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Abstract—SLAM approaches rely on loop closure strategies
to avoid and/or correct the inconsistencies in the resulting map.
These inconsistencies are mainly caused by the effect of sensor
noise in odometry sources. For the case of visual SLAM, loop
detection typically rely on the repetitive detection and match-
ing of texture-based keypoints. Weakly textured environments,
however, can lead to scenes lacking these kind of points and,
hence, poor-performing loop detectors. An alternative for these
environments is the use of geometrical cues such as line segments,
which are frequently present within human-made, structured
environments. Under this context, in this work, we introduce a
novel appearance-based loop closure detection method that inte-
grates lines and points to enhance performance in these scenarios.
For this purpose, we build an incremental Bag-of-Binary-Words
scheme for each visual cue to retrieve previously seen images from
the two complementary perspectives. Furthermore, we rely on a
late fusion strategy to combine the image candidates resulting
for both visual vocabularies. An effective mechanism to group
similar images close in time is applied next to reduce the effort of
the image candidate search. Finally, we propose a novel scheme to
validate geometrically the loop candidates, integrating lines into
the procedure. The proposed approach compares favourably with
other state-of-the-art methods for several datasets.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) addresses
the problem of building a map of the environment while,
at the same time, localizing the robot within the generated
map. These approaches typically depend on loop closure
strategies, which, by identifying previously seen places, cor-
rect the accumulated position error and re-localize the robot
when the tracking system fails. When images are involved
in this association procedure, this process is referred to as
appearance-based loop closure detection [1]–[4].

Many visual SLAM approaches rely on points as visual
features [5]. Despite their impressive results in highly-textured
scenarios, their performance degrades in weakly-textured en-
vironments, where it is typically difficult to find large sets
of point features. Under this context, some visual SLAM
systems have recently combined points and lines in the loop
closure stage [6], [7]. However, these works rely on off-line
Bag-of-Words (BoW) models [8]–[10]. This kind of approach
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requires a re-training step whenever the environment changes
with regard to the available, pre-trained visual vocabulary. To
overcome this shortcoming, our proposal adopts an incremen-
tal dictionary-based approach [1]–[3], [11], [12] that avoids
the pre-training. Furthermore, to solve the unavoidable spatial
verification process for loop hypothesis validation, our solution
relies only on 2D image data, contrary to other studies that
require 3D information supplied by either a stereo camera or
a previous mapping process [6], [7].

Summing up, this work proposes a novel appearance-based
loop closure detection system that achieves a high number
of loop detections by combining points and lines. As com-
mented above, we take advantage of an on-line BoW model,
based on binary descriptors [3], [9], [10], which reduces the
computational effort and avoids the classical training stage of
off-line schemes. Two visual dictionaries, one for each type
of visual feature, are maintained. To combine the information
obtained from each vocabulary, we employ a late fusion
strategy based on a ranked voting system. To conclude, we
introduce a novel and faster alternative than the traditional
RANSAC method for the spatial verification stage, which is
in charge to discard false positives obtained from the visual
vocabularies as loop candidates. The proposed loop closing
approach is validated using multiple datasets, recorded under
different environmental conditions, and it is compared against
several state-of-the-art methods.

II. LOOP CLOSURE DETECTION

In this section, we introduce our loop closure detection
approach. For a start, we detect keypoints and lines for eacha
sampled image, and next compute binary descriptors for each.
These descriptors are then used to obtain a list of the most
similar images from each visual vocabulary. The two resulting
candidate lists are fused using a ranked voting system which
integrates visual similarities from both visual perspectives.
To avoid consecutive images to compete between them as
loop closure candidates, we group them using the concept
of dynamic islands [3], and a representative image of the
best island is selected as loop candidate. Finally, this image
is assessed geometrically against the query image by using
points and lines: if the number of inliers resulting from the
spatial verification process is higher than a threshold, the loop
is accepted; otherwise it is rejected.



A. Image Description

An image It sampled at time t is described as φ(It) =
{Pt, Lt}, being Pt a set of local keypoint descriptors and
Lt a set of line descriptors extracted from the image. Point
detection and description is performed using ORB [13], while
line segments are detected using LSD [14] and described using
a binary form of LBD [15]. The set of the m point descriptors
found at image It is defined as Pt = {dt0, dt1, . . . , dtm−1},
whereas the set of the n line descriptors at It are defined as
Lt = {lt0, lt1, . . . , ltn−1}. As will be shown later, the combi-
nation of these two descriptors enhances the retrieval results
in a wider range of scenarios than only using points. This
is due to the fact that some environments may be described
more distinctively using lines than points (i.e. weakly-textured,
structured scenes), or vice versa.

B. Retrieval of Loop Closure Candidates

Loop closure candidates are obtained using OBIndex2 [3],
which combines an incremental Bag-of-Binary-Words
(BoBW) scheme jointly with an inverted file to rapidly obtain
similar images. OBIndex2 allows managing efficiently an
increasing number of visual words using a hierarchical tree
structure. In our proposal, we maintain two instances of
OBIndex2: one for points and one for lines. When an image
It is available, its features are used to retrieve the list of the
most similar images from the two visual dictionaries: on the
one hand, the list of m most similar images using points
Ct

p = {Itp0
, . . . , Itpm−1

}, and, on the other hand, the list of the
n most similar images using lines is Ct

l = {Itl0 , . . . , I
t
ln−1
}.

These lists are sorted according to their associated scores
stp(It, I

t
j) and stl(It, I

t
j), which are based on a term frequency-

inverse document frequency (tf-idf) scoring scheme. Next,
scores are min-max normalized to the range [0, 1] [3], what
allows controlling the differences in range caused by the
distribution of the visual words on each vocabulary. Finally,
we limit the number of candidates per list filtering those
images whose normalized score s̃tk is lower than a threshold.

C. Fusion of Lists of Candidates

The next step is to merge the two candidate lists Ct
p and

Ct
l to obtain a joint perspective of the retrieved loop closure

candidates. To this end, in this work, we rely on a late fusion
approach [16] by means of a ranked voted system using
the Borda count [17], a simple data fusion method based
on democratic election strategies. In our proposal, a voter
is defined for each visual dictionary. Each voter emits an
ordered list of candidates Ct

k of different size. The number
of candidates c that votes for each set is the minimum length
of the two candidate lists. Next, the top-c images on each list
Ct

k are ranked with a score bk defined as:

bk(Itj) = (c− j) s̃tk
(
It, I

t
j

)
, (1)

where j denotes the order of the image Ij in the list Ct
k and

s̃tk
(
It, I

t
j

)
is the normalized score of the image in that list.

For each image that appears in both lists, a combined Borda

score β is computed as the geometric mean of the individual
scores using equation 2:

β(Itj) =
√
bp(Itj) bl(I

t
j) . (2)

The geometric mean allows us to reduce the influence of false
positive image candidates that can appear in one of the lists.
The resulting list Ct

pl combines thus the information of the
two visual vocabularies.

Next, to deal with the fact that some environments mostly
exhibit one type of the features, images that only appear in
one of the lists are also placed into Ct

pl, although penalized
by a constant factor. Finally, Ct

pl is sorted according to the
scores β(Itj) of all the retrieved image candidates.

D. Computation of Dynamic Islands

An additional temporal consistency verification procedure is
next performed to avoid consecutive images to compete among
them as loop candidates. To this end, we rely on the concept
of dynamic islands [3]. A dynamic island Υm

n is a group of
images whose timestamps range from m to n. A set of islands
is built for each image It. To build this set, images Ii ∈ Ct

pl

are evaluated sequentially. If its timestamp lies in the [m,n]
interval, the image is associated to its corresponding island
Υm

n . If its timestamp does not overlap with any of the existing
islands, a new island is created. After processing all images
in Ct

pl, a global score g is computed for each island as:

g(Υm
n ) =

n∑
i=m

β(Iti )

m− n+ 1
. (3)

The resulting set of islands Γt is sorted in descending order
according to g. This global score represents the average of the
Borda scores, integrating hence points and lines information
from all images associated to an island. Next, a representative
island Υ∗(t) is selected among the set of resulting islands to
determine which area of the environment is the most likely to
close a loop with It. For this purpose, iBoW-LCD is based on
the concept of priority islands. Priority islands are defined as
the ones of Γt that overlap in time with the island selected at
time t−1, Υ∗(t−1). In iBoW-LCD, the island finally selected
corresponds to the priority island with the highest score g, if
any. This selection is only based on the appearance of the
images. Nonetheless, in some weakly textured environments,
this policy can fail, due to perceptual aliasing, leading to
incorrect island associations. To overcome this problem, in this
proposal, an island is retained for the next time step only if the
final selected loop candidate satisfies the spatial verification
procedure, as explained in the next section. When the best
island Υ∗(t) is identified, the image Ic with the highest Borda
score β of Υ∗(t) is selected and used in the next stage to
validate the loop.

E. Spatial Verification

Loop closure detection methods based on BoW schemes are
only based on appearance and ignore the spatial arrangement



of the image features, which can result into false detections.
To address this problem, a geometric verification procedure
is performed to validate the selected candidate Ic. To imple-
ment the spatial verification step, RANSAC is typically used
through a specific transformation model between mages [1],
[3]. Although quite robust, RANSAC is still affected by a
large amount of outliers. To minimize this, the Nearest Neigh-
bour Distance Ratio (NNDR) [18] test can be applied before
RANSAC to pre-filter certain incorrect matches. However, this
test only considers the image appearance and, hence, when
using line features, a large amount of correct line matches can
be discarded due to the similarity between descriptors. This
fact arises particularly in low-textured environments, where a
low number of points is detected and lines become the promi-
nent visual feature. New structural matching constraints have
been recently introduced, such as Local Geometric Support
(LOGOS) [19] or Grid-based Motion Statistics (GMS) [20], to
deal with this issue. These methods determine the set of inliers
between images without requiring neither RANSAC nor the
ratio test. They are based on the existent relationships between
local feature neighbourhoods, and, thus, they achieve a higher
amount of matches per frame, resulting into a reduction of
false positives.

For this work, we introduce an alternative use of GMS
to be able to deal with lines. In short, we employ a point
representation for each of the two end-points of a line segment,
so that a line is regarded as a correct match if GMS accepts
one of the two end-points. If the global number of matches
produced by GMS is higher than a threshold, then the loop
candidate is accepted; otherwise it is rejected. As will be
shown in the experiments, this alternative version of GMS
offers a good balance between performance and computational
times.

III. EXPERIMENTAL RESULTS

This section reports on a set of experiments to validate the
proposed approach. We also compare the performance of our
approach with other methods of the state of the art. As usual,
the evaluation is performed in terms of precision-recall (P-
R). To evaluate the combination of points and lines proposed
in this approach, we have selected several publicly available
datasets of different nature: from weakly-textured scenes,
which usually contain more lines than points, to highly-
textured scenes with the opposite characteristics, as well as
intermediate cases. The datasets considered for the evaluation
are: CityCentre [21] (CC), KITTI 00 [22] (K00), KITTI
06 [22] (K06) and Lip6Outdoor [1] (L6O). For each dataset,
we use the ground truth from the original authors except for
the KITTI sequences, where the ground truth provided by [23]
is employed. All experiments were performed on an Intel Core
i7-9750H (2.60 GHz) processor with 16 GB RAM.

A. General Performance

Figure 1 illustrates loop closures detected using points,
lines, the combination of both and the ground truth for the L6O
dataset. As can be observed, the combination of both features

Fig. 1. Loop closure detections found in the L6O dataset using different
visual features (Points, Lines, Points + Lines) and the corresponding ground
truth. White dots represent a detected loop closure.

Fig. 2. P-R curves for each dataset. P is 1.0 for all R values lower than 0.7.
The proposed loop closure detector is computed using two different spatial
verification procedures, GMS (top) and RANSAC (bottom).

increase the number of loop closure detections. However, this
combination does not imply increasing the processing time
per image in comparison with the use of only points, as in
[3]. The average time to process an image for the K00 dataset
in iBoW-LCD is 432.38 ms, while for our proposal we need
387.82 ms. This can be attributed to the parallel execution of
some parts of our algorithm.

Figure 2 shows the P-R curves obtained for each dataset
using either GMS (top) and RANSAC (bottom) as method
for the spatial verification procedure. Although GMS does not
achieve a recall as high as RANSAC, it is more reliable for
a SLAM system where false positives are critical. This fact is
observed in the precision axis, where lower values at the max-



TABLE I
AVERAGE TIME (MS) REQUIRED BY GMS AND RANSAC.

CC K00 K06 L6O
GMS 8.76 13.18 6.11 7.79
RANSAC 15.07 15.09 14.27 6.14

TABLE II
MAXIMUM RECALL AT 100% PRECISION.

CC K00 K06 L6O
Bampis [4] 71.14 96.53 n.a. 58.32
Gálvez-López [9] 31.61 n.a. n.a. n.a.
Mur-Artal [10] 43.03 n.a. n.a. n.a.
Cummins [8] 38.77 49.2 55.34 n.a.
Gomez-Ojeda [6] n.a. 75.9 56.9 n.a.
Tsintotas [12] n.a. 97.50 n.a. 50.0
Tsintotas [11] n.a. 93.2 n.a. n.a.
Angeli [1] n.a. n.a. n.a. 23.59
Gehrig [24] n.a. 93.1 n.a. n.a.
Khan [2] 38.92 n.a. n.a. 25.58
Garcia-Fidalgo [3] 88.25 76.50 95.53 85.24
Proposed 71.81 98.82 98.88 95.54

imum recall indicate higher false positives. Another advantage
of GMS against RANSAC is its reduction in computation time,
as can be observed in Table I, where spatial verification times
for both cases are shown.

B. Comparison with other Solutions

Table II shows the maximum recall achieved at 100%
precision for each dataset. The proposed method is compared
to other off-line and on-line approaches. The reported results
come from the original works, except for [6], which has
been obtained using the default parameters and the visual
vocabularies provided by their authors. Not available results
are indicated as n.a.. The proposed method provides in most
cases a higher recall than the other solutions. Furthermore,
our proposal outperforms the results reported by [6], which is
perhaps the most similar solution to our method.

IV. CONCLUSIONS

This paper introduces an appearance-based loop closure
detection method that combines points and lines to achieve
a higher number of loop closure identifications, especially
in weakly textured environments. This is accomplished by
means of a dual BoBW scheme, one for each visual feature,
to supply similar images from both perspectives in a fast way.
Then, a ranked voting system is used for merging both lists
of candidates. To validate the loop candidate hypothesis, we
propose a geometrical check stage using a modified version
of GMS as main approach, adapted to deal with both points
and lines. Experimental results to validate our approach have
been reported, showing that our proposal compares favourably
against several state-of-the-art methods.
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