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Dedicated to the memory of Elias Kyriakides. 

Abstract―Distribution system state estimation (DSSE) has 

been enabled by the deployment of smart meters and is currently 

the subject of active research, focused mainly in medium voltage 

distribution grids (MVDGs). This paper proposes a modified 

weighted least squares (WLS) DSSE for low voltage distribution 

grids (LVDGs) where the neutral conductor is grounded only at 

the MV-LV substation. DSSE methods developed for MVDGs are 

not applicable in such systems due to the significant voltage drop 

across the neutral conductor. The proposed DSSE includes the 

neutral voltage in the state vector and the measurement functions 

are modified accordingly. To address any convergence issues and 

to enhance the accuracy of the proposed DSSE, virtual 

measurements are introduced for the neutral voltage. The 

effectiveness of the proposed DSSE is illustrated in a real LVDG 

and in the IEEE European low voltage test feeder under different 

operating conditions, smart meter classes and system layouts. In 

addition, a Monte Carlo analysis is performed for highlighting the 

importance of the proposed modifications to the WLS DSSE. 

Among others the analysis indicate that the proposed method 

converged in all trials, despite including the neutral voltage in the 

state vector. 

  
Index Terms―Low voltage distribution grids, monitoring, 

neutral conductor, state estimation, weighted least squares.  

I.  INTRODUCTION 

OW voltage distribution grids are entering a new era in 

which their role in the envisioned cost effective and 

sustainable power system is very important. The increasing 

penetration of distributed energy resources and the impending 

electrification of the transportation sector are transforming 

LVDGs into active and complex systems. During, as well as in 

the aftermath of this transition, several new challenges can arise 

where coordination and control strategies will be required in 

order to maintain the secure and efficient operation of the grid 

[1]. The functionalities of a distribution management system, 

such as alarms in case of detecting thermal constraints or 

voltage limits violations, the detection of fault location, demand 

side management and self-healing actions are all enabled by the 

DSSE. However, there are a number of challenges regarding the 

deployment of DSSE [2]-[3]. One of the main limiting factors 

for its deployment was, until very recently, the scarcity of 

measurement devices in the distribution system. This has been 
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mitigated by the rapid growth of advanced metering 

infrastructure with a massive deployment of smart meters [4]. 

By utilizing these devices, the effective operation of the DSSE 

has been enabled and numerous works have been proposed. 

Due to the different characteristics compared to the 

transmission system, the monitoring methods developed for 

transmission system cannot be applied directly to the DSSE. 

Considering that the most common transformer configuration 

in MV-LV substations is D-Yg, the zero-sequence component 

of the asymmetrical currents introduced by the LVDG loads is 

eliminated at the substation and does not propagate into the 

MVDG. Consequently, the current flow in the neutral 

conductor of MVDGs is negligible, especially if it’s multi-

grounded, and the voltage drop across it can be approximated 

to zero. This allows the use of Kron’s reduction [5]-[6], which 

reduces the size of the impedance matrix of each distribution 

line and the total number of state variables. In order to account 

for these characteristics, a three-phase coupled WLS DSSE is 

proposed in [5] where a three-phase, four-wire, multi-grounded 

system is simplified by using Kron’s reduction. A branch-

current (BC) DSSE is presented in [7] where both non-

synchronized and synchronized measurements are considered. 

The proposed estimator is expressed in both polar and 

rectangular coordinates and can handle both radial and weekly 

meshed grids. In [8], a DSSE is presented which can handle 

voltage drop regulators, tap-changing transformers and a 

number of different type of measurements by introducing new 

equality constraints in the WLS DSSE procedure. The time 

skewness of the smart meter measurements is addressed in [9] 

by proposing a new method to adjust the variance and mean of 

each measurement. This method significantly improves the 

accuracy of the traditional DSSE [5] where the asynchronicity 

of the smart meter measurements is not considered. In [10], a 

two-step multi-area DSSE is presented. In the first step, a BC-

DSSE is executed using local and shared measurements in each 

area. Then during the second step, a modified version of the 

WLS SE is used to refine the voltage profile estimation. The 

performance of a three-phase DSSE is evaluated in [11] under 

different types of knowledge, input data and measurement error 

models. The authors highlight the significance of not only 

having accurate measurements but also a good knowledge of 
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the system (layout and grid parameters). In [12], the DSSE of 

the MVDG is enhanced by exploiting the smart meters in the 

LVDGs. A multilevel DSSE is first used to determine the state 

of the LVDG. The estimated voltage and power flow at the MV-

LV substation are then used as measurements in the MVDG 

DSSE. This method achieves full observability of the MVDG 

by exploiting the smart meters of the end-users without 

requiring additional measurement equipment. A DSSE for a 

four-wire MVDG composed of only grounded-wye loads where 

the neutral conductor is grounded at each system bus through a 

1 Ohm grounding impedance is proposed in [13]. This 

formulation allows to eliminate the state variables 

corresponding to the neutral and zero-injection phase voltages 

which enhances the overall computational performance. 

Most of the aforementioned works regarding the DSSE are 

under the assumption of a multi-grounded neutral conductor. 

While this is a valid assumption for most MVDGs, for LVDGs 

this may not be true. In fact, in Cyprus and in many other 

countries the neutral conductor in a LVDG is only grounded at 

the MV-LV substation. If such a DSSE is used in this kind of 

LVDGs, then a significant error is imposed on the estimation 

results [14]. The main reasons for this are: (1) the inaccurate 

system model due to the Kron’s reduction and (2) the phase-to-

neutral voltage measurements. Since the neutral voltage in these 

LVDGs is not insignificant and can vary considerably across 

the system, each voltage measurement is expressed with a 

different reference. This paper aims to address these issues with 

the following contributions: (1) a modified WLS SE where the 

neutral voltage is included in the state vector and the 

measurement functions are adjusted accordingly, (2) to address 

any potential convergence issues by including the neutral 

voltage in the WLS SE procedure, virtual measurements are 

constructed and (3) two fitness tests are conducted in order to 

verify the distribution of the virtual measurements’ error and a 

mathematical calculation of their uncertainty (weighting 

scheme) is developed so that they are properly incorporated in 

the WLS SE procedure.  

The remainder of this paper is organized as follows. In 

Section II the considered smart meters in the case studies are 

presented. The proposed modifications to the WLS SE are 

presented in Section III. In Section IV, the distribution of the 

virtual measurements is verified, and their uncertainty is 

calculated. The performance evaluation of the proposed and 

traditional WLS SE (𝐶𝑁) is presented in Section V and the paper 

concludes in Section VI. 

II.  SMART METERING INFRASTRUCTURE 

A smart metering system consists of four main elements: the 

smart metering device (smart meter), a data concentrator, a 

communication system and the control center [4]. In the recent 

years, millions of smart meters have been deployed globally 

and by 2022 it is expected that around 1000 million of these 

devices will be installed worldwide. The main reason of their 

commissioning by utility companies is for automatic billing 

purposes and in general for understanding customers’ behavior 

which can aid in improving the system’s operation. However, 

by utilizing the vast amount of new data related to the LVDG 

operation, new applications and functionalities can be enabled 

[15]. For instance, load analysis, load forecasting, load 

management, energy theft detection and monitoring of the 

LVDG are some of the applications that will be enabled by the 

smart meter data. 

 In this paper, a DSSE for a specific type of LVDG is 

proposed which utilizes the existing smart meters of the end-

users (system is fully observable). A typical smart meter can 

provide measurements of the active and reactive power 

consumption as well as phase-to-neutral voltage measurements 

at the point of connection (premises of the consumer). Each 

measurement is classified according to the accuracy class of the 

meter. Assuming directly connected smart meters (no 

instrument transformers between the smart meter and the 

circuit) the overall accuracy of the different smart meter classes 

for the power measurements is presented in Table I as a function 

of the load current and the power factor. In this paper, five 

different smart meter accuracy classes are considered in the 

case studies, as presented in Table II. The measurement error is 

modeled as [11], 

 𝑧𝑚𝑒𝑎𝑠 = 𝑧𝑡𝑟𝑢𝑒 + 𝐹𝑆 ⋅ 𝑁(0, 𝜎𝑃,𝑄,|𝑉|) (1.a) 

where 𝑧𝑡𝑟𝑢𝑒 is the true value of the measured variable, FS is the 

full scale meter reading associated with each type of 

measurement (9.2 kVA for the power measurements and 300 V 

for voltage measurements) and 𝜎𝑃,𝑄,|𝑉| are the standard 

uncertainties for each type of measurement. These uncertainties 

are calculated based on the maximum error of the smart meter 

accuracy class and assuming a 95% confidence interval [16], 

 𝜎𝑃,𝑄,|𝑉| =
𝑒𝑃,𝑄,|𝑉|

1.96
 (1.b) 

where 𝑒𝑃,𝑄,|𝑉| is the measurement device maximum errors 

defined by the accuracy class of the smart meters. 

III.  MODIFIED WLS STATE ESTIMATION 

While various techniques have been developed for the 

monitoring of power systems [3], the WLS SE method is the 

most established and widely used. In this paper, the proposed 

monitoring scheme, in which the neutral voltage is included in 

the state vector, is also based on this technique. Since the choice 

TABLE II 

CONSIDERED SMART METER ACCURACY CLASSES 

Case 
Accuracy Class 

P Q V 

1 0.2s 0.2s ±0.1% 

2 0.5s 0.5 ±0.3% 

3 0.5 1 ±0.5% 

4 1 2 ±1.0% 

5 2 2 ±1.5% 

 

TABLE I 

PERCENTAGE MAXIMUM ERROR LIMITS OF SMART METERS 

Accuracy 

Class 

cos(𝜃) = 0.5 𝑙𝑎𝑔𝑔𝑖𝑛𝑔 cos(𝜃) = 1 

0.1𝐼𝑛 ≤ 𝐼
≤ 0.2𝐼𝑁 

0.2𝐼𝑛 ≤ 𝐼
≤ 𝐼𝑚𝑎𝑥 

0.1𝐼𝑛 ≤ 𝐼
≤ 0.2𝐼𝑁 

0.2𝐼𝑛 ≤ 𝐼
≤ 𝐼𝑚𝑎𝑥 

0.2s ±0.5% ±0.3% ±0.4% ±0.2% 

0.5s ±1.0% ±0.6% ±1.0% ±0.5% 

0.5 ±1.3% ±0.8% ±1.0% ±0.5% 
1 ±1.5% ±1.0% ±1.5% ±1.0% 

2 ±2.5% ±2.0% ±2.5% ±2.0% 
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of the form of the state variables (current or voltage, polar or 

rect.) does not affect significantly the accuracy of the estimated 

results [3], the formulation of the proposed monitoring scheme 

is developed using the voltage magnitude and angle as state 

variables. Without losing generality, a similar approach can be 

followed for any other form of state variables in order to take 

into consideration the voltage of the neutral conductor. 

A.  Weighted Least Squares State Estimation 

For a given set of system measurements, the state variables 

are calculated by minimizing the weighted sum of the 

measurement residual [17], 

 min  ∑
[𝑧𝑖 − ℎ𝑖(𝒙)]

2

𝜎𝑖
2

𝑛

𝑖=1

 (2.a) 

where 𝑧𝑖 is the ith  measurement from the measurement vector 𝒛, 

ℎ𝑖(𝒙) is the measurement function that relates the state 

variables with the ith measurement, 𝒙 is the state vector and 𝜎𝑖 
is the standard deviation of the ith measurement. As it can be 

seen from (2.a), the standard deviation of each measurement is 

used as a weight in order to give higher priority to 

measurements that are more accurate than other measurements. 

Distribution grids are usually radial or slightly meshed, 

which has as a result a significant number of zero injection 

nodes. By exploiting this characteristic, PQ measurements can 

be constructed for these nodes. However, since there is no 

uncertainty behind these measurements, if they are included in 

the measurement vector 𝒛 then effectively all other 

measurements will be ignored and the system will become ill-

conditioned. Instead, the problem is formulated as an 

optimization problem with equality constraints [18]. By 

applying the Lagrange and then the Gauss-Newton method, the 

state vector is obtained by solving the below iterative scheme, 

 [
Δ𝒙
𝝀
] = [

𝑯𝑇(𝒙𝑘)𝑹−1𝑯(𝒙𝑘) −𝑪𝑇(𝒙𝑘)

𝑪(𝒙𝑘) 𝟎
]
−1

[
𝑯(𝒙𝑘)𝑹−1Δ𝒛𝑘

−𝒄(𝒙𝑘)
] (2.b) 

where 𝑘 is the iteration number, Δ𝒙 = 𝒙𝑘 − 𝒙𝑘+1, Δ𝒛 = 𝒛 −

𝒉(𝒙𝑘) and 𝑹 is a diagonal matrix (assuming the measurement 

errors are uncorrelated [19]) containing the measurement 

variances (𝑅 = 𝑑𝑖𝑎𝑔{𝜎1
2, 𝜎2

2, . . . , 𝜎𝑛
2}). The vector 𝒄(𝒙) 

contains the nonlinear functions that relate the zero power 

injection measurements with the state variables, while 𝑪(𝒙) =
𝜕𝒄(𝒙) 𝜕𝒙⁄  and similarly 𝑯(𝒙) = 𝜕𝒉(𝒙) 𝜕𝒙⁄ . This iterative 

process is repeated until the update vector Δ𝒙 satisfies a 

predefined criterion. In this paper, the procedure is stopped 

when the maximum absolute value of the update vector is less 

than 휀 = 10−4 and consequently (2.c) is satisfied, 

 ‖Δ𝒙𝑘‖∞ = 𝑚𝑎𝑥{|Δ𝒙
𝑘|} < 휀 (2.c) 

B.  Proposed Modifications 

1) A four phase system: In the 𝐶𝑁 for four-wire LVDGs, it is 

common to use Kron’s reduction method in order to merge the 

neutral conductor with the phase conductors [5]-[6]. This 

allows to simplify the problem and treat the four-wire 

distribution grid as a three-wire system. However, the use of 

Kron’s reduction method requires the assumption that the 

voltage across the neutral conductor approximates to zero. In 

the case of a four-wire LVDG in which the neutral conductor is 

grounded only at the transformer substation, this assumption is 

not valid, and its use can lead to inaccurate results [5]. As a 

matter of fact, in [14], it was shown that due to the significant 

zero-sequence current that flows through the neutral conductor 

(and consequently the voltage drop across it), the 𝐶𝑁 yields 

inaccurate results. Therefore, in such LVDGs the use of Kron’s 

reduction method should be avoided as the resulting system 

model will not be an accurate representation of the physical 

system. Instead, the full 4x4 impedance matrix (3.a) of each of 

the distribution lines should be used and the system should be 

modeled as a four-phase system. Hence, every four-wire node 

is characterized by eight state variables and every two-wire 

node by four state variables, as given by (3.b)-(3.c). 

 𝑍4𝑥4 = [

𝑧𝑎𝑎 𝑧𝑎𝑏 𝑧𝑎𝑐 𝑧𝑎𝑛
𝑧𝑏𝑎 𝑧𝑏𝑏 𝑧𝑏𝑐 𝑧𝑏𝑛
𝑧𝑐𝑎 𝑧𝑐𝑏 𝑧𝑐𝑐 𝑧𝑐𝑛
𝑧𝑛𝑎 𝑧𝑛𝑏 𝑧𝑛𝑐 𝑧𝑛𝑛

] (3.a) 

 𝑥𝑎𝑏𝑐𝑛 = (𝜃𝑎 , 𝜃𝑏 , 𝜃𝑐 , 𝜃𝑛 , |𝑉𝑎|, |𝑉𝑏|, |𝑉𝑐|, |𝑉𝑛|) (3.b) 

 𝑥𝑝𝑛 = (𝜃𝑝, 𝜃𝑛 , |𝑉𝑝|, |𝑉𝑛|) (3.c) 

2) Measurement functions and Jacobian matrix: In a LVDG, 

the main measuring equipment are smart meters which can 

provide the active-reactive power consumption of the 

consumers as well as voltage magnitude measurements. As 

aforementioned, smart meters provide phase-to-neutral 

measurements and therefore the measurement functions that are 

used in the WLS SE procedure must be adjusted accordingly. 

Firstly, the typical power injection measurements [5]-[6] for a 

three-phase analysis are modified to include the coupling with 

the neutral voltage, 

 𝑃𝑖
𝑝
= |𝑉𝑖

𝑝
|∑∑ |𝑉𝑘

𝑚|(𝐺𝑖𝑘
𝑝𝑚
𝑐𝑜𝑠𝛿𝑖𝑘

𝑝𝑚
+ 𝐵𝑖𝑘

𝑝𝑚
𝑠𝑖𝑛𝛿𝑖𝑘

𝑝𝑚
) 

𝑛

𝑚=𝑎

𝑁

𝑘=1

 (4.a) 

 𝑄𝑖
𝑝
= |𝑉𝑖

𝑝
|∑∑ |𝑉𝑘

𝑚|(𝐺𝑖𝑘
𝑝𝑚
𝑠𝑖𝑛𝛿𝑖𝑘

𝑝𝑚
− 𝐵𝑖𝑘

𝑝𝑚
𝑐𝑜𝑠𝛿𝑖𝑘

𝑝𝑚
)

𝑛

𝑚=𝑎

𝑁

𝑘=1

 (4.b) 

where 𝑃𝑖
𝑝

 and 𝑄𝑖
𝑝

 is the injected active and reactive power 

respectively at node 𝑖 in phase 𝑝, 𝛿𝑖𝑘
𝑝𝑚

= 𝛿𝑖
𝑝
− 𝛿𝑗

𝑚, 𝒀 = 𝑮 + 𝑗𝑩 

is the admittance matrix of the system, 𝑚 = 𝑎, 𝑏, 𝑐, 𝑛 

corresponds to the system’s phases and 𝑁 is the total number of 

nodes in the system. 

Secondly, since the voltage measurements are phase-to-

neutral measurements, they cannot be directly related to the 

corresponding state variables as in the 𝐶𝑁 SE. Instead, each 

phase-to-neutral voltage measurement is now related with four 

state variables as shown below, 

 |𝑉𝑖
𝑝−𝑛

| = ||𝑉𝑖
𝑝
|∡𝜃𝑖

𝑝
− |𝑉𝑖

𝑛|∡𝜃𝑖
𝑛| (5.a) 

 
|𝑉𝑖

𝑝−𝑛
| = [(|𝑉𝑖

𝑝
| cos(𝜃𝑖

𝑝
) − |𝑉𝑖

𝑛| cos(𝜃𝑖
𝑛))

2
+ 

                  (|𝑉𝑖
𝑝
| sin(𝜃𝑖

𝑝
) − |𝑉𝑖

𝑛| sin(𝜃𝑖
𝑛))

2
]
1/2

 
(5.b) 

 |𝑉𝑖
𝑝−𝑛

| = √|𝑉𝑖
𝑝
|
2
+ |𝑉𝑖

𝑛|
2
− 2|𝑉𝑖

𝑝
||𝑉𝑖

𝑛| cos(𝜃𝑖
𝑝
− 𝜃𝑖

𝑛) (5.c) 
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As it can be seen from the above expression, each voltage 

magnitude measurement is now related to the phase and neutral 

voltage magnitude and angle of the corresponding system node. 

Consequently, the relevant elements of the Jacobian matrix 

𝑯(𝒙) are modified accordingly, 

 
𝜕|𝑉𝑖

𝑝−𝑛
|

𝜕|𝑉𝑗
𝑚|

=

{
  
 

  
  
|𝑉𝑗

𝑚| − |𝑉𝑖
𝑛| cos(𝜃𝑗

𝑚 − 𝜃𝑖
𝑛)

ℎ|𝑉|(𝒙)
,    𝑗 = 𝑖,    𝑚 = 𝑝

|𝑉𝑗
𝑚| − |𝑉𝑖

𝑝
| cos(𝜃𝑖

𝑝
− 𝜃𝑗

𝑚)

ℎ|𝑉|(𝒙)
,    𝑗 = 𝑖,    𝑚 = 𝑛

                0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.d) 

 
𝜕|𝑉𝑖

𝑝−𝑛
|

𝜕𝜃𝑗
𝑚 =

{
  
 

  
        

|𝑉𝑗
𝑚||𝑉𝑖

𝑛| sin(𝜃𝑗
𝑚 − 𝜃𝑖

𝑛)

ℎ|𝑉|(𝒙)
,    𝑗 = 𝑖,    𝑚 = 𝑝   

− 
|𝑉𝑖

𝑝
||𝑉𝑗

𝑚| sin(𝜃𝑖
𝑝
− 𝜃𝑗

𝑚)

ℎ|𝑉|(𝒙)
,    𝑗 = 𝑖,    𝑚 = 𝑛

                0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5.e) 

where ℎ|𝑉|(𝒙) corresponds to the measurement function 

described in (5.c). In the 𝐶𝑁 SE, in which the voltage 

measurements can be related directly to the state variables, the 

𝜕|𝑉𝑖
𝑝
| 𝜕|𝑉𝑗

𝑚|⁄  element of the Jacobian matrix 𝑯(𝒙) is equal to 

1 when 𝑗 = 𝑖 and 𝑚 = 𝑝 and equal to zero otherwise, while  

𝜕|𝑉𝑖
𝑝
| 𝜕𝜃𝑗

𝑚⁄  is always equal to zero. 

3) Virtual measurements for the neutral voltage: It is well 

known that the use of the Gauss-Newton method to solve a set 

of nonlinear functions can have convergence issues related with 

the initialization point [20]. Usually, this is not a major problem 

in the 𝐶𝑁 as the actual operating conditions are not very far from 

the initialization point as the system is regulated to operate near 

to its nominal values (usually the initialization point). However, 

by including the neutral voltage, which is normally initialized 

to 0 V, the convergence of the WLS can be deteriorated [13]. In 

such case, the neutral voltage might fluctuate between some 

values far from its initialization value. To improve the 

convergence capabilities when the neutral voltage is also 

considered, virtual measurements are constructed with the use 

of the forward-backward voltage sweep method (FBS) and the 

active-reactive power injection measurements. The term virtual 

measurements is used for differentiating from pseudo-

measurements as a priori information is not required. Rather, 

the available knowledge from the smart meters (power 

measurements) is utilized to gain more information (neutral 

voltage) about the system’s state, during the execution of the 

DSSE. This new information is then used as measurements in 

the proposed DSSE scheme with the purpose of guiding the 

estimation of the neutral voltage.  

The general scheme of the FBS method is illustrated in Fig. 

1. This method is an iterative procedure, in which in every 

iteration the load and branch currents are calculated using the 

PQ information of the loads, the grid topology and an initial 

guess (flat start) for the load voltages. In [21] the effect of 

different neutral conductor configurations on the 

methodology’s convergence are examined. It is concluded that 

for certain configurations, multiple solutions might exist and 

the convergence of the FBS depends on the initialization of the 

neutral voltage, while in some cases FBS fail to converge. 

However, for radial systems with the neutral grounded at the 

loads, FBS converges to the same solution, regardless of the 

initialization of the neutral voltage. This observation is 

extended in [22] for radial systems with the neutral grounded 

only at the transformer substation. Therefore, despite that the 

results of the FBS are characterized by a considerable 

uncertainty [12], they are still a good indication for the neutral 

voltage and can be used as virtual measurements in the 

proposed WLS SE. The FBS method used in this paper to 

construct the virtual measurements of the neutral voltage is the 

one described in [22]. The main difference of this method with 

other FBS methods [23] is that during the calculation of the load 

currents in the backward sweep, the neutral voltage is also 

considered, 

 

[
 
 
 
 

 

𝐼𝑎
𝑖

𝐼𝑏
𝑖

𝐼𝑐
𝑖

𝐼𝑛
𝑖

 

]
 
 
 
 

= [(
𝑆𝑎
𝑖

(𝑉𝑎
𝑖 − 𝑉𝑛

𝑖) 
)

∗

(
𝑆𝑏
𝑖

(𝑉𝑏
𝑖 − 𝑉𝑛

𝑖) 
)

∗

(
𝑆𝑐
𝑖

(𝑉𝑐
𝑖 − 𝑉𝑛

𝑖) 
)

∗

∑𝐼𝑚
𝑖

𝑚

]

𝑇

 (6.a) 

where 𝑚 = {𝑎, 𝑏, 𝑐}, i is the ith node with a load, 𝑆𝑎
𝑖 , 𝑆𝑏

𝑖  and  𝑆𝑐
𝑖 

is the power measurement of this load and 𝑉𝑎
𝑖, 𝑉𝑏

𝑖, 𝑉𝑐
𝑖 and 𝑉𝑛

𝑖 are 

the voltages of the ith node. Once the FBS converges, the neutral 

voltage magnitude and phase angle are used as virtual 

measurements and are included in the measurement vector 𝒛, 

 𝒛 = [ 𝑷𝒊𝒏𝒋 𝑸𝒊𝒏𝒋 |𝑽𝑝−𝑛| |𝑽𝑛| 𝜽𝑛 ]𝑇 (6.b) 

The final form the of the Jacobian matrix 𝑯(𝒙) is, 

 𝑯(𝒙) =

[
 
 
 
 
 

 

𝜕𝑷𝒊𝒏𝒋

𝜕𝜽

𝜕𝑸𝒊𝒏𝒋

𝜕𝜽

𝜕|𝑽𝒑−𝒏|

𝜕𝜽
𝟎

𝜕𝜽𝒏

𝜕𝜽
 

𝜕𝑷𝒊𝒏𝒋

𝜕|𝑽|

𝜕𝑸𝒊𝒏𝒋

𝜕|𝑽|

𝜕|𝑽𝒑−𝒏|

𝜕|𝑽|

𝜕|𝑽𝒏|

𝜕|𝑽|
𝟎
]
 
 
 
 
 
 𝑇

 (6.c) 

IV.  WEIGHTS FOR THE VIRTUAL MEASUREMENTS 

A.  Normality Tests 

In the 𝐶𝑁 it is usually assumed that the measurement errors 

follow a normal distribution with a known variance and a zero 

mean value (i.e. 𝑁(0, 𝜎2)) [17]. Similarly, in this paper it is 

 

Fig. 1. FBS scheme 
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assumed that the measurement error of the conventional 

measurements (𝑃𝑖𝑛𝑗 , 𝑄𝑖𝑛𝑗  and |𝑉𝑝−𝑛|) also follows a normal 

distribution. Therefore, in order to incorporate properly the 

virtual measurements in the proposed DSSE, a statistical 

analysis is necessary in order to identify the statistical 

distribution of their errors. Considering that for the calculation 

of the virtual measurements, the active and reactive power 

measurements are used, whose errors do follow a normal 

distribution, it is assumed that also the error of the virtual 

measurements follows a normal distribution (null hypothesis). 

Then, the Anderson-Darling [24] and Shapiro-Wilk [25] fitness 

tests are used to determine whether this hypothesis must be 

refuted. These fitness tests determine if the null hypothesis must 

be refuted by calculating the so-called p-value index. If this 

index is below 0.05 [26] then the hypothesis is refuted, and it 

cannot be assumed that the virtual measurements’ error follows 

a normal distribution.  

In Fig. 2, the LVDG that is considered in this paper is 

illustrated. It is assumed that all consumers are equipped with a 

smart meter belonging to the C-4 accuracy class (see Table II), 

more information about this system can be found in Section V.  

This system is implemented in MATLAB/Simulink where the 

power flow results of one time step represent the real state of 

the system and are used to create the measurement errors for 

𝑃𝑖𝑛𝑗  and 𝑄𝑖𝑛𝑗  using (1.a). FBS is executed 3000 times with 

different measurement errors, extracted by normal distributions 

with the appropriate properties. Then, the results are compared 

each time to the true state of the system in order to create the 

measurement error vector for each virtual measurement (72 

|𝑽𝑛| and 72 𝜽𝑛, one for each low voltage node). This 

measurement error vector is used as input to the two fitness tests 

which results to 144 p-values for |𝑽𝑛| (72 from each fitness test) 

and 144 p-values for 𝜽𝑛. All p-values are found to be well above 

the threshold of 0.05 and in Table III the average p-value of 

each type of virtual measurement is provided for each fitness 

test. Moreover, in Fig. 3 the probability density and probability 

plot of the |𝑽𝑛| error is presented for a random system node. 

This figure offers a visual inspection of the distribution of the 

measurement error as it’s compared to a fitted normal 

distribution [27]. From Fig. 3 and Table III it can be concluded 

that the null hypothesis is valid (based on these fitness tests). In 

other words, the assumption that the error of the virtual 

measurements follows a normal distribution holds true.  

B.  Measurement Weights 

The matrix 𝑹, as defined in Section III.  A.  is formulated 

using the variance of each measurement and its inverse (𝑹−𝟏) 
is utilized to weight each measurement used in the WLS 

estimator. Measurements with high uncertainty (high variance) 

have a low impact on the WLS SE as their corresponding 

weight is smaller in relation to more accurate measurements 

(low variance). For the virtual measurements, after verifying 

that their error follows a normal distribution, their uncertainty 

must be defined in order to properly incorporate them in the 

estimation procedure. To do so, two different strategies are 

followed to define their uncertainty. The first one (W1) is a 

simple and straightforward while the second one (W2) is more 

complex. The effect of the resulting calculated uncertainty of 

the virtual measurements in the WLS SE for each of the two 

procedures is examined in Section V.   

1) W1: Considering that the calculation of the virtual 

measurements is achieved through the measurements of the 

active and reactive power consumption, their uncertainties are 

directly related. Therefore, a straightforward calculation of the 

uncertainty of the virtual measurements can be the follow, 

 𝜎𝑊1 = √𝜎𝑃𝑖𝑛𝑗
2 + 𝜎𝑄𝑖𝑛𝑗

2  (7.a) 

In Table IV, the calculated uncertainty of the virtual 

measurements for each of the smart meter accuracy classes that 

are considered in this paper is presented.  

 

Fig. 2. The LVDG under consideration 
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TABLE III 

AVERAGE P-VALUES 

Fitness test 
p-value |𝑽𝑛| 

(average) 

p-value 𝜽𝑛 

(average) 

Anderson-Darling 0.5475 0.2786 

Shapiro-Wilk 0.6456 0.2173 

 

 
Fig. 3. Visual inspection of the normality of the virtual measurements 

 

TABLE IV 

UNCERTAINTY OF VIRTUAL MEASUREMENTS, W1 SCHEME 

Accuracy class 𝜎𝑊1  [%] 

C1 0.283 

C2 0.707 

C3 1.118 
C4 2.236 

C5 2.828 
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2) W2: In Fig. 4 a typical four-wire, ungrounded, distribution 

line is illustrated. Considering the coupling between the phases, 

the voltage at the receiving end is, 

 ( 

𝑉𝑎
𝑉𝑏
𝑉𝑐
𝑉𝑛

 ) = ( 

𝑉𝐴
𝑉𝐵
𝑉𝐶
𝑉𝑁

 ) − (

𝑧𝑎𝑎 ⋯ 𝑧𝑎𝑛
⋮ ⋱ ⋮
𝑧𝑛𝑎 ⋯ 𝑧𝑛𝑛

)( 

𝐼𝑎
𝐼𝑏
𝐼𝑐
𝐼𝑛

 ) (8.a) 

The neutral voltage is equal to, 

 𝑉𝑛 = 𝑉𝑁 − 𝑧𝑛𝑎𝐼𝑎 − 𝑧𝑛𝑏𝐼𝑏 − 𝑧𝑛𝑐𝐼𝑐 − 𝑧𝑛𝑛𝐼𝑛 (8.b) 

Considering that the neutral current can be written as the sum 

of the phase currents and by assuming that the off-diagonal 

terms of the impedance matrix are almost identical to simplify 

the problem, (8.b) can be re-written as, 

 𝑉𝑛 = 𝑉𝑁 − 𝑐(𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐) (8.c) 

where 𝑐 ∈ ℂ and is equal to 𝑐 = 𝑧𝑛𝑛 + 𝑧𝑚 (𝑧𝑚 is the mutual 

impedance between the conductors). The phase currents are 

calculated based on the downstream loads of the specific 

receiving end (node) as, 

 𝑓 = 𝑐∑( 𝐼𝑎
𝑖 + 𝐼𝑏

𝑖 + 𝐼𝑐
𝑖  )

𝑖=𝐿

 (8.d) 

 𝑓 = 𝑐∑[(
𝑃𝑎
𝑖 + 𝑗𝑄𝑎

𝑖

𝑉𝑎
𝑖

)

∗

+ (
𝑃𝑏
𝑖 + 𝑗𝑄𝑏

𝑖

𝑉𝑏
𝑖

)

∗

+ (
𝑃𝑐
𝑖 + 𝑗𝑄𝑐

𝑖

𝑉𝑐
𝑖

)

∗

]

𝑖=𝐿

 (8.e) 

where 𝐿 is the set containing all downstream loads, in relation 

with the specific receiving end. For simplicity, the voltage are 

assumed to be equal to their nominal values [12] and by 

considering the phase shift introduced by the transformer they 

are equal to, 

 𝑉𝑎 = 1𝑝𝑢∡ − 30° = 0.87 − 𝑗0.5 = 𝑒 − 𝑗𝑑 (9.a) 

 𝑉𝑏 = 1𝑝𝑢∡ − 150° = −0.87 − 𝑗0.5 = −𝑒 − 𝑗𝑑 (9.b) 

 𝑉𝑐 = 1𝑝𝑢∡90° = 𝑗1 = 𝑗𝑔 (9.c) 

Expression (8.e) can now be written as, 

 𝑓 = 𝑐2∑
(𝑒𝑃𝑎

𝑖 − 𝑑𝑄𝑎
𝑖 − 𝑒𝑃𝑏

𝑖 − 𝑑𝑄𝑏
𝑖 + 𝑔𝑄𝑐

𝑖) +

𝑗(𝑒𝑄𝑏
𝑖 + 𝑔𝑃𝑐

𝑖 − 𝑑𝑃𝑏
𝑖 − 𝑒𝑄𝑎

𝑖 − 𝑑𝑃𝑎
𝑖)
  (10.a) 

 𝑓 = 𝑐2(𝑅 + 𝑗𝑋) (10.b) 

where 𝑐2 is equal to, 

 𝑐2 =
𝑐

|𝑉|2
=
𝑧𝑛𝑛 + 𝑧𝑚
|𝑉|2

= 𝑍𝑟 + 𝑗𝑍𝑥 (10.c) 

The terms 𝑅 and 𝑋 are derived through the sum of normal 

distributions with a known standard deviation. Based on the 

propagation of uncertainty, the uncertainty of these terms also 

follows a normal distribution with a standard deviation that is a 

function of the standard deviation of the power measurements. 

Using expressions (10.b) and (10.c), 𝑓 is written as, 

 𝑓 = (𝑍𝑟𝑅 − 𝑍𝑥𝑋) + 𝑗(𝑍𝑟𝑋 + 𝑍𝑥𝑅) (11.a) 

 𝑓 = 𝐹𝑅 + 𝑗𝐹𝑋 (11.b) 

where the uncertainty of each term can be calculated as, 

 𝜎𝐹𝑅 = √𝑍𝑟
2𝜎𝑅

2 + 𝑍𝑥
2𝜎𝑋

2  ,     𝜎𝐹𝑋 = √𝑍𝑟
2𝜎𝑋

2 + 𝑍𝑖
2𝜎𝑅

2 
 
(11.c) 

Now the neutral voltage can be written as, 

 𝑉𝑛 = 𝑉𝑁 − 𝑓 (12.a) 

 𝑉𝑛 = (𝐹𝑅
𝑉𝑁 − 𝐹𝑅

𝑓
) + 𝑗(𝐹𝑋

𝑉𝑁 − 𝐹𝑋
𝑓
) (12.b) 

 𝑉𝑛 = 𝑎 + 𝑗𝑏 (12.c) 

where the uncertainty of 𝑎 and 𝑏 is calculated in a similar 

manner as in (11.a)-(11.c). The virtual measurements that will 

be used in the state estimation are calculated as, 

 |𝑉𝑛| = √𝑎2 + 𝑏2 (12.d) 

 𝜃𝑛 = tan
−1(𝑘) (12.e) 

where 𝑘 = 𝑏/𝑎. Considering the propagation of uncertainty, 

the uncertainty of each virtual measurement can be calculated 

as, 

 𝜎|𝑉𝑛| = √(
𝑎

|𝑉𝑛|
)
2

𝜎𝑎
2 + (

𝑏

|𝑉𝑛|
)
2

𝜎𝑏
2 (13.a) 

 𝜎𝜃𝑛 =
|𝑘|

1 + 𝑘2
√(
𝜎𝑎
𝑎
)
2

+ (
𝜎𝑏
𝑏
)
2

 (13.b) 

The calculation of the uncertainty of the virtual measurements 

is conducted in a forward sweep procedure. Considering that 

the neutral conductor is grounded at the transformer substation 

(at the second node), then 𝑉𝑛
2 = 0 and then according to (12.a) 

the rest are, 

 

𝑉𝑛
3 = 𝑉𝑛

2 − 𝑓3 = −𝑓3

𝑉𝑛
4 = 𝑉𝑛

3 − 𝑓4 = −𝑓3 − 𝑓4

𝑉𝑛
5 = 𝑉𝑛

3 − 𝑓5 = −𝑓3 − 𝑓5

⋮

 (14.a) 

In Fig. 5 the calculated uncertainty of each virtual measurement 

is illustrated for all the smart meter accuracy classes that are 

considered. As expected, the uncertainty of the virtual 

measurements when accurate smart meters are used is 

significantly lower than with lower quality meters.  

Moreover, (13.a)-(13.b) correspond to the diagonal elements, 

related with the virtual measurements, of the covariance matrix 

𝑹. Since the virtual measurements for the neutral voltage are 

derived through the same power measurements, they are 

correlated and as a result the covariance matrix is not diagonal. 

Considering this correlation, the covariance matrix 𝑹 is then, 

 

Fig. 4. A four-wire distribution line 

 

Zaa

Zbb

Zcc

Znn

Ia

Ib

Ic

VA

VB

VC

VN

Va 

Vb 

Vc

Vn

Zab

Zbc

Zcn

Zac

Zbn

Zan

In



 7 

 𝑅 =

[
 
 
 
 
 
 
𝜎𝑃
2 0 0 0 0

0 𝜎𝑄
2 0 0 0

0 0 𝜎|𝑉𝑝−𝑛|
2 0 0

0 0 0 𝜎|𝑉𝑛|
2 𝜎(|𝑉𝑛|, 𝜃𝑛)

0 0 0 𝜎(𝜃𝑛, |𝑉𝑛|) 𝜎𝜃𝑛
2

]
 
 
 
 
 
 

 (15.a) 

where 𝜎(|𝑉𝑛|, 𝜃𝑛) and 𝜎(𝜃𝑛, |𝑉𝑛|) is the correlation between the 

virtual measurements. For the calculation of this correlation, the 

power measurements from the smart meters at the load nodes 

are considered (first term of (8.c) is neglected) due to the high 

complexity. This is because the neutral voltage at the zero node 

before a load node is dependent on all the loads in the system. 

An analytical analysis of this will be too extensive for the 

potential improvement that it may offer. Considering this 

simplification, the neutral voltage at a load bus can be 

approximated as, 

𝑉𝑛 ~ 𝑐2 

{
  
 

  
 
(𝑒𝑃𝑎 − 𝑑𝑄𝑎) − 𝑗(𝑑𝑃𝑎 + 𝑒𝑄𝑎),                  𝑃ℎ𝑎𝑠𝑒 𝐴 𝑙𝑜𝑎𝑑

(−𝑒𝑃𝑏 − 𝑑𝑄𝑏) + 𝑗(𝑒𝑄𝑏 − 𝑑𝑃𝑏),              𝑃ℎ𝑎𝑠𝑒 𝐵 𝑙𝑜𝑎𝑑 

                  𝑔𝑄𝑐 + 𝑗𝑔𝑃𝑐  ,                              𝑃ℎ𝑎𝑠𝑒 𝐶 𝑙𝑜𝑎𝑑

 (𝑒𝑃𝑎 − 𝑑𝑄𝑎 − 𝑒𝑃𝑏 − 𝑑𝑄𝑏 + 𝑔𝑄𝑐) +        3 − 𝑃ℎ 𝑙𝑜𝑎𝑑      

  𝑗(𝑒𝑄𝑏 + 𝑔𝑃𝑐 − 𝑑𝑃𝑏 − 𝑒𝑄𝑎 − 𝑑𝑃𝑎)                                       

 (15.b) 

In all cases, (15.b) can be written in polar form as, 

 𝑉𝑛 ~ |𝑐2|𝑒
𝑗𝜃𝑐2  √𝑅2 + 𝑋2𝑒𝑗 tan

−1𝑋
𝑅  (15.c) 

where 𝑅 and 𝑋 are the real and imaginary parts of (15.b) 

respectively. The virtual measurements can then be expressed 

as a function of the power measurements as follows, 

 |𝑉𝑛| = |𝑐2|√𝑅
2 + 𝑋2 → 𝑓|𝑉𝑛|(𝑃, 𝑄) (15.d) 

 𝜃𝑛 = 𝜃𝑐2 + tan
−1
𝑋

𝑅
→ 𝑓𝜃𝑛(𝑃, 𝑄) (15.e) 

Using the propagation of uncertainty, the correlation between 

the virtual measurements is calculated as, 

 𝜎( |𝑉𝑛|, 𝜃𝑛 ) = √∑ [
𝜕𝑓|𝑉𝑛|

𝜕𝒑(𝑘)

𝜕𝑓𝜃𝑛
𝜕𝒑(𝑘)

] [𝜎(𝒑(𝒌))]
2

2

𝑘=1
  (15.f) 

where 𝒑(𝑘) = [𝑃, 𝑄] are the active and reactive power 

measurements of the corresponding load and 𝜎(𝑝) = [𝜎𝑃 , 𝜎𝑄] 

is the uncertainty of these measurements. 

V.  CASE STUDIES 

In this section, the proposed monitoring scheme for 

ungrounded LVDGs is evaluated for both W1 and W2 weight 

schemes, referred to as 𝑁𝑊1  and 𝑁𝑊2  respectively. The system 

used in the simulations is illustrated in Fig. 2, which is an actual 

sub-urban residential LVDG in the power system of Cyprus. In 

total, there are 50 service points and 62 consumers, where most 

of them are supplied by a single phase and a small number have 

a three-phase connection. The three-phase load nodes 4 and 6 

correspond to apartment complexes with 7 residents each. The 

aggregated consumption of these apartment complexes is 

considered in the case studies (full scale meter reading 30 

kVA), therefore they are modeled as a single three-phase load. 

This LVDG has also 3 PV plants at nodes 7, 17 and 42 (denoted 

with a green font number) with rated power of 2.5 kWp, 7.35 

kWp and 4.05 kWp respectively. The neutral conductor is 

grounded only at the 11 kV/ 433 V transformer substation, i.e. 

at node 2. Daily load profiles for each of the consumers have 

been constructed with a half-hourly resolution. This dataset was 

provided by the Cyprus DSO (Electricity Authority of Cyprus).  

To properly evaluate the proposed monitoring scheme, the 

𝐶𝑁 SE is also considered in the simulations. Furthermore, the 

𝐶𝑁 is also applied to the same system, under the same operating 

conditions but with a multi-grounded neutral conductor 

(grounded at each end of a distribution line). The results of this 

simulation, referred to as 𝐶𝑁+, represent the maximum 

performance of the traditional WLS SE and are valid only for a 

multi-grounded system. Since an ungrounded LVDG is 

considered, 𝐶𝑁+  is only used as a benchmark for the proposed 

monitoring scheme.  

The operation of the LVDG is simulated for 5 days in 

MATLAB/Simulink to obtain the true values of the system’s 

states. Based on the considered accuracy class of the smart 

meters, the conventional measurements are then constructed by 

adding a Gaussian noise. The performance of the monitoring 

schemes is evaluated by calculating the average 2-norm ‖Δ𝑉‖2 

and max-norm ‖Δ𝑉‖∞ of the voltage estimation error at each 

time step. 

A.  Accuracy class of the smart meters 

In Fig. 6 the voltage estimation errors are illustrated for the 

C-4 smart meter accuracy class. It can be observed that the 

proposed monitoring scheme with the W1 weights is 

considerably more accurate compared to the 𝐶𝑁. As it was 

shown in [14], the performance of 𝐶𝑁 is highly affected by the 

zero-sequence current that is flowing in the system and 

therefore depends on the operating conditions. In 𝑁𝑊1 , since the 

neutral voltage is considered in the problem formulation, its 

performance not only is 6 times higher (in average) than 𝐶𝑁 but 

also significantly more stable as its affected by the operating 

conditions in a considerably lower degree. The performance of 

the proposed monitoring scheme is further enhanced when the 

W2 weights are used. Under this weight scheme for the virtual 

measurements, the performance of the proposed monitoring 

scheme approaches the maximum performance of the 

traditional WLS SE, highlighting the significance of properly 

assigning the weights for the virtual measurements. It should be 

 
Fig. 5. Uncertainty of virtual measurements, W2 scheme 
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noted that compared to 𝐶𝑁+, the proposed monitoring scheme 

operates under a higher uncertainty. This is due to the neutral 

voltage whose virtual measurements are derived through 

erroneous PQ measurements and therefore as expected, its 

performance is lower than 𝐶𝑁+. However, with the proper 

weights for the virtual measurements the proposed monitoring 

scheme achieves almost a similar performance while 

simultaneously it can estimate the neutral voltage without any 

additional measurements from the physical system. 

In Fig. 7 the estimation of the voltage profile of node 73 is 

illustrated for the C-4 accuracy class and for the different 

monitoring schemes. This node was chosen since in average, 

the max-norm (‖𝛥𝑉‖∞
𝑖 ) of the estimation error originated from 

this node. From this figure, the improvement that the proposed 

DSSE offers over the 𝐶𝑁  in the voltage profile estimation can 

be clearly observed. In particular, the estimated states from 𝑁𝑊2  

are always significantly closer to the true states. Moreover, 𝑁𝑊2  

can also estimate accurately the neutral voltage of the system. 

Comparing Fig. 6 and 7 it can be concluded that the peaks of 

the estimation error of 𝐶𝑁 happen when the neutral voltage 

reaches a significant value, i.e. at 𝑡 ≈ 1.6 days. At these time 

instances the neutral voltage has a significant value. The two 

main factors behind this considerable estimation error is the use 

of Kron’s reduction, which results to an inaccurate system 

model, and the voltage measurements, which are all expressed 

with significantly different reference points. In comparison, in 

the proposed DSSE since the use of Kron’s reduction is 

avoided, the voltage measurements are expressed as phase-to-

neutral measurements and the neutral voltage is considered as a 

state variable, its performance is not affected by the operational 

state of the neutral voltage.   

In Fig. 8, the estimation of the voltage profile of the same 

node is illustrated for the various smart meter accuracy classes 

using the 𝑁𝑊2 . While its accuracy is affected by the quality of 

the smart meters, even under the worst scenario the proposed 

monitoring scheme can still estimate fairly accurate the voltage 

profile. This shows the robustness of the proposed monitoring 

scheme as its performance is not greatly affected by the 

operating conditions nor by the quality of the smart meters. 

In Table V-VI the average estimation errors (of the 5 days 

simulated) as well as the average iterations required for all 

monitoring schemes and for all smart meter accuracy classes 

are provided. In all cases the proposed DSSE with both weight 

schemes (𝑁𝑊1  and 𝑁𝑊2)  achieves a considerably higher 

performance compared to 𝐶𝑁. Regarding the number of 

iterations required by the DSSE in order to converge, the weight 

scheme 𝑁𝑊2  improves significantly the computational 

performance of the proposed DSSE. In all case studies, the 

proposed DSSE with the 𝑁𝑊2  weight scheme required an 

average number of iterations slightly higher than 3, which is 

similar with the computational performance of the benchmark.  

 

Fig. 6. Voltage estimation errors  

 

Fig. 7. Voltage profile estimation of node 73, different monitoring scheme 

 

Fig. 8. Voltage profile estimation of node 73, different accuracy classes 

TABLE V 

SUMMARY OF RESULTS, CONVENTIONAL MONITORING SCHEME 

Case 

𝐶𝑁 𝐶𝑁+ 

Estimation errors 

[10-3 pu] Average 

iterations 

Estimation errors 

[10-3 pu] Average 

iterations 
‖Δ𝑉‖2 ‖Δ𝑉‖∞ ‖Δ𝑉‖2 ‖Δ𝑉‖∞ 

1 19.61 30.77 3.29 0.17 0.38 3.19 

2 19.63 30.82 3.29 0.51 1.03 3.20 

3 19.66 30.85 3.30 0.82 1.61 3.20 

4 19.71 30.96 3.32 1.58 3.01 3.19 

5 20.21 31.64 3.35 2.55 4.32 3.19 

 

 TABLE VI 

SUMMARY OF RESULTS, PROPOSED MONITORING SCHEME 

Case 

𝑁𝑊1 𝑁𝑊2  

Estimation errors 

[10-3 pu] Average 

iterations 

Estimation errors 

[10-3 pu] Average 

iterations 
‖Δ𝑉‖2 ‖Δ𝑉‖∞ ‖Δ𝑉‖2 ‖Δ𝑉‖∞ 

1 0.75 2.29 3.45 0.51 1.80 3.22 

2 1.38 3.74 3.80 0.73 1.82 3.21 

3 2.32 6.17 4.27 1.01 2.25 3.24 

4 3.95 11.21 4.97 1.93 3.77 3.26 

5 4.82 14.02 5.4 2.66 4.95 3.26 
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B.  Type of system 

In [14], the performance of 𝐶𝑁 was evaluated under different 

types of LVDGs. It was identified that its performance was 

highly affected by the type of LVDG, where rural systems 

imposed higher estimation error. To validate the applicability 

of the proposed DSSE, different types of LVDGs are 

considered. The results of this case study are illustrated in Table 

VII, where case L corresponds to the original line lengths for 

the system’s distribution lines.  

Using the proposed DSSE, the accuracy of the estimation 

results remains fairly constant and very similar with 𝐶𝑁+, 

regardless of the system type. On the contrary, the accuracy of 

𝐶𝑁 is highly affected by the system type, where, as in [14], rural 

systems impose higher estimation error. The main reason for 

this is the overall higher line impedance in rural systems, which 

for the same zero-sequence current as in an urban system, it 

results to a significantly higher neutral voltage. Consequently, 

the use of Kron’s reduction in such systems results to a system 

model that is completely wrong. The higher neutral voltage in 

rural systems also affects in a greater degree the voltage 

measurements from the smart meters. Across a rural system, the 

neutral voltage from one node to another is significantly 

different, meaning that the reference point of each voltage 

measurement is also significantly different. In the proposed 

DSSE, all these issues are addressed with the proposed 

modifications and the developed weight scheme for the virtual 

measurements. As a result, the proposed DSSE can be applied 

to any type of LVDG without a significant change in its 

performance. 

C.  Monte Carlo trials 

To unbias the results from the random measurement errors 

and to calculate their uncertainty, Monte Carlo simulations are 

conducted for 𝑁𝑊2 , using the C-4 smart meter accuracy class. 

The IEEE European low voltage test feeder, Fig. 9, is consider 

which is a significantly larger system than the LVDG in Cyprus. 

From this system, 50 different operational points are used for 

the Monte Carlo analysis. For each operational point, 3000 

trials are executed using the proposed DSSE, considering 

different measurement errors in each trial, resulting in a total of 

150 000 Monte Carlo trials. The mean and variance of each 

measurement error are provided in Table VIII.  

A significant advantage of the proposed DSSE is that the 

convergence issues that are related with the initialization of the 

neutral voltage [13] are eliminated. The proposed DSSE, 

despite including the neutral voltage as a state variable, was 

able to converge in all the 150 000 Monte Carlo trials. In order 

to highlight the importance of the proposed modifications to the 

convergance rate of the DSSE, the following scenario is 

executed: The performance of the DSSE with the neutral 

voltage included in the state vector but without the proposed 

modifications regarding the virtual measurements is examined. 

During this scenario, the initial convergence threshold 휀, 

equation (2.c), is set to 5 × 10−4 p.u. If the DSSE fails to 

converge within 30 iterations, then 휀 is increased by +5 × 10−4 

p.u. If 휀 reaches 0.1 p.u and the DSSE still fails to converge 

then the process is stopped as the DSSE failed to converge 

within a reasonable convergence threshold.  

The results of this study are illustrated in Fig. 10. The right 

axis with the red circles shows the required threshold setting in 

each of the operational points for the DSSE to achieve 

convergence and the left axis shows the required number of 

iterations for this threshold setting. In total there are 11 

instances where the upper limit of 휀 was reached and the DSSE 

still failed to converge within 30 iterations. For comparison 

purposes, in Fig. 11 the required convergence threshold and 

number of iterations of the proposed DSSE with the virtual 

measurements is illustrated. With the inclusion of the proposed 

modifications and virtual measurements, the DSSE becomes 

TABLE VII 

SUMMARY OF RESULTS, DIFFERENT TYPES OF A LVDG 

Case 

𝐶𝑁 𝐶𝑁+ 𝑁𝑊2  

Estimation errors 

[10-3 pu] 

Estimation errors 

[10-3 pu] 

Estimation errors 

[10-3 pu] 

‖Δ𝑉‖2 ‖Δ𝑉‖∞ ‖Δ𝑉‖2 ‖Δ𝑉‖∞ ‖Δ𝑉‖2 ‖Δ𝑉‖∞ 

Urban 0.5L 10.97 15.45 1.53 2.57 1.84 2.87 
 0.75L 15.65 22.78 1.55 2.79 1.91 3.29 
 L 19.71 30.96 1.58 3.01 1.93 3.77 
 1.25L 23.34 36.71 1.66 3.25 2.12 4.37 

Rural 1.5L 29.73 46.89 1.71 3.5 2.38 5.25 

 

 

Fig. 9. IEEE European low voltage test feeder 
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TABLE VIII 

MONTE CARLO RESULTS 

Estimation error 𝜇 [𝑉] 𝜎2 [𝑉2] 

‖Δ𝑉‖2 0.293 0.012 
‖Δ𝑉‖∞ 0.570 0.042 

 

 

Fig. 10. DSSE convergence without virtual measurements 
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significantly more stable. Based on these numerical 

simulations, the proposed DSSE can achieve convergence in the 

lowest threshold setting and in average within 3 iterations. 

When the virtual measurements are not considered, the 

threshold limit must be considerably larger in order to achieve 

convergence, where in some instances no convergence can be 

achieved. This highlights the importance of the proposed 

modifications to the DSSE scheme when the neutral voltage is 

considered as a state variable. 

VI.  CONCLUSIONS 

Current DSSE methods for MVDGs are not applicable in 

LVDGs with a neutral conductor grounded only at the MV-LV 

substation. This paper presented a novel monitoring scheme, 

based on the WLS SE, for such systems. In the proposed DSSE, 

the neutral voltage is included in the state vector, the 

measurement functions and the Jacobian matrix 𝑯(𝒙) are 

adjusted accordingly and virtual measurements are 

incorporated in the WLS procedure. The purpose of the virtual 

measurements is to address any potential convergence issues 

and to improve the accuracy of the proposed DSSE. Case 

studies under different operating conditions and smart meter 

accuracy classes have demonstrated the effectiveness of the 

proposed monitoring scheme. In comparison to the 

conventional DSSE, in which the neutral voltage is assumed 

that it can be approximated to zero voltage, the proposed 

scheme has in average 10 times better performance. Further, 

when compared to the benchmark (maximum performance of 

the conventional DSSE) the performance of the proposed 

scheme is in average only 1.22 times lower, despite operating 

under higher uncertainty. As the case studies have illustrated, 

the proposed DSSE can operate with very high accuracy, which 

is not affected by the quality of the smart meters (case study A), 

the type and size of the LVDG (case study B) and the 

ungrounded neutral. With the introduction of the virtual 

measurements and the developed weight scheme, the proposed 

DSSE is also able to achieve convergence (case study C), 

something which was lacking when the neutral voltage was 

considered as a state variable before.  
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