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Abstract

Vessels are widely used for transporting goods around the world. All cargo vessels are affected by two main

defective situations, namely cracks and corrosion. To prevent major damage/accidents, intensive inspection schemes

must be carried out periodically, identifying the affected plates for a subsequent repair/replacement. These inspections

are performed at a great cost due to the arrangements that allow human inspectors to reach any point of the vessel

structure while guaranteeing their physical integrity and respecting all the stipulated safety measures. Technological

advances can provide alternatives to facilitate the vessel inspection and reduce the associated cost. This paper surveys

approaches which can contribute to the reengineering process of vessel visual inspection focusing on two main aspects:

robotic platforms which can be used for the visual inspection of vessels, and computer vision algorithms for the

detection of cracks and/or corrosion in images. The different approaches found in the literature are reviewed and

classified regarding their key features, what allows identifying the main trends which are being applied so far and

those which could mean an improvement in the current visual inspection.
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1. Introduction1

The seaborne trade increases year after year pushed by the global economic growth and the effectiveness of vessels2

for transporting goods around the world (United Nations Conference on Trade and Development, 2015). Each cargo3

category requires from a specific type of vessel, though around 90% of the world fleet belongs to one of the four main4

vessel types, namely bulk carriers, tankers, container ships and general cargo.5

Regardless of its category, a vessel can be affected by different kinds of defects that may appear due to several6

factors, including structural overload, errors in the vessel design, the use of sub-standard materials, poor alignments7
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or weldings, hydrodynamic or mechanically induced vibrations and coating breakdown, among others.8

Roughly speaking, and regardless of its cause, two main defective situations are typically considered: cracks9

and corrosion. Cracks generally develop at intersections of structural items or discontinuities (including changes in10

thickness) due to stress concentration, although they also may be related to material or welding defects. If the crack11

remains undetected and unrepaired, it can grow to a size where it can cause sudden fracture. Therefore, care is needed12

to visually discover fissure occurrences in areas prone to high stress concentration.13

As it is well known, corrosion may affect vessel structures in different forms:14

• general corrosion, that appears as non-protective friable rust which can occur uniformly on uncoated surfaces;15

• pitting, a localized process that is normally initiated due to local breakdown of coating and that derives, through16

corrosive attack, in deep and relatively small diameter pits that can in turn lead to hull penetration in isolated17

random places;18

• grooving, again a localized process, but this time characterized by linear shaped corrosion which occurs at19

structural intersections where water collects and flows; and20

• weld metal corrosion, which affects the weld deposits, mostly due to galvanic action with the base metal, and21

that are likelier in manual welds than in machine welds.22

To ensure the integrity of the vessel hull structures, extensive inspection schemes are carried out periodically.23

These inspections are currently conducted either as part of Class surveys, performed by a Classification Society24

following a set of strict rules which ensure the vessel satisfies seaworthiness criteria, or Condition surveys, which are25

less formal procedures commissioned by the vessel owner or the vessel operator to check whether the vessel structures26

satisfy the requirements that keep the ship operational.27

To perform a complete hull inspection, the vessel has to be emptied and situated in a dockyard (and probably in a28

dry-dock), where typically temporary staging, lifts, movable platforms, etc. need to be installed to allow the workers29

for close-up inspection of all the different metallic surfaces and structures. The items to survey depend on the type30

and age of the vessel, as well as the kind of survey that is being carried out. To illustrate the enormity of the inspection31

task, the surveying of a central cargo tank on a Very Large Crude Carrier (VLCC) can involve checking over 860 m32

of web frames (primary stiffening members) and approximately 3.2 km of longitudinal stiffeners, while the complete33

survey to verify the state of the whole vessel can mean the visual assessment of more than 600.000 m2 of steel.34

Furthermore, the surveys are on many occasions performed in a potentially hazardous environment with both35

flammable and toxic gases and significant heights involved. As a result, although accidents are extremely rare, when36
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they do arise they can have serious consequences. Due to these complications, the total cost of a single surveying37

give rise to a very significant amount once you factor in the vessel’s preparation, use of yard’s facilities, cleaning,38

ventilation, and provision of access arrangements. In addition, the owners may experience significant lost opportunity39

costs while the ship is inoperable.40

Infrastructure inspection by means of robots is a line of research that the EU has been lately supporting through the41

FP7 and H2020 programmes (projects MINOAS (Eich et al., 2014), INCASS (Ortiz et al., 2017) and ROBINS (Ortiz42

et al., 2018), among others) and through specific calls, such as Robotics in Application Areas: b) Innovation Actions43

- Robotics for infrastructure inspection and maintenance, ICT-09-2019-2020 (European Commission, 2017).44

Focusing on the particular case of vessel inspection, this paper reviews technological advances which (at least45

potentially) can facilitate such processes. To be precise, this survey reviews contributions on two key fields. Firstly,46

Section 2 reviews approaches related to robotic platforms suitable for vessel hull inspection, irrespectively of the47

mechanical structure of the device and its locomotion approach (e.g. magnetic crawlers, free-floating vehicles, aerial48

platforms, etc). Next, the survey focus on processing the data collected by the robots, particularly as regards defect49

detection by visual means. To be more precise, in Section 3, we overview vision-based detection algorithms for the50

two aforementioned kinds of defects, i.e. cracks and corrosion. Both sections finalize discussing about the current51

trends in these specific research fields. Finally, Section 4 reaches some conclusions on the topics surveyed.52

2. Robotic Platforms for Inspection53

Mobile robotic devices have been widely used for the inspection of infrastructures. In this regard, the robotics54

literature contains a number of examples about robots devised for inspecting power transmission lines (Katrašnik55

et al., 2010; Pagnano et al., 2013), dams (Ridao et al., 2010; Cruz et al., 2011), bridges (La et al., 2013; Lim et al.,56

2014), pipes and sewerage (Mirats and Garthwaite, 2010; Roslin et al., 2012), aircraft skin (Siegel and Gunatilake,57

1998; White et al., 2005), etc. In the following sections we focus on those contributions that are of interest for vessel58

inspection. In Section 2.1, we revise contributions which describe robotic platforms specifically intended for vessel59

hull inspection, including platforms devised for underwater operation and those developed for being used above the60

water line, without contemplating aerial platforms. This is because we deal with them separately in Section 2.2, where61

these are considered together with other aerial platforms intended for the inspection of any kind of infrastructure, since62

they can potentially be useful for vessel inspection.63

2.1. Robotic Platforms devised for Vessel Hull Inspection64

The robotics literature contains several contributions about robots for vessel inspection. Most of them consist in65

underwater vehicles for the inspection of the submerged part of the vessel hull. As a first example, the vehicle pre-66
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sented by Lynn and Bohlander (1999) is an underwater Remotely Operated Vehicle (ROV) intended for inspection.67

This is a free-floating vehicle which is able to take paint-thickness measurements of the underwater hull using a spe-68

cific probe. The Little Benthic Crawler (Newsome and Rodocker, 2009) is another remotely operated robot equipped69

with a camera suitable for vessel visual inspection. This is a commercial 2-piece robot consisting of a 5-thruster ROV70

and a removable 4-wheel drive crawler skid assembly. The latter houses a vortex generator which provides attractive71

force on any relatively flat surface. Another example is authored by Ishizu et al. (2012), who present the design and72

development of a mechanical contact mechanism that allows an ROV to keep a suitable position and orientation to73

improve the visual inspection of the hull.74

Autonomous Underwater Vehicles (AUV) have the potential for better coverage efficiency, improved survey pre-75

cision, and overall reduced need for human intervention. Some AUVs devised for vessel inspection are designed to76

attach and crawl over the hull surface. The Lamp Ray (Harris and Slate, 1999; D’Amaddio et al., 2001) is an under-77

water hull-crawling robot that delivers data on hull plate thickness, form and coating condition. It makes use of an78

acoustic beacon positioning system, also known as long-baseline system (LBL), for waypoint navigation, providing79

autonomy. A non-contact underwater ultrasonic (US) thickness gauge and different kinds of probes are used to per-80

form Non-Destructive Testing (NDT), to sense the hull state. The vehicle can operate in free-swimming mode until81

reaching the hull surface. Then, it holds itself using front-mounted thrusters for suction and moves on wheels over82

the hull surface, while complex geometry around (e.g. sonar domes, propeller shafts, etc.) is still generally inspected83

with a free-swimming ROV.84

The AURORA underwater robot (Akinfiev et al., 2008) is a hull-crawling robot that can clean a vessel from marine85

fouling, while simultaneously inspects the state of the hull by means of a US probe and cameras. It can be operated86

in manual mode and in two different automated modes. In the first one, the robot estimates its movement direction87

using vision to differentiate the already cleaned areas. In the second autonomous mode, the platform obtains its88

relative position by triangulation using three US sources attached to the vessel hull. Similarly, the HISMAR robotic89

system (Narewski, 2009) is conceived to keep the ship hull clean and free of biofouling in order to increase the ship90

propulsion efficiency. The vehicle is also devised to take plate thickness measurements. Similarly to the AURORA91

robot, the pilot provides control commands via an umbilical with power, control lines and hoses used for bringing92

the cleaning wastes to the surface. Position is estimated by dead-reckoning using optical technology to track the two-93

dimensional movement over the hull surface. The absolute position estimation makes use of known hull features to94

correct the current tracked position using a magnetic sensing system.95

The HROV (Hybrid-ROV) (Ferreira et al., 2013) is an underwater hull-crawling vehicle devised for the ultrasonic96

inspection of Floating, Production, Storage and Offloading (FPSO) units. Like the Lamp Ray, the HROV can also97
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be operated in free-flying mode to reach the hull surface, and then attach itself using the vertical thrusters. For98

the displacement over the hull surface, it makes use of two motorized tracks. Its sensor suite includes an altimeter99

to measure the distance to the hull, a depthmeter, an Inertial Measurement Unit (IMU) providing acceleration and100

attitude information, and a Doppler Velocity Log (DVL) which provides the hull-relative velocity and position (i.e.101

dead-reckoning via integration).102

Apart from the previous mentioned approaches, most of the contributions regarding underwater robots are based103

on free-floating platforms which are not attached to the vessel hull. The CetusII (Trimble and Belcher, 2002) is a104

free-floating AUV which uses a specifically designed LBL acoustic beacon system for navigation around ship hulls105

and similar underwater structures. The vehicle uses altimeters to maintain a constant relative distance from the hull,106

while the LBL navigation system records its position information along the hull being inspected. This system uses a107

transponder net that is deployed over the side of the ship. The inspection of the hull is performed using a forward-108

looking imaging sonar. This is a high-resolution sonar which is able to create two-dimensional (2D) acoustic intensity109

images.110

Several approaches try to provide solutions for positioning where LBL systems fail (e.g. in environments with111

extreme multipath effects). The HAUV (Hovering AUV) underwater robot (Vaganay et al., 2005, 2006; Hover et al.,112

2007) employs a DVL for hull-relative navigation and control. This sensor allows locking the AUV onto the ship113

hull, maintaining distance and orientation, and computing dead-reckoned coordinates regarding the hull surface. Data114

provided by an IMU and a depth sensor are also merged for that purpose. The SY-2 (Li et al., 2009) and the RE-115

MUS (Packard et al., 2010) AUVs make use of a similar configuration of sensors and actuators. The REMUS and the116

HAUV robots are equipped with a dual-frequency imaging sonar which is able to provide images of the vessel hull117

even in turbid water. The unit installed in the HAUV is the Dual-Frequency Identification Sonar (DIDSON) (Belcher118

et al., 2002) which has been also used to create large scale hull mosaics (Reed et al., 2006).119

Kokko (2007) presents an alternative localization method relying on range measurements taken to surfaces of120

known curvature, which belong to the vessel hull. This approach, which is intended to be applied to the HAUV121

vehicle, is validated in simulation and using a raft robot.122

The HAUV is used again by Walter et al. (2008). In this approach, the DIDSON sonar is integrated in a Simultane-123

ous Localization and Mapping (SLAM) framework. The latter technique consists in creating an incremental map of an124

unknown environment while localizing the robot within this map (Durrant-Whyte and Bailey, 2006). Similarly, Walter125

et al. (2008) perform SLAM using an Exactly Sparse Extended Information Filter (ESEIF). This approach needs a126

manual selection of feature correspondence in the sonar image due to the device’s low resolution and low signal-to-127

noise ratio, in comparison with images taken using optical cameras.128
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VanMiddlesworth et al. (2013) present another SLAM-based approach using the HAUV and the DIDSON sonar.129

This approach consists in aligning point clouds gathered over a short time scale using the Iterative Closest Point (ICP)130

algorithm. To improve the alignment, the authors present a system for smoothing these “submaps” and removing131

outliers. Constraints from submap alignment are integrated into a 6-Degrees of Freedom (DOF) pose graph, which is132

optimized to estimate the full vehicle trajectory over the duration of the inspection task.133

Several approaches are based on computer vision techniques. Zainal Abidin and Arshad (2006) present a system134

to help ROV operators by minimizing the task of controlling the camera orientation. The system determines the135

orientation of the hull surface and adjusts the camera position to trace the vessel shape. It consists in three laser136

pointers and a colour Charge Coupled Device (CCD) camera mounted in the same pan-tilt unit. The angle between137

the camera and the surface is calculated by using triangulation of the position of the pixels corresponding to the three138

laser spots in the camera image.139

Negahdaripour and Firoozfam (2006) present a stereo-vision system based on mosaic registration methods. It140

is integrated in a free-floating commercial ROV to provide the capabilities for positioning, navigation and mapping141

during the automated inspection of a ship hull. The authors provide early results for pool and dock trials.142

Schattschneider et al. (2011) present an Extended Kalman Filter (EKF) SLAM system using a stereo camera143

to estimate the position and orientation of an AUV. In their work, they provide laboratory results using a movable144

measurement apparatus fitted with a stereo camera pointing at the floor, where a printout of a ship hull image is145

placed.146

Hover et al. (2012) increase the capabilities of the HAUV combining hull-relative DVL odometry, DIDSON imag-147

ing sonar and monocular camera constraints into a pose-graph SLAM optimization framework to produce an accurate148

and self-consistent three-dimensional (3D) trajectory estimate of the vehicle. More specifically, they apply sonar and149

vision-based SLAM processes (Johannsson et al., 2010; Kim and Eustice, 2009), and combine them via Incremental150

Smoothing and Mapping (iSAM) (Kaess et al., 2008), to create a single comprehensive map. The resulting vehicle is151

able to autonomously cover the whole vessel hull, including complex 3D structures as shafts, propellers and rudders.152

Kim and Eustice (2013) improve the vision-based pose-graph SLAM method presented some years before (Kim153

and Eustice, 2009). They introduce an online Bag-of-Words (BoW) measure for intra and inter-image saliency in154

order to identify informative key-frames. Ozog et al. (2016) use a similar technique in underwater saliency-informed155

SLAM to relocate the HAUV in a multiple session hull inspection. Using this approach, a single-session SLAM result156

is initially used as a prior map for later sessions, while the robot automatically merges the multiple surveys into a157

common hull-relative reference frame. To perform the relocalization step, the authors use a particle filter to leverage158

the locally planar representation of the ship hull surface. Furthermore, Generic Linear Constraints (GLC) allow159
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managing the computational complexity of the SLAM system as the robot accumulates information across multiple160

sessions. The authors provide results for 20 SLAM survey sessions for two large vessels over the course of days,161

months, and even up to three years.162

Ozog and Eustice (2015) combine a stereo camera and a DVL into a SLAM framework allowing to localize the163

HAUV into a 3D Computer-aided Design (CAD) model of the ship hull. Furthermore, this method labels visually-164

derived 3D shapes based on their deviation from the nominal CAD mesh. This deviations, which can be caused by165

biofouling, are added into the prior mesh.166

Other approaches focus on the use of robots magnetically attached to the vessel hull, what makes feasible the167

inspection above the water line. Despite the fact that some of them are able to estimate their pose (position and ori-168

entation), they are basically remotely operated. SIRUS (Menegaldo et al., 2008) and MARC (Bibuli et al., 2012) make169

use of magnetic tracks to attach to the dry part of the hull. They both are equipped with US thickness measurement170

sensors and cameras. SIRUS is also able to roughly estimate its position using an EKF to fuse the wheel odometry171

and the accelerations provided by the IMU.172

MIRA is a fast-deployment lightweight crawler (Eich and Vögele, 2011; Fondahl et al., 2012; Ahmed et al., 2015)173

which has been developed within the same research project as MARC, that is to say, the MINOAS project (Ortiz et al.,174

2010; Eich et al., 2014). Since self-localization is not feasible in such a lightweight vehicle, the position of the robot175

is estimated using an external 3D tracking system that consists of a camera and a laser range finder mounted on a176

pan-tilt unit.177

Finally, some approaches are intended for the inspection of the submerged part of the hull using magnetic at-178

tachment. A first example in the SHIV (Nicinski, 1983) platform, which consists in an underwater crawler provided179

with 6 magnetic wheels. Similarly, the vehicle presented by Carvalho et al. (2003) is aimed for US-based underwater180

inspections of FPSO units.181

2.2. Aerial Robotic Platforms for Inspection182

The civilian use of Unmanned Aerial Vehicles (UAV) for removing personnel from hazardous situations has grown183

significantly in recent years. One particular sector of application is visual inspection. Among the different aerial184

platform configurations, the Small Unmanned Aerial Systems (SUAS) with capabilities for Vertical Take-Off and185

Landing (VTOL), such as the multicopters (in the form of quadrotors, hexarotors, octorotors, etc), ducted-fans or186

coaxial rotor-based helicopters, are the most used platforms. These platforms, sometimes called Micro-Aerial Vehicles187

(MAV), present high maneuverability and are able to operate in confined spaces, including indoor environments. These188

platforms are typically characterized by a limited payload and autonomy, as well as by small size and reduced cost.189
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The article by Huerzeler et al. (2012) presents some scenarios for industrial and generic visual inspection using190

aerial vehicles, while the platform requirements are discussed as well. Additionally, Morgenthal and Hallermann191

(2014) provide further analysis about UAV properties for visual inspection, focusing on the prevention of image192

degradation due to the vehicle movement.193

Several approaches provide solutions for visual inspection using teleoperated MAVs fitted with cameras. By194

way of example, Sampedro et al. (2014) present a supervised classification approach for power tower detection and195

classification in images taken using an aerial vehicle. The same classifier is combined with visual tracking techniques196

by Martinez et al. (2014) to track the detected tower across the subsequent images. Roberts (2016) uses a corrosion197

detector based on colour to detect corroded areas in images taken using a MAV. Two different UAVs are used by Quater198

et al. (2014) for the inspection of photovoltaic plants using colour and thermal cameras. Hallermann and Morgenthal199

(2014) and Ellenberg et al. (2016) address the visual inspection of bridges using UAVs. Another example is provided200

by Eschmann et al. (2012), where an octocopter is used to collect images from building facades. In this approach,201

the recorded images are stitched together using a mosaicing algorithm, and the final mosaic is analysed to detect the202

presence of cracks. Another approach for building crack detection is presented by Choi and Kim (2015).203

When flying outdoors, MAVs can operate without human intervention thanks to inertial sensors and GPS (Global204

Positioning System). By way of example, Campo et al. (2016) present a system for the autonomous navigation of a205

low cost quadrotor in open environments, performing a complete coverage of the area. The system is intended for206

applications such as precision agriculture or environmental monitoring. To navigate, the vehicle estimates its pose207

using an EKF, combining GPS and IMU data.208

Nevertheless, the infrastructures to be inspected are usually situated in GPS-denied environments where other209

external positioning systems, such as motion tracking systems, can not be installed. For this reason, aerial platforms210

for inspection usually must estimate their state (attitude, velocity and/or position) relying on inner sensors and, on211

many occasions, using on-board computational resources.212

The rest of this section tries to provide an horizontal view of the different sensors and techniques applied to the213

visual inspection using MAVs. We focus on those approaches that go beyond teleoperation and/or pure GPS-based214

positioning. The aim is not to be complete, but to show the different trends.215

A widely used sensor is the Light Detection and Ranging (LiDAR) device, also known as laser scanner. The216

use of this sensor, inherited from ground robotics, allows MAVs for positioning (and sometimes mapping), while a217

camera is typically used for the inspection task. In combination with GPS and IMU data, Serrano (2011) proposes218

using LiDAR data for culvert inspection using a MAV. The idea is to operate the robot outdoors, taking off from a219

military vehicle, and positioning the MAV in front of the culvert entrance, making an intensive use of GPS data. To220
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perform the inspection inside the culvert, where GPS signal is probably not received, the system estimates the MAV221

state combining the data provided by the LiDAR sensor with IMU and GPS data within an EKF. Then, the operator222

can use a Pan-Tilt-Zoom (PTZ) camera to perform the inspection.223

Michael et al. (2012) make use of a MAV fitted with a LiDAR and an RGB-D (Red-Green-Blue-Depth) sensor224

for collaborative mapping of earthquake-damaged buildings. In this approach, the MAV collaborates with two ground225

vehicles to create a 3D map of the different floors inside the building. In a first stage, a primary ground vehicle creates226

a 3D map of the environment, using a 3D laser scanner. A secondary ground vehicle carries the MAV to the areas227

where debris or other obstacles prevent the ground vehicles to keep going. Then, the aerial vehicle is operated through228

those areas and completes the 3D map. Different laser-based positioning and SLAM algorithms are used to perform229

the complete mission.230

Satler et al. (2014) also use a LiDAR for positioning and mapping on-board a MAV intended for the visual231

inspection of equipment and structures in constrained spaces. The authors make use of a particle filter-based imple-232

mentation of SLAM (FastSLAM 2.0) to merge the data provided by the LiDAR device with IMU data. The vehicle233

is also equipped with two sonars, one at the top and one at the bottom, to detect upper and lower obstacles as well234

as to measure distances during the ascending inspection flight and during the take-off and landing procedures. The235

proposed platform include a PTZ camera and several LEDs (Light-Emitting Diode) for the visual inspection.236

McAree et al. (2016) discuss the development of a semi-autonomous inspection drone capable of maintaining a237

fixed distance and relative heading to the inspected wall using a LiDAR. The vehicle operates in semi-autonomous238

mode so that the pilot can concentrate on the inspection task, while the MAV is in charge of performing the challenging239

task of distance keeping without pilot input. Within this approach, the authors propose a Model Based Design (MBD)240

framework to test the distance and yaw controllers in simulation, prior to using them in real world flights.241

One of the main drawbacks of using laser scanners in aerial robotics is the relatively heavy weight and ele-242

vated power consumption. Recent advances in computational power and CMOS (Complementary Metal-Oxide-243

Semiconductor) camera technology have made it possible to use computer vision technologies for state estimation244

on MAVs. Many approaches fuse visual (typically stereo) and inertial data to estimate the vehicle state. An example245

is provided by Burri et al. (2012), which consists in a visual-inertial motion estimation system for the visual inspection246

of industrial environments such as thermal power plant boiler systems. This approach makes use of a sensor compris-247

ing an on-board stereo camera augmented with an IMU. This sensor combines measurements of linear accelerations248

and angular velocities with pose measurements in a stochastic coloning EKF. The authors also provide two different249

strategies for trajectory control which are robust to external disturbances, inaccurate position estimates and delays.250

While the experiments presented in this paper are performed in a mock environment, Nikolic et al. (2013) show some251
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results obtained inspecting a boiler system with a more evolved version of the visual-inertial sensor.252

Omari et al. (2014) propose a navigation system that is built around the commercial version of the previous253

mentioned visual-inertial system, the VI-sensor (Nikolic et al., 2014). This approach estimates both the trajectory254

of the UAV as well as a 3D map consisting of a sparse set of landmarks. The system can also generate a dense 3D255

reconstruction in post-processing executing the odometry pipeline over all available visual-inertial data.256

Gohl et al. (2014) combine the VI-sensor with two additional CMOS cameras and a LiDAR sensor for the visual257

inspection and 3D reconstruction of underground mines. In this approach, a pilot manually operates the MAV through258

the mine to record sensor data. This is post-processed in order to check the feasibility of flying autonomously with259

the proposed system and sensors. The experiments performed allow concluding that the vehicle has to be protected260

from dust and water to operate inside mines, what will increase the platform weight and decrease its autonomy.261

Furthermore, due to the lack of a wireless communication system able to operate throughout an entire mine, the262

vehicle has to be autonomous, detecting problems and deciding by itself which solution it should follow.263

Sa et al. (2015) present a visual-inertial aided VTOL platform for the visual inspection of pole-like structures,264

such as light and power distribution poles. The authors present two different approaches for the control system: a265

Position-Based Visual Servoing (PBVS) using an EKF and an estimator-free Image-Based Visual Servoing (IBVS).266

An additional contribution is the use of shared autonomy to permit an un-skilled operator to easily and safely perform267

the inspection using a MAV. The system, which makes use of monocular visual features (lines) and inertial data for268

the pole-relative navigation, is in charge of maintaining a safe distance and rejecting environmental disturbances, such269

as wind gusts.270

Optical flow techniques have been also applied to visual inspection using MAVs. Lippiello and Siciliano (2012)271

present an autonomous wall inspection control employing optical flow information provided by a stereo camera. Using272

this approach, the inspection velocity along the surface is controlled, as well as the orthogonal distance and the relative273

yaw angle between the UAV and the observed plane. The authors provide simulation experiments showing the good274

performance of the control strategy.275

Høglund (2014) addresses the use of optical flow for inspecting wind turbines and buildings. The author evaluates276

two different optical flow methods for local navigation as well as discusses about its application in tracking a moving277

object and estimating the angular velocity. Furthermore, this approach makes use of Hough transform to detect straight278

lines when there are no features to track and the optical flow techniques fail. The detected lines allow computing the279

relative angles between blades (in wind turbines) or windows (in buildings), which can be used in the orientation280

control. While all these techniques are intended to be applied on a hexacopter, they are only evaluated in simulation.281

Katrašnik et al. (2010) present a survey of mobile robots for distribution power line inspection. It includes dif-282
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ferent computer vision techniques used on-board UAVs for camera stabilization, pole tracking and automated defect283

detection. Regarding UAV configuration, two different approaches are reviewed. The first one consists in a ducted-fan284

rotorcraft (Jones, 2005) which is able to estimate its position and attitude from an image of three conductors of the285

power transmission line using the Hough transform. The second reviewed approach consists in an autonomous heli-286

copter (Campoy et al., 2001) which is able to fly along power line using a vector-gradient Hough transform for cable287

detection and stereo vision for determining the position of the cable relative to the helicopter.288

Máthé and Buşoniu (2015) survey vision and control methods that can be applied to low-cost UAVs intended289

for visual inspection. Regarding vision-based methods, they overview some techniques for (a) motion tracking and290

object detection using feature detection/description, (b) motion estimation using optical flow, (c) camera (and vehicle)291

motion control using visual servoing, and (d) vision-based SLAM. Furthermore, they discuss applications related to292

infrastructure inspection and provide some contributions for railway inspection selecting the appropriate vision and293

control technique to tackle this problem.294

Inspection tasks sometimes require physical contact with the inspected surface or structure. In Marconi et al.295

(2012) article, the authors present two MAV prototypes for contact-based inspection. The first relies upon a ducted-296

fan aeromechanical principle, while the second one relies upon a coaxial rotor principle. These vehicles are equipped297

with a lightweight manipulator, specifically devised to move NDT sensors according to the input provided by the298

operator, and contact sensors, used to detect physical interactions with the surrounding environment. The human-299

robot interface makes use of a haptic device and augmented reality. The paper reports on some experiments using a300

motion tracking system to estimate the MAV state.301

Similarly, Jimenez-Cano et al. (2015) present a MAV equipped with a robotic arm attached to the top of the body.302

The authors discuss the potential of this setup for inspecting structures such as bridges from the underside. This303

approach presents the dynamic model of the entire system, the non-linear controller implemented, and the first flight304

experiments performed under a bridge and contacting its surface with a sensor head located at the arm.305

Alexis et al. (2016) present a control framework to provide a MAV with physical interaction capabilities. The306

authors also propose a contact-based inspection planner which computes the optimal route within waypoints while307

avoiding any obstacles or other occupied zones on the environmental surface. The resulting MAV is able to perform308

complex contact-based tasks, e.g. “aerial writing” or interactions with non-planar surfaces. This approach has been309

validated using pose estimates from a motion capture system, while its performance using on-board sensors (like310

cameras or LiDARs) has not been evaluated yet.311

Also related with contact-based inspection, Cacace et al. (2015) propose a high-level control system to allow a312

UAV to autonomously perform complex tasks in close and physical interaction with the environment. This system313
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combines hierarchical task decomposition, mixed-initiative control and path planning techniques to allow reactivity314

and sliding autonomy. The approach is evaluated in a physical inspection task and in a visual inspection task, both315

performed under laboratory conditions.316

As it happens with the last mentioned approaches, some works focus on issues such as the control strategy, task317

planning or path planning, disregarding the sensor suite and the MAV state estimation. Another example is provided318

by Wu et al. (2012), where the authors propose an MBD framework for planning efficient and robust behaviours for319

power tower inspection. This approach makes use of reinforcement learning to find an optimal policy to guide a MAV320

while visiting the target viewing regions along the power tower. The authors provide simulation experiments showing321

the performance of this framework when the vehicle is flown in the presence of wind gusts and stochastic noise. A322

last example, by Santamaria and Andrade (2014), presents a task oriented control strategy for a quadrotor equipped323

with a robotic arm and a camera attached to its end-effector. This approach describes a hierarchical control law to324

allow performing visual servoing (primary task) while other tasks (secondary tasks) to minimize gravitational effects325

or undesired arm configurations are also running. Successful results are presented in simulation.326

Regarding aerial platforms specifically devised for vessel visual inspection, the robotics literature contains just327

a short list or approaches. Bonnin-Pascual et al. (2012) present a fully-autonomous quadcopter which employs a 30328

m-range LiDAR to estimate its position inside the cargo hold under inspection. This platform was developed within329

the project MINOAS (Ortiz et al., 2010; Eich et al., 2014). It makes use of both odometry and SLAM processes for330

position estimation, while two mirrors are used to deflect part of the laser scans to estimate the distance to the ground331

and to the ceiling. The vehicle is operated using a “mission description file” which specifies a list of waypoints. This332

approach assumes that vertical structures that are found in vessel holds are quite similar along their full extent. The333

Dynamic Window Approach (DWA) (Fox et al., 1997) is used for navigation and obstacle avoidance in the horizontal334

plane. In a later work (Ortiz et al., 2014), the system was extended to integrate a monocular visual odometer using a335

ground-looking camera. In this approach, the visual odometer is selected, instead of the laser-based estimator, when336

the platform performs vertical motion.337

The same authors describe a different approach as part of the research performed within the project INCASS (Ortiz338

et al., 2017). This is based on the use of the Supervised Autonomy paradigm, which allows the user/pilot to concentrate339

on the task at hand, issuing displacement commands using a gamepad or a joystick, while the platform is in charge340

of all the safety-related matters, such as obstacle avoidance. Within this framework, the control pipeline does not341

require from the estimation of the robot position, which may be difficult to obtain accurately, but only the estimation342

of its velocity (in the three axes) and height. To estimate the vehicle speed, two optical flow sensors are employed,343

one looking downwards and the other looking forward, which respectively supply velocity estimations with regard to344
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the floor and to the inspected wall. The flight height is estimated using a laser altimeter. Furthermore, the control345

architecture implements a set of robotic behaviours in charge of increasing the platform autonomy during the operation346

(e.g. the go-ahead behaviour makes the vehicle track the indicated speed until an obstacle is reached or the user347

issues a different displacement command). It is worth mentioning that images collected using such a device are later348

processed searching for corrosion.349

A more evolved version of this framework allows configuring different sensor suites depending on the payload350

capabilities of the MAV and the environmental conditions (Bonnin-Pascual and Ortiz, 2016; Bonnin-Pascual et al.,351

2019). To be precise, the authors propose to replace/combine the optical-flow sensors with a 20 m-range LiDAR352

to estimate the vehicle velocity. The latter device allows operating in dark environments (i.e. closed cargo holds353

or water ballast tanks) though requires a larger payload capacity (see also Ortiz et al. (2016); Bonnin-Pascual et al.354

(2017)). The combination of both sensors (LiDAR and optical-flow sensors) allows the operation in corridor-like355

environments, where the LiDAR are typically affected by the so-called “canyoning effect”. Despite the control system356

does not require an estimate of the position, a laser-based SLAM method is used to obtain the vehicle coordinates357

necessary for tagging the images taken during the inspection. In the aforementioned works, such a framework is358

described as for its integration onboard commercial platforms with different configurations and payload capabilities,359

and it is evaluated both under laboratory conditions and during real vessel inspection campaigns.360

Fang et al. (2017) describe another approach involving a MAV operating inside a vessel. This does not deal with361

the visual inspection of vessel structures but it focuses on the design of a MAV capable of autonomously navigating362

through a ship to aid in fire control. To be precise, the vehicle is able to navigate in dark environments (potentially full363

of smoke) looking for fires, measuring heat by means of a thermal camera and locating any personnel along the way.364

To do that, this approach combines an odometry estimation method using depth images provided by an RGB-D camera365

with inertial data from an IMU. The result is later introduced into a particle filter to perform real-time localization in366

a given 3D map. Furthermore, the authors discuss a motion-planning method for computing a collision-free trajectory367

for navigating in narrow and/or dynamic environments. The entire framework is tested both inside their laboratory368

and in a constrained shipboard environment.369

2.3. Discussion370

Table 1 summarizes the main features of the robotics platforms for vessel inspection reviewed throughout Sec-371

tion 2.1. They are sorted by year of publication. As can be observed, recent approaches for underwater systems focus372

on autonomous vehicles (AUV) instead of on teleoperated platforms (ROV). The boom of vision-based perception,373

pushed by the high-computational capabilities of current processors and Graphical Processing Units (GPU), makes374

cameras the most used devices to obtain that level of automation. Data provided by these sensors is usually merged375
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into EKF and/or SLAM processes with data provided by other sensors typically used in underwater robotics, such376

as DVL or sonar. Regarding approaches for above-water inspection with crawlers, 3D position estimation becomes377

a hard task especially when the robotic platform traverses between plates of different orientations (wheel odome-378

try tends to fail in such situations). For this reason, existing approaches focus on teleoperated platforms where the379

position estimation (if any) is used for informing the user/pilot but not for feeding a position control algorithm.380

Similarly, Table 2 summarizes all the aerial platforms for inspection reviewed in Section 2.2. They are also sorted381

by year of publication. As previously mentioned, the reviewed approaches are potentially useful for inspecting (at least382

certain areas of) vessels. Most contributions are from the last decade, what is probably due to the reduction in size of383

computation boards, which in turn has contributed to the popularization of MAVs (i.e. small-size platforms). Among384

the different configurations, quadcopters and hexacopters are the most used. As it happens with non-aerial platforms,385

the majority of the aerial approaches make use of vision systems for the state estimation, using different SLAM and/or386

KF approaches for computing the platform state. Such vision systems can be based on monocular cameras, stereo387

rigs, RGB-D cameras or optical flow sensors. Another sensor which is highly used in aerial robotics is the LiDAR.388

This results useful in dark environments where vision systems may fail, though typically require higher payload389

capabilities. Several of the different approaches combine the data provided by the selected main sensor with 3-axis390

motion data supplied by an IMU (i.e. linear accelerations and orientation) to improve the platform state estimation.391

Regarding the autonomy level, some approaches focus on fully autonomous aerial platforms while other tackle the392

idea of shared or supervised autonomy. This last operating paradigm allows the human/inspector to interactively393

command the platform, what results interesting having into account the kind of task he/she is performing.394
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Table 1: Approaches for vessel hull inspection using robotic platforms.

Reference Name Vehicle type Sensor suite/technique
Navigation Inspection

Nicinski (1983) SHIV ROV ⊗ — cam/US/mag
Harris and Slate (1999), Lamp Ray AUV �/≈ LBL US/magD’Amaddio et al. (2001)

Lynn and Bohlander (1999) — ROV ≈ — mag
Trimble and Belcher (2002) CetusII AUV ≈ LBL+alt sonar

Carvalho et al. (2003) — ROV ⊗ — US
Vaganay et al. (2005, 2006), HAUV AUV ≈ DVL+IMU sonarHover et al. (2007) +depth

Negahdaripour and Firoozfam (2006) Phantom XTL∗ AUV ≈ stereo odo cam
Kokko (2007) — AUV ≈ range —

Akinfiev et al. (2008) AURORA AUV � opt odo/LBL US/cam

Menegaldo et al. (2008) SIRUS ROV† ⊗ EKF: IMU US/cam
+wheel odo

Walter et al. (2008) HAUV AUV ≈ SLAM: sonar sonar

Li et al. (2009) SY-2 AUV ≈ DVL+IMU —
+depth

Narewski (2009) HISMAR AUV � opt odo US
+mag lmk

Newsome and Rodocker (2009) LBC ROV �/≈ — cam

Packard et al. (2010) REMUS AUV ≈ DVL+IMU sonar
+depth

Eich and Vögele (2011),
MIRA ROV† ⊗ 3D tracker camFondahl et al. (2012),

Ahmed et al. (2015)

Schattschneider et al. (2011) — — EKF SLAM: stereostereo
Bibuli et al. (2012) MARC ROV† ⊗ — US/cam

Hover et al. (2012) HAUV AUV ≈ SLAM: DVL sonar/cam
+sonar+cam

Ishizu et al. (2012) LBV150∗ ROV 4/≈ — cam/stereo

Ferreira et al. (2013) HROV AUV 4/≈
depth+alt US

+IMU+DVL
Kim and Eustice (2013) HAUV AUV ≈ SLAM: cam sonar/cam

VanMiddlesworth et al. (2013) HAUV AUV ≈ SLAM: sonar sonar

Ozog and Eustice (2015) HAUV AUV ≈ SLAM: stereo sonar/cam
+DVL

Ozog et al. (2016) HAUV AUV ≈ SLAM: cam sonar/cam

Name: ∗ indicates a commercial robot used for testing.
Vehicle type: †/non-underwater vehicle, ⊗/magnetic crawler, �/vehicle attached using suction,
4/vehicle attached using thrusters and ≈/free-swimming vehicle.
Sensor suite/technique: alt/altimeter, cam/camera, depth/depthmeter, mag/magnetic probe, mag
lmk/magnetic landmark, odo/odometry, opt/optical and US/ultrasound probe.
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Table 2: Representative approaches for vessel hull inspections using specifically aerial platforms.
Reference Infrastructure Type Sensors/tech. Output

Campoy et al. (2001) Power line Heli. st img
Jones (2005) Power line DF cam. img

Serrano (2011) Culvert 4C EKF: LiDAR img
+GPS+IMU

Eschmann et al. (2012) Building facade 8C — img+mosaic
+cracks

Michael et al. (2012) Building 4C SLAM: LiDAR 3D map
+RGB-D+IMU

Bonnin-Pascual et al. (2012) Vessel str. 4C SLAM: LiDAR img+cracks
+IMU +corrosion

Burri et al. (2012) Boiler system 4C EKF: st+IMU img

Lippiello and Siciliano (2012) Wall Sim. opt flow: imgst+IMU
Marconi et al. (2012) Contact DF/Coax. IMU, contact phys int

Wu et al. (2012) Power tower Sim. — img
Nikolic et al. (2013) Boiler system 4C EKF: st+IMU img

Sampedro et al. (2014) Power tower — — img+tower
Martinez et al. (2014) Power tower — — img+tower
Quater et al. (2014) Photovolt. pl. Hyb./6C — img+thermal

Hallermann and Morgenthal (2014) Bridge 8C — img

Satler et al. (2014) General 4C SLAM: LiDAR img
+IMU, 2 US

Omari et al. (2014) General 6C EKF: st+IMU 3D recons

Gohl et al. (2014) Mine 6C EKF: st+IMU, 3D recons2 cam., LiDAR

Høglund (2014) Wind turbine 6C/Sim. opt flow: cam. img
/Building +IMU+2 US

Santamaria and Andrade (2014) General 4C/Sim. — img

Ortiz et al. (2014) Vessel str. 4C SLAM: LiDAR img
+IMU/vis odo.

Choi and Kim (2015) Building 6C — img+cracks

Sa et al. (2015) Pole-like str. 6C IBVS/PBVS: imgcam.+IMU
Máthé and Buşoniu (2015) Railway 4C cam. img.+track
Jimenez-Cano et al. (2015) Bridges, etc. 8-4C — phys int

Cacace et al. (2015) Contact DF/4C cam./st+IMU phys int/img
Bonnin-Pascual et al. (2015) Vessel str. 4C/6C opt flow img+

Ortiz et al. (2015) corrosion
Roberts (2016) Metallic str. 4C — img+corrosion

Ellenberg et al. (2016) Bridge 4C — img
Campo et al. (2016) Open env. 4C EKF: GPS+IMU img
McAree et al. (2016) Wall 8C LiDAR img
Alexis et al. (2016) Contact 4C motion tracking phys int

Bonnin-Pascual and Ortiz (2016) Vessel str. 4C/6C KF: opt flow+ img+

Bonnin-Pascual et al. (2019) LiDAR+IMU defects

Fang et al. (2017) Shipboard env. 4C Part. filter: RGB-D thermal
vis odo+IMU +fire

Type: Heli./helicopter, DF/ducted-fan, 4C/quadcopter, 6C/hexacopter, 8C/octocopter, 8-4C/octoquad
Coax./coaxial rotor, Hyb./hybrid and Sim./simulation.
Sensors/tech.: st/stereo rig, cam/camera, opt flow/optical flow and vis odo/visual odometry.
Output: img/image, phys int/physical interaction, thermal/thermal image and recons/reconstruction.
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3. Vision-based Defect Detection Algorithms395

Visual inspection is one of the predominant methods used in quality/integrity assessment procedures. It is a396

subjective process that relies on an inspector’s experience and mental focus, making it highly prone to human error.397

The development of automated inspection technology can overcome these shortcomings.398

Previous approaches on automatic vision-based defect detection can be roughly classified into two big categories.399

On the one hand, there are lots of contributions on industrial inspection and quality control; that is to say, algorithms400

that are in charge of checking whether the products that result from an industrial manufacturing process are in good401

condition. These methods assume a more or less confined environment where the product to be inspected is always402

situated in a similar position, while lighting conditions are controlled as well. Some examples of these techniques are403

collected in Chin and Harlow (1982); Newman (1995); Malamas et al. (2003); Xie (2008).404

On the other hand, several other contributions focus on visual inspection techniques to ensure the integrity of405

elements or structures that have been subjected to some kind of effort or stress. These methods are typically included406

in periodical surveys to assess the need of maintenance operations. In this group, which include vessel hull inspection,407

we can find algorithms for crack detection on concrete surfaces (Yamaguchi and Hashimoto, 2010), defect detection408

on bridge structures (Jahanshahi et al., 2009), aircraft surface inspection (Siegel and Gunatilake, 1998; Mumtaz et al.,409

2010), etc.410

The majority of the algorithms from both categories have been devised for the detection of a specific defect on411

a particular material or surface, while much less methods deal with unspecified defects on general surfaces (some412

examples are Amano (2006); Peres Castilho et al. (2006); Jia et al. (2004)).413

Regarding the particular case of vessel inspection, in the following sections we review approaches for the detection414

of the main defective situations that may arise on metallic structures, namely cracks and corrosion. Among them, we415

focus on those which solely use images as input.416

3.1. Algorithms for Crack Detection417

This section reviews different approaches for vision-based crack detection. The work by Jahanshahi et al. (2009)418

presents an overview of the state of the art. This is a survey of image-based techniques for defect detection on bridge419

structures, including crack detection techniques. In this regard, they consider two different categories: methods based420

on edge detection and methods based on morphological operators. Regarding edge detection, they firstly introduces421

methods based on the gradient of the image. Among them, the Canny operator (Canny, 1986) is one of the most used,422

since it provides better results in comparison with other approaches, such as Sobel or Fast-Fourier Transform (FFT)423

techniques (Abdel-Qader et al., 2003). By way of example, the Canny operator is used by Choi and Kim (2015) for424
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building inspection using a UAV fitted with a camera. Nevertheless, the authors of this approach indicate that there425

are parts of the cracks which remain undetected.426

In the category of edge detectors, the authors of the survey also include the fast Haar transform, which performs427

better than the Canny operator in certain scenarios (Abdel-Qader et al., 2003), and the method by Siegel and Gunati-428

lake (1998). This is a multi-stage method intended for crack detection on aircraft skin using a robotic crawler. This429

robot is equipped with a camera and a directional light source to illuminate the inspected area. Crack detection is430

performed through multi-scale edge detection using a wavelet filter bank. It starts detecting rivet holes, where cracks431

usually appear, and defining a Region Of Interest (ROI) around them. The method detects edges at different scales432

using wavelets and then links them through a coarse-to-fine edge linking process. Then, it describes each edge using433

a feature vector containing five different features. Finally, every feature vector is classified using a Neural Network434

(NN) to determine whether it describes a crack or not. During tests, this detector provides a 72% of accuracy, with a435

27% false alarm rate.436

The vision literature contains many other crack detectors based on edge searching. In Lim et al. (2014) approach,437

the authors present a wheeled robot for bridge deck crack inspection and mapping. In this approach, the edge detection438

consists in convolving the image with a kernel to compute the Laplacian of Gaussian (LoG). This is used to smooth439

the input image while computing its second derivative. Edges in the resulting image can be found looking for zero-440

crossings.441

Similarly, Eschmann et al. (2012) present a edge-based crack detection method for building facade inspection442

using a UAV fitted with a camera. The images collected are stitched together to create a mosaic, which is later443

analysed searching for cracks. The crack detection method that the authors propose consists in adding Gaussian blur444

to the original image and then subtracting it form the image again. By doing this step, edges result almost black while445

the rest of the image results almost white. The authors conclude that the method needs further improvement since446

small cracks are not very visible after the image processing, whereas man-made edges are misclassified as cracks.447

In Meng et al. (2015) approach, the authors propose the use of the Histogram of Oriented Gradients (HOG) for448

the detection of cracks in concrete surfaces such as bridges, buildings and tunnels. HOG detects edges by computing449

the distribution of intensity gradients of the image. Before using HOG, the original gray-scale image is binarized to450

generate a black and white image. Results vary depending on the threshold used during the previous binarization. The451

authors conclude that further work has to be done to reduce the image noise prior to using HOG.452

Fujita and Hamamoto (2011) present a more complex method for crack detection on concrete images. The method453

includes two preprocessing steps (also used in Fujita et al. (2006)) and two detection steps. The first preprocessing step454

is a subtraction process using a median filter to remove slight variations like shadings. In the second preprocessing455
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step, a multi-scale line filter based on the Hessian matrix is used both to emphasize cracks against stains and to adapt456

the variation of cracks width. The first detection stage makes use of probabilistic relaxation to detect cracks coarsely457

and to prevent noise. Finally, a locally adaptive thresholding is performed for a finer detection. The complete method458

attains an Area Under the Curve (AUC) (Fawcett, 2006) of 0.98, which is very close to 1, what indicates a very459

successful detection rate.460

Similar edge-based crack detection techniques are proposed by Subirats et al. (2006); Yu et al. (2007); Chambon461

et al. (2009). In general, edge detection techniques provide false positive detections which are produced by the462

presence of structural member edges or background crack-like objects. In order to minimize them, different filters are463

used before or after performing the edge detection.464

Regarding the use of morphological operators, the survey by Jahanshahi et al. (2009) reviews the different basic465

operators (dilation, erosion, morphological gradient, opening and closing) to end up with two combinations of the466

opening and closing operators which allow the detection of bright and dark defects, respectively. Nieniewski et al.467

(1999) make use of these operators to successfully detect cracks in ferrites. A similar operator is proposed by Zhang468

et al. (2014), which presents a method intended for the subway tunnel safety monitoring. This method starts smooth-469

ing the gray-scale input image using an average filter. Then all crack-like structures are detected by means of a470

morphological operator. Next, the method performs image segmentation employing a thresholding operation and a471

second morphological operator, which is used to filter out the irrelevant noise. In order to remove the remaining large472

regional irrelevant objects which are still preserved as cracks, a supervised classification stage is performed. It makes473

use of three different features: the standard deviation of shape distance histogram, the number of pixels and the aver-474

age gray level. The classification is performed using an Extreme Learning Machine (Huang et al., 2012). This method475

is selected in this approach because of its universal approximation and classification capabilities. The complete crack476

detector presents an accuracy above 91%.477

Other approaches using morphological operators are proposed by Tanaka and Uematsu (1998); Zheng et al. (2002);478

Yoshioka and Omatu (2009). In comparison with edge detection techniques, morphological operators do not extract479

all the edges in the image, which result in less false positive detections. In general, they also generate less noise.480

Nevertheless, morphological operators require finding the appropriate size and shape of the structuring element to481

obtain the best detection results.482

Apart from the methods based on edge detection/morphological operators, the related literature contains other483

approaches for detecting cracks in images. Thresholding is a commonly used technique in this field. By way of484

example, the method presented by Cho et al. (1998) starts with two thresholding stages to separate cracks from the485

background in concrete surfaces. The first thresholding is used to discard clearly non-cracked areas, while the second486
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one tries to find the threshold that maximizes the quotient between the inter-class variance and the inner-class variance,487

being crack and background the two classes. This process is followed by a thinning procedure to reduce the crack488

width to 1 pixel. The remaining pixels are labelled to determine the crack morphology and length. The crack thickness489

is determined as the number of pixels omitted during the thinning process, while the direction of the crack (regarding490

the horizontal axis) is computed using a histogram of the directions of the different segments that shapes the crack.491

A similar procedure can be also performed to compute the thickness of a crack from the thickness of its different492

segments.493

Another methodology for crack detection consists in employing region growing procedures. Yamaguchi and494

Hashimoto (2006, 2010) present a crack detection method for concrete surface images using percolation. This is495

a region-growing procedure based on the natural phenomenon of liquid permeation. The process starts from every496

pixel (seed pixel) in the image and grows through the darkest neighbouring pixels. The percolation proceeds until497

reaching a certain initial boundary. Then, the elongation of the percolated area is checked to show whether this is498

a potential crack (cracks are supposed to be elongated). In that case, the percolation process proceeds iteratively499

increasing the current boundary and checking the new elongation. Finally, when a previously defined final boundary500

is reached, the elongation of the percolated area is checked one last time and the seed pixel is accordingly labelled as501

crack or background. This method improves the classification results achieved by a conventional method that includes502

wavelet transform and shading correction. Nevertheless, notice that this method uses all the image pixels as seed503

points for percolation, so that most of the computation time is used to perform percolations starting from background504

pixels, which are far more than the pixels on cracks. Moreover, since just the seed pixel is labelled at the end of each505

percolation, every pixel is involved in many percolation processes.506

Bonnin-Pascual (2010) improved the method by Yamaguchi and Hashimoto (2006) to deal with the two afore-507

mentioned issues (see also Eich et al. (2014)). In this approach, percolation processes are started only from pixels508

belonging to an edge (the Canny operator is used for edge computation) which besides are dark. Then, the entire509

area percolated is labelled as crack/background if its average grey-level value is below a certain threshold. As far as510

we know, this is the first method intended to deal with cracks observed in vessel metallic structures, which typically511

exhibit different size and elongation in comparison with cracks observed in concrete surfaces. Indeed, the authors512

also propose to improve the performance of the method using a corrosion detection algorithm to guide the crack513

detection, after the realization that most cracks present in vessel structures appear in areas affected by corrosion. A514

further improvement is presented in Bonnin-Pascual (2017), where an additional step is incorporated after the perco-515

lation process to merge different suspicious areas (i.e. potential cracks) into larger entities which are the ones finally516

evaluated and classified.517
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Similarly, Qu et al. (2015) improved the original method by Yamaguchi and Hashimoto (2006) adding some ad-518

ditional rules and checks which allow, after every percolation, labelling the entire area as crack/background. The519

improved method also includes a denoising algorithm, based on percolation as well, to remove the false positive de-520

tections. Regarding the original method, these improvements reduce considerably the processing time while increase521

the classification performance.522

A different approach is presented by Sorncharean and Phiphobmongkol (2008). It consists in a method for crack523

detection on asphalt images based on grid cell analysis. The method is devised to deal with the problems of shading524

(or non-uniform illumination) and strong textures in the images. It consists in dividing the image in cells which are525

classified as crack or not. A cell is considered a crack if there are two (and just two) pixels of its border which are526

considerably darker than the others. These two pixels might be the entry and exit points of a crack in the cell. After527

the first classification, the original image is divided again in overlapping areas and a second classification stage is528

performed, in order to detect those cracks that coincide with a cell border in the first stage. Finally, a cracked cell529

verification stage is used to remove false positives caused by strong textures. This consists in checking whether there530

are dark pixels arranged in a line between the two dark border pixels. The authors report a 13% and 21% of false531

positive and false negative respectively.532

Avril et al. (2004) present a crack detection approach based on the principle of the grid method. This method533

consists in fixing a bidirectional periodical pattern onto the inspected surface and analyzing the phase modulation534

induced by the crack. The Windowed Discrete Fourier Transform (WDFT) is used for detecting the phase of the535

image with the superimposed pattern. After removing high-frequency variations which result from electronic noise,536

the discontinuous variations indicate the presence of a crack. Small cracks (5 µm wide) are successfully detected on537

reinforced concrete beams using this approach. Their localization accuracy is 1.2 mm, while their opening is measured538

with a precision of 1 µm. Notice that this approach requires very close-up and controlled capture of images.539

Convolutional Neural Networks (CNN) have also been applied to the crack detection problem. Oullette et al.540

(2004) employ a genetic algorithm to train the weights of a CNN in order to pass through local minima, achieving541

an average success rate above 90%. Another related approach is proposed by Zhang et al. (2016), which compares542

the classification performances of a CNN, a Support Vector Machine (SVM) and a Boosting method (Freund and543

Schapire, 1999). The best classification ratios are attained using the CNN.544

The use of clustering techniques for small crack detection is proposed by Zhao et al. (2015). After an initial545

thresholding, this method assigns the remaining pixels to clusters of cracks or clusters of background. Then, the546

method filters crack clusters according to their elongated shapes. The proposed clustering method is aware of whether547

a point lies in the extension line of an elongated cluster or on one side of it, so that the process can cover the points of548
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another crack fragment separated by a gap while keeping noise points outside.549

Notice that the appearance of a crack (length, depth, shape, etc.) can be very different from one surface or550

material to another. For example, a crack that can be found inside a building after suffering an earthquake is very551

different to the micro-fissures that sometimes arise in an aircraft wing. Furthermore, the control of the camera-surface552

distance is crucial to know how big the cracks will appear in the images and, therefore, how to configure the algorithm553

parameters. In this regard, and unlike previous mentioned methods, Jahanshahi et al. (2013) deal with the unknown-554

distance problem presenting a crack detection and quantification method based on depth perception. The drawback555

of this approach is the need of several pictures of the scene captured from different views. These pictures are used to556

solve a Structure from Motion (SfM) problem (Snavely, 2008). This procedure provides the structure of the scene as557

well as the camera’s position, orientation and internal parameters for each view. Using the depth perception provided558

by this 3D reconstruction (i.e. the object-camera distance), a morphological operator is then configured for crack559

segmentation, also considering the desired crack thickness and the camera parameters. Appropriate features are the560

extracted from each segmented pattern and used to finally classify real cracks. The performance of a NN, a SVM and561

a nearest-neighbour classifier are discussed by the authors.562

Finally, cracks can be considered as anomalies which catch the attention of the inspector when they are present in a563

more or less regular surface. This approach is proposed by Bonnin-Pascual and Ortiz (2014a), whose method focuses564

on the idea of saliency and treats cracks as generic defects, what makes this method also applicable to detect other kind565

of defective situations such as corrosion and/or coating breakdown. The method makes use of a Bayesian framework566

to derive saliency measures based on natural statistics, combining contrast and symmetry information. These are two567

visual features commonly used to predict human eye fixations in images. After performing a training stage where the568

underlying Probability Density Functions (PDF) are estimated, the framework allows combining both bottom-up and569

top-down saliency, and the best results are obtained when both contrast and symmetry are employed. These features570

are also used in Bonnin-Pascual and Ortiz (2018) where a multi-stage generic framework for combining different571

visual features for the detection of defective situations, including cracks, is described. Unlike the previous Bayesian572

framework, the latter approach does not require a previous learning stage, though it is able to attain similar detection573

ratios. Both frameworks are more deeply evaluated and compared in Bonnin-Pascual (2017).574

3.2. Algorithms for Corrosion Detection575

Unlike the case of cracks, the computer vision literature contains just a few contributions for corrosion detection576

algorithms. Two main features are typically employed for corrosion detection, namely texture and colour. Texture577

descriptors appear in most of the approaches to characterize the roughness of corroded surfaces, while colour-based578

descriptors are also very popular since corrosion typically presents colours ranging from yellow to red.579
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Some approaches make use of wavelet analysis to describe the texture of corroded areas. A first example is pro-580

posed by Siegel and Gunatilake (1998). This approach has been already introduced in the previous section since it581

describes a robotic device used for aircraft skin inspection, including both crack and corrosion detection. Regard-582

ing corrosion, this is detected using the Discrete Wavelet Transform (DWT), which provides a characterization of583

the image texture at multiple resolutions and orientations. Firstly, a three-level wavelet decomposition is performed,584

resulting in 10 sub-bands. In a second stage, the image is divided into non-overlapping patches and 10-dimensional585

feature vectors are computed to describe them. The components of the feature vectors are the energy of the corre-586

sponding patch in each of the wavelet transform frames. Finally, each patch is classified as corrosion or corrosion-free587

by means of a supervised classification module. To perform the learning stage, a clustering algorithm is used to find588

the prototype vectors for each class. The classification stage is performed using a nearest-neighbour method. The589

trained algorithm is able to detect 95% of the corrosion vectors of the test set.590

Ghanta et al. (2011) present a similar approach. In this case, the Haar wavelet is used to obtain texture information591

from the three planes of RGB (Red-Green-Blue) images. In more detail, each image patch is described using a592

feature vector which contains the energy and entropy values for the different sub-bands and colour channels. The593

average luminance of the patch is also added to the feature vector, which results with 25 components. Then, Principal594

Component Analysis (PCA, see Jolliffe (2002)) is used to reduce the dimensionality of the feature vectors to five595

components. To classify these vectors as rust/non-rust, a training stage is performed using the Least Mean Square596

(LMS) method.597

Similarly, Jahanshahi and Masri (2013) evaluate the effect of using different colour spaces, colour channels and598

image patch sizes in a colour wavelet-based texture analysis algorithm for detecting corrosion. Like in the method599

by Siegel and Gunatilake (1998), this approach makes use of the DWT to obtain the coefficients that are then em-600

ployed to compute the energy of each image patch. Nevertheless, in the method by Jahanshahi and Masri (2013),601

this process is applied to the colour channels of the image. Six different colour channel combinations are consid-602

ered: YCbCr, CbCr, YIQ, IQ, HSI and HS. Notice that CbCr, IQ, and HS combinations result from ignoring the603

brightness/luminance channel of YCbCr, YIQ and HSI respectively. An Shallow Neural Network (SNN) is trained604

for the different combinations and considering 10 different patch sizes. The results show that the performance of the605

detection system improves when the features obtained from the brightness channel are excluded. The colour channel606

combination which provides the best performance is CbCr, with an AUC of 0.94. The HSI colour space is found the607

less appropriate for using with the proposed wavelet analysis.608

Despite the results presented by Jahanshahi and Masri (2013), HSI (Hue-Saturation-Intensity) and HSV (Hue-609

Saturation-Value) colour spaces are widely used in colour-based corrosion detectors. These are intuitive models610
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which isolate the brightness information into a single channel. As far as we know, Choi and Kim (2005) proposed the611

first approach using HSI colour space for describing corrosion. For this reason, it is included in this state-of-the-art612

review, despite the method presented is devised to operate with images captured with a microscope. This method613

takes 10×10 pixel patches of the different classes and then treats the histograms of each colour channel (H, S and I)614

as distributions of random variables. After applying the PCA and the varimax (Kaiser, 1958) approaches, the authors615

conclude that the mean H value, the mean S value, the median S value, the skews of the S distribution and the skews616

of the I distribution are appropriate features to be assigned to each patch for classification.617

Bento et al. (2009) present an approach for corrosion detection using texture information extracted from the Gray618

Level Co-occurrence Matrix (GLCM) (Haralick et al., 1973). The GLCM is computed for image patches of both619

classes, i.e corrosion and non-corrosion, and different texture descriptors are calculated: contrast, correlation, energy620

and homogeneity. These descriptors are used to train a Self-Organizing Map (SOM) (Kohonen, 2001) which performs621

a clustering process over the different samples, creating several prototypes of both classes. During the classification622

stage, the nearest-neighbour approach is applied. Results show that 93% of test patches are correctly classified using623

this method.624

The energy measure computed from the GLCM provides information about the texture roughness, which becomes625

typically high in corroded surfaces. Bonnin-Pascual (2010) makes use of this idea in combination with two alternative626

colour-based stages to provide two different corrosion detection methods for the visual inspection of vessel metallic627

structures. The colour stage of the first method describes the colour of corroded surfaces using stacked histograms628

from the three channels of the RGB colour space. In more detail, the three histograms are computed separately for629

image patches of 15×15 pixels, then the histograms are downsampled to 32 levels each, and finally they are stacked630

together to provide a 96-component descriptor. During the learning stage, the descriptors computed from the training631

set are clustered using K-means (Theodoridis and Koutroumbas, 2006) to generate a colour descriptors dictionary for632

corrosion. During the classification stage, an image patch is considered to present a colour typical of corrosion if its633

colour descriptor is similar to at least one of the models in the dictionary, according to the Bhattacharyya distance.634

On the contrary, the colour stage of the second method makes use of a colour map of typical corrosion colours. This635

map is previously computed as a 2-dimensional histogram of hue and saturation values (from the HSV colour space)636

corresponding to all pixels labelled as corrosion in the training set. Different post-processing methods are proposed to637

fill the gaps and increase the generalization of the histogram. During the classification stage, the probability that a pixel638

has a colour similar to corrosion is deemed as proportional to the value of the corresponding bin in the histogram.639

Both corrosion detection methods provide good classification ratios but the latter is better in terms of computation640

time. Further evaluation and testing using other colour spaces can be found in Bonnin-Pascual (2017).641
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Similarly, Medeiros et al. (2010) present a corrosion detector which combines the texture descriptors used by Bento642

et al. (2009) with colour information using the HSI colour space. The colour descriptors consist in the four first643

statistical moments extracted from each colour channel histogram. The resulting set of descriptors (texture and colour)644

is optimized using PCA to eliminate redundant attributes. Finally, the classification is performed using Fisher Linear645

Discriminant Analysis (FLDA) (Webb and Copsey, 2011) and different subsets of descriptors. The best results are646

obtained using 13 features combining both texture and colour information, which provide more than 90% of accuracy.647

Bonnin-Pascual and Ortiz (2014b) make use of a machine learning technique to learn the texture of corroded648

surfaces. This consists in using the Adaptive Boosting paradigm (AdaBoost, see Freund and Schapire (1999)) for649

both learning and classifying, and feeding the method with different statistical measures obtained after convolving650

Law’s texture energy filters (Law, 1980) with patches centred at both corroded and non-corroded pixels. In this651

work, the implementation of AdaBoost makes use of Classification and Regression Trees (CART) as weak classifiers.652

This texture stage is combined with the aforementioned colour stage based on the hue-saturation histogram presented653

in Bonnin-Pascual (2010), leading to good classification ratios.654

Some approaches make use of a Support Vector Machine to evaluate the corrosion degree of metallic surfaces.655

Yamana et al. (2005) employ a SVM to classify electric pole crossarms into categories reuse, retire or reuse after656

plating, depending on the colour of the rust expressed in the RGB colour space. Indeed, this approach compares the657

performances attained by different machine learning techniques, including a SVM, a k-Nearest Neighbour (kNN), a658

Radial Basis Function (RBF) network, and a Multi-Layer Perceptron (MLP); but the SVM provides the best results.659

The method starts reducing the image resolution from 640×480 pixels to 20×15, in order to reduce the number of660

features. Then, the training and classification stages make use of vectors with 20×15×3 (three colour channels)661

components, where each colour channel is expressed with a value ranging form 0 to 255. The resulting method662

provides an accuracy above 97%.663

Tsutsumi et al. (2009) also use a SVM in their approach. It presents a system to categorize images from metallic664

power transmission towers depending on its deterioration degree. Three classes are defined: early phase, adequate665

phase and late phase. Two different methods are considered in this approach to represent the colour information666

which is later used to feed the SVM. The first one consists in using RGB scaling, that is, using a scaled version of the667

image where the colour of each pixel is computed as the average of the corresponding pixels in the original image.668

The second approach consists in using the concatenation of the histograms of the three channels in the HSV colour669

space. Both approaches are assessed using different sizes for the RGB structure or the HSV histogram. The best670

classification performance provided by the SVM is around 85%, and it is obtained when using an HSV histogram671

with 192 bins.672
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Ortiz et al. (2015) present a corrosion detector based on a Shallow Neural Network (SNN) which again combines673

both colour and texture information. In this approach, the authors compare the results obtained with several combi-674

nations of different descriptors. Regarding colour, two descriptors are evaluated: on the one hand, the average value675

of each channel within a neighbourhood; on the other hand, the stacked 8-bin histograms for downsampled intensity676

values for each channel in the same neighbourhood. Additionally, both HSV and RGB colour spaces are checked. Re-677

garding texture, center-surround differences are considered in two different ways: signed Surround Differences (SD)678

between a central pixel and its neighbourhood and 10-bin histograms of uniform Local Binary Patterns (LBP). The679

number of hidden neurons is also varied, resulting in a total amount of 336 different combinations. The best results680

are obtained for LBPs with SDs and using 8-bin histograms of hue and saturation channels. A similar approach is681

presented in Ortiz et al. (2016), where colour is described computing the dominant colours inside a square patch, and682

texture is described using a number of statistical measures about the SD computed for every colour channel.683

A completely different solution is provided by Ji et al. (2012). They present an approach for corrosion detection684

based on watershed segmentation (Vincent and Soille, 1991). This method considers a gray-scale image as a 3D685

surface where the darkest pixels are the local minima. The segmentation process consists in placing a water source686

in each local minimum to flood the entire image, building barriers where different water sources meet. These barriers687

constitutes the watershed segmentation. This method sometimes leads to over-segmentation due to the presence of688

noise or weak edges in the image. The authors propose a method to prevent this problem. It consists in merging689

adjacent regions which present a similar average hue. The resulting segmentations look better despite quantitative690

results are not provided.691

Idris et al. (2015) evaluate different pre-processing image enhancement filters in order to improve the results692

obtained with a corrosion detector based on the red channel histogram. The set of filters includes mean filtering,693

median filtering, Gaussian filtering, wavelet de-noising, Weiner filtering, Bayer filtering, and anisotropic diffusion.694

The authors propose using the Peak Signal-to-Noise Ratio (PSNR) to select among the different filters, so that the695

most suitable one is applied depending on the specific lighting conditions. The results show that the Bayer filter696

provides the highest PSNR value for the majority of the images.697

Another method that does not use any machine learning process is provided by Roberts (2016). As seen in698

Section 2.2, this approach makes use of a UAV for corrosion detection. The detection algorithm consists in a simple699

method using a colour threshold in the HSV colour space. Nevertheless, the author provides only qualitative results700

and indicates that the use of some texture measure probably would improve the performance.701

Recently, CNNs have also been applied to the corrosion detection problem. Petricca et al. (2016) compare a702

standard computer vision technique with a CNN for classifying images as rust/non-rust. In this approach, an image703
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showing corroded elements is considered as rust, despite the rest of the image is showing non-corroded elements or704

surfaces. The standard technique involved in the comparison consists in merely accounting for the reddish pixels of the705

image. The image is considered corroded if the counter exceeds 0.3% of the total number of pixels. On the other side,706

the CNN is implemented using a pre-trained model based on AlexNet (Krizhevsky et al., 2012). Results show that the707

CNN performs better in a real case scenario (78% versus 69% of accuracy). The authors further propose including708

the standard technique for removing false positives before executing the CNN-based method. Within the research709

project ROBINS, Ortiz et al. (2018) outline preliminary results regarding the use of two well-known deep learning710

object recognition approaches for detecting corrosion in vessel structures. The selected approaches are the Single-711

Shot multi-box Detector (SSD) (Liu et al., 2016) and Faster R-CNN (Ren et al., 2015), being the latter combined with712

VGG16 (Simonyan and Zisserman, 2014). Results indicate that Faster R-CNN behaves better in general, providing713

higher precision values.714

Finally, as indicated in Section 3.1, the idea of saliency has also been applied for corrosion detection. In this re-715

gard, the aforementioned approaches by Bonnin-Pascual and Ortiz (2014a, 2018) also deal with corrosion, employing716

contrast and symmetry as features to approach the detection. The results show that saliency also allows detecting717

this kind of defect. Furthermore, in Bonnin-Pascual and Ortiz (2017), a saliency-based method is used to improve718

the performance of the corrosion detector firstly introduced in Bonnin-Pascual (2010), based on texture and colour719

features. In this approach, saliency is used in a previous stage to filter out non-defective areas. The results show that720

the saliency-based classifier allows boosting the specific defect detector (Bonnin-Pascual, 2010), reducing the false721

positives and increasing precision.722

3.3. Discussion723

Table 3 summarizes the approaches reviewed in Section 3.1. A wide variety of computer vision techniques specif-724

ically devised for crack detection have been investigated so far. It is important to notice that most of the methods725

are intended to detect cracks on concrete surfaces, which typically present a very narrow and elongated shape, unlike726

metallic cracks. Typically, these methods require from a suitable image capture procedure in order to provide good727

results. This includes a specific distance to the scene (typically very short) or a certain camera position regarding the728

inspected surface. In some approaches, lighting must also be controlled. Furthermore, most of them require from729

learning and/or parameter-tuning stages to attain acceptable performance.730

Similarly, Table 4 details the main features of the different approaches for corrosion detection reviewed in Sec-731

tion 3.2. Almost all the existing approaches rely on colour and/or texture features, which are usually learned using732

some machine learning technique. This implies that a dataset is needed for the training stage or to seek for the733

appropriate configuration that provides a good detection performance.734
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The idea of using saliency for crack and corrosion detection is exploited by part of these approaches, which735

allows considering these two (and even other) defective situations together. The latest approaches in these line offer736

the advantage that they do not require a previous training or parameter-tuning stage, while they are able to perform737

well in datasets containing images from vessel structures captured under different illumination conditions and from738

different distances. These techniques are also useful to be executed as a first stage to filter out non-defective situations,739

prior to executing specific methods for detecting the aforementioned kinds of defects.740

Finally, the boom of deep learning techniques is also noticeable in both crack and corrosion detection fields,741

dominating some of the most recent approaches. Unlike the rest of the surveyed methods, these contributions usually742

do not need a deep study about the features that allow a better description of the defect, since these features naturally743

come up during the training stage, once the weights of the CNN are available. The main drawback of these approaches744

is the need of a very large dataset and a GPU for a proper training.745

4. Conclusions746

This paper reviews a number of contributions from fields related to the robotization of ship inspection. In the first747

part, we differentiate between robotic platforms for underwater inspection and those intended for inspecting above748

the water line (actually, these platforms can be used to inspect the entire vessel hull if this is situated in a dry-dock).749

Regarding underwater platforms, the most recent approaches focus on the use of free-floating AUVs equipped with750

cameras and sonar devices, what indicates that it is not necessary to be attached to the vessel structure to perform a751

proper visual inspection (keep at a short distance is enough). A similar situation occurs with the above-water plat-752

forms. Regarding non-marine robots, one can find a number of robotic crawlers capable of carrying different payloads753

(e.g. arms with Ultrasound Thickness Measurement (UTM) devices), although flying devices have proved to be able754

to reach target areas more quickly and directly, and provide a wider view of the inspected surface. Consequently,755

the robotics literature comprises a large number of approaches –most of them proposed in the recent years– which756

describe aerial devices for the inspection of different kinds of infrastructures, hence being potentially usable for vessel757

hull inspection. Having in mind the idea of providing the vessel surveyors with a “flying camera”, the paradigm of758

supervised autonomy has proved to result into a good option in several studies.759

Once the agents in charge of collecting inspection data have been reviewed, in the second half of this paper we760

consider a number of contributions focused on detecting the main defective situations which affect vessel metallic761

structures, i.e. cracks and corrosion. Regarding cracks, the related literature comprehends a diversity of detection762

methods, most of which make use of an edge detection technique or involve morphological operators. Another763

point in common among many of the existing approaches is that they are intended for the detection of cracks on764

28



Ta
bl

e
3:

R
ep

re
se

nt
at

iv
e

vi
si

on
-b

as
ed

cr
ac

k
de

te
ct

io
n

ap
pr

oa
ch

es
.

A
pp

ro
ac

h
Pa

rt
ic

ul
ar

te
ch

ni
qu

e
R

ef
er

en
ce

E
dg

e
de

te
ct

io
n

C
an

ny
C

ho
ia

nd
K

im
(2

01
5)

L
oG

L
im

et
al

.(
20

14
)

L
oG

+
la

be
lli

ng
+

D
ijk

st
ra

Y
u

et
al

.(
20

07
)

W
av

el
et

s
Si

eg
el

an
d

G
un

at
ila

ke
(1

99
8)

*,
Su

bi
ra

ts
et

al
.(

20
06

),
C

ha
m

bo
n

et
al

.(
20

09
)

H
O

G
M

en
g

et
al

.(
20

15
)

Im
ag

e
di

ff
er

en
ci

ng
E

sc
hm

an
n

et
al

.(
20

12
)

Im
ag

e
di

ff
er

en
ci

ng
+

H
es

si
an

an
al

ys
is

Fu
jit

a
et

al
.(

20
06

)
Im

ag
e

di
ff

er
en

ci
ng

+
H

es
si

an
an

al
ys

is
+

pr
ob

ab
ili

st
ic

re
la

xa
tio

n
Fu

jit
a

an
d

H
am

am
ot

o
(2

01
1)

M
or

ph
ol

og
ic

al
op

er
at

or
s

Ta
na

ka
an

d
U

em
at

su
(1

99
8)

,
N

ie
ni

ew
sk

ie
ta

l.
(1

99
9)

,
Z

he
ng

et
al

.(
20

02
),

Y
os

hi
ok

a
an

d
O

m
at

u
(2

00
9)

,
Ja

ha
ns

ha
hi

et
al

.(
20

13
)*

,
Z

ha
ng

et
al

.(
20

14
)*

O
th

er

R
eg

io
n

gr
ow

in
g

Y
am

ag
uc

hi
an

d
H

as
hi

m
ot

o
(2

00
6,

20
10

),
B

on
ni

n-
Pa

sc
ua

l(
20

10
,2

01
7)

E
ic

h
et

al
.(

20
14

);
Q

u
et

al
.(

20
15

)
T

hr
es

ho
ld

in
g

+
th

in
ni

ng
+

la
be

lli
ng

C
ho

et
al

.(
19

98
)

G
ri

d
ce

ll
an

al
ys

is
So

rn
ch

ar
ea

n
an

d
Ph

ip
ho

bm
on

gk
ol

(2
00

8)
G

ri
d

m
et

ho
d

(W
D

FT
)

A
vr

il
et

al
.(

20
04

)

C
N

N
O

ul
le

tte
et

al
.(

20
04

)*
,

Z
ha

ng
et

al
.(

20
16

)*
C

lu
st

er
in

g
Z

ha
o

et
al

.(
20

15
)

Sa
lie

nc
y

B
on

ni
n-

Pa
sc

ua
la

nd
O

rt
iz

(2
01

4a
)*

,
B

on
ni

n-
Pa

sc
ua

la
nd

O
rt

iz
(2

01
8)

,
B

on
ni

n-
Pa

sc
ua

l(
20

17
)

*
in

di
ca

te
s

th
at

so
m

e
m

ac
hi

ne
le

ar
ni

ng
te

ch
ni

qu
e

is
in

vo
lv

ed
.

29



Table
4:R

epresentative
vision-based

corrosion
detection

approaches.
M

ethod
R

eference
A

ttributes
L

earning
C

lassification

M
achine

L
earning

U
sing

w
avelets

Siegeland
G

unatilake
(1998)

E
nergy

C
lustering

N
earest-neighbour

G
hanta

etal.(2011)
E

nergy
and

entropy
in

colour
+

m
ean

intensity*
L

M
S

Jahanshahiand
M

asri(2013)
E

nergy
in

colour
SN

N

U
sing

G
L

C
M

C
hoiand

K
im

(2005)
M

etrics
from

H
SIhist,

G
L

C
M

and
m

orphology*
C

lustering
N

earest-neighbour

B
ento

etal.(2009)
C

ontrast,correlation,
energy

and
hom

ogeneity
SO

M
N

earest-neighbour

B
onnin-Pascual(2010)

R
G

B
stacked

hist
/

H
S

histogram
C

lustering
/

C
olourm

ap
D

istance
threshold

/

M
ap

query

M
edeiros

etal.(2010)
C

ontrast,correlation,
energy

and
hom

ogeneity
and

H
SIhistm

om
ents*

FL
D

A

U
sing

L
aw

’s
filters

B
onnin-Pascualand

O
rtiz

(2014b)
Statisticalm

easures
from

convolutions
A

daB
oostw

ith
C

A
R

T
s

U
sing

saliency
B

onnin-Pascualand
O

rtiz
(2014a)

C
ontrastand

sym
m

etry
PD

F
estim

ation

O
ther

Y
am

ana
etal.(2005)

R
G

B
channels

SV
M

T
sutsum

ietal.(2009)
R

G
B

channels
/

H
SV

stacked
histogram

s
SV

M

O
rtiz

etal.(2015)
M

ean
colour

/stacked
histogram

s
+

SD
/L

B
P

SN
N

O
rtiz

etal.(2016)
D

om
inantcolours,

m
easures

from
SD

SN
N

Petricca
etal.(2016)

H
SV

channels
C

N
N

O
rtiz

etal.(2018)
R

G
B

channels
C

N
N

W
S

segm
entation

+

m
ean

hue
Jietal.(2012)

R
ed

channels
hist

Idris
etal.(2015)

T
hreshold

in
H

SV
R

oberts
(2016)

T
hreshold

in
saliency

B
onnin-Pascualand

O
rtiz

(2016,2018)

A
ttributes:

attributes
used

in
m

achine
learning

techniques.*
indicates

thatPC
A

is
applied.hist/histogram

30



concrete surfaces, which typically present a different width and elongation in comparison to the cracks that occur in765

the metallic structures of vessels. Regarding corrosion, colour and texture are the two main features employed by the766

existing detection methods. Most of them rely on some machine learning technique to learn how corrosion looks like,767

which requires an image dataset for training. A special mention must be made to deep learning methods, which are768

being used in demanding object recognition and classification tasks, including the detection of cracks and corrosion.769

Generic defect detectors based on saliency must also be kept in mind due to their good detection performance and770

their usefulness as a previous filter to reduce the false positives of detection algorithms designed for specific defects.771
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Pagnano, A., Höpf, M., Teti, R., 2013. A Roadmap for Automated Power Line Inspection. Maintenance and Repair. In: CIRP Conference on1000

Intelligent Computation in Manufacturing Engineering. pp. 234–239.1001

Peres Castilho, H., Caldas Pinto, J. R., Limas Serafim, A., 2006. NN Automated Defect Detection Based on Optimized Thresholding. In: Interna-1002

tional Conference on Image Analysis and Recognition. pp. 790–801.1003

Petricca, L., Moss, T., Figueroa, G., Broen, S., 2016. Corrosion Detection using A.I.: A Comparison of Standard Computer Vision Techniques and1004

Deep Learning Model. In: International Conference on Computer Science, Engineering and Information Technology. pp. 91–99.1005

Qu, Z., Lin, L.-D., Guo, Y., Wang, N., 2015. An Improved Algorithm for Image Crack Detection based on Percolation Model. IEEJ Transactions1006

on Electrical and Electronic Engineering 10 (2), 214–221.1007

Quater, P. B., Grimaccia, F., Leva, S., Mussetta, M., Aghaei, M., 2014. Light Unmanned Aerial Vehicles (UAVs) for Cooperative Inspection of PV1008

Plants. IEEE Journal of Photovoltaics 4 (4), 1107–1113.1009

Reed, S., Cormack, A., Hamilton, K., Tena Ruiz, I., Lane, D., 2006. Automatic Ship Hull Inspection using Unmanned Underwater Vehicles1010

(UUV’s). In: International Symposium on Technology and the Mine Problem.1011

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In: Advances in1012

Neural Information Processing Systems. pp. 91–99.1013

Ridao, P., Carreras, M., Ribas, D., Garcia, R., 2010. Visual Inspection of Hydroelectric Dams using an Autonomous Underwater Vehicle. Journal1014

of Field Robotics 27 (6), 759–778.1015

Roberts, N. S., 2016. Corrosion Detection in Enclosed Environments using Remote Systems. Master’s thesis, Alfred University.1016

URL http://hdl.handle.net/10829/72481017

Roslin, N. S., Anuar, A., Jalal, M. F. A., Sahari, K. S. M., 2012. A Review: Hybrid Locomotion of In-pipe Inspection Robot. In: International1018

Symposium on Robotics and Intelligent Sensors. Vol. 41. pp. 1456–1462.1019

Sa, I., Hrabar, S., Corke, P., 2015. Inspection of Pole-Like Structures using a Visual-Inertial Aided VTOL Platform with Shared Autonomy. Sensors1020

15 (9), 22003–22048.1021

Sampedro, C., Martinez, C., Chauhan, A., Campoy, P., 2014. A Supervised Approach to Electric Tower Detection and Classification for Power1022

Line Inspection. In: IEEE World Congress on Computational Intelligence.1023

Santamaria, A., Andrade, J., 2014. Hierarchical Task Control for Aerial Inspection. In: euRathlon-ARCAS Workshop and Summer School on Field1024

Robotics.1025

Satler, M., Unetti, M., Giordani, N., Avizzano, C. A., Tripicchio, P., 2014. Towards an Autonomous Flying Robot for Inspections in Open and1026

Constrained Spaces. In: Multi-Conference on Systems, Signals and Devices.1027

Schattschneider, R., Maurino, G., Wang, W., 2011. Towards Stereo Vision SLAM based Pose Estimation for Ship Hull Inspection. In: IEEE/MTS1028

OCEANS Conference.1029

Serrano, N. E., 2011. Autonomous Quadrotor Unmanned Aerial Vehicle for Culvert Inspection. Master’s thesis, Massachusetts Institute of Tech-1030

nology.1031

37

http://hdl.handle.net/10829/7248


URL http://hdl.handle.net/1721.1/677521032

Siegel, M., Gunatilake, P., 1998. Remote Enhanced Visual Inspection of Aircraft by a Mobile Robot. In: IEEE Workshop on Emerging Technolo-1033

gies, Intelligent Measurement and Virtual Systems for Instrumentation and Measurement.1034

Simonyan, K., Zisserman, A., 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/1409.1556.1035

Snavely, K. N., 2008. Scene reconstruction and visualization from internet photo collections. Ph.D. thesis, University of Washington.1036

Sorncharean, S., Phiphobmongkol, S., 2008. Crack Detection on Asphalt Surface Image using Enhanced Grid Cell Analysis. In: IEEE International1037

Symposium on Electronic Design, Test and Applications.1038

Subirats, P., Dumoulin, J., Legeay, V., Barba, D., 2006. Automation of Pavement Surface Crack Detection using the Continuous Wavelet Transform.1039

In: IEEE International Conference on Image Processing. pp. 3037–3040.1040

Tanaka, N., Uematsu, K., 1998. A Crack Detection Method in Road Surface Images Using Morphology. In: IAPR Workshop on Machine Vision1041

Applications. pp. 154–157.1042

Theodoridis, S., Koutroumbas, K., 2006. Pattern Recognition, 3rd Edition. Academic Press.1043

Trimble, G. M., Belcher, E. O., 2002. Ship Berthing and Hull Inspection using the CetusII AUV and MIRIS High-Resolution Sonar. In: IEEE/MTS1044

OCEANS Conference.1045

Tsutsumi, F., Murata, H., Onoda, T., Oguri, O., Tanaka, H., 2009. Automatic Corrosion Estimation using Galvanized Steel Images on Power1046

Transmission Towers. In: Transmission and Distribution Conference and Exposition: Asia and Pacific.1047

United Nations Conference on Trade and Development, 2015. Review of Maritime Transport. United Nations Publication, UNCTAD/RMT/2015.1048

Vaganay, J., Elkins, M., Esposito, D., O’Halloran, W., Hover, F., Kokko, M., 2006. Ship Hull Inspection with the HAUV: US Navy and NATO1049

Demonstrations Results. In: IEEE/MTS OCEANS Conference.1050

Vaganay, J., Elkins, M. L., Willcox, S., Hover, F. S., Damus, R. S., Desset, S., Morash, J. P., Polidoro, V. C., 2005. Ship Hull Inspection by1051

Hull-Relative Navigation and Control. In: IEEE/MTS OCEANS Conference.1052

VanMiddlesworth, M., Kaess, M., Hover, F., Leonard, J. J., 2013. Mapping 3D Underwater Environments with Smoothed Submaps. In: Interna-1053

tional Conference on Field and Service Robotics. pp. 17–30.1054

Vincent, L., Soille, P., 1991. Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on Pattern1055

Analysis and Machine Intelligence 13 (6), 583–598.1056

Walter, M., Hover, F., Leonard, J., 2008. SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters. In: IEEE International1057

Conference on Robotics and Automation. pp. 1463–1470.1058

Webb, A. R., Copsey, K. D., 2011. Statistical Pattern Recognition, 3rd Edition. Wiley.1059

White, T. S., Alexander, R., Callow, G., Cooke, A., Harris, S., Sargent, J., 2005. A Mobile Climbing Robot for High Precision Manufacture and1060

Inspection of Aerostructures. International Journal of Robotics Research 24 (7), 589–598.1061

Wu, H., Lv, M., Liu, C. A., Liu, C. Y., 2012. Planning Efficient and Robust Behaviors for Model-based Power Tower Inspection. In: International1062

Conference on Applied Robotics for the Power Industry. pp. 163–166.1063

Xie, X., 2008. A Review of Recent Advances in Surface Defect Detection using Texture Analysis Techniques. Electronic Letters on Computer1064

Vision and Image Analysis 7 (3), 1–22.1065

Yamaguchi, T., Hashimoto, S., 2006. Image Processing based on Percolation Model. IEICE Transactions on Information and Systems 89 (7),1066

2044–2052.1067

Yamaguchi, T., Hashimoto, S., 2010. Fast Crack Detection Method for Large-size Concrete Surface Images using Percolation-based Image Pro-1068

cessing. Machine Vision and Applications 21 (5), 797–809.1069

Yamana, M., Murata, H., Onoda, T., Ohashi, T., Kato, S., 2005. Development of System for Crossarm Reuse Judgment on the Basis of Classification1070

38

http://hdl.handle.net/1721.1/67752


of Rust Images using Support Vector Machine. In: IEEE International Conference on Tools with Artificial Intelligence.1071

Yoshioka, M., Omatu, S., 2009. Defect Detection Method using Rotational Morphology. Artificial Life and Robotics 14 (1), 20–23.1072

Yu, S.-N., Jang, J.-H., Han, C.-S., 2007. Auto Inspection System using a Mobile Robot for Detecting Concrete Cracks in a Tunnel. Automation in1073

Construction 16 (3), 255–261.1074

Zainal Abidin, Z., Arshad, M. R., 2006. Visual Servoing with Application to ROV for Ship Hull Inspection. In: International Conference on1075

Man-Machine Systems.1076

Zhang, L., Yang, F., Zhang, Y. D., Zhu, Y. J., 2016. Road Crack Detection using Deep Convolutional Neural Network. In: IEEE International1077

Conference on Image Processing. pp. 3708–3712.1078

Zhang, W., Zhang, Z., Qi, D., Liu, Y., 2014. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring. Sensors1079

14, 19307–19328.1080

Zhao, G., Wang, T., Ye, J., 2015. Anisotropic Clustering on Surfaces for Crack Extraction. Machine Vision and Applications 26 (5), 675–688.1081

Zheng, H., Kong, L. X., Nahavandi, S., 2002. Automatic Inspection of Metallic Surface Defects using Genetic Algorithms. Journal of Materials1082

Processing Technology 125-126, 427–433.1083

39


	Introduction
	Robotic Platforms for Inspection
	Robotic Platforms devised for Vessel Hull Inspection
	Aerial Robotic Platforms for Inspection
	Discussion

	Vision-based Defect Detection Algorithms
	Algorithms for Crack Detection
	Algorithms for Corrosion Detection
	Discussion

	Conclusions

