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A B S T R A C T   

The deep sea is the largest biome on Earth but the least explored. Our knowledge of it comes from scattered 
sources spanning different spatial and temporal scales. Implementation of marine policies like the European 
Union’s Marine Strategy Framework Directive (MSFD) and support for Blue Growth in the deep sea are therefore 
hindered by lack of data. Integrated assessments of environmental status require tools to work with different and 
disaggregated datasets (e.g. density of deep-sea habitat-forming species, body-size distribution of commercial 
fishes, intensity of bottom trawling) across spatial and temporal scales. A feasibility study was conducted as part 
of the four-year ATLAS project to assess the effectiveness of the open-access Nested Environmental status 
Assessment Tool (NEAT) to assess deep-sea environmental status. We worked at nine selected study areas in the 
North Atlantic focusing on five MSFD descriptors (D1-Biodiversity, D3-Commercial fish and shellfish, D4-Food 
webs, D6-Seafloor integrity, D10-Marine litter). The objectives of the present study were to i) explore and 
propose indicators that could be used in the assessment of deep-sea environmental status, ii) evaluate the 
performance of NEAT in the deep sea, and iii) identify challenges and opportunities for the assessment of deep- 
sea status. Based on data availability, data quality and expert judgement, in total 24 indicators (one for D1, one 
for D3, seven for D4, 13 for D6, two for D10) were used in the assessment of the nine study areas, their habitats 
and ecosystem components. NEAT analyses revealed differences among the study areas for their environmental 
status ranging from “poor” to “high”. Overall, the NEAT results were in moderate to complete agreement with 
expert judgement, previous assessments, scientific literature on human-pressure gradients and expected man
agement outcomes. We suggest that the assessment of deep-sea environmental status should take place at habitat 
and ecosystem level (rather than at species level) and at relatively large spatial scales, in comparison to shallow- 
water areas. Limited knowledge across space (e.g. distribution of habitat-forming species) and the scarcity of 
long-term data sets limit our knowledge about natural variability and human impacts in the deep sea preventing 
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a more systematic assessment of habitat and ecosystem components in the deep sea. However, stronger cross- 
sectoral collaborations, the use of novel technologies and open data-sharing platforms will be critical for es
tablishing environmental baseline indicator values in the deep sea that will contribute to the science base 
supporting the implementation of marine policies and stimulating Blue Growth.   

1. Introduction 

Over the last decades technological development has enabled the 
exploration of the deep sea i.e. areas below 200 m water depth. This has 
led to the discovery of a great diversity of habitats and ecosystem 
components including hotspots of biodiversity like cold-water coral 
(CWC) reefs (Roberts et al., 2006; Buhl-Mortensen et al., 2010; Henry 
and Roberts, 2017) and deep-sea sponge aggregations (Maldonado 
et al., 2017; Kazanidis et al., 2019). Studies have also revealed that 
deep-sea ecosystems are under multiple pressures arising from human 
activities such as bottom trawling (Clark et al., 2016; Kroodsma et al., 
2018), operation of oil and gas infrastructures (Cordes et al., 2016; Vad 
et al., 2018), deep-sea mining (Van Dover et al., 2017; Gollner et al., 
2017) and changes in water mass characteristics as a consequence of 
global climate change (Sweetman et al., 2017; Morato et al., 2020).  
Halpern et al. (2019) assert that most of the ocean (59%) is experien
cing significantly increasing cumulative impacts. Human activities can 
have severe and long-term impacts on deep-sea Vulnerable Marine 
Ecosystems (VMEs) as by definition (FAO, 2009, 2016) these are 
formed from slow-growing, long-lived organisms whose recovery fol
lowing human disturbance can take decades or even centuries (Larcom 
et al., 2014; Huvenne et al., 2016; Clark et al., 2019). Thus, the as
sessment of health status of deep-sea ecosystems and the implementa
tion of management and conservation strategies is of utmost im
portance considering the provision of goods and services such as 
climate regulation, food and energy supply, potential for bioprospecting 
(Folkersen et al., 2018), cultural services and inspirational contribu
tions (Armstrong et al., 2019). 

Despite recent advances in deep-sea research, current knowledge of 
the structure and functioning of deep-sea ecosystems remains extremely 
limited. It is often composed from discrete observations over small 
areas, and over short time scales. This is in contrast to more compre
hensive knowledge for coastal ecosystems regarding aspects like the 
spatial distribution of habitats, the natural variability of ecosystems (at 
short and long temporal scales), the extent and intensity of multiple 
human activities and the resilience of ecosystems to human pressures 
(Glover et al., 2010; Ramirez-Llodra et al., 2011; Murillo et al., 2016; 
OSPAR, 2017; Dailianis et al., 2018; Miloslavich et al., 2018; Pham 
et al., 2019). Moreover, information about the distribution of multiple 
human pressures across the deep sea (Benn et al., 2010; Pham et al., 
2014) and experimental work about the response and resilience of 
deep-sea species and habitats to multiple human pressures is also very 
limited (Lunden et al., 2014; Büscher et al., 2017; Levin et al., 2019). 

The lack of available data, especially of long-term time series, from 
deep-sea ecosystems make the selection of suitable indicators for as
sessing the deep-sea environmental status challenging. In 2008, the 
European Union (EU) established the Marine Strategy Framework 
Directive (MSFD) with overarching aims achieving Good 
Environmental Status (GES) in European Member States’ seas and 
protecting the resource base upon which marine-related economic and 
social activities depend (European Commission, 2008, 2017). The 
MSFD sets out descriptors and criteria in order to evaluate the 
achievement of GES in European marine waters. The 11 qualitative 
descriptors comprise: D1-Biodiversity, D2-Non-indigenous species, D3- 
Commercial fish and shellfish, D4-Food webs, D5-Eutrophication, D6- 
Sea-floor integrity, D7-Hydrographic conditions, D8-Contaminants, D9- 
Contaminants in seafood, D10- Marine litter, and D11-Energy incl. 

underwater noise. Obligations arising from the MSFD apply to areas 
under the sovereignty and jurisdiction of the EU Member States. The 
first MSFD reports (initial assessment, GES determination and target 
setting) were submitted by EU Member States to the EC in 2012. These 
reports included very little information about the deep-sea areas in the 
member states’ national jurisdiction (i.e. France, Ireland, Portugal, 
Spain, and United Kingdom as countries with Exclusive Economic Zones 
(EEZ) in the North Atlantic). This is a major gap as deep-sea areas in the 
North Atlantic and Mediterranean Sea support rich habitats (rocky and 
sedimentary habitats, VMEs like CWC reefs, deep-sea sponge aggrega
tions or chemosynthetic ecosystems), the conservation of which could 
be jeopardized from expanding multisectoral human activities and 
changing ocean conditions (North Atlantic: Bett, 2001; Reveillaud 
et al., 2008; Buhl-Mortensen et al., 2015; Hátún et al., 2017; OSPAR, 
2017; Mediterranean Sea: Fabri et al., 2019; Maier et al., 2019; 
Danovaro et al., 2020). 

Integrated assessments of deep-sea environmental status require 
tools able to accommodate different and disaggregated data sets (e.g. 
density of habitat-forming species, body-size distribution of commercial 
fishes, intensity of bottom trawling on the seafloor) collected across 
various spatial and temporal scales (Prins et al., 2014; OSPAR, 2017; 
Fabri et al., 2019; Danovaro et al., 2020 for the work of the “Im
plementation of the MSFD to the DEep Mediterranean Sea” project 
-IDEM- assessing the environmental status in Mediterranean deep-sea 
areas). In this context, the “Nested Environmental status Assessment 
Tool” (NEAT; http://www.devotes-project.eu/neat/) was developed to 
assess the environmental status in marine environments and specifically 
for the MSFD and GES (Berg et al., 2016; Borja et al., 2016). One of the 
key features of NEAT is that it assembles data from various indicators 
(average value and standard error) over different spatial and temporal 
scales in a nested hierarchical structure which is composed of inter
connected indicators, spatial assessment units, habitats and ecosystem 
components. Each of the indicators is linked to a different MSFD de
scriptor. Therefore, NEAT allows for an integrated assessment of marine 
environmental status. Up to now NEAT has mostly been used in coastal 
areas which usually have a fair amount of data; on the contrary the data 
availability in the deep sea is in general very limited. Those NEAT as
sessments in shallow-water ecosystems produced useful and sound re
sults always depending on the amount and quality of data available 
(Uusitalo et al., 2016; Nemati et al., 2017, 2018; Pavlidou et al., 2019; 
Borja et al., 2019). 

In order to contribute to the implementation of the MSFD in the 
deep North Atlantic the H2020 ATLAS project (“A transatlantic as
sessment and deep-water ecosystem-based spatial management plan for 
Europe”; https://www.eu-atlas.org/) carried out an assessment on the 
environmental status of nine strategically-selected North Atlantic deep- 
sea areas. The ATLAS work focused on descriptors D1, D3, D4, D6 and 
D10 as they are particularly relevant for the deep sea. The objectives of 
the current manuscript in line with the aim of ATLAS’s work were to: 

(1) explore and propose indicators and identify the relevant MSFD 
criteria that could be addressed in deep-sea ecosystems, 

(2) evaluate the performance of the NEAT tool in the assessment of 
deep-sea environmental status, 

(3) identify challenges (e.g. data standardization) and opportunities 
(e.g. use of new technology) in the assessment of deep-sea environ
mental status. 
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2. Materials and methods 

2.1. The deep North Atlantic areas 

This study has been conducted in nine of the ATLAS project’s Case 
Study areas in the North and northeast Atlantic i.e. LoVe Ocean 
Observatory (Hola trough, northern Norway), Faroe-Shetland Channel 
(northwest Scotland), Reykjanes Ridge (southwest Iceland), Rockall 
Bank (northwest Ireland/UK), Mingulay Reef Complex (southwest 
Scotland), Porcupine Seabight (southwest Ireland), Bay of Biscay 
(northern Spain/western France), Condor seamount (central North 
Atlantic, Azores) and Gulf of Cádiz (southwest Spain) (Fig. 1; Table 1). 
These nine areas included VMEs (FAO, 2009, 2016) across the North 
Atlantic (Fig. 1; Table 1) encompassing CWC reefs, coral gardens and 
deep-sea sponge aggregations. Previous studies have been conducted in 
these nine areas (e.g. LoVe Ocean Observatory – Osterloff et al., 2016; 
Van Engeland et al., 2019; Faroe-Shetland Channel – Jones et al., 2006; 
Kazanidis et al., 2019; Reykjanes Ridge - Copley et al., 1996; 
Magnússon and Magnússon, 1995; Rockall Bank - Newton et al., 2008, 
JNCC 2018a, b; Mingulay Reef Complex – Roberts et al., 2009; De 
Clippele et al., 2017; Porcupine Seabight - Henry and Roberts, 2007; 
OSPAR, 2017; Bay of Biscay – Van den Beld et al., 2017a, b; Azores –  
Braga-Henriques et al., 2013; Pham et al., 2015; Gulf of Cádiz – Díaz- 
del-Río et al., 2014; Rueda et al., 2016) and consequently the data 
availability is higher than in other areas. 

2.2. Assessment of environmental status using NEAT 

The NEAT is a freely downloadable assessment tool (http://www. 
devotes-project.eu/neat). Data analysis classifies Spatial Assessment 
Units (SAUs), habitats and ecosystem components in five predefined 
categories of environmental status (bad, poor, moderate, good and 
high) (Berg et al., 2016). Assessments of marine environmental status 
using NEAT are based on the selection of indicators, accompanied by 
the supply of data to measure these indicators and for the setup of 
boundary values for each of the indicators. These steps are followed by 
the designation of the above mentioned SAUs, habitats and ecosystem 
components in each of the study areas. 

2.2.1. Selection of indicators 
NEAT includes a database of > 500 indicators for MSFD descriptors 

D1-D8, D11 (Teixeira et al., 2016). From this database, indicators 
deemed to be the most appropriate for assessing deep-sea environ
mental status were selected (e.g. biomass of commercial fish, areal 
extent of human affected area). This selection took into account the 
special features of the deep sea including habitat remoteness (and as
sociated difficulties in sampling) and the high sensitivity of deep-sea 
organisms to human activities. In addition, new indicators were sug
gested by 15 individual deep-sea experts from the ATLAS consortium 
and added to those extracted from the NEAT database. This was done to 
supplement the assessment using deep-sea specific indicators (the NEAT 
database contains several indicators that are not applicable to the deep 

Fig. 1. Location in the North Atlantic of the nine ATLAS study areas examined in the present study. LOO: LoVe Ocean Observatory; FSC: Faroe-Shetland Channel; RR: 
Reykjanes Ridge; RB: Rockall Bank; MRC: Mingulay Reef Complex; PS: Porcupine Seabight; BB: Bay of Biscay; A: Azores, Condor seamount; GC: Gulf of Cádiz. 
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sea e.g. indicators related to seagrasses) or to address the lack of D10 
(marine litter) indicators from NEAT database. In total 305 indicators 
were extracted. To reduce this list to a manageable number of in
dicators, a further selection was made based on ATLAS expert judge
ment for the most suitable indicators to be applied to the deep sea. The 
selection of indicators was based on expert judgment taking into ac
count the relevance of an indicator for the assessment of the deep-sea 
environmental status and the feasibility of measurements (considering 
the technological challenges involved in the exploration of the deep sea 
and the associated limited availability of data). Indicators advocated by 
80% of the 15 ATLAS experts, were shortlisted. The only exception to 
that threshold were indicators for D3, where the level of agreement was 
lower, and it was decided to reduce the threshold level to 65% to ensure 
an adequate list of D3 indicators. 

2.2.2. Data requirements and collection 
Following the selection of indicators, data were amassed from each 

study area in order to fulfil NEAT data requirements which are de
scribed in detail by Berg et al. (2016) and Uusitalo et al. (2016). In 
summary, the main data requirements to apply NEAT are the following:  

(1) Designation of the Spatial Assessment Units (SAUs) i.e. areas 
where the assessment of environmental status takes place. Specific 
SAUs were designated for each study area. Whenever it was 
meaningful, SAUs were divided into smaller ones (e.g. the parental 
SAU was divided into four smaller SAU-1, SAU-2, SAU-3 and SAU-4 
in the Rockall Bank; Fig. 2, Table 2) based on data availability, 
presence/absence of human activities, bathymetry and topography. 
In some study areas (e.g. in the Reykjanes Ridge) there is overlap 
among the SAUs driven by data availability for the indicators used 
in each of the SAUs (see Table 1 in Supplementary File),  

(2) Habitats i.e. habitat type present in each of the SAUs (e.g. rocky 
and sedimentary habitats in the Gulf of Cádiz),  

(3) Ecosystem components i.e. organisms present at the habitats (e.g. 

CWCs, sea-pens and sponges in the Gulf of Cádiz),  
(4) Boundary values i.e. the values separating the five categories of 

environmental status used in NEAT. The setup of boundary values 
by ATLAS experts followed six approaches (see recommendations in  
Borja et al., 2016): 1) Expert judgement only, 2) Expert judgement 
and use of scientific literature/information from other places or 
comparison with protected areas, 3) Expert judgement and national 
legislation, 4) Expert judgement and OSPAR guidance, 5) Expert 
judgement and data/guidance from International Council for the 
Exploration of the Sea (ICES) /United Nations’ Convention on 
Biological Diversity (CBD) /United Nations’ Framework Convention 
on Climate Change Decision, and 6) National legislation only. In 
order to facilitate the task of setting up these boundary values an 
extensive literature review was carried out. The review spanned 
over 300 scientific papers, and quantitative data were extracted to 
set up boundary values in different locations and ecosystems and 
for each of the indicators (see Table 1 in Supplementary File). The 
relative frequency of approaches used for the setup of boundary 
values across the study areas can be seen in Fig. 3. Examples for 
each of the 6 approaches used in the setup of boundary values are 
available (Table 1 in Supplementary File).  

(5) Supply of average value and standard error values for each of 
the indicators used in the study areas. 

Categories for habitats and ecosystem components were established 
depending on the data available for each study area. For example, when 
information was available it was possible to set up “aggregations of 
CWCs” as a habitat and not just “benthic”. 

Each indicator must be connected to a SAU, a habitat and an eco
system component. The same indicator e.g. “Biomass of selected fish 
species” can be used in the analysis multiple times for multiple SAUs 
and habitats when it has been assessed for multiple areas. For example, 
the indicator “Biomass of selected fish species” was used across the four 
SAUs and nine fish species in the Rockall Bank (see Table 1 in 

Table 1 
Study areas and their key features. Abbreviations: NEAFC (North East Atlantic Fisheries Commission), SAC (Special Area of Conservation). The references cited apply 
to more than one column. (See below-mentioned references for further information.)   
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Supplementary File for details). These combinations are called “in
dicator values” (according to Uusitalo et al., 2016) while “Biomass of 
selected fish species” is called a “unique indicator”. For example, the 
unique indicator “Biomass of selected fish species” had 36 indicator 
values across the Rockall Bank, one for each fish species, SAU, habitat 
and ecosystem component. 

In order to assess the quality of the data submitted, information 
supplied by ATLAS experts was also considered for each study area in 
terms of: a) the representativity of the selected SAUs for the whole 
study area (poor/moderate/good), and b) the quality of the data (poor/ 
acceptable/good). The evaluation and characterisation of the data 
quality were based on the long-term experience of the ATLAS case study 
leaders, taking into account parameters such as the methods used for 
the collection of data and the spatial coverage. Quality of the data as 
well as their type, quantity and spatial coverage were used to describe 
the representativity. These quality checks are not a prerequisite of 
NEAT, but it was set within the ATLAS assessment to achieve a more 
robust evaluation of the results. 

2.2.3. Data analyses and evaluation of results 
Once the data collection was completed, the boundary values set for 

each indicator were transformed into a common scale of environmental 
status given in NEAT (bad 0–0.199; poor 0.200–0.399; moderate 
0.400–0.599; good 0.600–0.799; high 0.800–1.000) transforming them 
linearly onto a normalized common scale (Berg et al., 2016). The nor
malization of boundary values is followed by weighting of the size of 

the SAUs and indicators by NEAT. The weighting process takes into 
consideration the size of the SAUs that exist in the assessment. For 
example, the parental SAU of Bay of Biscay (= 20308 km2) is divided 
into SAU-1 (slope; 4118 km2), SAU-2 (canyons; 10654 km2) and SAU-3 
(interfluves; 5536 km2). The difference in size between the three SAUs 
is considered in the assessment of the environmental status of the 
parental SAU (20.3, 52.5 and 27.3%, respectively). Indicator weighting 
also takes place to balance the assessments where there are more in
dicators in one habitat than in others (e.g. five indicators in the pelagic 
habitat vs. one indicator in the benthic habitat). In this study the ana
lysis was performed with NEAT default settings “Weight by SAU Area” 
and “Do not weight by habitat area”. This was done because data was 
available for the size of the SAUs (Table 2) but not for the size of 
benthic habitats (due to the lack of habitat maps in some areas). The 
NEAT value is calculated as the weighted average of all the indicators 
and is expressed with a value between 0 (bad) and 1 (high) (see above). 
NEAT values are accompanied by confidence level assessments based 
on mean and error values provided for each indicator followed by 1000 
Monte Carlo simulations (Berg et al., 2016). 

The results produced by applying NEAT were evaluated by ATLAS 
experts, considering the following aspects: i) level of agreement be
tween the NEAT outcome and expert judgement, ii) level of satisfaction 
regarding the amount/type/quality/time frame/spatial extension of the 
submitted data and confidence on the boundary values set for each of 
the indicators, and iii) existing knowledge from scientific literature and 
previous surveys in the study areas. The listing of agreement was set as 

Fig. 2. Spatial Assessment Units (SAUs) in the nine ATLAS study areas. LOO: LoVe Ocean Observatory; FSC: Faroe-Shetland Channel; RR: Reykjanes Ridge; RB: 
Rockall Bank; MRC: Mingulay Reef Complex; PS: Porcupine Seabight; BB: Bay of Biscay; A: Azores, Condor seamount; GC: Gulf of Cádiz. The depth range of each SAU 
is included in Table 2. 
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follows: “complete”, “good”, “moderate”, “little” and “not at all”. 
Furthermore, recommendations were provided by experts on various 
aspects (e.g. how to improve the NEAT software, the data availability 
and the data quality in the future) in order to improve our under
standing about the environmental status of deep-sea ecosystems. 

3. Results 

3.1. Assessment of the design 

The number of SAUs within each study area varied widely ranging 
from one, e.g. in Condor seamount (Azores) up to four in the Rockall 
Bank. In seven out of nine study areas, the parental SAUs were split into 
subunits (Table 2). The representativity of the SAUs for the study areas 
was characterized as “good” in five areas: the LoVe Ocean Observatory, 
Faroe-Shetland Channel, Mingulay Reef Complex, Condor seamount 
(Azores), and the Gulf of Cádiz; “moderate” in one area: Porcupine 
Seabight, and “poor” in two areas: Reykjanes Ridge and Bay of Biscay. 
In Rockall Bank there were differences among the SAUs regarding the 
representativity i.e. the representativity was good in SAU-1 and SAU-2 
but poor in SAU-3 and SAU-4 (Table 2). 

In seven out of nine areas only one habitat type was assessed i.e. 
“Benthic”. Nevertheless, higher resolution data were available in the 
Bay of Biscay and the Gulf of Cádiz. Specifically, data on the habitats 

“Lophelia pertusa (now known as Desmophyllum pertusum)/Madrepora 
oculata on hard substrates”, “L. pertusa/M. oculata on soft sediments”, 
“Sea pens/Alcyonaceans on soft sediments”, “Antipatharians/ 
Alcyonaceans on hard substrates” were analyzed in the Bay of Biscay 
while “rocky” and “sedimentary” benthic habitats were assessed in the 
Gulf of Cádiz (Table 2). 

In total, three ecosystem components were assessed i.e. “benthic 
invertebrates”, “fish” and “benthos”. “Benthic invertebrates” were used 
in those cases where a linkage with a specific faunal group could take 
place (e.g. corals, sponges) while “benthos” was used in those cases 
where such a specific linkage was not possible (e.g. when using in
dicators like “Areal extent of human affected area”, or “Areal extent of 
litter”). Due to limited data availability all three ecosystem components 
were not assessed consistently across all the nine study areas. For ex
ample, the only ecosystem component assessed in the Condor seamount 
(Azores) was “fish” while “benthic invertebrates”, “fish” and “benthos” 
were assessed in Mingulay Reef Complex (Table 2; see also Table 1 in 
Supplementary File for a detailed description of all ecosystem compo
nents and their links with SAUs and habitats). 

3.2. Indicators across Descriptors, criteria and study areas 

In total, 24 unique indicators were used across the five descriptors 
(Table 3); one for D1, one for D3, seven for D4, 13 for D6 and two for 

Table 2 
Habitats and ecosystem components, addressed in each of the nine ATLAS study areas. Areal size of each case study and spatial assessment units (SAUs; km2) within each 
case study, are also given. Categories for habitats and ecosystem components were established depending on the data available for each study area. For example, when 
information was available it was possible to set up “aggregations of cold-water corals” as a habitat and not just “benthic”. “L. pertusa”: Lophelia pertusa; “M. oculata”: 
Madrepora oculata.   
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D10. Indicators used more frequently were: “Areal extent of human- 
affected area” (used in eight out of nine study areas), “Areal extent of 
protected sea areas” (applied in six areas) and “Density of biogenic reef- 
forming species” (used in four areas). 

These 24 indicators addressed a total of eight criteria from the GES 
Decision (European Commission, 2017) (Table 3). Criterion D6C5 (ex
tent of adverse effects from anthropogenic pressures on the condition of 
the habitat type; see Table 3 for a detailed description of the criteria) 
was the one with the highest number of indicators (n = nine) addres
sing it. It was followed by Criterion D4C1 (diversity of trophic guilds) 
addressed by seven indicators and Criterion D6C2 (spatial extent and 
distribution of physical disturbance) addressed by two indicators. Five 
criteria were addressed by only one or two indicators (Table 3). Dif
ferences in the development of methodological standards for the MSFD 
descriptors do not always allow for a direct allocation of the case stu
dies’ indicators to MSFD criteria. In such cases, the indicators could 
work as proxies for the criteria assessments and contribute to the open 
debates for the proper indicators per MSFD criterion. Most of the in
dicators were used in a relatively small number of areas and a few in
dicators were more broadly used (Table 3). Specifically, five indicators 
were used only in two areas (e.g. “Biomass of selected fish species” in 
Rockall Bank and in the Condor seamount, Azores; “Species richness of 
non-commercial fish” in Rockall Bank and in Mingulay Reef Complex), 

three indicators in three areas (e.g. “Ratio of live versus dead/over
grown coral cover” in LoVe Ocean Observatory, in Mingulay Reef 
Complex and in Bay of Biscay) while 13 indicators were applied only 
once (e.g. the indicator “Body length distribution of fish” was only used 
in Condor seamount (Azores); the indicator “Density of abandoned 
fishing gear (e.g. lines, nets, etc.)” was only used in Bay of Biscay 
(Table 3). 

3.3. Data quantity and quality across indicators, descriptors and study 
areas 

The number of indicator values ranged from 1 to 40. The highest 
number of indicator values was for the indicator “Biomass of selected 
fish species” followed by “Abundance of non-commercial demersal fish 
and cephalopods” and “Areal extent of human affected area” (Fig. 4A). 
Across the study areas the highest number of indicator values were 
provided for Rockall Bank (n = 80; 30% in D1 indicators, 60% in D4, 
10% in D6) followed by the Bay of Biscay (n = 37; 18.9% in D4 in
dicators, 64.9% in D6 and 16.2% in D10) and the Mingulay Reef 
Complex (n = 15; 40% in D4 indicators, 53.3 in D6 and 6.7% in D10) 
(Fig. 4B). The level of satisfaction regarding the quantity of the data 
was moderate for most study areas (LoVe Ocean Observatory, Faroe- 
Shetland Channel, Rockall Bank, Porcupine Seabight, Bay of Biscay, 

Fig. 3. Set up of boundary values considering the relative frequency (%) of the different approaches used across the nine study areas (organized latitudinally from 
North to South). A1: Expert judgement only; A2: Expert judgement and use of scientific literature/information from other places or comparison with protected areas; 
A3: Expert judgement and national/regional legislation; A4: Expert judgement and OSPAR guidance; A5: Expert judgement and guidance/data from United Nations’ 
Convention on Biological Diversity (CBD)/United Nations’ Framework Convention on Climate Change Decision /International Council for the Exploration of the Sea; 
A6: National legislation only. The number of indicator values in each study area are shown on the top of the bars. 
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Table 3 
Summary of information used per descriptor (D1, D3, D4, D6, D10), unique indicator and measurement units across nine study areas. CPUEb: Catch Per Unit Effort in 
Biomass; VMEs: Vulnerable Marine Ecosystems; VMS: Vessel Monitoring System; ICES: International Council for the Exploration of the Sea. New indicators suggested 
by ATLAS are highlighted in grey.   

(continued on next page) 
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Condor seamount (Azores) and Gulf of Cádiz); there was good (but 
incomplete) satisfaction at the Mingulay Reef Complex and little sa
tisfaction for the Reykjanes Ridge. 

The quality of the data across indicators, descriptors and study areas 
was variable (Fig. 5). For 12 indicators the data quality was considered 
mainly “poor”, for eight indicators was either “acceptable” or “good” 
and for the rest four it was balanced across “poor”, “acceptable” and 
“good” (Fig. 5A). Across the study areas the data quality was char
acterized mainly as “poor” in the Bay of Biscay. For the LoVe Ocean 
Observatory, Mingulay Reef Complex and the Gulf of Cádiz the data 
quality was considered mainly “acceptable” while in the Faroe-Shetland 
Channel, Reykjanes Ridge, Porcupine Seabight and the Condor sea
mount (Azores), the quality of the data was considered mainly “good” 
(Fig. 5B). 

3.4. NEAT results for environmental status and comparison with expert 
judgement 

The results of the NEAT analyses revealed differences among the 
study areas for their environmental status (Tables 4-5). Areas where 
more indicator values were used showed a higher number of categories 
of environmental status than areas where less indicator values were 
used. For example, at Rockall Bank, where 80 indicator values were 
used, five categories of environmental status were identified (i.e. bad, 
poor, moderate, good and high) while in the Condor seamount (Azores) 
where four indicator values were used just one category of environ
mental status was found (Fig. 6). The assessment suggested that the 
SAUs of the LoVe Ocean Observatory, Faroe-Shetland Channel, deep 
Porcupine Seabight, Bay of Biscay and Condor seamount (Azores) (after 
fisheries closure) were in good status (Tables 4-5), while those of the 
Reykjanes Ridge, Rockall Bank, Mingulay Reef Complex, Azores (before 

fisheries closure) and Gulf of Cádiz were not in good status (Tables 4-5). 
There was good agreement between the NEAT results and expert jud
gement for the LoVe Ocean Observatory, Faroe-Shetland Channel, 
Reykjanes Ridge and Porcupine Seabight but the agreement was just 
moderate for the Rockall Bank, Mingulay Reef Complex, Condor sea
mount (Azores) and Gulf of Cádiz. For the Bay of Biscay no judgement 
was expressed (Table 4). 

Habitats were assessed to be in different environmental status across 
the study areas. The environmental status of “Benthic” habitats (i.e. the 
habitat with the highest number of indicator values) ranged from bad to 
high environmental status. Specifically, the NEAT suggested a balance 
between habitats in good status (specifically, 18.2% in high and 27.3% 
in good) and habitats in non-good status (27.3% in moderate, 22.7% in 
poor and 4.5% in bad environmental status) (Table 5; see also Fig. 1 in 
Supplementary File). The habitats in five study areas (i.e. LoVe Ocean 
Observatory, Faroe-Shetland Channel, Porcupine Seabight, Bay of 
Biscay, Condor seamount-after fisheries closure) were assessed to be 
mainly in good status. In the remaining areas (Reykjanes Ridge, Rockall 
Bank, Mingulay Reef Complex, Condor seamount (before fisheries clo
sure) and Gulf of Cadiz areas impacted by trawling activity, habitats 
mainly were not in good status (Table 5; see also Fig. 1 in Supple
mentary File). 

Ecosystem components were suggested to be in different environ
mental status across the study areas. The NEAT suggested that the 
status of “benthic invertebrates” ranged from moderate to high while 
both “fish” and “benthos” components ranged across all five categories 
of environmental status. Most “fish” components were assessed to be in 
moderate or poor status (58% in total) while most “benthos” compo
nents were in good or high status (61.1% in total) (Table 5; see also  
Fig. 2 in Supplementary File). The study areas displayed a wide range of 
environmental status for their ecosystem components; for instance at 

Table 3 (continued)  

1Criteria in EU, 2017. D1C2: The population abundance of the species is not adversely affected due to anthropogenic pressures, such that its long-term viability is 
ensured. D3C3: The age and size distribution of individuals in the populations of commercially exploited species is indicative of a healthy population. This shall 
include a high proportion of old/large individuals and limited adverse effects of exploitation on genetic diversity. D4C1: The diversity (species composition and their 
relative abundance) of the trophic guild is not adversely affected due to anthropogenic pressures. D6C2: Spatial extent and distribution of physical disturbance 
pressures on the seabed. D6C3: Spatial extent of each habitat type which is adversely affected, through change in its biotic and abiotic structure and its functions (e.g. 
through changes in species composition and their relative abundance, absence of particularly sensitive or fragile species or species providing a key function, size 
structure of species), by physical disturbance. D6C4: The extent of loss of the habitat type, resulting from anthropogenic pressures, does not exceed a specified 
proportion of the natural extent of the habitat type in the assessment area. D6C5: The extent of adverse effects from anthropogenic pressures on the condition of the 
habitat type, including alteration to its biotic and abiotic structure and its functions (e.g. its typical species composition and their relative abundance, absence of 
particularly sensitive or fragile species or species providing a key function, size structure of species), does not exceed a specified proportion of the natural extent of 
the habitat type in the assessment area. D10C1: The composition, amount and spatial distribution of litter on the coastline, in the surface layer of the water column, 
and on the seabed, are at levels that do not cause harm to the coastal and marine environment.  
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Fig. 4. Data quantity across indicators, descriptors (A) and study areas (B). In (A) each number on the x-axis represents an indicator (see Table 3 for the corre
sponding indicator name). In (B) the number of indicator values in each study area is shown on the top of the bars. 
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Fig. 5. Data quality (“poor”, “acceptable” and “good”) expressed in % across indicators and descriptors (A) and across study areas (B). In (A) each number on 
the × axis represents an indicator (see Table 3 for the corresponding indicator name). In (B) the number of indicator values in each study area is shown on the top of 
the bars. 
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the LoVe Ocean Observatory 50% were in moderate and 50% in high 
status whereas in the Rockall Bank all five categories of environmental 
status were found (16.7% in high, 33.3% in good, 8.3% in moderate, 
25% in poor and 16.7% in bad status) (Table 5; see also Fig. 2 in 
Supplementary File). In Porcupine Seabight, Bay of Biscay and Min
gulay Reef Complex the ecosystem components were assessed to be 
mainly in good or high status while in the rest of the study areas they 
were not (Table 5; see also Fig. 2 in Supplementary File). 

4. Discussion 

4.1. Assessing the assessment design, quantity and quality of data 

Data availability for this analysis was much lower than previous 
analyses using the NEAT in shallow European seas, as expressed 
through comparisons of SAUs, habitats, ecosystem components, unique 
indicators, and indicator values. This is mainly due to the remoteness of 
deep-sea environments. It should also be taken into account that there 
is a smaller number of species in the deep sea than on continental 
shelves due to the lower temperature, productivity, and habitat het
erogeneity in the deep sea (Costello and Chaudhary, 2017). In the 
analyses performed here, there were two hierarchical levels in most 
cases whereas in some coastal areas studied by Uusitalo et al. (2016) 
there were often three to four hierarchical levels of SAUs, up to nine 
habitats and up to nine ecosystem components. Likewise, the number of 
unique indicators and indicator values in shallow waters were much 
higher ranging from 11 to 116 and 20 to 466 per study area, respec
tively (Uusitalo et al., 2016; Pavlidou et al., 2019) compared to the 
range of 1–11 unique indicators and 1–40 indicator values in our study. 
Considering these limitations, data analyses and boundary values set-up 
here (see Section 4.2) have been performed with caution, following  
Uusitalo et al. (2016); the same applies to the interpretation of the 
NEAT outcomes especially in those cases where a small number of in
dicator values were linked to large SAUs (e.g. the Porcupine Seabight 

where five indicator values were used over an area of 35500 km2). The 
cautious interpretation of the results was supported also by considering 
a) ATLAS experts’ judgement, b) results from previous assessments (e.g.  
OSPAR, 2017) and c) information on the areas gathered from the sci
entific literature for North Atlantic deep-sea areas (see below). 

Given the large differences among study areas in terms of their size, 
data availability and limited knowledge on the ecology of species/ha
bitats and their response to human activities, comparisons of environ
mental status between study areas are currently of limited value. 
However, comparisons of environmental status of SAUs/habitats/ 
components within each study area can be made especially in cases 
where there are gradients of human pressures (e.g. the Gulf of Cádiz) or 
when management measures have been implemented (e.g., in Condor 
seamount, Azores). 

In addition to limited data availability, there was also limited data 
standardization for almost all the indicators selected (Table 3). For 
example, for the indicator “Areal extent of litter” measurements units 
were “Items/km2”, “Number of items/minute of video tow” and “Litter/ 
image”. This highlights the need to increase standardization in quan
tification and reporting of marine litter (OSPAR, 2017). A similar si
tuation was also recorded for the units used to express density of spe
cimens (Table 3). ATLAS experts also identified cases of limited data 
quality for some indicators. Specifically, in LoVe Ocean Observatory 
and Bay of Biscay the low quality of the data was due to technical issues 
(e.g. absence of laser points from the Remotely Operated Vehicles 
(ROV) cameras, hampering image scalation) that did not allow the 
quantification of ecosystem components. In the case of Mingulay Reef 
Complex, data on fish assemblages were collected with a ROV which, in 
general, is not the most appropriate method to measure fish species 
richness, abundance and biomass due to avoidance behaviour of objects 
like large ROVs (Andaloro et al., 2013). This combined with limited 
visibility during ROV dives at Mingulay Reef Complex (Milligan et al., 
2016), helps explain why species richness and abundance of fish in that 
area was lower than in other CWC reefs where trawling/baited traps 

Table 4 
NEAT values, environmental status and level of agreement between NEAT results and expert judgment for the 
nine study areas in the North Atlantic. NEAT values are given for the whole study area. Categories of en
vironmental status: bad 0–0.199; poor 0.200–0.399; moderate 0.400–0.599; good 0.600–0.799; high 
0.800–1.000.   
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were used (Durán-Muñoz et al., 2012). However, as the Mingulay Reef 
Complex is a protected area, demersal fishing techniques are not per
mitted. Landers using time-lapse photography is an alternative and non- 
invasive methodology that could be used for assessing the abundance of 
fishes (Lavaleye et al., 2017). In the case of the Bay of Biscay and 
Rockall Bank the low quality of the data for the indicators “Areal extent 
of biogenic habitats” and “Abundance/biomass of fish” was due to the 
limited or non-homogeneously distributed sampling effort within the 
study areas, as noted by ATLAS experts working in the two areas. Beside 
these cases, there were others where the quality of data was mainly 
acceptable or good (Fig. 5A). Interestingly, the indicator “Areal extent 
of human affected area” was mainly composed from acceptable/good 
quality data across almost all the study areas confirming the good po
tential for this indicator to be used in environmental status assessments. 
On the contrary the indicator “Areal extent of biogenic/vulnerable 
habitats” were mainly characterized from poor-quality data (Fig. 5A) 
reflecting the current limited knowledge about the spatial distribution 
of these important habitats and the urgent need to increase the 
knowledge on spatial and temporal distribution of habitats (Georgian 
et al., 2019; Kenchington et al., 2019a; see Section 4.5). Across the 
study areas, acceptable and good-quality data were supplied mainly for 
the Faroe-Shetland Channel, the Reykjanes Ridge, the Porcupine Sea
bight and the Condor seamount (Azores) (Fig. 5B). In the Faroe-Shet
land Channel the good quality of the data was mainly due to rigorously- 
designed towed camera surveys collecting high-quality video material 
from areas inside and outside the Faroe-Shetland Channel Marine 
Protected Area, that allowed quantitative analyses using collected 
image material (Kazanidis et al., 2019). Quantitative data available 
online for demersal fisheries inside and outside the FSC MPA (https:// 
marinescotland.atkinsgeospatial.com/nmpi/) contributed also to this 
high data quality. In the Condor seamount (Azores) the collection of 
reliable measurements on fish body size and biomass of the commer
cially-important fishes Helicolenus dactylopterus and Pagellus bogaraveo 

using appropriate sampling methods (long-line surveys) over the period 
1983–2017 (with gaps) allowed the collection of high-quality data for 
the analyses. Vessel monitoring system (VMS) and electronic logbook 
data for the Reykjanes Ridge were available at very high spatial re
solution (gridded as fine as 150x150 m) that allowed the collection of 
high-quality information. In Porcupine Seabight fishing pressure data 
were represented by swept area ratio collated in ICES (2016a, 2018) 
and calculated by analysis of VMS data. 

4.2. Setup of boundary values for the assessment of environmental status 

One of the biggest challenges in assessing deep-sea environmental 
status is the lack of baselines (i.e. specific and quantifiable reference 
points against which environmental status will be assessed) and the 
difficulties of setting boundary values (e.g. a threshold value defining a 
degree of deviation from the baseline) (Borja et al., 2012). Establishing 
methods to set boundary/threshold values for assessing GES is espe
cially challenging for deep-sea ecosystems due to limited historical data 
availability which reduces confidence around the established boundary 
values. 

In this study various approaches were used to create boundary va
lues. These mainly relied upon “Expert judgement” followed by “Expert 
judgement and use of scientific literature/information from other 
places or comparison with protected areas” (Fig. 3; see also Table 1 in 
Supplementary File). Expert judgment/use of scientific literature were 
also used in previous studies assessing environmental status in areas 
inside (Uusitalo et al., 2016; Pavlidou et al., 2019) and outside Europe 
(Nemati et al., 2017) whereas Korpinen et al. (2013) followed the EU 
Habitats Directive (European Union, 1992) in their assessment of Baltic 
Sea assuming 25% of the seafloor being under significant impacts as a 
threshold value for the assessment of environmental status of soft and 
hard substrates. 

Another approach for setting a baseline is using past conditions and 

Fig. 6. Relationship between the number of indicator values and the number of categories of environmental status within each of the nine study areas. A: Azores, 
Condor seamount; BB: Bay of Biscay; FSC: Faroe-Shetland Channel; GC: Gulf of Cádiz; LOO: LoVe Ocean Observatory; MRC: Mingulay Reef Complex; PS: Porcupine 
Seabight; RB: Rockall Bank; RR: Reykjanes Ridge. 
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historic data i.e. the status of an area before the occurrence of human 
activities and their impacts (Borja et al., 2012). Unfortunately, this type 
of information is almost non-existent in the deep sea, even for the 
northeast Atlantic, the region with the longest tradition in deep-sea 
biology studies. A telling example is the Bay of Biscay where trawling 
on the slope began a century ago (Joubin, 1922) and the first biological 
data produced by the oceanographic expeditions go back in the 19th 
century (Le Danois, 1948); however, this information unfortunately 
does not meet required standards (e.g. presence of quantitative data) 
necessary to establish a baseline. 

Long-term time series through which a past date/period can be 
considered as a baseline could also be used (OSPAR, 2017; Hartman 
et al., 2012 for the Porcupine Abyssal Plain Sustained Observatory 
fixed-point time-series). Although long-term data (e.g. > 10 years) in 
the deep sea are very limited, some exceptions exist: for example, the 
30-year time series of fishery data available from Rockall Bank. This 
offers information on fish body length and abundance. However, even 
in that case the establishment of boundary values for assessing the 
environmental status is problematic as there is limited understanding 
about the role of environmental natural variability [e.g. type of sub
strate (Landres et al., 1999; Henry and Roberts, 2007; Bourque and 
Demopoulos, 2018), water-mass characteristics (Hátún, et al., 2009; 
Puerta et al., 2020), and food supply (Klitgaard and Tendal, 2004; 
Kazanidis and Witte, 2016)] in shaping ecosystem structure and func
tioning. Indeed, ecosystem variability has been identified as one of the 
most common critical issues complicating the implementation of policy 
frameworks (Alexander et al., 2015). For example, in the North Atlantic 
pronounced changes in the fauna across trophic levels over nearly a 
century have been attributed to changes in the strength and extent of 
the subpolar gyre (Hátún et al., 2009), which complicates the estab
lishment of threshold values. 

The identification of pristine areas free from anthropogenic pres
sures, e.g. deep-sea Marine Protected Areas (MPAs) or Special Areas of 
Conservation (SACs) were also suggested as a possible pathway for the 
setup of baselines. In the northeast Atlantic a number of deep-sea 
MPAs/SACs, have been established (e.g. the Sedlo seamount MPA, the 
Faroe-Shetland Channel MPA, the Rosemary Bank seamount MPA, the 
East Mingulay and Darwin Mounds SACs, Natura 2000 areas in Bay of 
Biscay, west coast of Ireland and northern Spain - http://natura2000. 
eea.europa.eu/). Comparisons between areas inside and outside the 
Faroe-Shetland Channel MPA have shown that deep-sea sponge ag
gregations inside the MPA had higher sponge morphotype diversity/ 
richness/density and higher number of body-size cohorts than areas 
outside the MPA; the main parameter driving these differences was the 
lower bottom fishing pressure inside than outside the MPA (Kazanidis 
et al., 2019). Furthermore, monitoring of cold-water corals in the 
Darwin Mounds revealed no coral recolonisation and very little re
growth eight years after the closure to bottom contact fisheries 
(Huvenne et al., 2016). It is, however, unknown the extent that deep- 
sea MPAs could be used as a basis to set-up baselines as differences in 
the structure and functioning of deep-sea ecosystems can arise not only 
due to human activities but also due to environmental natural varia
bility [e.g. habitat type (Henry and Roberts, 2007; Bourque and 
Demopoulos, 2018), water-mass characteristics (Hátún, et al., 2009; 
Puerta et al., 2020), and food supply (Klitgaard and Tendal, 2004; 
Kazanidis and Witte, 2016)]. 

4.3. Potential most suitable indicators for the assessment of deep-sea 
environmental status 

The widespread use of the indicator “Areal extent of human affected 
area” indicates the relatively high data availability regarding deep-sea 
areas affected by demersal fisheries. This suggests the high potential of 
this indicator to be used for future assessments of deep-sea environ
mental status, specifically addressing the GES Decision (European 
Commission, 2017) D6.2 Criterion “Spatial extent and distribution of 

physical disturbance pressures on the seabed”. Knowledge on the spa
tial extent of human-affected areas in the deep sea already exists for 
some areas (e.g. Hatton and Rockall Bank, Benn et al., 2010; Norwegian 
reefs: Buhl-Mortensen and Buhl-Mortensen, 2017; Porcupine Seabight:  
Vieira et al., 2019, 2020; Gulf of Cádiz: Díaz-del-Río et al., 2014), and it 
is fundamental to assess the deep-sea status due to the high sensitivity 
of deep-sea species to physical damage and sedimentation following 
seabed disturbance (Roberts et al., 2000; Puig et al., 2012; Pusceddu 
et al., 2014; Huvenne et al., 2016). The usefulness of this indicator is 
enhanced when data on “Areal extent of biogenic/vulnerable habitats” 
are also available as this allows to overlay pressure and status in
dicators. In this assessment data for these two indicators were available 
for the LoVe Ocean Observatory and Bay of Biscay; the data quality, 
however, for “Areal extent of biogenic/vulnerable habitats” was mainly 
considered “poor”. This highlights the urgent need to improve the 
quantity and quality of data on the spatial distribution of biogenic/ 
vulnerable habitats (Section 4.5). In previous assessments the indicators 
“Physical Damage” and “Cumulative impacts on seabed habitats” were 
used in OSPAR (2017) and Korpinen et al. (2013) to assess the impact of 
anthropogenic activities in northeast Atlantic and Baltic Sea deep-sea 
habitats, respectively. In principle, these indicators used habitat maps, 
sensitivity/resilience to disturbance and distribution/intensity of 
human activities highlighting the urgent need to advance our under
standing about the distribution of habitats, and especially those that are 
particularly vulnerable to human pressures, in the deep sea. 

Case-study leaders have identified some new indicators (i.e. other 
than those already existing in NEAT database; highlighted in grey in  
Table 3) that could contribute in the assessment of the deep-sea en
vironmental status. Three of these indicators are related to non-com
mercial fish (i.e. “Abundance of non-commercial demersal fish and 
cephalopods”, “Species richness of non-commercial fish” and “Species 
diversity (Shannon index) of non-commercial fish”). Several of these 
non-commercial species play an important role in ecosystem func
tioning and/or are included in endangered species list and thus their 
assessment is important. For example, 1) several fish species feed on 
Trisopterus minutus (Magnussen and Magnussen, 2009), 2) Capros aper 
has a pivotal position on marine food webs grazing on zooplankton and 
being also an important prey for commercial species (Lopes et al., 2006) 
and 3) black-legged kittiwake seabirds rely on the sand eel Ammodytes 
marinus (Arnott and Ruxton, 2002). Furthermore, Eutrigla gurnardus is a 
new potential commercial species and ICES has recommended that 
landings and discards are monitored (McCarthy et al., 2018). Finally, 
skates in the genus Dipturus are critically endangered according to the 
IUCN Red List of Threatened Species (Dulvy et al., 2006). On top of the 
indicators related to non-commercial fish, there was also a new in
dicator suggested related to commercial fish i.e. “Abundance of com
mercial fish”. The abundance of Micromesistius poutassou showed 
striking shifts since late 1990’s with the mechanisms driving these 
changes remaining unknown (Payne et al., 2012) while the distribution 
of Helicolenus dactylopterus in the North Atlantic is expected to continue 
to shift northwards by 2100, following changes in water-mass char
acteristics (Morato et al., 2020). The indicator “Abundance of com
mercial fish” mentioned here can support in the future the assessments 
of fish stocks done using indicators like “Proportion of large fish” and 
“Change in average trophic level of marine predators” (OSPAR, 2017). 
The indicator “Ratio of live versus dead/overgrown coral cover” can be 
useful in the assessment of environmental status of coral reefs and 
gardens. Corals are exposed to multiple pressures (e.g. ocean warming, 
acidification, deoxygenation) which can cause a decline in their health 
(Hennige et al., 2015; Büscher et al., 2017). Visual surveys accom
panied by machine learning are expected to contribute efficiently in the 
assessment of status of coral habitats in the coming years (Vad et al., 
2017; Piechaud et al., 2019; see also in Section 4.5). The indicator 
“Areal extent of sedimentary seafloor” can contribute to the assessment 
of deep-sea sedimentary habitats. This is particularly relevant as some 
of studies have shown that bottom trawling can have large-scale 
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detrimental impacts on sediments reducing their structural complexity, 
carbon content, carbon turnover and meiofauna biodiversity (Puig 
et al., 2012; Pusceddu et al., 2014). Finally, two indicators related to 
marine litter have been suggested which also can facilitate the assess
ment of deep-sea environmental status. Indeed, experimental work has 
shown that both macro- and microplastics significantly reduced skeletal 
growth rates in the reef-forming cold-water coral Lophelia pertusa 
(Chapron et al., 2018) while abandoned fishing gear can be harmful for 
deep-sea fauna (e.g. ghost fishing – Tubau et al., 2015). 

4.4. Evaluating the performance of the NEAT software – references to other 
approaches previously used to assess deep-sea environmental status 

Considering a) the results of the NEAT analyses, b) the level of 
agreement between these results and expert judgement and c) the 
available information in scientific literature, it can be concluded that 
overall NEAT had a meaningful performance in the assessment of the 
environmental status in the nine deep-sea areas studied here. This is 
especially supported by the good match between the gradient of human 
pressures and resulting environmental status e.g. NEAT managed to 
show that SAUs under long-standing human pressures were in lower 
environmental status than other SAUs where human pressures were less 
(see below). In addition, NEAT managed to capture the response of 
ecosystem components to management measures showing an im
provement in the status of commercially important fish following 
fisheries closure, as in the Condor seamount (Azores). 

The level of agreement between the outcome of NEAT analysis and 
ATLAS expert judgement ranged from moderate to excellent (Table 4). 
The deeper areas of the Porcupine Seabight were in good status (Tables 
4-5; see also Figs. 1-2 in Supplementary File) mainly due to low swept 
area ratio values; expert judgement was in agreement with NEAT re
sults. After a long period of exhaustive exploitation until the early 
2000s (Vieira et al., 2019), the implementation of restrictive measures 
by EC in 2002 reduced the fishing pressure on deep-water fishes and the 
overall biomass of commercial stocks increased (ICES, 2016b). This 
improvement of the stock situations was also described in OSPAR 
(2017). The Deep-Sea regulation (European Union, 2016) limited the 
use of specific fishing gears below 800 m water depth including the 
prohibition of bottom fisheries in areas hosting VMEs, such as the 
Porcupine Seabight. NEAT outcome for the LoVe Ocean Observatory 
showed that the area was also in good status (Tables 4-5; see also  
Figs. 1-2 in Supplementary File) which was in agreement with expert 
judgement. This outcome was supported from the relatively high areal 
extent and density of biogenic/vulnerable habitats as well as from the 
small (below  <  5%) extent of areas affected by bottom-contact fish
eries. Faroe-Shetland Channel and the Reykjanes Ridge showed good 
agreement between NEAT results and expert judgement (Tables 4-5; see 
also Figs. 1-2 in Supplementary File). Recent findings showed that 
sponge aggregations inside the Faroe-Shetland Channel Marine Pro
tected Area (MPA) were in better status than those outside (Kazanidis 
et al., 2019); very little marine litter was also observed (Pham et al., 
2014) and demersal landings/ICES rectangle were much lower inside 
than outside the MPA. The NEAT analysis suggested a moderate en
vironmental status for the Reykjanes Ridge. This outcome was sup
ported by the fact that some of the examined areas were under strong 
fishing pressure (Ragnarsson and Steingrimsson, 2003). 

In four study areas there was a moderate agreement between NEAT 
results and expert judgement. NEAT showed an overall poor environ
mental status for Mingulay Reef Complex (Tables 4-5; see also Figs. 1-2 
in Supplementary File). This outcome was in contradiction with expert’s 
judgement who mentioned that good status should be expected for this 
CWC reef. This discrepancy was an outcome of the very low values -due 
to methodology used- measured for “Species richness of non-commer
cial fish” and “Abundance of commercial fish” indicators (Table 1 in 
Supplementary File) which were linked to SAU-1. The combination of 
very low measured values for indicators in a large SAU had a major 

impact in the overall result of the assessment. The result of the as
sessment for the ecosystem components “benthic invertebrates” and 
“benthos” -for which data quality was good- was that both components 
were in good status, which was in complete agreement with expert 
judgement and the information from the area in the public domain 
(Roberts et al., 2005; Henry et al., 2013; Kazanidis et al., 2016; De 
Clippele et al., 2017). The results for the Mingulay Reef Complex 
highlight that low-quality data should be treated with much caution 
(Uusitalo et al., 2016). The Rockall Bank assessment also revealed a 
moderate agreement between NEAT and expert judgement. Specifically, 
the NEAT results showed a poor environmental status (Tables 4-5; see 
also Figs. 1-2 in Supplementary File). This outcome agrees with pre
vious results that highlighted the unfavorable condition of habitats (e.g. 
stony, bedrock and biogenic reefs) and ecosystem components in 
Rockall Bank’s Special Areas of Conservation due to continued mobile 
and static demersal fishing (JNCC 2018a, b). The Rockall Bank has 
supported fisheries for > 200 years (Newton et al., 2008). The reason 
for the moderate agreement between NEAT and expert judgment is the 
high natural variability of oceanographic conditions across time and the 
effect on the fish community (OSPAR, 2017 and Section 4.2). For the 
Condor seamount (Azores), NEAT showed an increase from moderate 
(Tables 4-5; see also Figs. 1-2 in Supplementary File) to good status 
(Tables 4-5; see also Figs. 1-2 in Supplementary File) for body length 
and biomass of two commercially-important fishes, after the bottom 
longline and handline fisheries closures. This outcome agrees with the 
signs of recovery for the commercially most important species here (Eva 
Giacomello pers. comm.). ATLAS experts highlighted that although 
NEAT results reflect the current situation for the two fishes, they do not 
reflect the status of the whole Condor seamount ecosystem as the 
overall condition is perceived to be good. No bottom trawling has ever 
occurred, coral gardens are still abundant and fish stocks have not 
dramatically collapsed (Menezes et al., 2013; Gomes-Pereira et al., 
2017; Parra et al., 2017). In the Gulf of Cádiz there was also moderate 
agreement between NEAT and expert judgement. SAU-2 had a lower 
environmental status than SAU-1 due to the higher trawling activity in 
SAU-2 and the much lower values for the density of biogenic reef- 
forming species, mainly sea pens in this case. The lack of historical data 
and the limited knowledge on the natural variability of this area with 
complex oceanography and seafloor morphology (Díaz-del-Río et al., 
2014) hampered the establishment of boundary values, which in turn 
led to a moderate agreement between NEAT results and expert judge
ment. Finally, for the Bay of Biscay there was no judgement expressed 
regarding the outcome of the NEAT assessment, due to the limited 
knowledge about the distribution of ecosystems components, low 
quality of data collected, limited understanding of the role of en
vironmental natural variability in shaping ecosystem structure and 
functioning and a lack of historical data. It should be mentioned that 
analysis of long-time series in the Bay of Biscay showed an increase in 
the “Typical Length” of demersal fishes, no significant changes over 
time for the pelagic fish communities and a widespread presence of 
marine litter, especially plastics, on seabed (OSPAR, 2017). 

Considering the results of the present study the reasons that lead to 
a less-than-good level of agreement can be grouped in two broad ca
tegories: 1) issues intrinsic to NEAT and 2) issues related to the quan
tity/quality of data supplied. As regards the first category, one of the 
main issues is the limited transparency in the algorithms used by NEAT 
for the assessment of environmental status. Addressing this issue in the 
future would increase confidence to the results produced by this soft
ware. Furthermore, NEAT does not currently account for the amount of 
data available per SAU or for data of low quality. Development of the 
relevant weighting schemes in the future would also increase con
fidence to NEAT outcomes. Finally, in a number of cases the standard 
error is set to zero, which artificially inflates the confidence level. We 
suggest that this is an important aspect that needs to be addressed 
(Chen et al., 2014 and references there in; Lavallé and Beaumont, 
2015). It is also important to note that expert judgement by its very 
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nature will be biased by the viewpoints of the experts concerned. This 
issue was beyond the scope of the present study. Based on the replies we 
received it seems that the characteristics of the data used by case study 
leaders (i.e. amount, type, quality, time frame covered, spatial exten
sion across the study area), the methods used/sampling design followed 
in data collection, environmental natural variability as well as knowl
edge based on scientific literature and previous surveys in the study 
areas, played a role in shaping expert judgement. 

In the second category of drivers leading to moderate agreement 
between NEAT and expert judgement explanations included scarce data 
on the structure and functioning of deep-sea ecosystems, limited un
derstanding of the role of environmental natural variability across/ 
within study areas and a lack of historical data which hindered the 
setup of baselines. These issues are among the greatest challenges to be 
addressed by experts and the tools they use for assessing the environ
mental status of the deep sea. The limited availability of information 
does not hinder solely the current assessment using NEAT. Indeed, these 
challenges are intrinsic to all the efforts aiming to the assessment of 
deep-sea environmental status irrespectively of the approach that will 
be used (expert judgement/assessment tools/ecological models; e.g.  
Borja et al., 2011; Piroddi et al., 2015; Elliott et al., 2018). The short
comings mentioned above about data availability are analogous to 
those reported in a previous assessment of disturbance in OSPAR 
Threatened and/or Declining Habitats in northeast Atlantic using the 
“Physical Damage” indicator. Limited data availability on habitat dis
tribution and species’ sensitivity to physical damage led to a partial 
assessment and classification of carbonate mounds, deep-sea sponge 
aggregations and Lophelia reefs across the nine categories of dis
turbance shown in OSPAR (2017). Furthermore, it should be mentioned 
that the role of natural variability and difficulties in the setup of 
baselines are a challenge also for assessments in shallow-water areas 
(Korpinen et al., 2013; Myrberg et al., 2019), where traditionally there 
is much higher availability of data than in the deep sea. Improvements 
in these fields will enhance the robustness of the analysis and the level 
of confidence in the produced outcomes (Section 4.5; see also González- 
Irusta et al., 2018; ICES, 2019). 

4.5. Next steps in the assessment of deep-sea environmental status 

The results of the current and previous efforts to assess the en
vironmental status in deep-sea areas highlight the big challenge that 
scientists, policy makers, industry and the public will face in the coming 
years (Orejas et al., in press). Here, we summarize how the amount and 
quality of deep-sea data could be improved. This will also facilitate the 
setup of boundary/threshold values and improve the confidence in the 
assessment of deep-sea environmental status. 

Information on human pressures remains scarce and therefore an 
easier access to Vessel Monitoring System data is imperative in order to 
improve understanding about the spatial distribution of bottom 
trawling, which is currently the main human activity resulting in 
physical damage in the deep sea over large spatial scales (Benn et al., 
2010; Amoroso et al., 2018). Intersectoral collaborations (e.g. industry- 
academia; in present study data from the LoVe Ocean Observatory were 
supplied by Equinor, an energy company) and (meta)data archiving in 
online repositories (e.g. ICES VME data base, EMODnet, PANGAEA) 
will improve knowledge about the impacts of human activities and 
ecosystem functioning, in general (Stratmann et al., 2019; Vad et al., 
2020). The assessment of the distribution of marine litter on the sea
floor will be facilitated through the data acquisition taking advantage of 
the already existing regular scientific trawling surveys and develop
ment of specific common protocols (see OSPAR, 2017; Baudrier et al., 
2018). 

Advances in recording the spatial and long-term distribution of 
ecosystem components are also fundamental to improve the accuracy of 
the deep-sea environmental status assessments. The use of updated 
technological equipment (e.g. towed cameras, autonomous underwater 

vehicles (AUVs), ROVs, benthic landers; McIntyre et al., 2013; Lavaleye 
et al., 2017; Levin et al., 2019; Van Engeland et al., 2019) contribute to 
the collection of large volumes of imagery and environmental data fa
cilitating an improved understanding of the ecosystems’ natural varia
bility across space and time. This understanding will be accelerated 
through machine learning enabling the automatic extraction of features 
(e.g. benthic ecosystem components) (Osterloff et al., 2016; Piechaud 
et al., 2019). This will contribute to a better understanding of habitat 
and species distribution when it is incorporated into ensemble mapping 
techniques (Araujo and New, 2007; Robert et al., 2016; OSPAR, 2017; 
Kenchington et al., 2019a; Ramiro-Sánchez et al., 2019). 

Research efforts need to address key points like the response of 
habitat-forming species to multiple stressors (Lunden et al., 2014; 
Hennige et al., 2015; Büscher et al., 2017) and the behavior of deep-sea 
species’ larvae (Larsson et al., 2014; Strömberg and Larsson, 2017). The 
latter is especially important in order to improve our understanding 
about connectivity among cold-water ecosystems and source-sink dy
namics (Fox et al., 2016; Kenchington et al., 2019b) which can help to 
set up priorities for environmental status assessments and conservation 
strategies. The quality of data collection will benefit from the stan
dardization of methodologies used e.g. through the establishment of 
standardized reference image databases (Howell et al., 2019) and 
protocols on data collection and reporting [e.g. marine litter as number 
of items/km2- European Commission (2017). 

5. Conclusions 

Based on the findings of the present study, we conclude that the in
dicators “Areal extent of human affected area”, “Areal extent of biogenic/ 
vulnerable habitats” and “Density of biogenic reef forming species” should 
be considered in future regional assessments of deep-sea environmental 
status as these would be more inclusive of deep-sea environments in
cluding those that form VMEs. As it was shown here, the NEAT software 
produced meaningful results which were in good/moderate agreement 
with expert judgement. There are, however, a number of issues that should 
prevent its use without advice from experts in the field of deep-sea 
ecology. We think that it would be wise to use NEAT in the assessment of 
environmental status of areas under clear gradients of human pressures. 
The software could also be used to assess the status of areas/habitats/ 
ecosystem components before and after the implementation of manage
ment measures (e.g. in the monitoring of habitats/ecosystem components 
over time within MPAs). Furthermore, considering a) the data-limited si
tuation in the deep sea, b) the need to nest data from studies conducted at 
different spatial/temporal scales and the challenges related to deep-sea 
monitoring, we suggest that the assessment of deep-sea environmental 
status should take place, at habitat and ecosystem level (rather than at 
species level), in comparison to shallow-water areas (Borja et al., 2014). It 
would also be prudent to set scientific, technical and financial criteria to 
prioritize the assessment of environmental status in areas of special im
portance such as areas acting as critical larval sources for overall network 
connectivity and/or refugia from climate change (Fox et al., 2016; 
Johnson et al., 2018; Johnson and Kenchington, 2019). 
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