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ABSTRACT During exploratory performance testing, software testers evaluate the performance of a software
system with different input combinations in order to identify combinations that cause performance problems
in the system under test. Performance problems such as low throughput, high response times, hangs,
or crashes in software applications have an adverse effect on the customer’s satisfaction. Since many
of today’s large-scale, complex software systems (e.g., eCommerce applications, databases, web servers)
exhibit very large multi-dimensional input spaces with many input parameters and large ranges, it has
become costly and inefficient to explore all possible combinations of inputs in order to detect performance
problems. In order to address this issue, we introduce a method for identifying input combinations that
trigger performance problems in the software system under test. Our method, under the name of iPerfXRL,
employs deep reinforcement learning in order to explore a given large multi-dimensional input space
efficiently. The main benefit of the approach is that, during the exploration process, it learns and recognizes
the problematic regions of the input space that have a higher chance of triggering performance problems.
It concentrates the search in those problematic regions to find asmany input combinations as possible that can
trigger performance problems while executing a limited number of input combinations against the system.
In addition, our approach does not require prior domain knowledge or access to the source code of the
system. Therefore, it can be applied to any software system where we can interactively execute different
input combinations while monitoring their performance impact on the system. We implement iPerfXRL
on top of the Soft Actor-Critic algorithm. We evaluate empirically the efficiency and effectiveness of our
approach against alternative state-of-the-art approaches. Our results show that iPerfXRL accurately identifies
the problematic regions of the input space and finds up to 9 times more input combinations that trigger
performance problems on the system under test than the alternative approaches.

INDEX TERMS Exploratory performance testing, deep reinforcement learning, test data generation.

I. INTRODUCTION
One of the most critical and challenging tasks for developers
is to identify and fix performance problems of software sys-
tems [1]. Performance problems such as low throughput, high
response times, hangs, or crashes in software applications
have an adverse effect on the customer’s satisfaction. Accord-
ing to [2], there are higher chances of a software system
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crashing due to performance problems rather than functional
failures.

Recent reports [1] show that certain input combinations
can trigger more than half of the performance bottlenecks
identified in non-trivial software systems. The reason is
that certain input combinations can invoke inefficient code
sequences or resource-intensive operations, which result in
overall system performance degradation commonly referred
to as performance bottlenecks. Molyneaux [3] defines a per-
formance bottleneck as a software defect which degrades the
performance of the System Under Test (SUT) unexpectedly.
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Performance testing is an approach to identify performance
bottlenecks [2], [4]. A performance test typically comprises a
sequence of actions and the test data for those actions. During
the performance testing process, different Key Performance
Indicators (KPIs) of the SUT are monitored (as test outputs)
to uncover performance bottlenecks (i.e., deviations from the
expected KPIs threshold). Such KPIs can be, for instance,
latency, elapsed execution time, bandwidth, resource utiliza-
tion, and throughput.

There are several ways in which the test input values used
in performance testing are generated in current practices [5];
however, each has some disadvantages:

1) manually crafted by the test engineers based on their
experiences and intuition - requires that the test engi-
neers have rigorous domain knowledge about the SUT;

2) generated by performance profilers - requires access to
the source code of the SUT, which is often unavailable.
In addition, it requires test inputs to instrument the
program under test for performance profiling;

3) collected during the regular usage of the SUT - they rep-
resent themost common input combinations executed by
users. However, they miss the rare and infrequent, yet
problematic, combinations;

4) extracted from crash reports sent by customers - col-
lecting the test input values post-production is not
recommended since the failure has already affected the
end-users of the system. Thus, the damage in reputation
of the company has been produced already. In addition,
the testing process should be proactive.

Since many of today’s systems exhibit very large multi-
dimensional input spaces with many input parameters and
large ranges, it has become costly and inefficient to explore
all possible input combinations in order to detect performance
bottlenecks [1], [6]. The reason behind this is that not only the
number of input combinations is very large, but also the time
for executing a single combination against the SUT can be
relatively long. These two factors make the exhaustive testing
of all input combinations virtually infeasible. This is also
accentuated in the case where the SUT is regarded as a black-
box and one does not have access to the internal dynamics of
the SUT.
Exploratory Testing (ET) is a software testing technique

which does not rely on a pre-defined set of test cases;
instead, the tester continuously learns, creates, and executes
test cases [7]. The tester extracts new information and insights
from the results of the previously executed test cases and
creates new, better test cases. The goal of ET is to find
software defects by learning the system behavior and being
less dependent on the test documentation. ET is usually per-
formed manually and requires rigorous domain knowledge
and substantial efforts and time.

In this paper, we propose an automated exploratory per-
formance testing method that explores the input space of the
SUT and identifies, in an effective manner, a limited number
of input combinations that trigger performance bottlenecks.

Our method, under the name of iPerfXRL, employs Deep
Reinforcement Learning (DRL) [8] in order to explore non-
exhaustively a given large multi-dimensional input space. It
does not require prior knowledge about the system or domain.
We can apply iPerfXRL to any software system where we
can interactively execute different input combinations while
monitoring their performance impact on the SUT. During
the exploration process, the method learns to focus on those
regions of the input space that have a higher chance of trig-
gering performance bottlenecks.

The work presented in this article is an extension of our
work published in [9], where we initially formulated the input
space exploration problem for performance testing as a DRL
problem. However, in the current article, we provide several
improvements:

1) We reformulate the input space exploration problem in
the context of DRL by redefining the action space and
the reward function. This resulted in improved bottle-
neck detection rate.

2) We provide the tool support for our approach using
Python’s Stable Baselines [10] library to automate the
exploration process.

3) We empirically evaluate the efficiency and effective-
ness of our method against our previous approach (i.e.,
PerfXRL [9]), random testing, deterministic grid search,
and combinatorial interaction testing.

4) We experimentally show that the improved Per-
fXRL (iPerfXRL) is able to detect more performance
bottlenecks than the PerfXRL [9] and, at the same time,
it identifies up to 9 times more bottlenecks than the other
approaches.

The rest of the paper is structured as follows: Section II
provides an introduction to RL. In Section III, we describe
our approach. We empirically evaluate our approach in
Section IV. Section V presents an overview of the related
work. Section VI specifies threats to the validity of this work.
Finally, Section VII discusses conclusions and future work.

II. REINFORCEMENT LEARNING
Reinforcement Learning (RL) is a reward-driven machine
learning technique in which an agent learns by interacting
with an unknown environment in order to accomplish a goal.
The agent collects feedback (or a reward) from the environ-
ment by performing an action according to the current state
of the environment. The goal of the agent is to maximize the
expected cumulative rewards over time by finding the optimal
(or a near-optimal) sequence of actions.

An RL process can be characterized as a Markov Deci-
sion Process (MDP). The process is represented as a tuple
〈S,A,P,R, γ 〉, where

• S is a finite set of states of the environment;
• A represents a finite set of permissible actions;
• P : S × A→ S is a transition function;
• R : S × A→ R is a reward function;
• γ ∈ [0, 1] is a discount factor.
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At every time step t , the agent observes the current state st ∈
S and then it performs an action at ∈ A. After each action,
the agent receives a scalar reward rt+1 ∼ R(st , at )1 from the
environment, as well as the next state st+1 ∼ P(st , at ).

Based on the reward, the agent recognizes which actions
are good or bad with respect to a given state. The main
property of an MDP is that, given the current state at any
particular time step, the future rewards and states are con-
ditionally independent of the previous states. In other words,
the current state contains all the required information which
is needed by the environment to make state transitions and to
return rewards corresponding to the agent actions. Therefore,
reward function R and transition function P only require the
current state st and action at as input parameters in order to
calculate the reward rt+1 and the next state st+1, respectively.

The agent chooses an action according to a policy π , which
maps the states of the environment to the actions that can be
performed in those states. In other words, π (a|s) = Pr{at =
a|st = s} represents the probability of selecting action a in
state s while following policy π . The objective of RL is to
find an optimal policy π∗ which maximizes the total excepted
discounted return:

π∗ = argmax
π

E[G|π] (1)

where Gt specifies the total expected discounted return at a
time step t: Gt

.
=

∑T
k=t+1 γ

k−t−1R(sk , ak ), where T is the
maximumnumber of time steps in a finiteMDP. This duration
is known as an episode.

A. DEEP REINFORCEMENT LEARNING
In this work, we use a DRL algorithm, called SAC [12],
to implement our method. DRL [8] is a combination of RL
and deep learning [13] principles where we utilize Deep
Neural Networks (DNNs) as function approximators to learn
the environment. DNNs [14] are multi-layer neural networks
that are designed to approximate complex functions by learn-
ing different levels of representations of the given training
data. The main benefit of DRL is that the agent can learn
various levels of abstractions from the data and generalize
the knowledge from the observed input combinations to the
unseen input combinations.

The SAC algorithm consists of two components: actor and
critic. The actor is responsible for choosing the actions based
on the given states. The critic does not directly influence
the selection of the actions; instead, the actor utilizes the
feedback from the critic to improve the policy. This archi-
tecture allows actor-critic methods to perform better than the
other RL methods by reducing the variance and accelerating
the learning process [11]. The SAC algorithm approximates
the value function Vψ (st ) and the soft action-value function
Qθ (st , at ) to implement the critic. The actor is based on the
tractable policy πφ(at |st ). ψ , θ and φ represent the parame-
ters of the DNNs [13].

1We follow the conventions by Sutton et al. [11] where they use rt+1 to
denote the reward in response to action at in state st .

The algorithm is based on the maximum entropy frame-
work [12]. Unlike the standard RL algorithms where the goal
is to maximize the expected reward (see Equation 1), in the
maximum entropy framework, we learn a policy π∗ that
maximizes the sum of the expected rewards and the entropy
of the policy at each visited state:

π∗ = argmax
π

T∑
t=0

Eπ [R(st , at )+ αH(π (.|st ))] (2)

where H returns the entropy of the policy and the temper-
ature parameter α specifies the relative importance of the
entropy. The entropy term determines the randomness in the
policy:H(π (.|st )) = Eπ [− logπ (.|st )]. In other words, as we
increase the value of α, the agent performs more random
actions which result in a more extensive exploration of the
state space.

There are four main reasons why we chose SAC over the
other RL algorithms: (1) SAC is an off-policy algorithm,
which means that the algorithm can reuse the previous expe-
riences for multiple learning updates to improve the learning
efficiency of the agent. The algorithm stores the previous
experiences (i.e., recently executed input combinations and
their performance impact on the SUT) in a cyclic buffer,
called replaymemory. It uniformly samples the replymemory
to train the agent. This process is known as experience replay
[15]. (2) The performance of the algorithm is less sensitive
to the different hyperparameter values than the other RL
algorithms [16]. (3) Aswe havementioned at the beginning of
this section that SAC is a DRL algorithm and has the ability to
generalize the knowledge from the previously executed input
combinations to the unseen input combinations. Therefore,
we can apply our approach to the systems with large contin-
uous input spaces and find performance bottlenecks. (4) The
maximum entropy objective encourages the agent to explore
the state space more extensively while avoiding unrewarding
regions of the space. Consequently, iPerfXRL should be able
to find more potential performance bottlenecks than other
approaches.

III. PERFORMANCE EXPLORATION APPROACH
iPerfXRL employs RL to identify performance bottlenecks in
a SUT without any prior domain knowledge about the SUT
or of its internal implementation (see Figure 1). The iden-
tification of performance bottlenecks is made by executing
different input combinations against the SUT and monitoring
the deviations of the KPI values from certain pre-configured
acceptable performance thresholds. Such thresholds can be
derived from different sources such as requirement specifi-
cations or Service Level Agreements (SLAs), and vary from
system to system. The main goal of iPerfXRL is to identify as
many input combinations as possible that can trigger perfor-
mance bottlenecks. From hereon, we refer to those combina-
tions as relevant combinations. We achieve the identification
by recognizing those regions of the input space that have a
higher potential to trigger performance bottlenecks.
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FIGURE 1. General view of the iPerfXRL approach (Adapted from [11]).

To illustrate our approach, we start with a hypothetical
example and show how we place it in the context of DRL.

A. CONCEPTUAL EXAMPLE
Let us consider a conceptual example of a system which
accepts three input parameters. For convenience, wewill refer
to it as Conceptual Black-box System (CBS). The parameters
of CBS can take integer values from 1 to 50 for the first two
parameters, and from 1 to 400 for the third one.

CBS is just another software system with a large multi-
dimensional input space where different combinations can
exhibit different performance behavior of the system. The
input parameters can be actual input values, or they can be
configuration parameters of the SUT that will influence the
performance of the system. For instance, database systems
(e.g., MySQL, Postgres) andweb servers (e.g., Apache HTTP
Server) are the real-world examples of CBS. These systems
have hundreds of configurable parameters [17]. Finding a set
of values for these parameters that greatly affects the perfor-
mance of the system is a challenging task. In this section,
we will discuss how our approach can be used to identify such
values of the input parameters without executing all possible
combinations.

B. DEEP REINFORCEMENT LEARNING PROBLEM
FORMULATION
We represent the input space exploration problem for per-
formance testing as a search problem over a large multi-
dimensional input space S representing all possible input
combinations. The goal is to identify a near-complete subset
of input combinations (i.e., relevant combinations) B ⊂ S
that yield resource-intensive computations on the SUT. These
can be observed as degradations of the performance, for
instance, lower throughput and higher response time in rela-
tion to specified thresholds. We denote the complement of
relevant combinations, S \ B, as the set of irrelevant combi-
nations with respect to our approach.

The DRL agent interactively tries out different input com-
binations while observing their performance impact on the
SUT formulated as a reward function. This is a continuous
process. At each step, the agent suggests a new action to

be executed, which results in a new input combination. The
environment executes the new combination against the SUT
and returns a reward to the agent, which uses the reward to
improve the selection of future actions.

During this process, the approach maintains a list of rel-
evant combinations. These combinations can be later on fil-
tered or ranked with respect to their performance impact on
the system, and can be further reviewed or clustered to assist
debugging performance bottlenecks in the system.

We define different components of our approach as fol-
lows:

1) STATE SPACE
We define the state space S of the iPerfXRL as the set
of all possible input combinations st ∈ S through which
the agent can transition during the exploration. Each state
represents a single input combination expressed as a vec-
tor {v(1)t , v

(2)
t , . . . , v

(N )
t } at a given time step t , where N is

the number of input parameters (or dimensions of the input
space) of the SUT. Thus, the size of the state space is equal
to the size of the input space.

In our example, the three parameters v(1), v(2), and v(3) of
CBS create a multi-dimensional input space SCBS with a size
of 50*50*400 states, that is 106 states.

2) ACTION SPACE
The agent observes the current state st (i.e., the current input
combination) and provides an action at to the environment.
Based on the action at , the environment modifies the st in
order to produce the next state st+1 (i.e., a new input combi-
nation). Thus, we can specify the action space A as a set of
potential modifications that can be made to the current state
in order to produce the next state.

In our previous work [9], the selection of actions was
restricted to a finite discrete action space, which means that at
every time step t , the agent could either increase or decrease
the value of a single input in the current state by a fixed
amount in order to get the next state. Therefore, the agent had
to go through numerous unrewarding states in order to get
to the rewarding regions of the input space, which resulted
in decreasing the overall bottleneck detection rate of the
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TABLE 1. Examples of state updates according to the actions.

approach. In order to address this issue, iPerfXRL extends the
discretized action space to continuous action space. At every
time step t , the agent can increase or decrease the values of all
the inputs at once in order to get the next state. Furthermore,
the input values are not updated by a fixed amount; instead,
the agent decides how much value of each input should be
increased or decreased:

A = {a(i)| − 1.0 ≤ alow ≤ a ≤ ahigh ≤ 1.0}

vrange(i) = vmax(i) − vmin(i) + 1

v(i)t+1 ← clip(v(i)t + a
(i)
t ∗ vrange

(i), i)

∀i ∈ [1, 2, . . . ,N ] (3)

where function clip(x, i) returns x in the range:
[vmin(i), vmax(i)] of the input variable v(i). The function clip
helps to avoid invalid updates to the inputs. alow and ahigh are
hyperparameters, which control the magnitude of the updates
to the inputs.

For example, we set alow and ahigh to -0.4 and 0.4, respec-
tively, for the action space ACBS of the CBS. Thus, the
maximum size of the update to the inputs that the agent can
perform is restricted to the 40% of the vrange(i)CBS , where
vrangeCBS = {50, 50, 400}. Table 1 lists several examples
of the possible actions that the agent can select and how
they modify the current state in order to produce the next
state. In our previous work [9], we addressed only integer
input parameters, but iPerfXRL can be applied to float inputs
without any modification. Furthermore, iPerfXRL can easily
be extended to support other types of inputs (e.g., string,
categorical) by modifying the action and the input space
accordingly.

3) TRANSITION FUNCTION
A transition function P accepts a state and an action as
inputs and returns a new state. In Markov chains, the function
is stochastic for a non-deterministic environment. However,
in our case, the environment is deterministic, which means
that given the current state and the selected action, we can
calculate the exact outcome of the transition function at any
time step.

4) POLICY
The goal of our agent is to maximize the maximum entropy
objective as defined in Equation (2). The temperature param-
eter α is used to balance between exploitation and explo-
ration. A higher value of α corresponds to more exploration,
whereas a lower α correlates to more exploitation. In order
words, increasing the value of α would inspire to explore
the input space by performing more random actions. This
ensures that the agent does not precipitately converge to a

poor strategy. However, it is difficult to manually set the
optimal value for α because the entropy term in the objective
function can fluctuate erratically during the optimization of
the policy. Therefore, Haarnoja et al. [16] have updated the
SAC algorithm to automatically learn and adjust the value
of α during the training of the agent. This allows the agent
to explore more extensively the uninvestigated regions of
the input space and exploit the acquired knowledge when
traversing familiar regions. Thus, in this work, we do not set
the value of α manually; instead, we let the SAC algorithm
regulate it.

5) REWARD
The reward value is the primary basis for updating the policy;
if the chosen action by the policy is followed by a low reward,
then the policy may be updated to choose some other action
on that state in the future.

In our case, the agent gets high rewards when it finds
relevant combinations. We compare the measured KPI value
(e.g., CPU load, disk usage, or elapsed execution time of
the SUT) against the given acceptable performance threshold
L to identify relevant combinations. The conjecture is that
the measured KPI value would be different from the given
threshold L for relevant combinations. As we have defined in
Section III, relevant combinations refer to those input combi-
nations that are most likely to cause performance bottlenecks.

The agent can obtain reward only once per relevant com-
bination. The reason is to encourage agent to explore input
space and find more unique relevant combinations. The
reward rLt+1 is defined as

rLt+1 =

{
x ∈ Z>0 if E(st+1) ≶ L and isNew(st+1)
x ∈ Z<0 otherwise.

(4)

where E is an executor function which runs the performance
test cases using the provided input combination st+1 against
the SUT and returns the measured KPI value, and function
isNew(s) checks whether the given input combination s has
been executed before or not. In summary, Equation (4) spec-
ifies that if the measured KPI value for the combination st+1
is less than or greater than the given acceptable performance
threshold L and the combination st+1 has not been executed
so far, the agent receives a positive reward (i.e., a positive
integer) because it has found a new relevant combination.

C. FINDING BOTTLENECKS
Algorithm 1 summarizes our approach. Our agent explores

the input space in an episodic manner. In every episode, the
agent starts from a random state (line 5) and performs a
certain number of steps. On each step, the agent suggests an
action to the environment that computes a new input combi-
nations based on the proposed action and the current input
combination (lines 9 to 10). Next, the environment executes
the newly created input combination against the SUT and
calculates the reward (line 11). We keep track of the reward
that the agent has collected so far in this episode (line 12).
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Algorithm 1 Pseudocode of iPerfXRL
Require: TtlSteps - total number of steps,MaxNegR - maxi-

mum negative reward per episode, Env - RL environment
Ensure: B - list of relevant combinations
1: Agent ← SACAgent(Env){create a SAC agent}
2: B ← {} {initialize a set for storing relevant combina-

tions}
3: step← 0
4: while step < TtlSteps do
5: s ← Env.reset() {reset the environment for the new

episode and return a random state}
6: done← false
7: current_ep_r ← 0 {store the reward for the current

episode}
8: while step < TtlSteps or not done do
9: action← Agent.act(s) {agent observes the current

state s and returns an action}
10: next_s← Env.P(s, action) {get the next state using

the transition function P defined in the environ-
ment}

11: r ← Env.R(next_s) {calculate the reward using
Equation (4)}

12: current_ep_r ← current_ep_r + r
13: if current_ep_r ≤ MaxNegR then
14: done← true
15: end if
16: Agent.learn(s, action, next_s, r, done) {agent uses

the provided arguments to train the deep neural
network to select better actions in the future}

17: if r > 0 then
18: B ← B ∪ next_s {add a relevant combination to

the set B }
19: end if
20: s← next_s
21: step← step+ 1
22: end while
23: end while

An episode ends when the reward for the current episode
becomes less than or equal to MaxNegR (e.g., −100)
(lines 13 to 15). The conjecture is that the agent can be
stuck in some region of the input space where it could
not find relevant input combinations anymore. Thereupon,
the environment begins the new episode by generating
a new random input combination. Starting every episode
from a new random input combination allows the agent
to explore different regions of the state space in each
episode.

Furthermore, the agent stores the results of the recently
executed input combinations (i.e., current input combination
st , action at , next input combination st+1, and reward rt+1)
(line 16), at each time step t , in the replay memory. These
results are reused for multiple learning updates to improve
the learning efficiency of the agent.

D. PARAMETERS TUNING
Both parameters, number of steps (TtlSteps ∈ Z>0) and the
maximum negative reward per episode (MaxNegR ∈ Z<0),
mainly depend on the complexity of the SUT and the duration
of test runs against the SUT and vary from case to case.
Nevertheless, a higher value of TtlStepswould allow the agent
to explore the input space more extensively and yield better
results.

The value of MaxNegR is used to control the length of an
episode. A large negative value of MaxNegR indicates that
the agent can execute a large number of irrelevant combina-
tions which do not trigger bottlenecks before the environment
resets and starts a new episode. As a result, the duration of
episodes would be long, and if the TtlSteps is small, the agent
would only explore a few regions of the input space. Thus, due
to the lack of broad exploration of the input space, the agent
might not find an adequate number of relevant combinations.
On the other hand, when the value ofMaxNegR gets close to
zero, the episodes become shorter, and the environment resets
frequently. This also leads to reduced bottleneck detection
rate because the agent cannot adequately explore the regions
of the input space.With the right value ofMaxNegR, the agent
balances diversification and exploration of the input space
regions, leading to higher bottleneck detection rate.

IV. EVALUATION
In this section, we experimentally evaluate our RL approach
by answering the following research questions:

• RQ1: Can iPerfXRL adequately identify the relevant
regions of the input space which contain relevant com-
binations by exploring only a subset of the input space?

• RQ2: How effective is iPerfXRL compared to other
deterministic and non-deterministic approaches?

• RQ3: How is the performance of iPerfXRL affected
by the values chosen for the hyperparameters of the
algorithm?

RQ1 investigates how well iPerxXRL learns and deter-
mines those regions of the input space which contain relevant
combinations (i.e., input combinations that can triggers per-
formance bottlenecks on the SUT, as stated in Section III).
To answer RQ2, we compare the number of relevant com-
binations identified by iPerfXRL against the alternative
approaches. RQ3 focuses on the effects of different param-
eters on the bottleneck detection rate of iPerfXRL.

We have conducted several computational experiments to
answer the research questions. We follow the guidelines sug-
gested by Barr et al. [18] to perform the experiments. The
goal of an experiment is to examine the effect of changing
one or more variables while keeping the rest of the variables
unchanged. Within an experiment, all the variables that we
control andmodify are called independent variables, whereas
the variables that are measured to study the effects of varia-
tions in the independent variables are known as dependent
variables.
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The following subsection describes the subject application
used for evaluation. Then, we present the methodology and
the setup of our experiments. Lastly, we discuss the results
with respect to each research question.

A. SUBJECT APPLICATION
We use the reference web application RUBiS [19] as a
subject application in our experiments. RUBiS is a web-
based application that implements the core functionality of
an auction site. It has been widely used in academia for
performance evaluation, with over 300 citations on Google
Scholar [20].We use an Apache HTTPweb server [21] 2.4.29
with PHP [22] 7.2.10 to host the front-end of the application.
The backend database is MySQL Server [23] 5.7.

The inputs to RUBiS are provided as HTTP requests.
Table 2 defines a performance test case for RUBiS as a
scenario (i.e., a sequence of HTTP requests to three URLs).

TABLE 2. RUBiS test case.

RUBiS test case requires four integer input parameters
listed in Table 3. These input parameters constitute the RUBiS
input space SRUBiS with a size of 3 100 000 (i.e., the total
number of input combinations). The input parameter Cat-
egory Name (CN) is not considered as an input parameter
because its value depends on the value of input parameter
Category ID (CID). The size of the action space ARUBiS
for RUBiS is four because we have four input parameters.
An input combination st ∈ SRUBiS can be represented as:
st = {CIDt ,RIDt , IIDt ,UIDt } at time step t . Even though the
input parameters are used in different URLs and are provided
sequentially, we consider them as an atomic definition of the
state.

TABLE 3. RUBiS input space SRUBiS .

In order to calculate the reward rt+1 for the agent, we need
to define the executor functionERUBiS for RUBiS. In our eval-
uation, we use the Elapsed Execution Time (EET) of the SUT
for a given input combination as a KPI. Our approach will
attempt to identify those input combinations that will take the
EET over a given acceptable performance threshold L. The
executor function ERUBiS (st+1) runs the RUBiS performance
test case (listed in Table 2) using the input values st+1 and
returns the total EET of the test case (i.e., the sum of EETs
of the URL requests). For instance, if st+1 = {5, 30, 23, 35},
the function ERUBiS (st+1) runs the following URL requests:

R1: /SearchItemsByRegion.php?category=5
&categoryName=Coins&region=30

R2: /ViewItem.php?itemId=23
R3: /ViewUserInfo.php?userId=35
In this case, the EET of the RUBiS performance test case for
st+1 would be equal to the sum of EET of R1, R2, and R3:

ERUBiS (st+1) =

R1︷︸︸︷
0.59+

R2︷︸︸︷
0.10+

R3︷︸︸︷
0.04 = 0.73 seconds (5)

B. METHODOLOGY
In order to evaluate iPerfXRL in a controlled setting,
we benchmark the performance of the RUBiS by exploring
the complete input space and measuring EET for the given
scenario by exercising all possible input combinations. The
results showed that different input combinations have no
considerable impact on the performance of RUBiS.

For the evaluation purposes, we injected 20 clusters of syn-
thetic performance bottlenecks into the source code, as delays
that are triggered on certain input combinations. Since our
approach is intended to perform exploratory performance
testing of systems in a black-box manner (i.e., without access
to the internal implementation), iPerXRL is not aware of
these bottlenecks beforehand and tries to identify them during
the exploration.

A cluster of injected bottlenecks would emulate computa-
tionally expensive operations and increase the elapsed execu-
tion time of the RUBiS performance test case by 5 seconds.
For instance, st+1 input combination would trigger one of our
injected clusters of bottlenecks because the input combina-
tion st+1 = {5, 30, 23, 35} satisfies the following condition:

7 ≤ CID ≤ 10 ∧ 23 ≤ RID ≤ 39 ∧ 12 ≤ IID ≤ 28

∧31 ≤ UID ≤ 47 (6)

After injecting the bottlenecks, the EET of the RUBiS per-
formance test case for st+1 would be 5.73 seconds, instead of
0.73 seconds (as calculated in Equation 5).

The reason for injecting clusters of bottlenecks instead of
individual bottlenecks is that the performance problems usu-
ally tend to affect a group of adjacent combinations contrary
to a single combination. Since each injected performance
bottleneck adds a delay of 5 seconds to the elapsed execution
time of the performance test, we set the value of L to 5 and
use the following equation for reward calculation:

rLt+1 =

{
10 if ERUBiS (st+1) > 5 and isNew(st+1)
−1 otherwise.

(7)

As we have discussed in Section III, in real-world situations,
the value of L is usually extracted from requirement speci-
fications or SLAs. In other words, the L threshold specifies
a satisfactory level of performance with respect to a given
KPI. The threshold value does not affect the performance of
our approach. In our preliminary tests, we got good results
by setting the positive and negative reward to 10 and −1,
respectively, instead of typical values of 1 and −1.
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FIGURE 2. Distribution of clusters of injected bottlenecks for each pair of the input variables (listed in Table 3) in RUBiSUNI . Each diamond shape in the
subfigures (a) to (f) corresponds to a bottleneck cluster. The values on the diamonds indicate the identifier of the clusters.

Injecting artificial bottlenecks raises the question of how
the distribution of injected clusters of performance bottle-
necks affects the performance of iPerfXRL in finding the
bottlenecks. To address this question, we created two vari-
ants of the RUBiS web application. In RUBiSUNI , the clus-
ters of bottlenecks are uniformly [24] distributed, which
is not an ideal situation for iPerfXRL (or any other tool
using heuristics) because the clusters are widely spread over
the entire input space. In the second variant, RUBiSPOI ,
we used Poisson distribution [24] to distribute the clusters
of bottlenecks. In the case of RUBiSPOI , as opposed to
RUBiSUNI , the clusters are packed together in the input space.
Figures 2 and 3 show the distributions of clusters of bottle-
necks in RUBiSUNI and RUBiSPOI , respectively, where each
diamond shape represents one cluster of bottlenecks, and the
values on the diamonds indicate the identifier of the clus-
ters. These figures are two-dimensional representations of the
four-dimensional input space of RUBiSUNI and RUBiSPOI . In
total, we have injected bottlenecks on 250 184 and 283 391
unique input combinations in RUBiSPOI and RUBiSUNI ,
respectively. These bottlenecks roughly cover 9% of the total
input space. We have made the input spaces of RUBiSUNI
and RUBiSPOI with injected bottlenecks publicly available
in [25].

We repeated every experiment described in this study 30
times to establish the statistical significance of the results. For
each experiment, the approach under evaluation and the SUT
ran on different machines. Each machine featured an Intel
Core i7-3770KCPU, 16 GB of memory, 7200 rpm hard drive,
and Ubuntu 18.04 Operating System. To reduce the network
latency, the machines were connected via a 1Gb Ethernet
connection in an isolated environment.

C. RQ1: IDENTIFYING RELEVANT REGIONS OF THE INPUT
SPACE
The objective of this research question was to investigate
whether iPerfXRL can learn and recognize the relevant
regions of the input space, which contain relevant combi-
nations. To answer this question, we conduct an experiment
where we ran iPerfXRL on both RUBiSUNI and RUBiSPOI .
The values of the different parameters (or independent vari-
ables) in iPerfXRL are as follows:

• Number of steps (TtlSteps): 775 000
• Maximum negative reward per episode (MaxNegR):
−100

• Action space bounds: we set alow to −0.05 and ahigh
to 0.05. In our preliminary experiments, we got better
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FIGURE 3. Distribution of clusters of injected bottlenecks for each pair of the input variables (listed in Table 3) in RUBiSPOI . Each diamond shape in the
subfigures (a) to (f) corresponds to a bottleneck cluster. The values on the diamonds indicate the identifier of the clusters.

results when the alow and ahigh values were between
−0.01 to −0.1 and 0.01 to 0.1, respectively.

• Discount factor (γ ): 0.99
• Size of the replay memory: 300 000
• Deep neural networks: we used three fully-connected
hidden layers with 32 nodes. The layers used the hyper-
bolic tangent tanh(x) [13] activation function. We used
the Adam [26] optimization algorithm for DNNs with
the learning rate (lr) set to 0.0003. Furthermore, we have
noticed, in our preliminary experiments, that providing
the last five executed input combinations as input to
the SAC agent improves the learning capability of the
agent significantly. This modification allowed the agent
to learn the patterns and dependencies behind the input
combinations and performance bottlenecks.

The dependent variable is a list of all the input combina-
tions executed by the agent. iPerfXRL took around 110 min-
utes to execute 775 000 input combinations (i.e., 25% of
the RUBiS input space SRUBiS defined in Section IV-A)
against the SUT. We performed a frequency analysis of the
input combinations executed by the agent in order to build
a heatmap for each pair of input variables, as shown in Fig-
ures 4 and 5 for RUBiSUNI and RUBiSPOI , respectively. Each

entry in the heatmap corresponds to the relative execution
frequency of the input combination. For instance, the more
executed input combinations are indicated by a redder shade
while the least executed input combinations are a bluer shade
in the heatmaps.
In order to visually inspect how effectively iPerfXRLman-

ages to recognize the relevant regions of the input space,
we generate Figures 6 and 7 by overlaying the heatmaps
(shown in Figures 4 and 5) on top of the bottleneck distri-
butions (illustrated in Figures 2 and 3) for RUBiSUNI and
RUBiSPOI , respectively. Figures 6 and 7 positively answer
RQ1 that iPerfXRL can identify the relevant regions of the
input space. Furthermore, one can notice that the agent identi-
fied the relevant regions for RUBiSPOI (where the clusters of
bottlenecks are packed together) more precisely as compared
to RUBiSUNI . This is because there are numerous regions of
the input space in RUBiSUNI , which contain relevant com-
binations, but the agent can only execute a limited num-
ber of input combinations. Therefore, it converges to those
regions, which have higher densities of relevant combina-
tions. However, we can modify the convergence properties of
the agent by tuning the temperature parameter α (discussed
in Section III-B4). We will investigate it in our future work.
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FIGURE 4. Heatmaps built for RUBiSUNI with respect to each pair of the input variables (listed in Table 3) by performing a frequency analysis on the input
combinations executed by the agent. A redder shade in the subfigures (a) to (f) indicates more frequently executed input combinations, whereas the least
executed input combinations are depicted in a bluer shade.

D. RQ2: EFFECTIVENESS OF iPerfXRL
The purpose of RQ2 is to measure the effectiveness of iPer-
fXRL by comparing the number of relevant combinations
identified by it against the following alternative approaches:
PerfXRL [9], random testing, Deterministic Grid Search
(DGS), and Combinatorial Interaction Testing (CIT).
In random testing, we uniformly sample unique input com-

binations from the input space of the SUT for a given number
of times. We choose random testing because it is a robust
approach [27], [28] as compared to many other systematic
testing approaches. Hamlet [29] recommended using random
testing for large and irregular input spaces.

DGS is a deterministic approach. It uniformly samples the
input space to obtain the input combinations using a Low
Discrepancy Sequence (LDS) generator [30]. An LDS gener-
ator can sample the space more uniformly than pure random
uniform draws [31]. The conjecture is that a higher degree
of uniformity in the distribution of the sampled input com-
binations would increase the chances of finding the relevant
combinations. There are several LDS generators, for exam-
ple, Halton [32], Sobol [33], Haselgrove [34], andGalanti and
Jung [35]. However, in our preliminary experiments, Sobol

provided the best results as compared to the other generators.
We use Chaospy [36] library to implement Sobol’s DGS
approach.

CIT [37] is a software testing technique that systemat-
ically explores and tests the subset of the input space by
limiting the degree of interaction between the values of its
input parameters. A CIT approach generates a test suite that
contains every possible combination of input values for every
combination of t input parameters at least once [38]. For
instance, in pairwise testing (i.e., t = 2) of a system with
ten binary input parameters, we would need to execute six
input combinations to test every valid pair of input values of
any two input parameters. However, the size of the test suite
increases as we increase the value of t [39]. For instance, the
size of the test suite to cover all 3-way interactions (i.e., t = 3)
of the previously mentioned system would be 13. In this
paper, we compare iPerfXRL against the four deterministic
(or greedy) CIT approaches (i.e., IPOG [40], IPOG-D [40],
IPOG-F [41], IPOG-F2 [41]) as implemented in ACTS [42]
and one non-deterministic (or meta-heuristic) CIT approach
called CASA [43]. These are commonly used CIT approaches
with proper tool support [44].
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FIGURE 5. Heatmaps built for RUBiSPOI with respect to each pair of the input variables (listed in Table 3) by performing a frequency analysis on the input
combinations executed by the agent. A redder shade in the subfigures (a) to (f) indicates the more frequently executed input combinations, whereas the
least executed input combinations are depicted in a bluer shade.

We ran iPerfXRL, PerfXRL [9], random testing, DGS,
and CIT approaches on both RUBiSUNI and RUBiSPOI . For
every experiment, the dependent variable is the number of
relevant combinations identified by an approach. We used
the same values of the independent variables as defined in
Section IV-C for iPerfXRL and PerfXRL [9]. To allow for
a comprehensive comparison of iPerfXRL and the alterna-
tive approaches, we present the comparison between iPer-
fXRL and the CIT approaches separately from the rest of
the alternative approaches. The reason is that, unlike the
other approaches, we cannot generate an arbitrary number
of input combinations using the CIT approaches. In addition,
different CIT approaches generate different numbers of input
combinations, even with the same inputs.

Figures 8 and 9 show the cumulative number of rele-
vant combinations identified by iPerfXRL, PerfXRL [9],
DGS, and random testing after executing the 775 000 input
combinations (i.e., TtlSteps) for RUBiSUNI and RUBiSPOI ,
respectively. The solid lines in the figures show the average
values, while the shaded regions around the lines represent
the standard deviation. The standard deviation of the results
using random testing was very low; thus, it is not visible

TABLE 4. Number of relevant combinations identified by all four
approaches in RUBiSUNI and RUBiSPOI after executing 775 000 input
combinations (Bold values are the highest.).

in the figure. For the DGS approach, the standard deviation
is zero because the approach is deterministic. It is evident
from the figures that iPerfXRL performed better than the rest
of the approaches. We have published the results related to
iPerfXRL in [25] to allow for future comparisons.

Table 4 lists the maximum, average and the minimum
number of relevant combinations identified by each of the
four approaches after executing 775 000 input combinations.
iPerfXRL found on average 2, 3, and 3.2 times more relevant

VOLUME 8, 2020 11



T. Ahmad et al.: Using DRL for Exploratory Performance Testing

FIGURE 6. Overlap of the injected bottleneck clusters (in Figure 2) and the execution frequency heatmap (in Figure 4).

combinations than PerfXRL [9], random testing, and DGS in
RUBiSUNI , respectively. In the case of RUBiSPOI , iPerfXRL
identified on average 1.9, 3.4, and 3.7 times more relevant
combinations than PerfXRL [9], random testing, and DGS,
respectively. In summary, iPerfXRL is better at finding rele-
vant combinations compared to PerfXRL [9], random testing,
and DGS.

For the CIT approaches, we set t = 3 that is one less than
the number of RUBiS input parameters (i.e., four). This is
the maximum value of t which we can use in the case of
RUBiS because if t is set to the number of input parameters,
a CIT approach will test all possible input combinations,
i.e., exhaustive testing. To perform a matched comparison of
iPerfXRL and the CIT approaches, we ran iPerfXRL on both
RUBiSUNI and RUBiSPOI for 158 100 input combinations
which is the highest number of input combinations generated
by one of the CIT approaches (i.e., IPOG-D).

Figures 10 and 11 show the cumulative number of rele-
vant combinations identified by iPerfXRL, IPOG, IPOG-D,
IPOG-F, IPOG-F2, and CASA for RUBiSUNI and RUBiSPOI ,
respectively. Table 5 lists the maximum, average and min-
imum number of relevant combinations identified and the
number of input combinations executed by each approach.
iPerfXRL found approximately 5 and 9 times more relevant

TABLE 5. Number of relevant combinations identified and the number of
input combinations executed by iPerfXRL and the CIT approaches in
RUBiSUNI and RUBiSPOI (Bold values are the highest.).

combinations on average than the CIT approaches in
RUBiSUNI and RUBiSPOI , respectively. In conclusion, the
overall results provide an empirical answer to RQ2 that iPer-
fXRL is better at finding relevant combinations compared to
the other approaches.

E. RQ3: SENSITIVITY ANALYSIS OF iPerfXRL
The purpose of the research question RQ3 was to inves-
tigate how different parameters (or independent variables)
impact the performance of iPerfXRL in finding relevant
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FIGURE 7. Overlap of the injected bottleneck clusters (in Figure 3) and the execution frequency heatmap (in Figure 5).

FIGURE 8. Comparison of the cumulative number of relevant combinations found by different approaches for 775 000 data
points (input combinations) in RUBiSUNI . The solid lines in the figure show the average values, while the shaded regions
around the lines represent the standard deviation.

TABLE 6. Parameter values for RQ3.

combinations. To answer this question, we conducted an
experiment for sensitivity analysis on iPerfXRL. In the
sensitivity analysis, we have chosen following independent

variables: (1) maximum negative reward per episode
(MaxNegR) (2) number of steps (TtlSteps), and (3) neu-
ral network designs for the agent. We conducted several
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FIGURE 9. Comparison of the cumulative number of relevant combinations found by different approaches for 775 000 data
points (input combinations) in RUBiSPOI . The solid lines in the figure show the average values, while the shaded regions
around the lines represent the standard deviation.

FIGURE 10. Comparison of the cumulative number of relevant combinations found by iPerfXRL and different CIT
approaches in RUBiSUNI . The solid lines in the figure show the average values, while the shaded regions around the lines
represent the standard deviation.

FIGURE 11. Comparison of the cumulative number of relevant combinations found by iPerfXRL and different CIT
approaches in RUBiSPOI . The solid lines in the figure show the average values, while the shaded regions around the lines
represent the standard deviation.

experiments where we changed the value of each of the
selected parameters, one at a time, while keeping the rest of
the independent variables constant as defined in Section IV-C.
Table 6 lists the values of selected independent variables. The

dependent variable is the number of relevant combinations
identified by iPerfXRL. In order to evaluate the statistical
significance of the differences in the average number of
relevant combinations identified by iPerfXRL with respect
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FIGURE 12. Performance of iPerfXRL with respect to the different values of the MaxNegR parameter for
RUBiSUNI .

FIGURE 13. Performance of iPerfXRL with respect to the different values of the MaxNegR parameter for
RUBiSPOI .

FIGURE 14. Performance of iPerfXRL with respect to the different designs of the neural network for the
agent for RUBiSUNI .

to different values of a given independent variable, we have
introduced the following null hypothesis H0,variable and the
alternative hypothesis HA,variable for every selected indepen-
dent variable:
H0,variable: There are no statistical differences in the mean

numbers of relevant combinations identified by iPer-
fXRL with respect to different values of a given inde-
pendent variable.

HA,variable: There are statistical differences in the mean num-
bers of relevant combinations identified by iPerfXRL
with respect to different values of a given independent
variable.

To test the null hypotheses, we have applied a t-test [45]
for paired sample means on each pair of values (listed in
Table 6) of every selected independent variable. Each t-test
examines the differences between the means of both data sets
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FIGURE 15. Performance of iPerfXRL with respect to the different designs of the neural network for the
agent for RUBiSPOI .

FIGURE 16. Performance of iPerfXRL with respect to the different values of the TtlSteps parameter for
RUBiSUNI .

FIGURE 17. Performance of iPerfXRL with respect to the different values of the TtlSteps parameter for
RUBiSPOI .

and produces a test statistic that is used to calculate the p
value. The computed p value is compared to the level of sig-
nificance (α) to decide whether to reject the null hypothesis.
The level of significance represents the maximum acceptable
probability of rejecting a true null hypothesis [45].

In our first empirical analysis, we only changed the max-
imum negative reward per episode (MaxNegR) parameter
to −10, −100, −5000, and −100 000. We selected these

values to demonstrate the performance of iPerfXRL when
the value of MaxNegR is either significantly large or small.
Figures 12 and 13 show the performance of iPerfXRL when
we regulated the value of MaxNegR for RUBiSUNI and
RUBiSPOI , respectively. Each boxplot [46] in the figure rep-
resents data from 30 experiments. A boxplot expresses four
main characteristics of the data: median (line in the box),
spread, symmetry and outliers (shown as small circles).
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TABLE 7. p value of a paired t-test for each pair of selected values of the
MaxNegR parameter for both RUBiSPOI and RUBiSUNI . We failed to reject
the null hypothesis H0,MaxNegR for all pairs except for −10, −100 and
−10, −5000 for RUBiSPOI . We have highlighted the cells in the table with
the gray color where the null hypothesis H0,MaxNegR was rejected.

Table 7 shows the p value of a paired t-test conducted for
each pair of the selected values of the MaxNegR parameter.
In most of the cases, the p values were higher than the level
of significance (i.e., α = 0.05); thus, we failed to reject
the null hypothesis H0,MaxNegR that different values of the
MaxNegR parameter do not affect the average number of
relevant combinations identified by iPerfXRL. However, the
p values were less than 0.05 for the following pairs: -10,−100
and −10, −5000 for RUBiSPOI . Based on those p values,
we can reject the null hypothesis H0,MaxNegR and accept the
alternative hypothesis HA,MaxNegR that the average numbers
of relevant combination identified by iPerfXRL are different
with respect to the following values of the MaxNegR param-
eter: −10, −100 and −5000. iPerfXRL found, on average,
4317 and 6353.38more relevant combinations when the value
ofMaxNegRwas set to−100 and−5000 as compared to−10,
respectively. As we have discussed in Section III-D when the
value of MaxNegR gets close to zero, the episodes become
shorter, and the environment resets frequently. This leads to
reduced bottleneck detection rate because the agent cannot
adequately explore the regions of the input space.

In our second empirical analysis, we tried different neural
network designs for the agent by altering the number of
hidden layers and the number of hidden units in each layer.
Table 8 shows the p value of a paired t-test conducted for each
pair of the selected neural network designs of the agent. In the
majority of the paired t-tests, we were unable to reject the null
hypothesis H0,network that different neural network designs
of the agent do not affect the average number of relevant
combinations identified by iPerfXRL. The null hypothesis
H0,network was rejected in favor of the alternative hypothesis
HA,network (i.e., different neural network designs of the agent
affect the average number of relevant combinations identified
by iPerfXRL) only for the following pairs of neural network
designs: [32, 32, 32], [64, 64] and [64, 32], [64, 64] for
RUBiSUNI . The agent with two hidden layers with 64 units
(i.e., [64, 64]) found, on average, 6569.76 and 7899.64 more
relevant combinations than the agents with the [32, 32, 32]
and [64, 32] neural network design for RUBiSUNI , respec-
tively. Figures 14 and 15 show the performance distribution
of iPerfXRL with respect to different neural network designs
of the agent for RUBiSUNI and RUBiSPOI , respectively.

In our third empirical analysis, we changed the number of
steps (TtlSteps) to 310 000, 465 000, 775 000, and 1 085 000.

TABLE 8. p value of a paired t-test for each pair of selected neural
network designs of the agent for both RUBiSPOI and RUBiSUNI . We failed
to reject the null hypothesis H0,network for all pairs except for [32, 32,
32], [64, 64] and [64, 32], [64, 64] for RUBiSUNI . We have highlighted the
cells in the table with the gray color where the null hypothesis H0,network
was rejected.

TABLE 9. p value of a paired t-test for each pair of selected values of the
TtlSteps parameter for both RUBiSPOI and RUBiSUNI . The null hypothesis
H0,TtlSteps was rejected for all pairs except for 775 000, 1 085 000 for
RUBiSPOI . We have highlighted the cells in the table with the gray color
where the null hypothesis H0,TtlSteps was rejected.

As expected, Figures 16 and 17 show that iPerfXRL identi-
fies more relevant combinations as we increase the number
of steps in RUBiSUNI and RUBiSPOI , respectively. Table 9
shows the p value of a paired t-test conducted for each pair
of the selected values of the TtlSteps parameter. The null
hypothesis H0,TtlSteps was rejected for all pairs except for
775 000, 1 085 000 for RUBiSPOI . This means that no statis-
tical differences were found in the mean number of relevant
combinations identified by iPerfXRL when we increased the
value of the TtlSteps parameter from 775 000 to 1 085 000 for
RUBiSPOI . More specifically, iPerfXRL found 2657.5 more
relevant combinations, on average, as we change the value
of TtlSteps from 775 000 to 1 085 000 for RUBiSPOI . As we
have mentioned before, the relevant combinations are tightly
packed together in the input space of RUBiSPOI and the agent
gets a reward only once per a relevant combination. There-
fore, it becomes increasingly difficult for the agent to find
the hitherto undiscovered relevant combinations incorporated
among the already identified relevant combinations.

V. RELATED WORK
Performance testing is a well-investigated research topic.
In this section, we focus on some of the most important and
recent related works on performance testing that use machine
learning and other state-of-the-art approaches such as CIT
approaches. We also review some related works that use
machine learning for non-functional testing, a performance
analysis framework, and a symbolic execution approach for
generating performance distributions for a program under
test.

Many CIT approaches [38], [40], [41], [43], [44] have
been proposed to generate a test suite that tests all t-way
interactions among the input parameters while keeping the
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size of the test suite as small as possible. A CIT approach
tests the subset of the input space by limiting the degree
of interactions between the values of its input parameters.
In contrast, iPerfXRL is aimed at efficiently exploring all
possible interactions among the input parameters. It learns
and recognizes the relevant regions of the input space and
concentrates the search on those regions to find input com-
binations that trigger performance bottlenecks.

PerfFuzz [5] is another performance testing approach.
It uses mutational fuzzing to find program inputs that can
reveal worst-case algorithmic complexity in different parts of
the program under test. PerfFuzz begins the test generation
process with a set of randomly generated inputs. Then in
each iteration, it generates new inputs by mutating the pre-
vious inputs and saving the ones that increase code coverage.
In comparison to PerfFuzz, iPerfXRL does not depend on the
source code of the SUT and explores the input space of the
SUT by using DRL.

Kim et al. [47] presented a search-based software testing
framework called GunPowder. The framework employs an
RL algorithm to learn heuristics for search-based test data
generation. To that extent, they trained and tested a Double
DeepQ-Network [48] agent for branch coverage in functional
white-box testing. Our proposed approach uses the SAC algo-
rithm for exploratory performance testing. Our agent does not
rely on the source code of the SUT and learns to concentrate
the search on the most important subsets of the input space.

Mariani et al. [49] presented an RL approach for black-
box testing of interactive applications called AutoBlackTest.
The approach focuses on graphical user interfaces and it tests
system-level user interactions. It uses Q-learning to learn
the user interaction patterns with the application under test.
It builds a model of the event sequences, and then uses the
model to produce test cases. In comparison to AutoBlackTest,
iPerfXRL uses DRL to generate performance tests instead of
usability tests.

Koren et al. [50] used DRL for adaptive stress testing of
autonomous vehicles aimed at finding some problematic self-
driving scenarios whichmay lead to a collision with a moving
pedestrian. Their work is similar to our previous work in [51]
that finds the worst sequences of actions to maximize the
resource utilization on the SUT. In contrast, iPerfXRL finds
concrete input combinations to reveal performance bottle-
necks in the SUT and identifies the most problematic regions
of the input space.

PerfPlotter [52] provides a performance analysis
framework and a symbolic execution approach for generating
performance distributions. It requires the source code of
the program under test along with the usage profiles of
the program and uses probabilistic symbolic execution to
traverse different high-probability and low-probability exe-
cution paths in the program and to generate performance
distributions. The main drawback of PerfPlotter is that it does
not provide a performance testing approach.

Briand et al. [53] used a genetic algorithm to generate
tests for deadline-constrained tasks in real-time systems.

The generated tests stress the system in such a way that some
critical tasks miss (or nearly-miss) their estimated deadlines.
In contrast, iPerfXRL does not rely on estimated deadlines.
It uses DRL to reveal actual performance bottlenecks in the
SUT and to identify the most problematic regions of the input
space.

Xiao et al. [54] presented a delta inference approach to
predict performance bottlenecks in graphical user interfaces.
They used complexity models of multiple workloads to pre-
dict iteration counts of certain loops in the source code.
In contrast, iPerfXRL does not rely on the source code of the
SUT to find performance bottlenecks in the entire system, not
just the graphical user interfaces.

GA-Prof [55] performs search-based application profiling
to detect performance bottlenecks in the Application Under
Test (AUT). It uses a genetic algorithm to guide the search
process and relies on the source code of the AUT to map
test inputs to different methods in the source code and then
to relate the methods to different performance bottlenecks.
FOREPOST [56] is a performance testing approach. It uses
feedback-oriented machine learning to find performance
problems. The main idea is to use a rule learning algorithm,
which extracts a set of rules that map the application perfor-
mance to certain input combinations. Although GA-Prof and
FOREPOST seem promising and similar to iPerfXRL, there
are three fundamental differences between these approaches
and iPerfXRL. Firstly, these approaches look for a particu-
lar input combination which increases the elapsed execution
time. In contrast, we are looking for all input combinations
which increase the elapsed execution time. Secondly, the
authors do not specify the input space (i.e., input parameters
and their ranges) used for evaluation. Thirdly, the approaches
rely on execution traces containing information about the
method calls, the total number of invocations, and the total
elapsed self-time for each method. In contrast, our approach
is designed to work with black-box systems where we do
not have access to this kind of information. Therefore, it is
difficult to draw a comparison with our proposed approach.

To summarize, although performance testing is a widely-
investigated research topic, none of the existing performance
testing approaches efficiently explores only a small subset
of multi-dimensional large input spaces without any prior
domain or application knowledge and finds a near-complete
set of relevant combinations that trigger performance
bottlenecks.

VI. THREATS TO VALIDITY
The first threat to the internal validity of the experiments is
that we randomly injected artificial bottlenecks into the sub-
ject application. Thus, there is a threat that we may achieve
different results by running our approach against a system
with real bottlenecks. However, by following this experimen-
tal design, we managed to evaluate iPerfXRL in a controlled
setting effectively.

iPerfXRL, like many other machine learning approaches,
is sensitive to its parameters, for instance, a suitable set of
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parameter values for one problem environment might not
work well for others. For the SAC algorithm, we selected
the parameter values according to the practical experiences
reported by the authors of the algorithm [16]. Since our
approach does not require access to the source code of the
SUT nor domain knowledge, in a real-world setting, one only
needs to adjust few parameters (e.g., the performance thresh-
old L) for a new environment or SUT. Moreover, we have
conducted an empirical study in Section IV-E to investigate
how different parameter values affect the performance of
iPerfXRL in finding performance bottlenecks.

Themain threat to external validity is that we used only one
SUT in our evaluation. Therefore, the results of our experi-
ment may differ for systems that have different architectures
or different input spaces. To mitigate this threat, we have
evaluated our approach against eight alternative approaches
on two bottleneck distributions and have shown that our
approach has outperformed the alternative approaches. This
threat can be reduced further by performing additional exper-
iments using different applications. However, to the best of
our knowledge, there are no publicly available performance
benchmark applications which closely represent the real-
world applications.

Another threat is the selection of URLs listed in
Section IV-A. The only reason we have chosen those URLs
is that we are focusing on numerical input parameters in
this work. Nevertheless, our approach is agnostic to input
parameter types and can be applied to different types of
inputs (e.g., string) by updating the action and input spaces
accordingly.

A final threat to external validity is that we have com-
pared iPerfXRL with PerfXRL [9], DGS, random testing,
and CIT approaches in order to evaluate the efficiency of
iPerfXRL. The evaluation might seem subjective because
we have not compared iPerfXRL with other performance
exploration approaches from the literature. However, as we
have discussed in Section V, we could not find any approach
similar to iPerfXRL that finds performance bottleneck in a
black-box system by exploring only a subset of the input
space of the SUT. Further, random testing provides a good
unbiased benchmark because it has proved to be more effec-
tive than many other systematic approaches, especially when
we test a black-box SUT [27]–[29].

VII. CONCLUSION
We presented iPerfXRL, a novel approach to find perfor-
mance bottlenecks in a software system without any prior
domain knowledge using deep reinforcement learning. We
can apply our approach to any software system where we
can interactively execute different input combinations while
monitoring their performance impact on the SUT. In our
approach, a learning agent non-exhaustively explores a multi-
dimensional large input space and finds relevant combina-
tions (i.e., input combinations which are most likely to trigger
performance bottlenecks in the system under test). The results
presented in this paper show that iPerfXRL managed to find

up to 9 times more relevant combinations than the alternative
approaches. Moreover, Our results show that iPerfXRL can
be used to identify the regions of the input space which
contain relevant combinations. For our future work, we aim
to integrate various KPIs such as CPU andmemory usage into
our reward function. Further, we plan to extend our approach
to identify potential root causes of the bottlenecks.
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