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Abstract

Background: Due to the high level of cytogenetic heterogeneity in osteosarcoma, personalized treatment is the promising strategy
for the improvement in outcomes. This is currently not possible due to the absence of targeted therapies and reliable predictors for
response to induction chemotherapy.
Objectives: To investigate the predictive value of computational analysis of osteosarcoma magnetic resonance (MR) images.
Methods: Multifractal analysis was performed on MR images of primary osteosarcoma of long tubular bones prior to OsteoSa in-
duction chemotherapy. A total of 900 images derived from 67 good and poor responder patients were classified and compared to
the actual retrospective outcome.
Results: Among the six calculated multifractal features Dqmax exerted the highest predictive value with the prediction accuracy
of 74.3%, sensitivity of 72.4% and specificity of 76.2%. The obtained classification accuracy was validated by a ten V-fold split sample
cross validation. The area under the curve (AUC) value for the best-performing multifractal Dqmax feature was 0.82 (CI95%, 0.70 -
0.91).
Conclusions: These results suggest for the first time that measuring tumor structure by using multifractal geometry can predict an
individual patient response to neoadjuvant cytotoxic therapy. Therefore, it potentially allows precise implementation of alternative
treatment options. This predictive approach made use of digital data that is routinely collected but currently still underexploited.
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1. Background

Primary osteosarcoma is the most common bone sar-
coma in children and young adults, found predominantly
in patients in their second decade of life (1).

In the prechemotherapy era, before 1970’s, osteosar-
coma was a disease with very poor survival rates of less
than 20% over a 5-year period. The survival rates markedly
improved to a 5-year rate of over 80% in the 1970s and early
1980s upon emergence of chemotherapy regimens.

Osteosarcoma is treated with multimodal therapy
comprising a combination of preoperative chemotherapy,
surgical treatment and postoperative chemotherapy. The
degree of tumor necrosis in response to chemotherapy
is the most reliable prognostic factor of disease outcome
(2). The problem with the current clinical treatment of os-

teosarcoma is that the plateau in patient survival attained
in the 1980’s has not since changed (3). Due to the high
level of the cytogenetic heterogeneity of this tumor, both
between patients and within the tumors themselves, the
major conceivable strategy for improvement in outcomes
is based on the introduction of personalized treatment ap-
proaches in inductive chemotherapy. Although there are
several therapeutic options for osteosarcoma, this is cur-
rently not possible because targeted therapies and reliable
induction chemotherapy response predictors do not exist
(3). This situation has been stimulating research aimed at
predictive marker discovery with the main emphasis on
molecular biomarkers, including proteins (4) and mRNA
(5). However, these emerging prognostic tools are in the
early experimental phase and the prospect of their imple-
mentation is still uncertain.
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Another evolving strategy suitable for improvement of
chemotherapy response prediction is based on a structural
analysis of macroscopic morphology of the tumor. It relies
on computational analysis of medical images, often by use
of fractal geometry which has been developed as a new ge-
ometrical concept with an intent to resolve the shortcom-
ings of traditional geometry in structural analysis of com-
plex and irregular natural objects (6). Methods based on
multifractal spectra have been found useful for analysis of
a wide range of medical images including ultrasound (7),
histopathology (8-10), positron emission tomography (11)
and magnetic resonance (MR) imaging (12). Tumor image
analysis has been explored as a predictive tool in other can-
cer types (13), but never in osteosarcoma.

The aim of this study was to test the hypothesis that
multifractal computational analysis of routinely collected
magnetic resonance images may provide clinical valid-
ity in the prediction of the response of osteosarcoma to
induction chemotherapy. We employed a neoadjuvant
chemotherapy model that is currently accepted as an op-
timal approach for assessment of in vivo chemotherapy
response, since a tumor remains in situ up until the re-
sponse evaluation (14). The specific objective was to iden-
tify the multifractal feature which provides the best predic-
tive value.

2. Methods

The study was approved by the institutional review
board, (Belgrade University, School of Medicine, approval
#29/VI-4) and conforms with The code of ethics of the
world medical association (declaration of Helsinki),
printed in the British medical journal (18 July 1964) and its
7th revision in 2013. For this type of a retrospective study
on archived MR images, formal consent is not required.
This study conforms with the criteria specified by the
Standards for the reporting of diagnostic accuracy studies
(STARD) 2015 guidelines (15).

2.1. Patient Group

Cross-sectional study encompassed a group of pa-
tients suffering from primary osteosarcoma in long tubu-
lar bones, all diagnosed and treated by the national sar-
coma consilium during the five-year period of 2010 - 2014 at
the institute for oncology and radiology. Diagnostic intra-
examination reliability was assessed using the single mea-
sures intraclass correlation coefficient (ICC), as previously
described (16). The intra-examination agreement for re-
gion of interest (ROI) measurements of 900 images was ex-
cellent, with an ICC of 0.93 (0.89 - 0.95, P = 0.02). MRI was
performed for all patients, confirming the presence and ex-
tent of the tumor formation. Patients were consequently

subjected to OsteoSa MAP, a combined methotrexate (M),
doxorubicin (A) and cisplatin (P) neoadjuvant therapeutic
protocol (doxorubicin, cisplatin, and methotrexate). Upon
completion of OsteoSa therapy, the tumor response was
histopatologically evaluated. The prospective power cal-
culation rested on a pilot experiment that included 22 pa-
tients. The parameters for the sample size calculation were
target area under the curve (AUC) of 0.75, null hypothesis
value of 0.50, alpha 0.05, beta 0.20, ratio of sample sizes in
negative/positive groups 0.50. The required numbers were
42 patients with 28 good therapeutic outcomes and 14 poor
therapeutic outcomes as calculated by the sampling for
AUC function, (MedCalc software, Ostend, Belgium). The fi-
nal sample size amounted to 67 patients with 36 good ther-
apeutic outcomes. The actual proportion of patients with
good response was 0.54 and AUC was 0.83.

2.2. Imaging Technique

Tumor tissue was imaged prior to the administration
of chemotherapy in the transverse (TRA), coronal (COR)
and sagittal (SAG) plane in T2W, using the fat suppression
(FS) sequence. Nine hundred images were obtained by the
diagnostic workstation (Siemens Magnetom Avanto Syngo
MR B15, Siemens Healthcare, Erlangen, Germany) and im-
ages exported in size of 1920× 1080 pixels by use of Kodak
Carestream picture archiving and communication system
(PACS) Client Suite version 10.2 software, Kodak, Rochester,
NY. Images were cropped by Fiji/ImageJ software (17) to iso-
late regions of interest (ROIs) according to the borders of
each individual’s tumor formation. The sizes of ROIs re-
flected the actual variation in tumor dimensions (18). Such
a type of image processing is commonly used to obtain the
optimally comparable and relevant image details for both
mono- and multi-fractal analysis (19). Images were trans-
formed from grayscale to binary values of either 0 or 255
before further processing. Scan background setting was
locked to white due to the possibility of background inver-
sion from white to black during binarization process. It
is important to note that the finally processed images for
multifractal analysis contained an isolated structure of the
whole tumor defined by black pixels on a white pixel back-
ground.

2.3. Chemotherapy Response Evaluation

As the study was retrospective, the patient stratifica-
tion into good and poor chemotherapy responder groups
was done according to their actual response. Evaluation of
the achieved chemotherapeutical effect was performed on
the resected tumor material obtained from surgery after
an induction chemotherapy along with the gold standard
in the pathohistological determination of the grade, based
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on Huvos grading systems by the expert pathologist (J. P.
Sopta) with 21 years of experience. Patients with the level of
tumor necrosis exceeding 90% were considered as “good
responders”, while those with less than 90% of necrosis
were considered “poor responders”.

2.4. Image Analysis

The images processed as described above were exam-
ined by multifractal analysis using the FracLac plugin ver-
sion 2015Marb6206 for Fiji/ImageJ software as described
(20). To achieve analytical reproducibility, the range of box
sizes (scale window) was set from 10 pixels to the maximal
of 60% of an image, Q range from -10 to +10 while minimal
density was set at 0.1 and maximal density at 0.98. Multi-
fractal analysis undertakes measurements of the local in-
tensity distribution that scale according to a power law.
The obtained exponents thus represent different fractal
structures with their own fractal dimensions. The main pa-
rameter in multifractal analysis is Holder’s exponent (21),
which depends on local regularity of the observed struc-
ture (21):

(1)α =
logµ (box)

logε

Where µ (box) refers to the proportion of total inten-
sity that is contained in each box as noted in detail else-
where (22), while ε is the scale or box size (21). F(α) is de-
fined as the multifractal spectrum. It indicates the global
regularity of observed structure by providing the distribu-
tion of α. Multifractal analysis thus describes both the lo-
cal and global structure features. High values of the Hölder
exponent α thus indicate high local changes, while high
values of multifractal spectrum f (α) specify the high fre-
quency of specific α values (23). The calculated multifrac-
tal features included αf min, αf max, f(α)min, f(α)max, Dq and
Dqmax.

2.5. Image Classification

A prediction of the response to three cycles of Osteosa
MAP chemotherapy was attempted by classification of MR
images obtained prior to chemotherapy through a deci-
sion tree. Images were classified from their pools in poor-
and good-response folders. The single-tree model with the
Gini splitting algorithm was used to calculate a stratifica-
tion accuracy of each parameter (DTREG predictive mod-
elling software version 10.3.0, Brentwood, TN (24). The tree
size control settings were set to minimum rows in a node:
1; minimum size node to split: 10; maximum tree levels:
10. The tree pruning and validation by three minimum
smooth spikes was done by the ten V-fold split-sample
cross validation. The accuracy of a test was the main perfor-
mance measure, referring to the proportion of true results.

Furthermore, sensitivity was calculated as the proportion
of patients with chemosensitivity who were correctly iden-
tified by the test, while specificity is the proportion of pa-
tients who were correctly identified as chemoresistant.

2.6. Statistical Analysis

Areas under the rate-of-change curves (AUCs) were
used as a quantitative measure of discrimination ef-
ficiency. AUC values were calculated and bootstrap-
corrected by use of the Stata®/MP 13 software (StataCorp,
TX, USA). AUC curves were produced by use of multifractal
feature values obtained on individual images and also by
use of average feature values for all images derived from
each patient.

3. Results

The predictive potential of multifractal analysis was
evaluated by using primary osteosarcoma tumors from the
patient group, who were preoperatively treated with the
OsteoSa MAP therapeutic protocol. The STARD flow dia-
gram indicates the inclusions and exclusions leading to
the final selection of patients and images subjected to mul-
tifractal analysis (Figure 1). Representative images for good
chemotherapy responders are shown in Figures 2A and 2B
and poor chemotherapy responders are demonstrated in
Figures 2C and 2D. For multifractal analysis, greyscale im-
ages (Figures 2A and C) were transformed to binary images
(Figures 2B and D).

The primary tumors are generally the main source of
information for the prediction of their drug resistance and
the risk of distant metastasis occurrence (8). The relation-
ship between measured continuous feature values and a
binary outcome is usually evaluated by the ROC analysis
(8). However, in the present study, the performances of
continuous multifractal predictor values were addition-
ally assessed by the single classification tree pattern recog-
nition model. Such model has an advantage of not mak-
ing assumptions about the data structure, thus reducing
the risk of model misspecification. The calculated accu-
racies of such stratification are presented in Table 1. The
ROC analysis was performed on values of all individual im-
ages (Figure 3A) and also on the average values for images
of the same tumor (Figure 3B). It is obvious from Figure 3
that a fair AUC value was already obtained on the level of
individual images for a Dqmax multifractal feature (-0.65;
CI95% 0.62 - 0.68). At the level of individual patients, the
AUC value has improved to a range between 0.80 and 0.90,
which is generally regarded as excellent (-0.82; CI95% 0.70
- 0.91).

The need for evaluation of the relative predictive power
of different multifractal features derives from the fact that
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Figure 1. Flow diagram demonstrating inclusions and exclusions of patients and
tumor MR images according to the standards of reporting for diagnostic accuracy
studies (STARD).

Table 1. Classification of Good and Poor Chemotherapy Responder MR Images by
Multifractal Analysis

Parameter Performance, %a

Accuracy 74.3

Sensitivity 72.4

Specificity 76.2

Positive Predictive Value 75.3

Negative Predictive Value 73.5

F-Measure 0.78

aTen V-fold split-sample cross validation.

this type of analysis delivers numerous parameters. Based
on the use of each variable as a primary and surrogate
splitter, we have calculated the importance ranking score.
Thereby, a variable that was selected as a primary splitter
earlier in the tree was considered more important. The
variable importance in classification of good and poor
chemotherapy responder groups was as follows:

Dqmax = 100.0
αf max= 32.0
f(α)max= 31.0
f(α)min= 11.5
Dq = 5.1
αf min= 2.9
Dqmax, the maximum fluctuation amplitude of Dq, was

identified here as the most important predictive parame-
ter and its score adjusted to a value of 100. For better com-
parison, all other predictors were corrected proportion-
ately. The indication of Dqmax as the best-performing pre-
dictive multifractal parameter obtained by the classifica-
tion tree was confirmed by the ROC analysis of the multi-
fractal features (not shown), while AUC curves for the best-
performing Dqmax feature are presented in Figure 3.

4. Discussion

Chemoresistance remains the main limit of the clini-
cal effectiveness in osteosarcoma. This is due to the lack
of tools that could reliably predict the most effective treat-
ment consisting initially of either induction chemother-
apy or amputation in larger tumors with narrow surgical
margins (3). The present study thus set out to investigate
the potential value of morphologic evaluation of osteosar-
coma in predicting the response to chemotherapy.

Clinical validity is a criterion for how consistently and
accurately the test performs. It should be noted that there
are no general thresholds that define a test to be clinically
valid and also no possibility of comparison with any pre-
vious similar studies on the validity of MR image analy-
sis in osteosarcoma for prediction of the tumor response
to cytotoxic therapy. A comparable study of MR images
was however performed on breast tumors with established
predictive significance but did not provide any accuracy
data (25). The accuracy of 74% obtained in the current
study together with the good specificity and sensitivity
obtained on individual images (72% sensitivity, 76% speci-
ficity; Table 1) and patients (70% sensitivity and 86% speci-
ficity for Dqmax; Figure 3) were an indication of good pre-
dictive value, comparable to the predictive accuracy of 82%
obtained in our previous study of breast cancer patients
with the similar multifractal image analysis approach (13).
The predictive studies related to osteosarcoma are focused
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Figure 2. Examples of magnetic resonance images; A, image with a good actual response tumor, excised along its borders; B, the binary version; C, image with a poor actual
response tumor excised along its borders; D, the binary version. All images were 1920 x 1080 pixels in size. The dimensions of tumors within images reflect their actual relative
proportions.

on molecular markers, with many candidate predictors in-
cluding RUNX2, CDC5L, MDM2, RECQL4, and CDK4. Their
prognostic significance has been established, but unfortu-
nately, quantitative measures of association such as accu-
racy and AUC have typically not been calculated (5), thus
limiting any direct comparison with the results of the cur-
rent study.

The prognosis is quite favorable for good chemother-
apy responders, while it is poor for non-responders. The re-
sponse of osteosarcoma patients to induction chemother-
apy is therefore critical for disease outcome. Limb salvage
procedures are safe and do not jeopardize the outcome of
the patient, if wide surgical margins are possible. The clin-
ical utility of the predictive test described here is most rel-
evant for patients with borderline surgical margin width
because the prediction of chemotherapy resistance in this
subset could reinforce the decision to substitute the induc-
tion chemotherapy either with an experimental protocol
(clinical trial) or an amputation. This could improve the
disease outcome and survival by means of reducing the
probability of distant metastasis occurrence during the
several months’ course of an induction chemotherapy to
which the tumor is resistant.

The noted predictive power of Dqmax could be explained
by the existence of unknown tumor histomorphological
features that are typical for either responsiveness or unre-
sponsiveness to chemotherapy. These features may arise
from different growth patterns of malignant cells depend-
ing on whether they are chemoresistant or chemosensi-
tive. The previous study considering the prediction of
a chemotherapy response of breast carcinoma based on
multifractal analysis of microscopic histopathology im-
ages identified f(α)max as the best performing prediction
parameter (13), while in prognostic studies f(α)min and
Dqmax were the best performers (8). The observed discrep-
ancy can be explained by different tumor and imaging
types and by differences in chemotherapy.

In conclusion, by using prediction of the chemother-
apy response as a model, we have tested the hypoth-
esis that computational analysis of routinely collected
magnetic resonance images together with the machine-
learning classification techniques, could enhance con-
ventional strategies of individual therapy adjustments.
Thereby, the multifractal analysis of primary osteosarco-
mas prior to chemotherapy was here shown for the first
time to possess sufficient morphometric discriminating
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Figure 3. Area under the curve (AUC) plots for association between Dqmax and the response to chemotherapy. A, AUC diagram for Dqmax obtained on the 900 individual MR
images; B, AUC diagram for Dqmax obtained on MR images averaged for each patient. The AUC values were transformed from below to above 0.5 for their easier comparison. A
negative sign was therefore added to preserve the information of the inverse association between Dqmax and chemotherapy response.

capacity to differentiate between tumor MR images based
on their actual chemoresponsiveness. This is of crucial im-
portance as osteosarcoma patients frequently develop re-
sistance to induction chemotherapy, which is still a major
obstacle to achieving more favorable outcomes. Among
the employed multifractal parameters Dqmax exerted the
best predictive power. The generalizability of the classifica-
tion model was supported by the internal ten V-fold cross
validation, though additional studies in external patient
groups would be needed for further characterization of
the predictive clinical validity of Dqmax. The potential clin-
ical benefit of improvements in chemotherapy prediction
derives from the key impact of the correct choice between
induction chemotherapy and amputation on the life qual-
ity and survival. Usefulness of this methodology is further
potentiated by its cost-effectiveness emerging from rapid
analysis of digital MR images that are routinely collected
but currently still underexploited.
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