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Abstract. In mathematics, the Riemann Hypothesis is a conjec-
ture that the Riemann zeta function has its zeros only at the neg-
ative even integers and complex numbers with real part 1

2 . Many
consider it to be the most important unsolved problem in pure
mathematics. It is one of the seven Millennium Prize Problems se-
lected by the Clay Mathematics Institute to carry a US 1,000,000
prize for the first correct solution. In 1915, Ramanujan proved
that under the assumption of the Riemann Hypothesis, the in-
equality σ(n) < eγ × n × log log n holds for all sufficiently large
n, where σ(n) is the sum-of-divisors function and γ ≈ 0.57721 is
the Euler-Mascheroni constant. In 1984, Guy Robin proved that
the inequality is true for all n > 5040 if and only if the Riemann
Hypothesis is true. In 2002, Lagarias proved that if the inequality
σ(n) ≤ Hn + exp(Hn) × logHn holds for all n ≥ 1, then the Rie-
mann Hypothesis is true, where Hn is the nth harmonic number.
In this work, we show certain properties of these both inequalities
that leave us to a proof of the Riemann Hypothesis.

1. Introduction

As usual σ(n) is the sum-of-divisors function of n [Cho+07]:∑
d|n

d.

Define f(n) to be σ(n)
n

. Say Robins(n) holds provided

f(n) < eγ × log log n.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log
is the natural logarithm. Let Hn be

∑n
j=1

1
j
. Say Lagarias(n) holds

provided
σ(n) ≤ Hn + exp(Hn)× logHn.
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The importance of these properties is:

Theorem 1.1. [RH] If Robins(n) holds for all n > 5040, then the
Riemann Hypothesis is true [Lag02]. If Lagarias(n) holds for all n ≥ 1,
then the Riemann Hypothesis is true [Lag02].

It is known that Robins(n) and Lagarias(n) hold for many classes of
numbers n. We known this:

Lemma 1.2. [conditionally] If Robins(n) holds for some n > 5040,
then Lagarias(n) holds [Lag02].

Lemma 1.3. [not-divisible] Robins(n) holds for all n > 5040 when
2 - n [Cho+07].

We recall that an integer n is said to be square free if for every
prime divisor q of n we have q2 - n [Cho+07]. Robins(n) holds for all
n > 5040 that are square free [Cho+07]. Let core(n) denotes the square
free kernel of a natural number n [Cho+07]. We can show this:

Theorem 1.4. [pi] Let π2

6
× log log core(n) ≤ log log n for some n >

5040. Then Robins(n) holds.

Here, it is our main result:

Theorem 1.5. [main] If Lagarias(2×n) holds for some n > 5040, then
Lagarias(n) holds [Lag02].

In this way, we finally conclude that

Theorem 1.6. [final] Lagarias(n) holds for all n ≥ 1 and thus, the
Riemann Hypothesis is true.

Proof. Every possible counterexample in Lagarias(n) for some n > 5040
must comply that n is divisible by 2 because of lemmas 1.2 [con-
ditionally] and 1.3 [not-divisible]. In addition, Lagarias(n) has been
checked for all n ≤ 5040 by computer. Suppose that we need to prove
Lagarias(n) for some n > 5040 such that 2k‖n. We know by theorem 1.4
[pi], there is some k′ > 1 such that Robins(2k

′ × n) holds because of
π2

6
× log log core(n) ≤ log log(2k

′×n). Consequently, we can prove with

2k
′ ×n that Lagarias(n) also holds by a descendant argument using the

theorem 1.5 [main]. In conclusion, we show that Lagarias(n) holds for
all n ≥ 1 and therefore, the Riemann Hypothesis is true. �

2. Known Results

We use that the following are known:
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Lemma 2.1. [sigma-bound]

f(n) <
∏
p|n

p

p− 1
. [Cho+07]

Lemma 2.2. [zeta]
∞∏
k=1

1

1− 1
q2k

= ζ(2) =
π2

6
. [Edw01]

Lemma 2.3. [log-bound]

log(eγ × (n+ 1)) ≥ Hn ≥ log(eγ × n). [Lag02]

3. A Central Lemma

The following is a key lemma. It gives an upper bound on f(n) that
holds for all n. The bound is too weak to prove Robins(n) directly, but
is critical because it holds for all n. Further the bound only uses the
primes that divide n and not how many times they divide n. This is a
key insight.

Lemma 3.1. [pro] Let n > 1 and let all its prime divisors be q1 <
· · · < qm. Then,

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.

Proof. We use that lemma 2.1 [sigma-bound]:

f(n) <
m∏
i=1

qi
qi − 1

.

Now for q > 1,
1

1− 1
q2

=
q2

q2 − 1
.

So

1

1− 1
q2

× q + 1

q
=

q2

q2 − 1
× q + 1

q

=
q

q − 1
.

Then by lemma 2.2 [zeta],
m∏
k=1

1

1− 1
q2k

< ζ(2) =
π2

6
.
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Putting this together yields the proof:

f(n) <
m∏
i=1

qi
qi − 1

≤
m∏
i=1

1

1− 1
q2i

× qi + 1

qi

<
π2

6
×

m∏
i=1

qi + 1

qi
.

�

4. A Condition on core(n)

4.1. A Particular Case. We prove the Robin’s inequality for this
specific case:

Lemma 4.1. [case] Robins(n) holds for all n > 5040 when core(n) ∈
{2, 3, 5, 6, 10, 15, 30}.

Proof. Let n > 5040. Specifically, let core(n) be the product of the
primes q1, . . . , qm, such that {q1, . . . , qm} ⊆ {2, 3, 5}. We need to prove
that

f(n) < eγ × log log n

that is true when
m∏
i=1

qi
qi − 1

≤ eγ × log log n

is also true, because of lemma 2.1 [sigma-bound]. Then, we have that
m∏
i=1

qi
qi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × log log(5040) ≈ 3.81.

However, for n > 5040

eγ × log log(5040) < eγ × log log n

and hence, the proof is completed. �

4.2. Main Insight. The next theorem is a main insight. It extends
the class of n so that Robins(n) holds. The key is that the class on n
depend on how close n is to core(n). The usual classes of such n are
defined by their prime structure not by an inequality. This is perhaps
one of the main insights.

Theorem 4.2. Let π2

6
× log log core(n) ≤ log log n for some n > 5040.

Then Robins(n) holds.
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Proof. Let n′ = core(n). Let n′ be the product of the distinct primes
q1, . . . , qm. By assumption we have that

π2

6
× log log n′ ≤ log log n.

When n′ ≤ 5040, Robins(n′) holds if n′ /∈ {2, 3, 5, 6, 10, 30} [Cho+07].
However, we can ignore this case, since Robins(n) holds for all n > 5040
when core(n) ∈ {2, 3, 5, 6, 10, 30} because of lemma 4.1 [case]. When
n′ > 5040, we know that Robins(n′) holds and so

f(n′) < eγ × log log n′.

By previous lemma 3.1 [pro]

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.

Suppose by way of contradiction that Robins(n) fails. Then

f(n) ≥ eγ × log log n.

We claim that

π2

6
×

m∏
i=1

qi + 1

qi
> eγ × log log n.

Since otherwise we would have a contradiction. This shows that

π2

6
×

m∏
i=1

qi + 1

qi
>
π2

6
× eγ × log log n′.

Thus
m∏
i=1

qi + 1

qi
> eγ × log log n′,

and
m∏
i=1

qi + 1

qi
> f(n′),

This is a contradiction since f(n′) is equal to

(q1 + 1)× · · · × (qm + 1)

q1 × · · · × qm
.

�
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5. Proof of Main Theorem

Theorem 5.1. If Lagarias(2 × n) holds for some n > 5040, then
Lagarias(n) holds [Lag02].

Proof. We need to prove

σ(n) ≤ Hn + exp(Hn)× logHn.

If we multiply the both sides of the inequality by 3, then we obtain
that

3× σ(n) ≤ 3×Hn + 3× exp(Hn)× logHn.

We know that σ is submultiplicative (that is σ(2 × n) ≤ σ(2) ×
σ(n)) [Cho+07]. Moreover, we know that σ(2) = 3 [Cho+07]. In
this way, we have that

σ(2× n) ≤ 3×Hn + 3× exp(Hn)× logHn.

Hence, it is enough to prove that

H2×n + exp(H2×n)× logH2×n ≤ 3×Hn + 3× exp(Hn)× logHn.

since Lagarias(2× n) holds. Using the lemma 2.3 [log-bound], we note
that will be equivalent to prove that

log(eγ × (2× n+ 1)) + eγ × (2× n+ 1)× log log(eγ × (2× n+ 1))

≤ 3× log(eγ × n) + 3× eγ × n× log log(eγ × n).

We can check this previous inequality for all n > 5040 and thus, the
proof is finished. �
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