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Abstract—Following the success of machine vision systems for
on-line automated quality and process control, in this paper
we describe an object recognition solution aiming at detecting
the presence of quality control elements in surgery toolboxes
prepared by the Sterilization Unit of a hospital. Our solution ac-
tually consists in a two-stage arbitrarily-oriented object detection
method making use of indirect regression of oriented bounding
boxes parameters. The paper describes the design process and
reports on the results obtained up to date.

Index Terms—Quality Control, Object Recognition, DCNN

I. INTRODUCTION

Machine vision systems are emerging as more and more
popular solutions for on-line automated quality and pro-
cess control applications. Enabling non-contact, thus non-
destructive inspection, optical techniques are especially well
suited when the correct manipulation of the object under
inspection is crucial. This is precisely the inspection problem
that we deal with in this paper: it consists in the detection
of a number of control elements that are placed in boxes and
bags containing surgical tools that surgeons and nurses have
to be supplied with prior to starting surgery by the sterilization
unit of the hospital. These elements provide evidence that the
tools have been properly submitted to the required cleaning
processes. Figure 1 illustrates, from left to right and top to
bottom, the four kinds of elements to be detected: the label/bar
code used to track a box/bag of tools, the yellowish seal, the
paper tape which changes to the stripped appearance when the
box/bag has been inside the autoclave, and an internal filter
which is placed inside some boxes and creates the white-dotted
texture that can be observed (instead of black-dotted).

In this work, we adopt Deep Convolutional Neural Networks
(DCNN)-based methodologies as highly robust machine-
learning approaches to face different lighting and inspection
conditions. As already known, DCNNs have already shown
good results for object recognition in images [1], although
what is most interesting is the fact that they have shown
highly promising performance for inspection applications [2].
In contrast to manually designed image processing solutions,
DCNNs automatically generate powerful features, i.e. learn
the representation, from training data by means of hierarchical
learning strategies with a minimum of human interaction or
expert process knowledge.
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Figure 1. Objects to be detected: label, seal, paper tape and internal filter. In
the same image, one can find several of these items, e.g. top-left case.

In more detail, this paper proposes a two-stage arbitrarily-
oriented detector based on SSD (Single Shot MultiBox Detec-
tor) [3]. The main contributions are as follows: (1) we design
a two-stage arbitrarily-oriented multi-category object detector,
which can successfully operate in a dense and complicated
scene; (2) unlike SSD, we select default bounding boxes by
means of an automatic clustering procedure to obtain high-
quality priors and improve object localization accuracy; and
(3) we propose a new method for oriented bounding boxes
regression.

II. DETECTOR OVERVIEW

The detector that we propose in this section comprises two
stages: in the first stage, we make use of a fine-tuned version
of SSD [3] to regress straight bounding boxes containing
the objects of interest. This version of SSD employs a set
of prior boxes configurations determined after a clustering
analysis on the training dataset (unlike the original algorithm),
to focus the search on relevant bounding boxes and improve
on object localization performance; in the second stage, from
the output of the first stage, we regress the parameters of a
rotated bounding box maximally contained into one of the
straight bounding boxes. For a start, we first describe the
parameterization we employ for the two kinds of bounding
boxes which are handled. The two stages are described next.

A. Bounding Boxes Parameterization

Figure 2[top,left] illustrates the way how bounding boxes
are parameterized for this application. On the one hand, the



Figure 2. (top) Parameterization of bounding boxes: [left] straight and
oriented boxes, [right] order of vertices for rotated boxes. (bottom) Ground
truth for dataset A [left] and B [right]. (Better seen in colour and zooming.)

yellow lines describe a 4-side polygon minimally enclosing
the object, from which the minimal rotated rectangle/bounding
box is generated, indicated by the violet lines in the figure. A
minimal straight bounding box is finally obtained from the
rotated bounding box, depicted through the red lines. The
latter is parameterized by the anchor point coordinates (cx, cy)
and the box size (wb, hb), as usual, while rotated boxes are
described by the intersects (d1, d2) of the upper side of the
rotated rectangle with the sides of the unrotated rectangle.
Optionally we also add parameter h to choose one of the
two possible rectangles which may arise from tuple (d1, d2).
Besides, we also define a clockwise order onto the four corners
of the rotated box (Fig. 2[top,right]). The aforementioned
has been used to generate the ground truth necessary during
training.

Also, as part of the ground truth, and for testing purposes,
we have defined two different datasets as for the boxes associ-
ated to the objects of every image. This is illustrated through
Fig. 2[bottom]. On the one hand, dataset A [left] defines one
box for every object of the training image. Although this seems
natural for relatively squared objects, such as the label and the
seal, it is not as straightforward for the paper tape, because
of its elongated shape, and hence we define dataset B [right]
which splits the object in several parts to favor a better training
and latter detection of this kind of objects.

B. Straight Bounding Boxes Regression

1) Base method: For regressing the unrotated bounding
boxes containing the objects of interest, we make use of SSD.
This algorithm predicts category scores and box offsets for a
fixed set of default bounding boxes using a set of convolutional
filters applied to feature maps. As a base network, it makes
use of a standard VGG16 network [1] whose fully connected
layers have been replaced by a set of auxiliary convolutional
layers progressively decreasing in size, thus enabling to per-
form predictions at multiple scales.

For a feature layer of size m × n with p channels, the
basic element for predicting parameters of a potential detection
is a 3 × 3 × p small kernel that produces either a score
for a category, or a shape offset relative to the default box

coordinates (cx, cy, w, h). At each of the m × n locations
where the kernel is applied for multiple feature maps, SSD
produces an output value, i.e. predicts offsets relative to the
default box shapes in the cell ∆(cx, cy, w, h), as well as the
per-class scores that indicate the presence of a class instance
in each of those boxes. Specifically, for each box out of k at a
given location, SSD computes c class scores and the 4 offsets
relative to the original default box shape. This results in a
total of (c + 4)k filters that are applied around each location
in the feature map, yielding (c+ 4)kmn outputs for an m×n
feature map. Given the large number of boxes generated during
a forward pass of SSD at inference time, it prunes most of
the bounding boxes by applying non-maximum suppression to
keep only the N top predictions.

To finish, the overall loss function is a weighted sum
of the localization loss Lloc (implemented as a SmoothL1
loss [4] between the predicted box l and the ground truth box
parameters g for offset regression) and the confidence loss
Lconf (implemented as a multi-category Softmax loss):

L(x, c, l, g) =
1

N
(Lconf(x, c) + αLloc(x, l, g)) (1)

where x denotes the N final predictions as xpij = {0, 1}
indicator functions for matching the i-th default box to the
j-th ground truth box of category p. Parameter α is used to
balance the impact of the classification and the bounding box
regression loss values on the final loss value (α is finally set
to 1 by cross validation). SSD thus starts with the priors as
predictions and attempt to regress closer to the ground truth
bounding boxes. The reader is referred to [3] for more details.

2) Prior boxes selection: SSD predefines a total of 6
default boxes per feature map location, i.e. scale, by imposing
different size combinations (wk, hk) manually picked. Since,
on the one hand, the shape of the correct bounding boxes
can vary significantly and, on the other hand, SSD regresses
the predicted bounding boxes from the prior boxes, a proper
selection of default boxes becomes crucial for achieving a
high detection success; as already noted in [5], such a proper
selection contributes to the stability of the underlying opti-
mization process, converges faster and improves effectively the
Intersection over Union (IoU) between predicted and correct
boxes. Hence, our object detector makes use of default boxes
selected automatically in accordance to the available data.

In more detail, we run the well-known K-means algorithm
over the bounding boxes belonging to the ground truth, using
box width and height as the clustering features. Instead of the
Euclidean distance, typically used by K-means implementa-
tions, we define IoU as a distance metric because the former
tends to miss large bounding boxes. The distance between a
sample box bi and the cluster centroid cj is hence defined as:

d(bi, cj) = 1− IoU(bi, cj) = 1− o(bi, cj)

a(bi) + a(cj)− o(bi, cj)
(2)

where o(·, ·) denotes area overlap and a(·) denotes area.
Table I shows averages of the IoU metric for hand-picked

default boxes and automatically selected boxes by clustering,



Table I
AVERAGE IOU (AVIOU) OF DEFAULT BOXES VS SELECTION APPROACH

Dataset Approach # def. boxes AvIoU (%)

A

Hand-Picked 4 35.39
Hand-Picked 5 38.53
Hand-Picked 6 51.81
Hand-Picked 10 60.24
Clustering 4 62.81
Clustering 5 67.75
Clustering 6 68.90

B

Hand-Picked 4 30.03
Hand-Picked 5 32.09
Hand-Picked 6 51.55
Hand-Picked 10 61.36
Clustering 4 65.64
Clustering 5 66.46
Clustering 6 67.25

Figure 3. Architecture of the network for rotated bounding boxes regression.

for both datasets A and B and a different number of default
boxes (for the hand-picked cases, we predefine the boxes
similarly to SSD). We can see that 4 clusters automatically
selected yields better performance than 10 hand-picked default
boxes. This means that we propose high-quality and better
parameterized default boxes. As could be expected, the more
clusters, the better is the performance (the trend can be
observed to continue for # def. boxes ≥ 7), although the
number of clusters should not be high to keep reasonable the
running time.

C. Arbitrarily-oriented Bounding Boxes Regression

For the second stage of the detector, i.e. regression of
oriented bounding boxes parameters, we consider a specifi-
cally designed lightweight CNN, since the performance re-
sulting from existing pre-trained networks, e.g. ResNet [6],
VGG16 [1], etc. did not reach the desired level.

This network (see Fig. 3), although inspired by a LeNet
architecture [7], presents several differences: (1) the input size
is 63×63 after incorporating an additional convolutional layer
at the beginning of the network, in order to avoid reducing
the image to LeNet’s 28×28 pixels, which means loosing too
much information; (2) a combination of batch normalization
and scaling layers has been added after each convolutional and

innerproduct layer, before the ReLU activation layers, in order
to decrease the effect of covariate shift from hidden layers [8];
(3) since the bounding box parameters (d1, d2, h) are values
between 0 and 1, a sigmoid layer lies between the last fully
connected layer and the loss layer; and (4) the final layer is
an Euclidean loss layer:

L(d, g) =
1

2N

∑
i∈N

(‖di1−gi1‖22+‖di2−gi2‖22+‖dih−gih‖22) (3)

where d denotes the predicted offsets and height, g denotes
the ground truth, and N is the size of the minibatch.

III. EXPERIMENTAL RESULTS

The dataset we have employed comprises 461 original
images in total, which has been augmented, as usual, by means
of rotation, scaling and mirroring. The dataset has been next
split as 2/3 of the dataset for training and the remaining 1/3 for
testing. All experiments have been conducted in Caffe, running
in a PC fitted with an NVIDIA GeForce GTX 1080 GPU, a
2.9GHz 12-core CPU with 32 Gb RAM and Ubuntu 64-bit.
In general, to distinguish true positives from false positives,
a threshold for IoU between ground truth and predicted
bounding boxes is set to 0.5, as usual. Standard recall (R),
precision (P), mean average precision (mAP) and average of
IoU (AvIoU) performance metric values [9] are computed for
quantitative evaluation and comparison.

On the one hand, we report detection results for SSD
using the default boxes automatically defined by the method
described in Section II-B2. For efficiency reasons, we have
considered clusterings in 4, 5 and 6 clusters. Table II shows
the performance data for datasets A and B, highlighting the
best results (A or B) in red. Several observations can be made
from the previous table: (1) for dataset A, best performance is
obtained for 5 default boxes, while for dataset B, performance
is better for 6 default boxes; (2) results for dataset B are better
not only for paper tape detection, as expected, but in general,

Figure 4. Detection results for (left) our method and (right) TextBoxes++.
(Better seen in colour and zooming to see the predicted red/green boxes.)



Table II
PERFORMANCE RESULTS FOR UNORIENTED OBJECT DETECTION

Datas. # Class R P mAP AvIoU

A

4

Label 0.7224 0.9425 0.7185 0.8089
Seal 0.3018 0.8421 0.2935 0.7299
Paper tape 0.4800 0.9230 0.4730 0.7789
Intl. filter 0.8181 0.9000 0.7822 0.7032

Average 0.5806 0.9019 0.5688 0.7550

5

Label 0.9030 0.9716 0.8986 0.8308
Seal 0.9622 0.9444 0.9539 0.7719
Paper tape 0.6400 0.9411 0.6272 0.7890
Intl. filter 0.7727 0.7727 0.7349 0.7022

Average 0.8195 0.9074 0.8036 0.7735

6

Label 0.9207 0.9631 0.9152 0.8040
Seal 0.8113 0.8958 0.7829 0.7302
Paper tape 0.5661 0.8975 0.5496 0.7502
Intl. filter 0.7727 0.7222 0.6375 0.7004

Average 0.7677 0.8696 0.7213 0.7462

B

4

Label 0.9637 0.9871 0.9627 0.8781
Seal 0.9693 0.9813 0.9687 0.8609
Paper Tape 0.8742 0.9704 0.8804 0.8406
Intl. Filter 0.8783 1.0000 0.8783 0.8928

Average 0.9214 0.9847 0.9225 0.8681

5

Label 0.9306 0.9870 0.9298 0.8460
Seal 0.8775 0.9772 0.8775 0.8112
Paper Tape 0.8948 0.9383 0.8893 0.7699
Intl. Filter 0.9047 0.9500 0.8714 0.8120

Average 0.9019 0.9631 0.8522 0.8098

6

Label 0.9721 0.9872 0.9729 0.8861
Seal 0.9631 0.9751 0.9618 0.8599
Paper Tape 0.8831 0.9742 0.8879 0.8486
Intl. Filter 0.9054 1.0000 0.9054 0.8927

Average 0.9309 0.9841 0.9320 0.8719

for all classes (10% increase). All experiments have been run
using Adam as network optimizer in Caffe, with a maximum
number of 2 × 105 iterations and a fixed learning rate equal
to 10−5.

On the other hand, Table III shows results for oriented
object detection, using dataset B and 6 clusters, accordingly to
the previous results. In the comparison, we consider the loss
function of (3) for both 2 terms, i.e. (d1, d2), and 3 terms,
i.e. (d1, d2, h). Additionally, we include results for AlexNet
as a baseline, properly tuned for the detection problem at
hand. Observing the table, one can see: (1) regression of 2
terms yields better results in general than regression of 3
terms (around 20% in excess); (2) results for our network
with 2 terms in the loss function outperforms the baseline
network significatively (also around 20%); (3) in general, the
paper tape is the class for which worst detection results are
obtained. The Adam optimizer has also been employed in
this case, with a learning rate equal to 0.01 and momentum
at 0.9 for speeding network convergence up; during training,
we decreased the learning rate by a factor 0.8 every 5000
iterations, for a maximum of 40000.

To finish, Fig. 4 shows, for three images, our method outper-
forming in a qualitative way TextBoxes++ [10], an arbitrarily-

Table III
PERFORMANCE RESULTS FOR ORIENTED OBJECTS DETECTION

Method Class R P mAP AvIoU

2 param.

Label 0.8204 0.8445 0.7633 0.6649
Seal 0.7346 0.8000 0.6254 0.6451
Paper tape 0.5257 0.6071 0.4080 0.5517
Intl. Filter 0.5454 0.6667 0.3916 0.5142

Average 0.6566 0.7295 0.5471 0.5940

3 param.

Label 0.6571 0.6764 0.5505 0.5718
Seal 0.6326 0.6889 0.4810 0.5480
Paper tape 0.2422 0.2797 0.1254 0.3898
Intl. Filter 0.3809 0.4210 0.2208 0.3888

Average 0.4782 0.5165 0.3444 0.4746

AlexNet

Label 0.5387 0.5546 0.3752 0.5107
Seal 0.6530 0.7111 0.5064 0.5578
Paper tape 0.1695 0.1803 0.1063 0.3624
Intl. Filter 0.5238 0.5789 0.4556 0.5289

Average 0.4713 0.5062 0.3684 0.4900

oriented text detector which we have also fine-tuned for the
quality control application. As can be observed, test images
were not taken under controlled conditions. (TextBoxes++ did
not reach IoU ≥ 0.5 in our experiments, this is the reason why
it is not included in Table III.)

IV. CONCLUSIONS AND FUTURE WORK

A two-stage arbitrarily-oriented object detection method
making use of indirect regression of oriented bounding boxes
parameters has been described. Promising results have been
reported. Future work is planned to focus on achieving pixel-
level detection within a hybrid solution making use of the
bounding box concept and semantic segmentation.
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