
High-Throughput Elliptic Curve Cryptography
using AVX2 Vector Instructions

Hao Cheng, Johann Großschädl, Jiaqi Tian, Peter B. Rønne, and
Peter Y. A. Ryan

DCS and SnT, University of Luxembourg
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg

{hao.cheng,johann.groszschaedl,peter.roenne,peter.ryan}@uni.lu

jiaqi.tian.002@student.uni.lu

Abstract. Single-Instruction-Multiple-Data (SIMD) extensions like In-
tel’s AVX2 offer a great potential to accelerate elliptic curve cryptog-
raphy compared to a straightforward implementation using only base
x64 instructions. All existing AVX2 implementations of scalar multipli-
cation on Curve25519 and alternative elliptic curves are optimized for
low latency. We argue in this paper that many applications, most no-
tably server-side TLS handshake processing, would benefit more from
throughput-optimized implementations than latency-optimized ones. To
support this argument we introduce throughput-optimized AVX2 im-
plementations of variable-base scalar multiplication on Curve25519 and
fixed-base scalar multiplication on Ed25519. Both implementations per-
form four scalar multiplications in parallel, whereby each scalar mul-
tiplication uses a 64-bit element of a 256-bit AVX2 vector. The field
arithmetic is based on a radix-229 representation of the field elements,
which makes it possible to execute four parallel multiplications modulo
a multiple of p = 2255 − 19 in just 88 Skylake cycles. Four variable-base
scalar multiplications on Curve25519 require less than 250,000 Skylake
cycles, which translates into a throughput of 32,318 scalar multiplications
per second at a clock frequency of 2 GHz. For comparison, the currently
best latency-optimized AVX2 implementation reaches a throughput of
only about 21,000 scalar multiplications per second on the same Skylake
processor.

Keywords: Throughput-optimized cryptography · Curve25519 · Single
instruction multiple data (SIMD) · Advanced vector extensions (AVX2)

1 Introduction

Essentially any modern high-performance processor architecture supports vec-
tor instruction set extensions to enable parallel processing based on the Single
Instruction Multiple Data (SIMD) paradigm. Typical and well-known examples
of vector extensions include MMX, SSE, and AVX developed by Intel, AMD’s
3DNow, and the AltiVec instruction set for the PowerPC. Besides architectures
that target the personal computing and server markets, vector extensions have



2 H. Cheng et al.

also been integrated into instruction sets aimed at the embedded and mobile
domain, e.g. ARM NEON. Taking Intel’s x86/x64 platform as a case study, the
evolution of vector extensions over the past 25 years can be briefly summarized
as follows. In 1997, Intel introduced the MMX extensions for the 32-bit x86
architecture, which initially supported operations on packed integers using the
eight 64-bit wide registers of the Floating-Point (FP) unit. Two years later, in
1999, Intel announced SSE, the first of a series of so-called Streaming SIMD
eXtensions, enriching x86 by eight 128-bit registers (XMM0 to XMM7) and dozens
of new instructions to perform packed integer and FP arithmetic. Starting with
the Sandy Bridge microarchitecture (released in early 2011), Intel equipped its
x64 processors with AVX (Advanced Vector eXtensions), which added packed
FP instructions using sixteen 256-bit registers (YMM0 to YMM15). These registers
are organized in two 128-bit lanes, whereby the lower lanes are shared with
the corresponding 128-bit XMM registers. AVX2 appeared with Haswell in 2013
and enhanced AVX to support new integer instructions that are able to operate
on e.g. eight 32-bit elements, four 64-bit elements or sixteen 16-bit elements in
parallel. The most recent incarnation of AVX is AVX512, which augments the
execution environment of x64 by 32 registers of a length of 512 bits and various
new instructions. Consequently, the bitlength of SIMD registers increased from
64 to 512 over a period of just 20 years, and one can expect further extensions
in the future. For example, as recently reported in [10], the RISC-V architecture
will support vectors of a length of up to 16,384 bits.

Though originally designed to speed up audio/video processing and computer
gaming, SIMD instructions sets like SSE, AVX or NEON turned out to be also
beneficial for various kinds of cryptographic algorithms. Using prime-field-based
Elliptic Curve Cryptography (ECC) as example, an implementer can take ad-
vantage of SIMD parallelism to accelerate (i) the field arithmetic by adding or
multiplying several limbs of field elements in parallel, (ii) the curve arithmetic
by executing e.g. two or four field operations in parallel, and (iii) a combination
of both. The latency of arithmetic operations in a prime field Fp can be reduced
with the help of SIMD instructions in a very similar way as described in e.g. [4,
8, 9] for other public-key cryptosystems, most notably RSA. All these implemen-
tations have in common that they employ the product-scanning technique [11] in
combination with a reduced-radix representation (e.g. w = 28 bits per limb) to
perform multi-precision multiplication in a 2-way parallel fashion, which means
two (w × w → 2w)-bit multiplications are carried out simultaneously. Also the
point arithmetic offers various possibilities for parallel execution. For example,
the so-called ladder-step operation of the Montgomery ladder for Montgomery
curves [14] can be implemented in a 2-way or 4-way parallel fashion so that
two or four field operations are carried out in parallel, as described in e.g. [6,
Algorithm 1] and [12, Fig. 1] for AVX2. The scalar multiplication on (twisted)
Edwards curves [2] can be accelerated by parallel execution at the layer of the
point arithmetic as well. For example, 2-way and 4-way parallel implementations
of the point addition and point doubling were presented in e.g. [3, 5, 7] and [7],
respectively; these execute either two or four field-arithmetic operations in par-



High-Throughput Elliptic Curve Cryptography using AVX2 3

allel. Finally, there exist also implementations that combine parallelism at the
field-arithmetic and point-arithmetic layer, which we characterize as (n×m)-way
parallel implementations: they perform n field operations in parallel, whereby
each field operation is executed in an m-way parallel fashion and uses m elements
of a vector. For example, Faz-Hernández et al. describe in [7] a (2× 2)-way par-
allel AVX2 implementation of variable-base scalar multiplication on Curve25519
that executes in 121,000 Haswell cycles or 99,400 Skylake cycles. More recently,
Hisil et al. [12] presented an AVX512 implementation of Curve25519 that is
(4 × 2)-way parallelized (i.e. four field operations in parallel, each using two
64-bit elements) and achieved an execution time of 74,368 Skylake cycles.

Benchmarking results published in the literature show that parallel imple-
mentations of Curve25519 do not scale very well when switching from one gen-
eration of AVX to the next. While AVX512 (in theory) doubles the amount
of parallelism compared to AVX2 (since it is capable to perform operations on
eight 64-bit elements instead of four), the actual reduction in execution time
(i.e. latency) is much smaller, namely just around 25% (74,368 vs. 99,400 Sky-
lake cycles [12]). This immediately raises the question of how implementers can
exploit the massive parallelism of future SIMD extensions operating on vectors
that may be 1024 bits long, or even longer, given the diminishing gain achieved
by Hisil et al [12]. Going along with this “How” question is the “Why” question,
i.e. why are fast implementations of e.g. Curve25519 needed, or, put differently,
what applications demand low-latency implementations of Curve25519. Unfor-
tunately, none of the papers mentioned in the previous paragraph identifies a
use case or a target application for their latency-optimized implementations.
Since many security protocols nowadays support Curve25519 (e.g. TLS 1.3),
one may argue that a fast implementation of Curve25519 reduces the overall
handshake-latency a TLS client experiences when connecting to a TLS server.
The problem with this reasoning is that transmitting the public keys over the
Internet will most likely introduce an orders-of-magnitude higher latency than
the computation of the shared secret. Furthermore, given clock frequencies of
around 4 GHz, a user will most likely not recognize an execution-time reduction
by a few 10,000 clock cycles. It could now be argued that variable-base scalar
multiplication is not only needed on the client side, but has to be performed also
by the TLS server. Indeed, TLS servers of big organizations like Google or Face-
book may be confronted with several 10,000 TLS handshakes per second, and
a faster Curve25519 implementation will help them to cope with such extreme
workloads. However, what really counts on the server side is not the latency of a
single scalar multiplication, but the throughput, i.e. how many scalar multipli-
cations can be computed per second. Given this requirement, would it not make
sense to optimize a Curve25519 implementation for high throughput instead
of low latency? What throughput can a throughput-optimized implementation
achieve compared to a latency-optimized implementation? To our surprise, it
seems that both questions are not answered by the existing literature.

This paper takes a first step to answer these questions and introduces a
throughput-optimized AVX2 implementation of variable-base scalar multiplica-



4 H. Cheng et al.

tion on Curve25519 and fixed-base scalar multiplication on Ed25519. Our imple-
mentation performs a (4×1)-way parallel scalar multiplication, which means we
execute four scalar multiplication simultaneously in a SIMD fashion, whereby
each can use a different scalar and, in the case of Curve25519, a different base
point. Both the point arithmetic and the underlying field arithmetic of each
scalar multiplication use only a single 64-bit element of a 256-bit AVX2 vector.
This “coarse-grained” form of parallelism has the advantage that it is easy to
implement (by simply vectorizing a reduced-radix implementation for a 32-bit
platform) and easy to audit. In contrast to most previous AVX2 implementa-
tion, we employ a radix-229 representation of the field elements (i.e. 29 bits per
limb), which turned out to be the best option for our (4×1)-way scalar multipli-
cation when we analyzed various alternative approaches (including the classical
25/26-bits per limb variant [1]). Our benchmarking results show that, on a Sky-
lake processor, four scalar multiplications can be performed in less than 250,000
clock cycles. For comparison, the currently best latency-optimized AVX2 imple-
mentation needs more than 374,000 Skylake cycles to execute four variable-base
scalar multiplications on Curve25519, which means our software achieves a 1.5
times higher throughput than the current leader in the low-latency domain.

Availability of the Software. The source code of our software is publicly
available at https://gitlab.uni.lu/APSIA/AVXECC and released under GPLv3
license.

2 AVX2 Instruction Set

Advanced Vector eXtension version 2 (AVX2) is an instruction set extension for
SIMD enhancement, supporting packed-integer operations using 256-bit wide
registers. It was announced by Intel in 2011 and first supported with Intel’s
Haswell microarchitecture in 2013, which is thus also known as the Haswell
New Instructions. Since then, all the subsequent Intel Core microarchitectures
inherited the AVX2 unit, e.g. Broadwell, Skylake, Icelake and etc. We carried
out our experiments on the Haswell and Skylake microarchitectures since these
both are often used as the reference platforms in related works such as [7, 12,
15]. On both Haswell and Skylake microarchitectures, instructions (including
AVX2 instructions) are fetched from the instruction cache and then decoded
into micro-operations (micro-ops) by the front end. Afterwards, micro-ops are
stored in a pool and will be assigned by the superscalar execution engine to
available execution ports. Specifically, the execution engine deals with micro-
ops in a so-called out-of-order way, i.e. the execution port can handle a micro-op
before another micro-op that is from an earlier-decoded instruction. This feature
allows the processor to deal with the later instructions whose operands are ready
and improves CPU processing efficiency. There are totally eight execution ports
with different functionalities on both Haswell and Skylake microarchitectures,
namely ports 0 to 7. For both microarchitectures, ports 0, 1 and 5 can handle
micro-ops of vector instructions; ports 2, 3, 4 and 7 deal with memory access;



High-Throughput Elliptic Curve Cryptography using AVX2 5

while port 6 is able to process branchings. As for AVX2-related ports (ports
0, 1 and 5), they have different processing abilities on Haswell and Skylake. In
detail, some primary AVX2 instructions with the corresponding execution ports
are listed in the following:

– VPMULUDQ: port 0 on Haswell; ports 0 and 1 on Skylake.

– VPADDQ: ports 1 and 5 on Haswell; ports 0, 1 and 5 on Skylake.

– VPAND: ports 0, 1 and 5 on Haswell; ports 0, 1 and 5 on Skylake.

For instance of vector multiplication instruction VPMULUDQ, there are two ports of
Skylake CPU executing this instruction while only one port of Haswell CPU han-
dling the same instruction. As a result, the throughput properties of VPMULUDQ

are different on these two platforms, which is one instruction per cycle on Haswell
and two instructions per cycle on Skylake.

Concerning AVX2 vector instructions, the operands are stored in 256-bit
YMM vector registers, and each 256-bit operand can be regarded as an array of
elements. A vector instruction deals with the elements of a YMM register through
multiple parallel execution units. For example, VPADDQ takes four 64-bit wide
parallel execution units and accomplishes four 64-bit additions at once. But
AVX2 only supports up to 32-bit multipliers, for which VPMULUDQ computes the
lower 32 bits of four 64-bit elements and yields four 64-bit products.

3 Vectorized Field Arithmetic

Field operations are fundamental components of the elliptic curve arithmetic.
This section deals with (4 × 1)-way vectorized implementations of arithmetic
in F2255−19, and presents some relevant optimization techniques. Section 3.1
introduces the element vector set with radix-229 representation and explain the
reasons of this design. In Section 3.2, based on field element vector sets, we show
how to perform (4× 1)-way field operations efficiently.

3.1 Radix-229 Element Vector Set

There have been multiple discussions about how to efficiently represent 255-bit
field elements in the X25519 implementation [5, 7, 12], which state the choice
of radix is always platform-dependent. Considering AVX2 extensions and our
(4 × 1)-way strategy, we come up with a radix-229 representation for the field
element such that

f = f0 + 229f1 + 258f2 + 287f3 + 2116f4 + 2145f5 + 2174f6 + 2203f7 + 2232f8,

where each 0 ≤ fi < 229. It is called radix-229 representation since each limb
fi is 29 bits long, and it thus allows the field elements up to 9 × 29 = 261-bit



6 H. Cheng et al.

h =

g =

f =

e =

A = a0 a1 a2 a3 a4 a5 a6 a7 a8

h0

g0

f0

e0

20

20

20

20

20

h1

g1

f1

e1

+229

+229

+229

+229

+229

h2

g2

f2

e2

+258

+258

+258

+258

+258

h3

g3

f3

e3

+287

+287

+287

+287

+287

h4

g4

f4

e4

+2116

+2116

+2116

+2116

+2116

h5

g5

f5

e5

+2145

+2145

+2145

+2145

+2145

h6

g6

f6

e6

+2174

+2174

+2174

+2174

+2174

h7

g7

f7

e7

+2203

+2203

+2203

+2203

+2203

h8

g8

f8

e8

+2232

+2232

+2232

+2232

+2232

0

64

128

192

28

92

156

220

Fig. 1. Structure of a vector set A consisting of nine 256-bit limb vectors that contain
four field elements altogether (i.e. four 29-bit limbs per vector).

during the computations. We then define a radix-229 element vector set A as:

A = [e, f, g, h] = [

8∑
i=0

229iei,

8∑
i=0

229ifi,

8∑
i=0

229igi,

8∑
i=0

229ihi]

=

8∑
i=0

229i[ei, fi, gi, hi] =

8∑
i=0

229iai with ai = [ei, fi, gi, hi]. (1)

A is made up of nine 256-bit limb vectors ai, and it is consists of four field
elements (e, f , g and h) altogether, which fits (4× 1)-way field operations.

However, in most of the AVX2 implementations of X25519, e.g. [5] and [7],
the radix-225.5 representation is recommended to represent a field element f such
that

f = f0+226f1+251f2+277f3+2102f4+2128f5+2153f6+2179f7+2204f8+2230f9,

where 0 ≤ f2j < 226 and 0 ≤ f2j+1 < 225 for 0 ≤ j ≤ 4, and totally ten limbs
for an element. There are several reasons why we prefer radix-229 to radix-225.5

in our implementation. The implementations of [5] and [7] perform the field
operations in a (2 × 2)-way, which puts two limbs of each element in one 256-
bit limb vector. In this setting, both radix-229 and radix-225.5 make an element
vector set possess five limb vectors. And radix-225.5 representation offers more
available bits to delay the carry propagation. However, our implementation is
in (4× 1)-way. This means in an element vector set, there are nine limb vectors
in radix-229 but ten limb vectors in radix-225.5. The fewer limb vectors require
fewer vector instructions and contribute to faster field operations. In addition,
three available bits are sufficient for our software to delay the carry propagation
and offer high performance.

Fig. 1 illustrates the structure of an element vector set A, where elements are
in four coloured 29-bit rows, and each column represents a limb vector ai. Our
implementation executes four scalar multiplication instances in parallel so that
integers e, f , g and h are from different instances, and there is no dependency



High-Throughput Elliptic Curve Cryptography using AVX2 7

among four elements. The precise bit position of 256-bit limb vector is on the
right side of the column of a8. Since VPMULUDQ instruction multiplies only lower
32 bits of each 64-bit lane of the input operands, we store each limb at the bit
position from 64i to 64i+ 28 for 0 ≤ i ≤ 3. Besides, the radix-229 representation
provides three available bits to delay the carry propagation. During the compu-
tations of our software, the limb of elements can be more than 29-bit but always
do not exceed 31-bit, i.e. at the bit position from 64i to 64i+ 30 for 0 ≤ i ≤ 3.

3.2 Implementing Field Operations with AVX2

We stipulate that all the operands here are radix-229 element vector sets, and
each limb of each field element is within 32-bit. Due to the radix-229 representa-
tion, we set the modulus p in our field operations as 26 · (2255 − 19) to facilitate
computations. The simple C code of all the (4 × 1)-way vectorized field oper-
ations are shown in Listing 2 at Appendix A. In particular, the (4 × 1)-way
field multiplication is described in Listing 1 in this section, and with a graphic
illustration in Fig. 2.

Addition. The vectorized addition R = A +B is implemented in a straight-
forward way, where only nine VPADDQ instructions to compute ri = ai + bi for
0 ≤ i ≤ 8. In essence, we replace a modular addition by an ordinary addition
without the modulo-p reduction. Our addition delays the carry propagation and
allows each limb of sum R to expand one more bit.

Subtraction. We compute r = 2p+ a− b instead of r = a− b for each instance
to avoid getting any negative intermediate values. Besides, we developed two
types of field subtraction: one is an ordinary subtraction, and the other one is
a modular subtraction. We observed that our software does not strictly require
each subtraction to perform the carry propagation and reduction operation.
Therefore, if we use ordinary subtraction properly, i.e. do not cause overflow,
the implementation performance will be improved. The ordinary subtraction is
similar to the field addition, and it uses nine VPADDQ and VPSUBQ instructions.
Compared to it, the modular subtraction is more costly due to the cost of carry
propagation and reduction.

Multiplication. Modular multiplication is usually regarded as the most critical
field operation due to a high frequency of use and relatively large latency (com-
pared with other field operations), which deserves more care. Our design aims at
minimising the sequential dependencies among the involved instructions. With
this benefit, the processor can deal with instructions as much as in parallel (i.e.
makes fully use of the different execution ports), whereby accelerates the entire
modular multiplication. However, tuning code to weaken or even get rid of the
encumbering from dependency chains sometimes will import extra instructions



8 H. Cheng et al.

Listing 1. Simple C implementation of (4× 1)-way field multiplication

1 #include <immintrin.h>
2 #define ADD(X,Y) _mm256_add_epi64(X,Y) /* VPADDQ */
3 #define MUL(X,Y) _mm256_mul_epu32(X,Y) /* VPMULUDQ */
4 #define AND(X,Y) _mm256_and_si256(X,Y) /* VPAND */
5 #define SRL(X,Y) _mm256_srli_epi64(X,Y) /* VPSRLQ */
6 #define BCAST(X) _mm256_set1_epi64x(X) /* VPBROADCASTQ */
7 #define MASK29 0x1fffffff /* mask of 29 LSBs */
8

9 void fp_mul(__m256i *r, const __m256i *a, const __m256i *b)
10 {
11 int i, j, k; __m256i t[9], accu;
12

13 /* 1st loop of the product -scanning multiplication */
14 for (i = 0; i < 9; i++) {
15 t[i] = BCAST(0);
16 for(j = 0, k = i; k >= 0; j++, k--)
17 t[i] = ADD(t[i], MUL(a[j], b[k]));
18 }
19 accu = SRL(t[8], 29);
20 t[8] = AND(t[8], BCAST(MASK29));
21

22 /* 2nd loop of the product -scanning multiplication */
23 for (i = 9; i < 17; i++) {
24 for (j = i-8, k = 8; j < 9; j++, k--)
25 accu = ADD(accu , MUL(a[j], b[k]));
26 r[i-9] = AND(accu , BCAST(MASK29));
27 accu = SRL(accu , 29);
28 }
29 r[8] = accu;
30

31 /* modulo reduction and conversion to 29-bit limbs */
32 accu = BCAST(0);
33 for (i = 0; i < 9; i++) {
34 accu = ADD(accu , MUL(r[i], BCAST(64*19))));
35 accu = ADD(accu , t[i]);
36 r[i] = AND(accu , BCAST(MASK29));
37 accu = SRL(accu , 29);
38 }
39

40 /* limbs in r[0] can finally be 30 bits long */
41 r[0] = ADD(r[0], MUL(accu , BCAST(64*19)));
42 }

and in return slow down the software. Finding an optimal multiplication strat-
egy, which reasonably schedules an instruction sequence and fully exploits the
platform’s parallel processing capability, is a challenging task.

Taking into account the different latency and throughput properties of var-
ious AVX2 instructions, we conducted experiments with a dozen self-developed
variants of modular multiplication. All the variants use a product-scanning ap-
proach [11]. The distinctions among these variants include but are not limited
to:

1. The modulo-q reduction is either separated or interleaved with the multipli-
cation. If interleaved, how to interleave both.

2. Different plans of the carry propagation.

3. Whether and how to store intermediate values in local variables.



High-Throughput Elliptic Curve Cryptography using AVX2 9

A

B

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

×

0 1 2 3 4 5 6 7 8 9 1011121314151617

T ‖ R

modp

0 1 2 3 4 5 6 7 8

R

Fig. 2. (4× 1)-way vectorized field multiplication.

At last, a benchmark of all the variants told us which one is the fastest. Listing 1
shows our (4×1)-way field multiplication, which performs the product-scanning
multiplication and the modular reduction separately. It takes advantage of a lo-
cal array t, to keep intermediate products generated in the first loop, whereby
the sequential dependencies of intermediate products in that loop are thoroughly
eliminated. But there are dependency chains in the second loop regarding up-
dates of the accumulator accu. In Figure 2, a joint vector set T ‖ R stores the
intermediate product of A×B, with corresponds to arrays t and r in Listing 1.
After the product-scanning multiplication, a modulo-p reduction is performed
and obtains the result R.

We take the routine of a single lane as an example to analyze and prove there
is no overflow. In our implementation, the most extreme case of field multipli-
cation is that one operand a is an output of an ordinary subtraction and the
other one b is a sum of the addition operation. The boundary of each limb of a
and b are respectively ai < 230.59 and bi < 230.01. During the product-scanning
multiplication, the theoretical maximal value appears in computing

t7 = a0b7 + a1b6 + a2b5 + a3b4 + a4b3 + a5b2 + a6b1 + a7b0,

and therefore t7 < 263.61. Yet, the theoretical maximal value of the whole mod-
ular multiplication appears in the reduction operation, i.e. computing accu′ =
accu + r7 × 19 × 64 + t7 (corresponding to lines 34 and 35 in Listing 1). Ob-
viously, accu < 235 and r7 < 229 so that accu′ < 263.62, which proves that no
intermediate value exceeds 64 bits during the field multiplication.

Squaring. Modular squaring R = A2 mod p can be considered as the special
case of modular multiplication where two operands are the same. In general,
squaring is faster than multiplication, because the product of aiaj where i 6= j
is computed twice during the squaring. We can thereby compute products aiaj

and double them by the bit-wise shift to save numerous instructions. In the



10 H. Cheng et al.

Op. ParLadStep Instance 0 Instance 1 Instance 2 Instance 3

1 T ←XP +ZP e← xA + zA f ← xB + zB g ← xC + zC h← xD + zD
2 XP ←XP −ZP xA ← xA − zA xB ← xB − zB xC ← xC − zC xD ← xD − zD
3 T ′ ←XQ +ZQ e′ ← xI + zI f ′ ← xJ + zJ g′ ← xK + zK h′ ← xL + zL
4 XQ ←XQ −ZQ xI ← xI − zI xJ ← xJ − zJ xK ← xK − zK xL ← xL − zL
5 ZP ← T 2 xA ← e2 xB ← f2 xC ← g2 xD ← h2

6 ZQ ← T ′ ×XP zI ← e′ × xA zJ ← f ′ × xB zK ← g′ × xC zL ← h′ × xD
7 T ′ ←XQ × T e′ ← xI × e f ′ ← xJ × f g′ ← xK × g h′ ← xL × h
8 T ←XP

2 e← xA
2 f ← xB

2 g ← xC
2 h← xD

2

9 XP ← ZP × T xA ← zA × e xB ← zB × f xC ← zC × g xD ← zD × h
10 T ← ZP − T e← zA − e f ← zB − f g ← zC − g h← zD − h
11 XQ ← T × π xI ← e× π xJ ← f × π xK ← g × π xL ← h× π
12 XQ ←XQ +ZP xI ← xI + zA xJ ← xJ + zB xK ← xK + zC xL ← xL + zD
13 ZP ←XQ × T zA ← xI × e zB ← xJ × f zC ← xK × g zD ← xL × h
14 T ← T ′ +ZQ e← e′ + zI f ← f ′ + zJ g ← g′ + zK h← h′ + zL
15 XQ ← T 2 xI ← e2 xJ ← f2 xK ← g2 xL ← h2

16 T ← T ′ −ZQ e← e′ − zI f ← f ′ − zJ g ← g′ − zK h← h′ − zL
17 T ′ ← T 2 e′ ← e2 f ′ ← f2 g′ ← g2 h′ ← h2

18 ZQ ← T ′ ×Ω zI ← e′ × α zJ ← f ′ × β zK ← g′ × γ zL ← h′ × δ

Fig. 3. Parallel Montgomery ladder step of our implementation

beginning, we also developed several variants of modular squaring according to
the same rationales of designing modular multiplications. Likewise, the modular
squaring based on the same modular multiplication algorithm that we described
before, i.e. Listing 1, possesses the best performance.

4 The (4× 1)-Way Scalar Multiplication

The complete ECDH relies on two types of point scalar multiplications that one
operates on a fixed base point (for key generation) and the other one works
with variable base points (for computing the shared secret). As stated before,
both fixed-base and variable-base scalar multiplications of our software are in
(4× 1)-parallel way.

4.1 Variable-Base Scalar Multiplication

Montgomery ladder [14] is the most commonly used algorithm for variable-base
scalar multiplication, which performs one ladder step for each scalar bit. In
essence, a ladder step consists of a differential point addition and a point dou-
bling, only concerning the x and z coordinates of points in projective coordinates.
Moreover, the Montgomery ladder possesses constant running time since each
ladder step is performed by a fixed instruction sequence.

Point Vector Set. Similar to the element vector set, the point vector set is also
4-way i.e. each point vector set contains four points altogether. For example, a



High-Throughput Elliptic Curve Cryptography using AVX2 11

point vector set in affine coordinates is:

P = [A,B, C,D] = [(xA, yA), (xB, yB), (xC , yC), (xD, yD)]

= ([xA, xB, xC , xD], [yA, yB, yC , yD]) = (XP ,YP). (2)

Similarly, the point vector set in projective coordinates is P = [XP ,YP ,ZP ].

(4× 1)-Way Montgomery Ladder. A conventional Montgomery ladder up-
dates two points P and Q, or rather their x- and z-coordinates, by using the
base point’s x-coordinate ω (i.e. public key of the other party) and the bit-string
of the scalar. As for the ladder step, it updates the x- and z-coordinates of two
points, i.e. (xP , zP) and (xQ, zQ), with also the input of ω. However, in our im-
plementation, they should be switched to the corresponding vector sets. In detail,
we define the conventional ladder step as (P,Q)← LadStep(P,Q, ω) while the
parallel Montgomery ladder step as (P ,Q)← ParLadStep(P ,Q,Ω). Suppose
that two point vector sets P = [A,B, C,D] and Q = [I,J ,K,L], and element
vector set Ω = [α, β, γ, δ], the relation between LadStep and ParLadStep
can be explained as follows:

ParLadStep(P,Q,Ω)

=ParLadStep([A,B, C,D], [I,J ,K,L], [α, β, γ, δ])

=[LadStep(A, I, α),LadStep(B,J , β),LadStep(C,K, γ),LadStep(D,L, δ)]
→[(A, I), (B,J ), (C,K), (D,L)] = ([A,B, C,D], [I,J ,K,L]) = (P,Q) (3)

The details of Equation (3) and the instruction sequence of a ladder step are
shown in Fig. 3, where the ordinary subtraction r = 2p + a − b is highlighted
(the 2nd and 10th operation). There are also two temporary element vector sets
T = [e, f, g, h] and T ′ = [e′, f ′, g′, h′]. Furthermore, a vector π = [π, π, π, π]
contains four same constants that are the public parameters of curve, i.e. each
π = (a− 2)/4 = 121665 for Curve25519.

4.2 Fixed-Base Scalar Multiplication

The fixed-base scalar multiplication R = kB is generally carried out on Ed25519,
a twisted Edwards curve that is birationally equivalent to Curve25519, to gain a
speed improvement. This scalar multiplication takes a fixed base point B with the
y-coordinate of 4/5 (corresponding to the standard base point in Montgomery
curve), and the scalar k is a random 255-bit integer. In detail, the scalar k can be
written as Σ63

i=016iki where ki ∈ {−8,−7, . . . , 7}. R = kB is therefore computed
through

R =

63∑
i=0

ki · 16iB. (4)

An efficient and popular technique regarding the computation of Equation (4)
has been researched by Bernstein et al. in [3], which takes advantage of a pre-
computed look-up table. The table stores eight multiples of each 16iB, i.e.



12 H. Cheng et al.

{162iB, 2 · 162iB, . . . , 8 · 162iB}, and it thus consists of totally 64 × 8 = 512
points. One can rapidly obtain each |ki| · 16iB by searching |ki| with i in the
table with constant time, and then compute ki ·16iB according to the sign of ki.
This table-based method saves considerable computations of point arithmetic
and speeds up the software. However, the look-up table accordingly consumes
some memory. A better trade-off has also been proposed in [3], which divides
the Equation (4) into two parts:

R =

31∑
i=0

k2i · 162iB + 16 ·
31∑
i=0

k2i+1 · 162iB. (5)

At the cost of four point doublings, it halves the size of the table (from 64 × 8
to 32 × 8) and only brings little speed loss. Our implementation is developed
according to this method of Equation (5) and perform the parallel fixed-base
scalar multiplication in (4× 1)-way, i.e.

R =

31∑
i=0

k2i · 162iB + 16 ·
31∑
i=0

k2i+1 · 162iB, (6)

where B = [B,B,B,B]; i.e., every instance uses the standard base point. Hence,
the table in our software need not to be constructed as a vectorized table i.e.
made up of four duplicate tables. We can just create a conventional precomputed
table and use the VPBROADCASTQ instruction to broadcast values to four instances.

Look-Up Table. As explained before, the precomputed table stores 32 × 8 =
256 points, all of which are the multiples of base B. We take advantage of full-
radix representation [7] instead of the reduced-radix to store each point in the
table, i.e. the limb of point’s coordinate is 32 bits long. By this way, each co-
ordinate (i.e. a field element) contains eight 32-bit limbs. Therefore, each point
takes 96 bytes while the whole look-up table amounts to 24 kB. Moreover, the
points in the table are in extended affine coordinates (u, v, w):

u = (x+ y)/2, v = (y − x)/2, w = dxy,

where d is the public parameter of curve. This representation of coordinate
facilitates a unified mixed point addition [13] which is illustrated to be very
efficient on twisted Edwards curve. As a result, a point of the table is stored as

P = (uP , vP , wP) =

{uP0 , uP1 , uP2 , uP3 , uP4 , uP5 , uP6 , uP7},
{vP0

, vP1
, vP2

, vP3
, vP4

, vP5
, vP6

, vP7
},

{wP0
, wP1

, wP2
, wP3

, wP4
, wP5

, wP6
, wP7

}

 . (7)

Since we assign the 64-bit lane of a 256-bit YMM register to each instance, when
using VPBROADCASTQ instructions to broadcast the values of the table to YMM reg-
isters, each instruction deals with two 32-bit words that appear over the same
underline. This allows our implementation to perform less subsequent instruc-
tions and reduces latency.



High-Throughput Elliptic Curve Cryptography using AVX2 13

Table 1. CPU-cycle counts of (4× 1)-way field and point operations.

Faz-H. et al. [7] This Work
Domain Operation

Haswell Skylake Haswell Skylake

Fp

Addition 12 12 11 11
Ord. Subtraction n/a n/a 14 12
Mod. Subtraction n/a n/a 32 31
Multiplication 159 105 122 88
Squaring 114 85 87 65

twisted Edwards
Point Addition 1096 833 965 705

curve
Point Doubling n/a n/a 830 624
Table Query 208 201 218 205

Montgomery curve Ladder Step 1660† 1372† 1118 818
†
The ladder step of [7] only works for a single instance. For an intuitive comparison, we quadruple

the latency of ladder step reported in [7].

(4× 1)-Way Point Operations. There are three types of point operations in
a fixed-base scalar multiplication, i.e. point addition, point doubling and table
query (i.e. a table-based point multiplication). All of them follow the same (4×1)-
parallel way of how a ladder step behaved, where four instances are inherently
independent with each other. Analogously, each type of operations has a fixed
instruction sequence and works on point vector sets. We also make use of two
types of field subtraction to speed up the point addition and doubling. The
simple C implementations of point addition and point doubling are shown in
Listing 3 at Appendix B.

5 Performance Evaluation and Comparison

Our source codes have the fixed instructions sequence without any conditional
branches (i.e. if-else statement), so the implementation is constant-time and
secure against timing attacks. We measured the performance of our software on
the following two processors:

– a Haswell Intel Core i7-4710HQ CPU clocked at 2.5 GHz;
– a Skylake Intel Core i5-6360U CPU clocked at 2.0 GHz.

We used Clang compiler with a version 10.0.0 to compile our source codes on
both processors. The turbo-boost and hyper-threading features were disabled
during performance measurements.

Table 1 lists the latency of field and point arithmetic operations of our
software and gives a comparison to (4 × 1)-way operations developed by Faz-
Hernández et al. that reported in [7]. For the most performance-critical field op-
eration of X25519, i.e. modular multiplication, our implementation outperforms
that of [7], which respectively costs 37 and 17 clock cycles fewer on Haswell and
Skylake microarchitectures. It is not surprising that our faster field operations
contributed to faster point arithmetic at a higher level. For example, a point
addition on twisted Edwards curve of our software requires 965 clock cycles on



14 H. Cheng et al.

Table 2. The performance of our software on Haswell i7-4710HQ CPU and Skylake
i5-6360U CPU.

Platform
CPU Key Generation Shared Secret

Table Size
Frequency Latency Throughput Latency Throughput

Haswell 2.5 GHz 104,579 cycles 95,568 ops/sec 329,455 cycles 30,336 ops/sec 24 kB

Skylake 2.0 GHz 80,249 cycles 99,363 ops/sec 246,636 cycles 32,318 ops/sec 24 kB

Table 3. The performance comparison of X25519 AVX2 implementations on Haswell
CPU. The throughput data were measured at a unified frequency of 2.5 GHz.

Work Impl. CPU Compiler
Key Generation Shared Secret

Latency Throughput Latency Throughput
[cycles] [ops/sec] [cycles] [ops/sec]

Faz-H. et al. [7]
(2× 2)-way i7-4770 Clang 5.0.2 43,700 57,208† 121,000 20,661†

(2× 2)-way i7-4710HQ Clang 10.0.0 41,938 59,575 121,499 20,563

Nath et al. [15]
(4× 1)-way i7-6500U GCC 7.3.0 100,127 24,968† 120,108 20,815†

(4× 1)-way i7-4710HQ GCC 8.4.0 100,669 24,820 120,847 20,676

This work (4× 1)-way i7-4710HQ Clang 10.0.0 104,579? 95,568 329,455? 30,336
60.4% 45.7%

† [7] and [15] do not provide the throughput data. We list their theoretical throughput that obtained
through the frequency of 2.5 GHz divided by the latency.
? The latency data of our implementation is the latency of executing four instances.

Haswell CPU, which is faster than it of [7] by a factor of 14%. Our (4× 1)-way
Montgomery ladder step takes less than one thousand clock cycles on Skylake
CPU, which is only 818 cycles.

Overall performance of our implementation on Haswell and Skylake platforms
are shown in Table 2. Since our software performs four scalar multiplications in
parallel, the latency here includes four computations of key generation or shared
secret. Thanks to a 24 kB precomputed look-up table, the key generation is over
three times faster than computing the shared secret on both platforms. As for
throughput, our software can compute more than 95 thousands key generations
or 30 thousands shared secrets per second on a Haswell CPU clocked at 2.5 GHz.
When evaluated at the same CPU frequency, the throughput capacity of our
software is around 30% stronger on Skylake than on Haswell platform.

Table 3 compares our work with recent X25519 implementations with AVX2
on the Haswell microarchitecture. In order to avoid as much as possible the influ-
ence of different compilers and different processors, we downloaded and compiled
the source codes of [7] and [15] in our own experiment environment and mea-
sured their corresponding performance data. Both performance data reported
in their papers and measured by ourselves are presented in the table, and they
are listed respectively in upper and lower neighbouring rows. The performance
data measured by ourselves can also be easily recognised according to the CPU
type and a compiler of more recent version. Notably, we tried with Clang 10.0.0
to compile Nath et al.’s source codes, but the performance is not efficient as



High-Throughput Elliptic Curve Cryptography using AVX2 15

Table 4. The performance comparison of X25519 AVX2 implementations on Skylake
CPU. The throughput data were measured at a unified frequency of 2.0 GHz.

Work Impl. CPU Compiler
Key Generation Shared Secret

Latency Throughput Latency Throughput
[cycles] [ops/sec] [cycles] [ops/sec]

Faz-H. et al. [7]
(2× 2)-way i7-6700K Clang 5.0.2 34,500 57,971‡ 99,400 20,150‡

(2× 2)-way i5-6360U Clang 10.0.0 35,629 55,955 95,129 20,939

Hisil et al. [12]
(4× 1)-way i9-7900X GCC 5.4 n/a n/a 98,484 20,308†

(4× 1)-way i5-6360U GCC 8.4.0 n/a n/a 116,595 16,656

Nath et al. [15]
(4× 1)-way i7-6500U GCC 7.3.0 84,047 23,796† 95,437 20,956†

(4× 1)-way i5-6360U GCC 8.4.0 82,054 24,406 93,657 21,168

This work (4× 1)-way i5-6360U Clang 10.0.0 80,249? 99,363 246,636? 32,318
71.4% 52.7%

† [12] and [15] do not provide the throughput data. We list their theoretical throughput obtained
through the frequency of 2.0 GHz divided by the latency.
‡ [7] provides the throughput data measured on a CPU clocked at 3.6 GHz. We list the theoretical
throughput obtained through their original result scaled with a factor of 5/9 for intuitive comparison.
? The latency data of our implementation is the latency of executing four instances.

expected. A possible reason is that Nath et al. “tuned” their code to be fast
with GCC, and the software will have significant performance changes under
the compilation of two different compilers. Therefore, we used the GCC 8.4.0
that was released in March 2020 to compile their source codes and measured the
performance. Since the throughput is also CPU-frequency-dependent, we set a
unified frequency of 2.5 GHz for the comparison, which helps us only compare the
throughput of software themselves. Besides, it is able to calculate a theoretical
throughput that divides the CPU frequency by the latency of a single instance.
The implementation of [7] performs (2 × 2)-way field operations but also takes
advantage of a (4 × 1)-way table query so that its key generation is also very
efficient. Nevertheless, in terms of key generation, the throughput capacity of
our software outperforms [7] by a factor of 60.4%. As for shared secret computa-
tions, our implementation reaches a 45.7% throughput improvement compared
to the work of Nath et al. [15] which are implemented in assembly language.

The comparison between our implementation and others on Skylake platform
is reported in Table 4. Analogously, we present both the performance data in
original literatures of [7, 12, 15] and measured by ourselves. Our implementation
generates around 100 thousands key pairs per second on a Skylake CPU clocked
at 2.0 GHz, which significantly outperforms [7] by 71.4% for the throughput ca-
pability. The currently best latency-optimized variable-base scalar multiplication
was proposed by Nath et al. in [15]. And the throughput of this implementation
is a little bit higher when measured with a higher version of GCC by ourselves.
Nevertheless, the throughput of our implementation is still significantly higher
than it by a factor of 45.7%.

Moreover, both Table 3 and 4 indicate that a higher version of the compiler
cannot be determined to bring a positive or negative effect for the implementa-
tion. For example in Table 4, Hisil et al.’s implementation became slower when



16 H. Cheng et al.

using GCC 8.4.0 instead of GCC 5.4 to compile their source codes. Yet most
of the other implementations saw improvements when using a higher version
compiler.

6 Conclusion

SIMD instructions are trending to support larger operand and larger register
size. Notably, RISC-V architecture prepares to support up to 16384-bit vectors.
It is an urgent task to explore how can we fully exploit such massive parallel
processing capabilities in the ECC. When looking at Montgomery or twisted
Edwards curves and optimizing for low latency with SIMD instructions, it is
usually limited to execute four field multiplications in parallel, and more does
not seem to be possible due to sequential dependencies. In this paper, we propose
a new direction on how to take advantage of this computing resource in ECC
schemes. Our work optimizes the cryptographic software possessing the fixed
instruction sequence to perform multiple instances in parallel, which significantly
improves the throughput of the scheme on processors. Because four instances in
our implementation are independent with each other, our approach removes
the sequential dependencies among elements of a vector register. It is therefore
easily extensible to processors with more advanced vector instruction sets, and
we can exploit the full parallelism of current and future SIMD instructions.
For example, our software can be slightly modified to run eight instances on
a processor with AVX512 extension to obtain the higher throughput. On the
other hand, our software showed high performance on different platforms. On
both the Haswell and Skylake microarchitectures, it immensely improves the
throughput of ECC schemes. In a practical network environment, the server-side
of communication usually need to deal with a large number of computations
of cryptographic primitives per second. The throughput capacity of a scheme
somewhat determines the quality of network communication. Our method and
implementation provide inspiring help for the server-side to utilize elliptic curve
cryptographic schemes more efficiently.

Acknowledgements. This work was supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No. 779391
(FutureTPM).

References

1. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography — PKC
2006, volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer
Verlag, 2006.

2. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In S. Vaudenay, editor, Progress in Cryptology — AFRICACRYPT 2008,
volume 5023 of Lecture Notes in Computer Science, pages 389–405. Springer Ver-
lag, 2008.



High-Throughput Elliptic Curve Cryptography using AVX2 17

3. D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2):77–89, Sept.
2012.

4. J. W. Bos, P. L. Montgomery, D. Shumow, and G. M. Zaverucha. Montgomery
multiplication using vector instructions. In T. Lange, K. Lauter, and P. Lisonek,
editors, Selected Areas in Cryptography — SAC 2013, volume 8282 of Lecture Notes
in Computer Science, pages 471–489. Springer Verlag, 2014.

5. T. Chou. Sandy2x: New curve25519 speed records. In O. Dunkelman and L. Ke-
liher, editors, Selected Areas in Cryptography – SAC 2015, pages 145–160, Cham,
2016. Springer International Publishing.

6. A. Faz-Hernández and J. López. Fast implementation of Curve25519 using AVX2.
In K. E. Lauter and F. Rodŕıguez-Henŕıquez, editors, Progress in Cryptology —
LATINCRYPT 2015, volume 9230 of Lecture Notes in Computer Science, pages
329–345. Springer Verlag, 2015.

7. A. Faz-Hernández, J. López, and R. Dahab. High-performance implementation of
elliptic curve cryptography using vector instructions. ACM Trans. Math. Softw.,
45(3), July 2019.

8. P. Grabher, J. Großschädl, and D. Page. On software parallel implementation of
cryptographic pairings. In R. M. Avanzi, L. Keliher, and F. Sica, editors, Selected
Areas in Cryptography — SAC 2008, volume 5381 of Lecture Notes in Computer
Science, pages 35–50. Springer Verlag, 2009.

9. S. Gueron and V. Krasnov. Software implementation of modular exponentiation,
using advanced vector instructions architectures. In F. Özbudak and F. Rodŕıguez-
Henŕıquez, editors, Arithmetic of Finite Fields — WAIFI 2012, volume 7369 of
Lecture Notes in Computer Science, pages 119–135. Springer Verlag, 2012.

10. T. R. Halfhill. RISC-V vectors know no limits. Linley Newsletter, available
online at http://www.linleygroup.com/newsletters/newsletter_detail.php?

num=6154, 2020.
11. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve

Cryptography. Springer Verlag, 2004.
12. H. Hisil, B. Egrice, and M. Yassi. Fast 4 way vectorized ladder for the complete

set of montgomery curves. Cryptology ePrint Archive, Report 2020/388, 2020.
https://eprint.iacr.org/2020/388.

13. H. Hişil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves
revisited. In J. Pieprzyk, editor, Advances in Cryptology — ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 326–343. Springer Ver-
lag, 2008.

14. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, Jan. 1987.

15. K. Nath and P. Sarkar. Efficient 4-way vectorizations of the montgomery ladder.
Cryptology ePrint Archive, Report 2020/378, 2020. https://eprint.iacr.org/

2020/378.



18 H. Cheng et al.

A Implementation of Vectorized Filed Operations

Listing 2. Simple C implementation of (4× 1)-way vectorized field operations

1 #include <immintrin.h>
2 #define ADD(X,Y) _mm256_add_epi64(X,Y) /* VPADDQ */
3 #define SUB(X,Y) _mm256_sub_epi64(X,Y) /* VPSUBQ */
4 #define MUL(X,Y) _mm256_mul_epu32(X,Y) /* VPMULUDQ */
5 #define AND(X,Y) _mm256_and_si256(X,Y) /* VPAND */
6 #define SRL(X,Y) _mm256_srli_epi64(X,Y) /* VPSRLQ */
7 #define SLL(X,Y) _mm256_slli_epi64(X,Y) /* VPSLLQ */
8 #define BCAST(X) _mm256_set1_epi64x(X) /* VPBROADCASTQ */
9 #define MASK29 0x1fffffff /* mask of 29 LSBs */

10

11 /* field addition */
12 void fp_add(__m256i *r, const __m256i *a, const __m256i *b)
13 {
14 for (int i = 0; i < 9; i++) r[i] = ADD(a[i], b[i]);
15 }
16

17 /* field subtraction (without a carry propagation) */
18 void fp_sub(__m256i *r, const __m256i *a, const __m256i *b)
19 {
20 /* subtraction loop */
21 r[0] = ADD(BCAST(2*0 x1ffffb40), SUB(a[0], b[0]);
22 for (int i = 1; i < 9; i++)
23 r[i] = ADD(BCAST(2*0 x1fffffff), SUB(a[i], b[i]);
24 }
25

26 /* field subtraction (with a carry propagation) */
27 void fp_sbc(__m256i *r, const __m256i *a, const __m256i *b)
28 {
29 /* subtraction loop */
30 r[0] = ADD(BCAST(2*0 x1ffffb40), SUB(a[0], b[0]);
31 for (int i = 1; i < 9; i++)
32 r[i] = ADD(BCAST(2*0 x1fffffff), SUB(a[i], b[i]);
33

34 /* carry propagation and conversion to 29-bit limbs*/
35 for (int i = 1; i < 9; i++) {
36 r[i] = ADD(r[i], SRL(r[i-1], 29));
37 r[i-1] = AND(r[i-1], BCAST(MASK29));
38 }
39

40 /* limbs in r[0] can finally be 30 bits long */
41 r[0] = ADD(r[0], MUL(BCAST(64*19) , SRL(r[8], 29)));
42 r[8] = AND(r[8], BCAST(MASK29));
43 }
44

45 /* field squaring */
46 void fp_sqr(__m256i *r, const __m256i *a)
47 {
48 int i, j, k; __m256i t[9], accu , temp;
49

50 /* 1st loop of the product -scanning squaring */
51 t[0] = MUL(a[0],a[0]);
52 for (i = 1; i < 9; i++) {
53 t[i] = BCAST(0);
54 for (j = 0, k = i; j < k; j++, k--)
55 t[i] = ADD(t[i], MUL(a[j], a[k]));
56 t[i] = SLL(t[i], 1);
57 if (!(i&1)) t[i] = ADD(t[i], MUL(a[j], a[j]));
58 }
59 accu = SRL(t[8], 29);
60 t[8] = AND(t[8], BCAST(MASK29));
61

62 /* 2nd loop of the product -scanning squaring */



High-Throughput Elliptic Curve Cryptography using AVX2 19

63 for (i = 9; i < 16; i++) {
64 temp = BCAST(0);
65 for (j = i-8, k = 8; j < k; j++, k--)
66 temp = ADD(r[i-9], MUL(a[j], a[k]));
67 accu = ADD(accu , SLL(temp , 1));
68 if (!(i&1)) accu = ADD(accu , MUL(a[j], a[j]));
69 r[i-9] = AND(accu , BCAST(MASK29));
70 accu = SRL(accu , 29);
71 }
72 accu = ADD(accu , MUL(a[8], a[8]));
73 r[7] = AND(accu , BCAST(MASK29));
74 r[8] = SRL(accu , 29);
75

76 /* modulo reduction and conversion to 29-bit limbs */
77 accu = BCAST(0);
78 for (i = 0; i < 9; i++){
79 accu = ADD(accu , MUL(r[i], BCAST(64*19))));
80 accu = ADD(accu , t[i]);
81 r[i] = AND(accu , BCAST(MASK29));
82 accu = SRL(accu , 29);
83 }
84

85 /* limbs in r[0] can finally be 30 bits long */
86 r[0] = ADD(r[0], MUL(accu , BCAST(64*19)));
87 }

B Implementation of (4× 1)-Way Point Operations

Listing 3. Simple C implementation of (4× 1)-way point operations

1 /**
2 * @brief Point addition.
3 *
4 * @details
5 * Unified mixed addition R = P + Q on a twisted Edwards
6 * curve with a = -1.
7 *
8 * @param R Point in extended projective coordinates
9 * [x, y, z, e, h], e*h = t = x*y/z

10 * @param P Point in extended projective coordinates
11 * [x, y, z, e, h], e*h = t = x*y/z
12 * @param Q Point in extended affine coordinates
13 * [(y+x)/2, (y-x)/2, d*x*y]
14 */
15 void point_add(ExtPoint *R, ExtPoint *P, ProPoint *Q)
16 {
17 __m256i t[9];
18

19 fp_mul(t, P->e, P->h); /* T = EP ×HP */
20 fp_sub(R->e, P->y, P->x); /* ER = YP −XP */
21 fp_add(R->h, P->y, P->x); /* HR = YP + XP */
22 fp_mul(R->x, R->e, Q->y); /* XR = ER × YQ */
23 fp_mul(R->y, R->h, Q->x); /* YR = HR ×XQ */
24 fp_sub(R->e, R->y, R->x); /* ER = YR −XR */
25 fp_add(R->h, R->y, R->x); /* HR = YR + XR */
26 fp_mul(R->x, t, Q->z); /* XR = T × ZQ */
27 fp_sbc(t, P->z, R->x); /* T = ZP −XR */
28 fp_add(R->x, P->z, R->x); /* XR = ZP + XR */
29 fp_mul(R->z, t, R->x); /* ZR = T ×XR */
30 fp_mul(R->y, R->x, R->h); /* YR = XR ×HR */
31 fp_mul(R->x, R->e, t); /* XR = ER × T */
32 }
33



20 H. Cheng et al.

34 /**
35 * @brief Point doubling.
36 *
37 * @details
38 * Doubling R = 2*P on a twisted Edwards curve with a = -1.
39 *
40 * @param R Point in extended projective coordinates
41 * [x, y, z, e, h], e*h = t = x*y/z
42 * @param P Point in extended projective coordinates
43 * [x, y, z, e, h], e*h = t = x*y/z
44 */
45 void point_dbl(ExtPoint *R, ExtPoint *P)
46 {
47 __m256i t[9];
48

49 fp_sqr(R->e, P->x); /* ER = XP
2 */

50 fp_sqr(R->h, P->y); /* HR = YP
2 */

51 fp_sbc(t, R->e, R->h); /* T = ER −HR */
52 fp_add(R->h, R->e, R->h); /* HR = ER + HR */
53 fp_add(R->x, P->x, P->y); /* XR = XP + YP */

54 fp_sqr(R->e, R->x); /* ER = XR
2 */

55 fp_sub(R->e, R->h, R->e); /* ER = HR −ER */

56 fp_sqr(R->y, P->z); /* YR = ZP
2 */

57 fp_mul29(R->y, R->y, 2); /* YR = 2 · YR */
58 fp_add(R->y, t, R->y); /* YR = T + YR */
59 fp_mul(R->x, R->e, R->y); /* XR = ER × YR */
60 fp_mul(R->z, R->y, t); /* ZR = YR × T */
61 fp_mul(R->y, t, R->h); /* YR = T ×HR */
62 }


