

Atmospheric neutrinos

Search for Light Sterile Neutrinos With Eight Years of IceCube Data C. Argüelles, on behalf of the IceCube collaboration Massachusetts Institute of Technology

onent	Full Sample Composition
ν_{μ}	$315,214{\pm}561$
$'\mu$	$2,350{\pm}48$
t. $ u_{\mu}$	481 ± 22
	23 ± 5
	1 ± 1
oheric μ	18 ± 4
	> 99.9%

Parameter constraints: Frequentist and Bayesian

Improved constraints for mass squared differences below 1eV². Preferred region at higher masses, but not significant.

The null hypothesis is rejected with an 8% p-value.

A closer look at the best-fit point

Expected shape at best-fit point

	10^{4}									·											
[/	10	-2.4	-3.5	-5.6	-5.0	-4.6	-3.9	-3.8	-2.9	-2.5	-1.7	-1.1	-0.6	-0.1	0.2	0.6	1.1	1.7	2.5	3.5	4.5
		-3.7	-4.3	-5.4	-5.0	-4.9	-4.2	-3.8	-3.3	-2.6	-2.1	-1.5	-0.9	-0.7	-0.1	-0.1	0.4	1.0	1.8	3.0	4.0
		-4.0	-4.8	-5.5	-4.4	-4.1	-3.3	-3.3	-2.9	-2.3	-1.8	-1.5	-0.9	-0.6	-0.4	-0.1	0.0	0.4	1.0	2.2	3.6
		-3.5	-4.4	-4.4	-3.5	-3.1	-2.7	-2.4	-2.3	-1.8	-1.5	-1.2	-0.9	-0.6	-0.5	-0.4	-0.3	-0.0	0.4	1.4	2.9
		-2.7	-3.7	-3.8	-2.6	-2.0	-1.9	-1.7	-1.5	-1.3	-1.2	-0.9	-0.6	-0.4	-0.3	-0.3	-0.2	-0.3	-0.0	0.7	2.0
Je Je	10 ³	-2.2	-2.9	-2.6	-1.5	-1.2	-1.0	-0.9	-0.8	-0.8	-0.6	-0.5	-0.3	-0.2	-0.1	-0.1	-0.2	-0.2	-0.2	0.1	1.1
E^{proxy}_{μ} [(-1.8	-1.9	-1.5	-0.8	-0.6	-0.5	-0.4	-0.4	-0.3	-0.3	-0.1	-0.1	-0.1	-0.0	0.0	0.0	-0.1	-0.3	-0.2	0.3
		-1.2	-1.2	-0.9	-0.4	-0.2	-0.2	-0.2	-0.2	-0.1	-0.1	-0.0	0.0	0.0	0.1	0.1	0.1	0.0	-0.1	-0.3	-0.1
		-0.7	9.0-	-0.4	-0.1	-0.0	0.0-	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0-	-0.2	-0.3
		-0.4	-0.3	-0.2	-0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	-0.1	-0.3
		-0.1	-0.1	-0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	-0.0	-0.2
		-0.0	-0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	-0.1
		0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	-0.1
		1.0			-().8		-0.6 -0.4								-0.2					0.
						$\cos(heta_z^{reco})$															

- Best-fit point found at $\Delta m_{41}^2 = 4.5 \text{ eV}^2$ and $\sin^2 2\theta_{24} = 0.1$.
- Robust feature under the removal of:
- Any year of data and
- Any group of systematics.
- Similar parameter point found when studying any year independently

 $\sin^2 2\theta_{ee} = \sin^2 2\theta_{14}$ $\sin^2 2\theta_{\mu\mu} = 4\cos^2 \theta_{14} \underline{\sin^2 \theta_{24}} (1 - \cos^2 \theta_{14} \underline{\sin^2 \theta_{24}})$ $\frac{\sin^2 2\theta_{\mu e}}{2\theta_{\mu e}} = \frac{\sin^2 2\theta_{14}}{\sin^2 \theta_{24}}$ $\sin^2 2\theta_{e\tau} = \sin^2 2\theta_{14} \cos^2 2\theta_{24} \sin^2 \theta_{34}$ $\sin^2 2\theta_{\mu\tau} = \frac{\sin^2 2\theta_{24}}{\cos^4 \theta_{14}} \sin^2 \theta_{34}$

Connection to the mixing angles: terms in red

are constrained by this analysis, those in

green by v_e disappearance experiments, *e.g.*

reactor, & **blue** is appearance, *e.g.* LSND/MB:

