmann 195 

equation at the interface solution scale (local scale). Ochs et al. (2001) used however 196 

electrostatic constrictivity as a fitting parameter. We will show in Section 3 that our approach 197 

yields a much better expression to determine the electrostatic constrictivity, which will be 198 

based on an extension of Donnan equilibrium theory. 199 

 Molera and Eriksen (2002) use a partition coefficient f  between the species located in 200 

the diffuse-layer and those located in the Stern layer. This fraction is assumed to have no 201 

dependence with iC  and S
iC . This yields another expression for the constitutive equation, 202 

( )
i

i
dgii CKfD ∇
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −+−= ρ
φ

φ11J .   (11) 203 

However, they do not provide a way to estimate this parameter from the underlying electrical 204 

double layer theory.  205 

 In all the models discussed previously, the parameters involved in the generalized 206 

Fick’s law (like the electrostatic constrictivity δ  or the coefficient f) have to be determined 207 

empirically. In the next section, we use a ionic diffusion model based on a volume averaging 208 

approach of the Nernst-Planck equation and related to the electrical double layer theory (Revil 209 
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and Linde, 2006). We start with the work of Leroy et al. (2007) who modeled the pore water 210 

composition of the Callovo-Oxfordian argillite (COx) accounting for the micro- and 211 

macroporosity. We extend their work to the modeling of the diffusion of ionic tracers through 212 

clay-rocks. This model will be used to interpret the experimental results obtained by Melkior 213 

et al. (2007) and Bazer-Bachi et al. (2007) who characterize the diffusion of alkaline cations 214 

and anions through Callovo-Oxfordian argillite core samples. 215 

 216 

3. A NEW MODEL 217 

3.1. Underlying Assumptions 218 

 219 

 In this section,w e develop a model for the Cox clay-rock (see Figure 1). We consider 220 

a charged porous medium fully saturated by a multicomponent electrolyte with Q species. In 221 

contact with water, this surface of the solid phase of the clay particles is assumed to carry a 222 

net electrical charge density because of the complexation of the surface sites with the 223 

elements of the pore water and isomorphic substitution in the crystalline framework. This 224 

surface charge density is responsible for the formation of an electrical triple layer (Figure 2) 225 

that includes the Stern layer and the diffuse layer (Hunter, 1981). 226 

 The electroneutrality of a representative elementary volume of the rock is written as: 227 

0=+ S
f

V Q
V
SQ ,     (12) 228 

where VQ  is the total charge of the diffuse layer per unit pore volume of the connected 229 

porosity, βQQQS += 0  is the total surface charge density (in C m-2) on the surface of the clay 230 

particles. This charge density includes the charge density due to the active sites covering its 231 

surface Q0 and the charge density of the Stern Layer Qβ (Figure 2), S (in m2) is the surface 232 

area of the interface separating the solid and the liquid phases in a representative elementary 233 
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volume of the material, and Vf is the pore volume (in m3) of the same representative 234 

elementary volume. The volumetric charge density VQ  corresponds to the net amount of 235 

charge of the diffuse layer per unit pore volume (in C m-3). It is defined by: 236 

( ) VQV QfQ −= 1 ,      (13) 237 

where Qf  is the fraction of charge carried by the counterions located in the Stern layer or, in 238 

other words, the partition coefficient of the countercharge between the Stern and the diffuse 239 

layers, and VQ  represents the total charge density associated with the cation exchange 240 

capacity of the material (Revil et al., 2002)  241 

CEC,1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
φ

φρ gVQ      (14) 242 

where gρ  the solid grain density (in kg m-3) and the CEC is the cation exchange capacity of 243 

the medium (in mol kg-1). Using an electrical triple layer model, Leroy et al. (2007) obtained 244 

fQ = 0.94 ± 0.02 at 25°C for the COx clay-rock. Gonçalvès et al. (2007) obtained 85.0∝Qf  245 

from filtration efficiency experimental data for a compacted bentonite. This means that a large 246 

fraction of the counterions are located in the Stern layer. 247 

 In thermodynamic equilibrium, the Donnan equilibrium model is based on the equality 248 

between the electrochemical potential of the ions in the pore space of the charged porous 249 

material and in a reservoir of ions in contact with the charged porous material. In terms of 250 

concentrations, the concentration of the species i in the pore space of the material, iC , is 251 

related to the concentration of the species I in the reservoir, iC , by (e.g., Revil and Linde, 252 

2006) 253 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Tk
qCC

B

mi

i

i
ii

ϕ
γ
γ exp ,     (15) 254 
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where ( ) ii zeq ±=  represents the charge of the ion i (in C) with zi the valence of the ion and e 255 

the elementary charge (1.6×10-19 C), kB the Boltzmann constant (1.381×10-23 J K-1), T the 256 

absolute temperature in K, iγ  and iγ  are the activity coefficients of ion i in the macropores 257 

and micropores, respectively, the ionic concentration in micropores, and mϕ  is the mean 258 

electrical potential in the pore space of the medium. Leroy et al. (2007) showed that the ration 259 

of the activity coefficient can be neglected ( 1/ ≈ii γγ ).  260 

 The potential mϕ  can be determined from the volumetric charge density VQ  by 261 

solving numerically the following charge balance equation (see Revil and Linde, 2006; Leroy 262 

et al., 2007), 263 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=∑

= Tk
q

CqQ
B

mi
Q

i
iiV

ϕ
exp

1

.    (16) 264 

To perform these computations, we need the macropore water composition proposed for 265 

example by the THERMOAR model (Gaucher et al., 2004) at 25ºC. Following Leroy et al. 266 

(2007), we took CEC = 0.18 mol kg-1, ρg = 2700 kg m-3, T = 298.15 K (25ºC), and 267 

fQ = 0.94 ± 0.02. With these parameters, we will show later that the mean electrical potential 268 

of the pore space of the Cox clay-rock is typically in the range from -20 mV to -40 mV.  269 

From Eqs. (10) and (15) and using 1/ ≈ii γγ , the mean electrical potential can be also 270 

related to the electrostatic constrictivity introduced by Sato et al. (1995) (see section 2): 271 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

Tk
q

C
C

B

mi

i

i
el

ϕδ exp .    (17) 272 

For the COx clay-rock, surface properties are dominated by the reactivity and specific 273 

surface area of smectite. Using the triple layer model, we can determine the distribution 274 

coefficient i
S
i

i
d CCK /=  using the calculated surface site density of sorbed counter-ions in the 275 

Stern layer 0
X iΓ (in sites m-2). The subscript “X” refers to the surface sites resulting from 276 
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isomorphic substitutions into the mineral lattice and situated on the basal planes of the 277 

smectite particles (Leroy et al., 2007). In most of experimental studies, the distribution 278 

coefficient i
dK  is obtained by batch or column experiment for each type of tracer. 279 

The concentration of sorbed species SCi is given by: 280 

spi
S
i SC 0

XΓ= ,       (18) 281 

where Ssp is the specific surface (in m2 kg-1 of mineral). Gaucher et al. (2004) proposed an 282 

average specific surface for the COx: Ssp = 5×104 m2 kg-1. In the case respectively of 283 

monovalent and bivalent counterions, the surface site density of sorbed counterions in the 284 

Stern layer 0
X iΓ is determined by Leroy et al. (2007): 285 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Γ
=Γ

Tk
e

K
a

Bi

i
i

βϕ
exp

0
X0

X ,     (19)  286 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

Γ
=Γ

Tk
e

e
QK

a

B
i

i
i

βϕ2
exp

2 0

20
X0

X ,    (20) 287 

where βϕ  is the electrical potential at the Stern plane and 0
XΓ  the surface site density of the 288 

“X” sites. Leroy et al. (2007) have determined an average of these two parameters for the 289 

COx medium: βϕ  = -95.3 mV, 0
XΓ  = 9.1×1016 sites m-2. The parameter ai is the activity of the 290 

species i in the macropores, Q0 (in C m-2) the surface charge density at the surface of mineral, 291 

and Ki the speciation constants associated with the adsorption/desorption of the counterion i. 292 

This model will be used to compute a priori value for Na
dK  of the 22Na+ tracer in section 5. 293 

 294 

3.2. A Model for the Diffusion of Tracers 295 

 296 

We consider the ionic tracer diffusion through the clay-rock. Revil and Linde (2006) 297 

proposed a multi-ionic diffusion model in which flux of species i is driven by the gradient of 298 
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its electrochemical potential. In the present case, there is no macroscopic electrical field 299 

because of the concentration of the tracer is much smaller than the ionic strength of the pore 300 

water. In appendix A, we show that this model yields an apparent Fick’s law, 301 

iii CD ∇−=J ,      (21) 302 

FCq
TkCD

ii

Bii
i

β= ,     (22) 303 

where Di is the effective diffusion coefficient of the ionic species in the microporous charged 304 

medium, βi is the ionic mobility, and F is the electrical formation factor. Note that Di is the 305 

product of three terms: (i) the self-diffusion of the ionic tracer in the water f
iD , which is 306 

expressed by the Nernst-Einstein relation, 307 

i

Bif
i q

TkD β
= ,      (23) 308 

(ii) the electrical formation factor F which can be related to the porosity by Archie’s law 309 

mF −= φ  (Archie, 1942), where m is called the cementation exponent and with 31 ≤≤ m  for 310 

most of all media (m has been determined equal to 1.95 ± 0.04 in the COx by Revil et al., 311 

2005; and comprises between 2 and 3 by Descostes et al., 2008), and (iii) the ii CC /  ratio, 312 

which is given by Eq. (15).  313 

From Eqs. (15), (22), and (23), we obtain the following relationship between the 314 

effective diffusion coefficient and the diffusivity: 315 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

−+
=

Tk
q

FK
D

B

mi
i
dg

f
i

i
ϕ

ρφφ
η exp1

1 .    (24) 316 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Tk
q

F
D

D
B

mi
f

i
i

ϕ
exp .     (25) 317 

Therefore the diffusivity of an ionic tracer depends only upon three key-parameters: i
dK , F, 318 

and mϕ . The formation factor can be obtained by a variety of methods like the measurement 319 
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of the electrical conductivity of the porous material at different salinities of the brine to 320 

separate the contribution from the brine conductivity from the surface conductivity 321 

contribution (note that F is NOT the ratio of the brine conductivity to the effective 322 

conductivity of the rock as written in a number of papers). The formation factor can also be 323 

obtained by steady-state HTO (tritiated water) diffusion experiments. HTO is considered to be 324 

a non-reactive species with the mineral/water interface. Therefore the model of Revil (1999) 325 

yields HTO
f

HTO DDF =  where f
HTOD is the value of self-diffusion coefficient of HTO in water  326 

and HTOD represents the value of the effective diffusion coefficient of HTO through the 327 

porous material. 328 

 329 

4. NUEMRICAL SIMULATIONS AND SENSITIVITY ANALYSIS 330 

 331 

The previous system of equations was solved by a PDE solver based on the finite-332 

element method (the Earth Science module of COMSOL MultiphysicsTM 3.4). We have 333 

checked the accuracy of the solver by comparing the results with known analytical solutions 334 

(e.g. Crank, 1975). The problem can therefore be solved in 1D, 2D, or 3D accounting for the 335 

heterogeneity in the distribution of the material properties (e.g., the formation factor) or the 336 

physicochemical parameters associated with the clay content and the clay mineralogy.  337 

To keep our numerical test simple in this paper (and to compare our model to 338 

experimental data), we consider the 1D problem of a tracer through-diffusion experiment. The 339 

through diffusion technique is common laboratory method to determine the diffusion 340 

properties of consolidated clay material (e.g., Melkior et al., 2004). A small cylinder of the 341 

medium is placed between two reservoirs filled with water in chemical equilibrium with this 342 

medium. In order to study diffusion properties of a considered ionic species i, a trace 343 

concentration of a radioactive isotope is placed in the upstream reservoir. As the tracer 344 
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concentration is very low, there is no real concentration gradient in the medium and therefore 345 

no electroosmosic flow and no macroscopic electrical field. Tracer concentrations in each 346 

reservoir are managed and kept as constant as possible: trace concentration in the upstream 347 

reservoir and null in the downstream reservoir. In general, diffusion properties of medium are 348 

determined by tracer influx in the downstream reservoir (Melkior, 2000 and Melkior et al., 349 

2004). We use constant boundary conditions: CT = 10-14 mol m-3 (trace level) in the upstream 350 

reservoir and CT = 0 mol m-3 in the downstream reservoir (Figure 3). We note L (in m) the 351 

length of the core sample, which is divided into 120 elements.  352 

We compute the evolution of normalized ionic fluxes JN in the downstream reservoir 353 

as a function of time. The flux of the ionic tracer in the downstream reservoir is normalized by 354 

the tracer concentration in the upstream reservoir and by the length L of the core sample. Thus 355 

the normalized flux JN is expressed in m2 s-1. Time axis will be expressed in days for 356 

convenience (the computations are all performed in SI units). 357 

We discuss now the sensitivity of the model to its parameters described in section 3. 358 

This synthetic case was implemented with the properties of the COx and the pore water 359 

chemistry obtained by Leroy et al. (2007). The porosity φ  = 0.164 yields 95.1−= φF = 34.0. 360 

The density ρg = 2700 kg m-3, the CEC = 0.18 mol kg-1, and the partition coefficient fQ = 0.94 361 

yield mϕ  = - 14.9 mV using Eqs. (13)-(16). If the partition coefficient fQ takes the values 0.92 362 

and 0.96, mϕ  is equal to -18 and -11 mV, respectively. We consider a radioactive metal cation 363 

tracer M+ with a total concentration (tracer and stable isotope) in the medium 364 

+M
C  = 31.5 × 10-3 mol L-1, the mobility +M

β  = 5.19 × 10-8 m2 s-1 V-1 and the following 365 

distribution coefficient 
+M

dK  = 10-3 m3 kg-1. Figure 4 shows the sensitivity of the model to 366 

these four important parameters. 367 



 17

By definition (see section 3), the formation factor F and the electrical mean potential 368 

mϕ  (which depends on fQ) influence the effective diffusion coefficient, while the distribution 369 

coefficient Kd affects only the apparent diffusion coefficient. Figure 4a, 4b, 4c and 4d show 370 

the sensitivity of the model to F, mϕ , fQ, and Kd respectively. The model is very sensitive to 371 

these parameters. Lower is the formation factor F, higher is the diffusion flux. The parameters 372 

mϕ  and fQ are related to each other. For a cation, lower is the mean electrical potential mϕ , 373 

higher is the normalized flux. 374 

 375 

5. COMPARISON WITH EXPERIMENTAL DATA 376 

5.1. Laboratory Experiments 377 

 378 

 The model presented in Section 4 is compared to tracer through-diffusion experiments 379 

in Callovo-Oxfordian clay-rock samples. We consider the following tracers (i) 22Na+ (data 380 

from Melkior et al., 2007), (ii) 36Cl-, and (iii) 35SO4
2- (data from Bazer-Bachi et al., 2007). The 381 

core samples used by these authors have been extracted from different locations in the COx 382 

formation. The properties of the core samples are summarized in Table 1. The samples from 383 

K100 in Bazer-Bachi et al. (2007) corresponds toa end-member of the overall formation in 384 

term of clay content and porosity (see Table 1).  385 

 Through-diffusion experiments were performed in two different core samples for 36Cl- 386 

and 35SO4
2-. This could explain the small differences in porosities and formation factors for 387 

the two experiments. Experiments were run with a synthetic water of a composition as close 388 

as it possible to the chemical equilibrium with the initial medium (see Table 2). Samples were 389 

put in contact with this synthetic water for several weeks to reach equilibrium. Diffusion 390 

results are presented as normalized ionic out-flux JN measured in the downstream reservoir 391 
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versus time. This allows the comparison between results for different values of the thickness 392 

and the diameter of the samples. 393 

In order to compare the model with the experimental data, we fisrt determine a prior 394 

values for the three key-paraemetrs (the formation factor, the mean electrical potential of the 395 

pore space, and the sorption coefffficients). For each sample, HTO diffusion data are used to 396 

determine the a priori value of the formation factor using HTO
f

HTO DDF = . Results are given 397 

in Table 3. Then, from the synthetic porewater composition and the model described in 398 

section 3.1, we determine the a priori, value of the mean electrical potential mϕ  (see Eqs 13 to 399 

16). They are given in Table 3 using the value fQ = 0.94 discussed above. We use the 400 

distribution coefficients i
dK  given by Melkior et al. (2007) and Bazer-Bachi et al. (2007) for 401 

each sample. These distribution coefficients have been determined by batch test or column 402 

test experiments. The a prior values of the distribution coefficient of cations (counterions) can 403 

also be obtained from Eq. (18) to (20). Therefore, we will compare this result for 22Na+ in the 404 

sample HTM102 (-464 m deep), to the Kd value obtained by batch experiment from Melkior 405 

et al. (2007). 406 

For each data set, we fit the data with the Simplex algorithm (Caceci and Cacheris, 407 

1984) to obtain the a posterior values of the key-parameters F, mϕ , and i
dK . The forward 408 

problem solved by COMSOL MultiphysicsTM 3.4 is coupled to an optimization routine 409 

written in MatLab® routine (Figure 5). Our algorithm looks for the minimum of the cost 410 

function G, 411 

RG
N

i
i
Model

i
Model

i
Exp 32Min 
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−
≡∑
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where N is the number of the experimental data i, and R a regularization term (see Tikhonov, 414 

1963). The superscripts “opt” and “ap” mean optimized and a priori parameters, respectively. 415 

Figure 6 shows that the cost function G has an unique minimum. 416 

Figure 7 presents fitted formation factors of the investigated samples versus the 417 

porosity. We have also plotted F from bibliographic data on the Callovo-Oxfordian and 418 

Archie’s law mF −= φ  (for m = 1.95 and m = 3) on this figure to show the consistency of the 419 

fitted values. We notice that m = 3 correspond to the proposed value of Mendelson and Cohen 420 

(1982) for long smectite minerals, like montmorillonite. Note that these formation factors 421 

results also from different evaluations: Revil et al. (2005) obtained their formation factors 422 

(Figure 7a) from electrical conductivity measurement at different salinities while the values 423 

proposed by Descostes et al. (2008) are based on HTO diffusion data (Figure 7b). 424 

Figure 8 shows the fitted mean electrical potential versus porosity compared to the 425 

model of Revil and Linde (2006) described in Eqs. (13)–(16), using the porewater chemistry 426 

given by the bibliography (Table 2). 427 

The distribution coefficient Na
dK  studied by Melkior et al. (2007) can be calculated 428 

following our approach by Eq. (18)–(20) and use as an a priori parameter. This computation 429 

use COx parameters: βϕ  = - 95.3×10-3 V, 0
XΓ  = 9.1×1016 sites m-2 (from Leroy et al., 2007), 430 

and Ssp = 5×104 m2 kg-1 (from Gaucher et al., 2004). Leroy at al. (2007) have also determine 431 

KNa = 0.80 ± 0.05, which is consistent with the value proposed by Avena and De Pauli (1998) 432 

(KNa = 0.77). Using the pore water composition proposed by Melkior et al. (2007) 433 

( +Na
C  = 3.44×10-3 mol L-1), Eq. (19) yields the surface site density of counterions in the Stern 434 

layer equal to 0
X NaΓ  = 1.72×1017 sites m-2. 435 

 436 

5.1.1. Diffusion of  22Na+  437 



 20

 438 

We ran an optimization for the 22Na+ tracer diffusion data for sample HTM102 (464 m 439 

deep) (Melkior et al., 2007). The value of the distribution coefficient they found by a batch 440 

experiment is equal to 0.41×10-3 m3 kg-1. And using the TLM model of Leroy et al. (2007), 441 

we determine an a priori value of 
+Na

dK = 0.414×10-3 m3 kg-1 which corresponds to an 442 

excellent agreement between the TLM model and the experimental value by a batch 443 

experiment. A priori values for the formation factor and the mean electrical potential are 444 

F = 89.6 and φm = -23.2 mV, respectively. 445 

The fitted normalized flux curve and experimental data are presented in Figure 9. The 446 

best fit yields the following a posteriori values: F = 82.6, mϕ  = -23.5 mV, and Kd = 0.704×10-447 

3 m3 kg-1. The correlation coefficient between the fitted model and experimental data is very 448 

good (R2 = 97.4 %). The fitted and the computed formation factor F are very close 449 

(RE = 7.9 %). The mean electrical potential fitted corresponds pretty well to the computed one 450 

(RE = 2.6 %). But the distribution coefficient presents a difference but is still acceptable 451 

(RE = 41.8 %). The differences seen between fitted and computed parameters can easily be 452 

explained by both the uncertainties on the experimental data, the porosity, and the value of F 453 

resulting from HTO diffusion data. 454 

 455 

5.1.2. Diffusion of  36Cl-  456 

 457 

We ran the simulation for 36Cl- tracer diffusion in the EST205 K100. Figure 10 shows 458 

the confrontation between the fitted normalized diffusion flux following our model and 459 

experimental data from Bazer-Bachi et al (2007). The chloride 36Cl- is a non-sorbed tracer, so 460 

we consider Kd = 0 m3 kg-1. The other a priori value are F = 772.3 and mϕ  = -32.1 mV. 461 
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The minimization of the cost function G yields the following a posterior values of the 462 

model parameters: F = 772.3 and mϕ  = -47.0 mV (R2 = 75.5 %). Computed and fitted 463 

formation factor F are equal but the a posteriori value of mean electrical potential mϕ  presents 464 

a slight difference with the a priori value (RE = 46.9 %). 465 

 466 

5.1.3. Diffusion of 35SO4
2- 467 

 468 

We have also simulated the 35SO4
2- diffusion data through a clay-rock sample from the 469 

EST205 K100 core (Bazer-Bachi et al., 2007). As SO4
2- can be sorbed onto the mineral 470 

surface (Bazer-Bachi et al., 2007; Descostes et al., 2008), Bazer-Bachi et al. (2007) have 471 

performed a column test to determine the value of this parameter. They found Kd = 1.80×10-5 472 

m3 kg-1. The a priori values of formation factor and mean electrical potential are F = 717.1 473 

and mϕ  = -29.1 mV, respectively. 474 

The minimization of the cost function G yields the following a posteriori values: 475 

F =718.3, mϕ  = -29.2 mV, and Kd = 1.60×10-5 m3 kg-1 (R2 = 46.9 %) (Figure 11). The strong 476 

dispersion of the experimental data yields a low R2 fit value. However, the fitted and 477 

computed formation factors F are very close to each other (RE = 0.2 %). The same applies for 478 

the mean electrical potential (RE = 0.3 %). The fitted Kd is also pretty close from the value 479 

resulting from the column experiment (RE = 12.5 %). 480 

 481 

5.2. Field Data 482 

 483 

In a recent study, Descostes et al. (2008) determined the diffusion coefficients of 484 

several anions (Cl-, I-, SO4
2-, and SeO3

-) in a set of the Callovo-Oxfordian clay-rock samples 485 

formation and in the Oxfordian limestones which is formation lying just above the Cox 486 
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formation in the Paris Basin. From the top of the Oxfordian formation to 399 m deep, the 487 

formation is composed by several calcareous facies (called C3b, L1a, L1b, L2a, L2b, L2c) 488 

with 80 to 95 % of carbonates (ANDRA, 2005). Then, between 399 and 417 m deep, the 489 

Oxfordian present important vertical mineralogy variations (facies C3a). The carbonate 490 

fraction decreases roughly from 80 % (399 m deep) to less than 40 % (417 m deep) while the 491 

clay fraction increase from 15 % to 45 % (illite, mica and interstratified illite/smectite). The 492 

rest contains principally by quartz. The upper part the COx formation (facies C2d, 417-437 m 493 

deep) presents important spatial variations of mineralogy in the same oreder of magnitude 494 

than C3a. Then below 437 m deep, the COx become more homogeneous with 40 to 50 % of 495 

clay minerals, 20-35 % of carbonates and 35-25 % of quartz (facies C2b1, C2b2, and C2c) 496 

(ANDRA, 2005). 497 

The measurements of the diffusion coefficients were performed with the through-498 

diffusion technique using a collection of core samples at depths from 166 m to 477 m. For 499 

each sample where anionic diffusion was made, except for SeO3
-, the HTO diffusion 500 

coefficient was also measured. We use first the HTO diffusion coefficients to determine the 501 

values of the formation factor HTO
f

HTO DDF =  (see Figure 7b). Then, using Eq. (23), we 502 

determine the mean electrical potential φm from F and Di: 503 

⎟⎟
⎠

⎞
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⎝

⎛
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i

i
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m D
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q

Tk logϕ .     (28) 504 

 Figure 12 shows the values of F and φm as a function of depth. The calculated 505 

formation factor in the upper part of the Oxfordian limestone formation is quite low (from 177 506 

to 360 m deep), then it becomes more important and reach 103 between 400 and 425 m just 507 

above the Callovo-Oxfordian argillites. The C3a layer has been particularly studied by 508 

Descostes et al. (2008) with six samples between 399 and 417 m deep. In the middle of the 509 

COx formation, F is comprised between 40 and 140, which is consistent with the electrical 510 
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conductivity measurements presented by Revil et al. (2005) and performed at different 511 

salinities with NaCl brines. 512 

 The values of φm are very low in the Oxfordian limestone formation. In this formation, 513 

we have, 514 

FDD f
ii

m

1lim
0

=
→ϕ

,      (29) 515 

which means that the electrostatic constrictivity δel is equal to one. The C3a layer (399 to 516 

417 m deep) presents more important values of the mean potential in the microporosity φm. 517 

The values of φm are in the range between -40 mV to -20 mV.  518 

 In the COx formation, the calculated mean electrical potential is comprised between -519 

56 mV and -23 mV. Considering the experimental uncertainties and the local variation of 520 

parameters (φ, CEC) between two samples, the computed φm are quite consistent with the 521 

average of computed electrical potential: -40.7 mV in the COx . This electrical potential value 522 

appears to be stronger than the model predictions by Eqs. (13)-(16). 523 

 Our tracer diffusion model is directly related to the generalised transport model in 524 

microporous media described by Revil and Linde (2006). That implies that parameters like the 525 

electrical factor F and the mean electrical potential in the diffuse layer φm, can be applied to 526 

determine some other rock properties. The osmotic pressure in a medium is one of them. 527 

Therefore, in order to test further the range of computed φm values, we have decided to 528 

compute the value of the osmotic pressure in the COx from the diffusion test data. Revil and 529 

Linde (2006) proposed the following relationship between the mean electrical potential φm 530 

and the osmotic pressures πm in a microporous medium: 531 
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Considering the pore water presented in Descostes et al. (2008), it becomes possible to 533 

determine πm in the COx at several depth from the previously determined φm by Eq. (28) and 534 
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to show them on Figure 13. The predicted values can be compared to the measured fluid 535 

overpressure (above the hydrostatic level) in the Callovo-Oxfordian argillites layer (see 536 

Gueutin et al., 2007). The measured excess hydraulic heads are in the range 20–60 m (0.2 to 537 

0.6 MPa). Comparison between measured overpressure and computed osmotic pressure πm in 538 

the medium are displayed on Figure 13. The computed φm from Cl- and SO4
2- diffusion tests 539 

(Descostes et al., 2008) are in a fairly good agreement with the measured overpressures. This 540 

result will be explored further in a future work but it shows the model presented by Revil et 541 

Linde (2006) can explain very different material properties inside a unified framework. 542 

 543 

6. CONCLUSION 544 

 545 

We have used a model based on a volume-average of the Nernst-Planck equation to 546 

model the diffusion of ionic tracers (22Na+, 36Cl-, 35SO4
2-) through the Callovo-Oxfordian clay-547 

rock. The model developed by Revil and Linde (2006) is used to compute the diffusion of 548 

tracers in these materials using a generalized Donnan equilibrium model and the electrical 549 

formation factor. This model is able to explain tracer diffusion experiments performed by 550 

different authors in the COx formation and to determine the profile of these parameters in the 551 

formations. In addition, the mean electrical potential allows the determination of the osmotic 552 

pressure in the medium. The next step will be to develop this model to unsaturated conditions 553 

and to connect this diffusion model to geophysical measurements of complex resistivity such 554 

as modeled recently by Leroy et al. (2008).  555 
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 563 

Appendix A 564 

 In this Appendix, we estimate the influence of the activity coefficient upon the 565 

diffusion of the tracers through a clay-rock. From Revil and Linde (2006), the constitutive 566 

equation of the diffusion flux of a single ion is writen as: 567 

i
i

i
i Fq

μσ
∇−= 2J      (A1) 568 

with F, the formation factor, ( ) ii zeq ±= , the charge of species i and zi its valence (e = 1.6×10-569 

19 C is the elementary charge), and iσ = iii qCβ  the contribution of species i to the overall 570 

electrical conductivity of the pore water defined from βi the ionic mobility and iC  the 571 

concentration of species i in the pore space. The chemical potential μi is related to the ionic 572 

activity ai by iBi aTk ln=μ . This yields, 573 

i
i

iiB
i a

Fq
CTk ln∇−= βJ .    (A2) 574 

The Fick law defines the ionic flux as a function of the concentration gradient. The 575 

relationship between the activity and the concentration is iii Ca γ=  where γi is the activity 576 

coefficient. This yields, 577 
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From (A1) to (A3), we obtain, 579 
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( ) i
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where ε is a correction term. For a ionic strength I lower than 0.5 mol L-1, γi can be computed 582 

by the Davies equation: 583 
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This yields, 585 
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From the definition of the ionic strength, 588 
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The correction parameter becomes: 591 
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The correction term (1+ε) in Eq. (A5) is always negligible ε << 1 when the ionic strength is 593 

close to 0.1 mol L-1 and bigger. Neglecting the term ε, Eq. (A3) yields an apparent Fick’s law, 594 
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Table 1. Physical and chemical characteristics of the through-diffusion samples 732 

 HTM102 (-464m) EST205 K100 

Porosity, φ  [-] 0.15  0.030 / 0.037 a

Grain density, ρg [kg m-3] 2670  2700 b

Cation exchange capacity 

CEC [meq g-1] 
0.18 ± 0.04 c 0.111 ± 0.03 d 

Temperature, T [K] 296.15 (23ºC) 294.15 (21ºC) 

Depth [m] 464 424 

Lithofacies C2b2 C2d 

(a) HTO apparent porosity for tracer 36Cl- / 35SO4
2- disk respectively 733 

(b) Leroy et al. (2007) 734 

(c) Gaucher et al. (2004), Leroy et al. (2007) 735 

(d) ANDRA (2005) 736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

745 
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Table 2. Ionic compositions of the synthetic ground water 746 

 Concentration [mol L-1] 

 Melkior et al. (2007) Bazer-Bachi et al. (2007) a

Na+ 

K+ 

Ca2+ 

Mg2+ 

Cl- 

SO4
2- 

HCO3- 

I 
(b)

 

pH 

3.44×10-2

1.34×10-4 

2.87×10-3 

5.26×10-3 

5.00×10-2 

7.00×10-5 

6.20×10-4 

5.70×10-2 

8.0 

4.17×10-2

5.40×10-3 

9.74×10-3 

7.68×10-3 

7.19×10-2 

4.40×10-3 

1.44×10-3 

1.03×10-1 

7.2 

(a) from Jacquot (2002) 747 

(b) Ionic strength 748 

 749 

Table 3. Computed a priori parameters for tracer diffusion simulation 750 

 Tracer 
Porosity, 

φ  [-] 

Formation 

factor, 

F [-] 

Electrical mean 

potential, mϕ  [V] 

Distribution 

coefficient, Kd 

[m3 kg-1] 

HTM102 (-464m) 22Na+ 0.150 89.6 -23.2×10-3 0.41×10-3 a

EST205 K100 
36Cl- 0.030 b 772.3 -32.1×10-3 0 

35SO4
2- 0.037 b 717.1 -29.1×10-3 0.018×10-3 c

 (a) Measured by batch experiment by Melkior et al. (2007) 751 

(b) Apparent porosity from HTO diffusion 752 

(c) Measured by column experiment by Bazer-Bachi et al. (2007) 753 

754 
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Figure 1. Picture of a COx sample by scanning electron microscopy (credit: J.C. Robinet). 755 

The silica and carbonate grains are embedded into a clay matrix. 756 

 757 

 758 

 759 

760 
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Figure 2. A charged porous material: the Callovo-Oxfordian clay-rock. (a) Sketch of the COx 761 

at a micro scale. This medium comprises a macroporosity space around grains (e.g. carbonates 762 

and quartz) isolated by microporosity induced by clay minerals. (b) Sketch of the electrical 763 

triple layer extending from the surface of the clay minerals to the center of the pore. M+ 764 

represents metal cations and A- the anions.  765 

 766 
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 768 
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 771 

772 
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Figure 3. Implementation sketch of our model for tracer diffusion simulation. The subscripts i 773 

and T refer for the considered ionic species and the used tracer isotope. 774 

 775 

 776 

 777 

778 
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Figure 4. Model sensitivity of four important parameters on the normalized diffusion flux JN 779 

expressed as a function of time (in days, d): (a.) influence of the formation factor F, (b.) 780 

influence of the mean electrical potential mϕ  in the microporosity (c.) Influence of the 781 

partition coefficient fQ of the countercharge between the Stern and the diffuse layers, and (d.) 782 

Influence of the distribution coefficient Kd. Note that in the steady-state regime, the 783 

normalized flux is independent of the value of Kd. The value of Kd influences the 784 

characteristic time of the transient period but not the steady state value of the flux. 785 

 786 

 787 

 788 

789 
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Figure 5. Optimization algorithm for model parameters determination from experimental 790 

normalized flux. The COMSOL multiphysicsTM program provides the normalized diffusion 791 

flux data and the Simplex algorithm minimize a cost function G to fit of these data, and then 792 

determine the best value of the formation factor, the mean electrical potential in the 793 

microporosity, and the partition coefficient for sorption. 794 

 795 

 796 

 797 

798 
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Figure 6. Shape of the logarithm of the cost function with a regularization term for the 799 

optimization of the 22Na+ diffusion experiment (HTM102 -464 m). The cost function G has a 800 

unique minimum corresponding to the position of the filled circle. 801 
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805 
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Figure 7. Formation factor versus porosity in the COx argillite. The formation factor data 806 

have been obtained: (a) by electrical measurement for Revil et al. (2005), (b) by the ratio 807 

HTO
f

HTO DDF =  for Descostes et al. (2008), and by fit for HTM102-464 and EST205-K100 808 

in the present study (a posteriori value). Archie’s law for m = 1.95 and m = 3 have been 809 

proposed by Revil et al. (2005) and Descostes et al. (2008), respectively (Oxf stand for 810 

Oxfordian). 811 

 812 

813 
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Figure 8. Fitted mean electrical potential in the three samples and model’s prediction versus 814 

porosity. The mean electrical potential models are computed from the pore water chemistry 815 

used for the diffusion experiments in Melkior et al. (2007) (solid line), and in Bazer-Bachi et 816 

al. (2007) (dashed line). The data represent the best fit of experimental data of Melkior et al. 817 

(2007) and Bazer-Bachi et al. (2007) are obtained by the algorithm presented in Figure 6 on 818 

the experimental set of data (a posteriori values). 819 
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Figure 9. Simulation of a 22Na+ tracer diffusion in COx (HTM102 -464m deep). 823 
 824 
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Figure 10. Simulation of a 36Cl- tracer diffusion in COx (EST205 K100). 829 
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Figure 11. Simulation of a 35SO4
2- tracer diffusion in COx (EST205 K100). 834 
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Figure 12. Computation of F (a) and φm (b) in the Bure site as a function of the depth from 838 

Descostes et al. (2008) experimental data. Samples have been collected in the well EST-205. 839 

This borehole cross the formation of Oxfordian limestones (160–417 m below ground level) 840 

and the Callovo-Oxfordian argillites (417–550 m). 841 
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Figure 13. Comparison between the osmotic head πm in the Oxfordian Limestones and 846 

Callovo-Oxfordian Argillites and the measurements of the excess pore fluid pressure head 847 

(above hydrostatic).The values of πm have been determined from the values of φm (Figure 13) 848 

and synthetic pore water described in Descostes et al. (2008). The overpressure data (+) (here 849 

expressed in hydraulic head above hydrostatic) come from ANDRA (Gueutin et al., 2007). 850 
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