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Abstract: In the delicate context of climate change, biomass gasification has been demonstrated to be a
very useful technology to produce power and hydrogen. Nevertheless, in literature, there is a lack of a
flexible and fast but accurate model of biomass gasification that can be used with all the combinations
of oxidizing agents, taking into account both organic and inorganic contaminants, and able to give
results that are more realistic. In order to do that, a model of biomass gasification has been developed
using the chemical engineering software Aspen Plus. The developed model is based on the Gibbs
free energy minimization applying the restricted quasi-equilibrium approach via Data-Fit regression
from experimental data. The simulation results obtained, considering different mixes of gasifying
agents, were compared and validated against experimental data reported in literature for the most
advanced fluidized bed technology. The maximum discrepancy value obtained for hydrogen, with
respect to experimental data, is of 8%, and all the other values reached by the developed simulations,
considering both organic and inorganic compounds, are in good agreement with literature data.
The gas yield reached by the developed simulation is in the range of 1.1–1.3 Nm3/kg.

Keywords: biomass gasification; equilibrium model; tar; syngas; hazelnut shells; Gibbs free energy
minimization; steam gasification; Aspen Plus

1. Introduction

Every year, a great amount of agro-industrial, municipal and forestry residues are treated as
waste; instead, they can be recovered and used to produce thermal and electrical energy by biological
or thermo-chemical conversion processes [1,2]. Contrary to biological methods, thermo-chemical ones
are more viable allowing the treatment of a wide range of feedstock in shorter residence time [3,4].
Among thermo-chemical processes, biomass gasification is one of the most efficacious conversion
technologies because of lower investment costs while maintaining the ability for high-rate fuel gas
production [5,6]. This process utilizes oxidizing agents (oxygen, air, steam or a mix of them) at high
temperature (in the range of 750–1000 ◦C) to produce a fuel gas, called syngas, mostly rich in hydrogen,
carbon monoxide, carbon dioxide, methane and steam along with several unwanted by-products [3].
A good quality syngas is characterized by low level of N2, high level of H2, low level of contaminants
and high heating values (LHV) [7,8]. Further studies have demonstrated that the fluidized-bed is a
promising type of gasifier, which ensures high reaction rates and conversion efficiencies thanks to good
mixing and gas-solid contact [9,10]. Process and system simulation models have obtained great interest
in the prediction of performance, giving a good description of both chemical and physical phenomena
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occurring into the gasifier and allowing to assess the plant behavior with the purpose of optimizing the
gasifier design and its operation with minimal time and costs [11]. Among the system simulators which
can be used in simulating thermochemical plants, Aspen Plus represents one of the most powerful
and versatile options [11–13]. Developed by Massachusetts Institute of Technology (MIT), Aspen Plus
is a chemical engineering process optimization software that utilizes unit operation blocks, such as
reactors, pumps, columns, heat exchangers, etc. Each unit block is linked to another by material and
energy streams to create a flow sheet for the whole process. The program is based on a sub-sequential
modular approach, and the simulation calculations use the in-built physical properties database [14].
Several authors investigated biomass-gasification process by using Aspen Plus. Different approaches
can be used, among them, kinetic and equilibrium models are the most used [12,15]. Kinetic models
can be used to predict syngas yield, the products of syngas composition achieved by a gasifier after a
finite time (or in a finite volume in a flowing medium), profile of temperature inside the reactor and the
gasifier performance for a stabilized operating condition and gasifier configuration [16,17]. In order to
do that, kinetic models consider the kinetics of the gasification reactions and the hydrodynamics of the
gasifier. Thus, these models contain parameters that can restrict their applicability to specific plants;
moreover, increasing the complexity in the design of the gasifier, the complexity of the model increases
since the model is based on reactor hydrodynamics.

The thermodynamic equilibrium model allows to predict the syngas composition based on the
assumption that the reactants react in a fully mixed condition for an infinite time [18]. This model is
independent of the gasifier design and so it may be more suitable for process studies on the influence
of the different process parameters. Then, equilibrium models are divided into two sub-categories:
stoichiometric models and non-stoichiometric ones. Stoichiometric models are based on equilibrium
constants, so they need specific chemical reactions involved in the process. Non-stoichiometric models
are based on minimization of the Gibbs free energy, and they offer the advantage of not considering
the chemical reactions. The equilibrium models have been used successfully by many researchers
in modelling the gasification process in fluidized-bed gasifiers [5,6,12,19], allowing to evaluate the
effect of temperature of reactor, equivalence ratio, steam to biomass ratio and moisture content of
feedstock on the gasification process. An upgrade of the non-stoichiometric equilibrium model is the
quasi-equilibrium approach, which is a compromise between equilibrium thermodynamic models
and experimental ones and does not require specific information on the dimensions, capacity and
structure of the reactor. This approach gives a more accurate description of the syngas composition
and is considered one of the most effective ways to simulate the performance of a gasifier [14]. The first
one who introduced the quasi-equilibrium model was Gumz [20], who proposed to use the QET
(Quasi-Equilibrium Temperature), that is, the temperature at which the chemical reaction is considered
to have reached equilibrium, rather than the actual temperature of the gasifier. In order to evaluate
the QET, a Data-Fit made by experimental data can be used. Nevertheless, even if some QET models
for fluidized bed gasifiers are present in literature, there is a lack of QET models that encompass
air/steam/oxygen gasification and form inorganic (hydrogen sulphide, hydrogen chloride and ammonia)
and organic (toluene, benzene and naphthalene) products. Arteaga-Pèrez et al. [21] developed a
quasi-equilibrium biomass gasification system by means of Aspen Plus. The gas composition out
of the gasifier was corroborated with the experimental data in a bubble fluidized-bed pilot scale.
The parameters that varied during the case studies were the gasifier temperature and the air factor.
It was found that the maximum yield of syngas is achieved at 850 ◦C and at air equivalent ratio (ER)
equal to 0.3. The unique contaminant compound considered by Arteaga-Pèrez et al. was naphthalene,
and the only oxidizing agent was air. Mirmoshtaghi et al. [22] developed a model for biomass
gasification in a fluidized-bed gasifiers with QET by using Aspen Plus, predicting the content (volume
fraction) of the four major components (H2, CO, CO2 and CH4) in product gas and not considering any
kind of contaminants. The oxidizing agent was only air. The temperature range of the gasification was
set to 730–815 ◦C, and the ER was between 0.22 and 0.53.
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In the present work, the authors have developed, and validated against experimental data, a
quasi-equilibrium model of air/steam/oxygen biomass-gasification that includes organic and inorganic
products. In this way the model is able to predict syngas composition and contaminants, and the
authors have evaluated the effect of several variables including gasification temperature and steam to
biomass ratio (S/B) on the gas composition for different gasifying agents.

2. Materials and Methods

2.1. Biomass Characteristics

Using biomass waste from agricultural means zero costs for the feedstock, avoiding fuel vs. food
competition and having less life cycle impacts. In order to select the most suitable biomass waste to
feed the gasifier, the following criteria have to be taken into account [1]:

1. Availability of biomass on a significant scale (tons/year);
2. Low heat value (LHV), which has to be high, so biomass with lower humidity is preferable;
3. Chemical composition, which has to be low in sulfur, chlorine and ash;
4. Size and shape of biomass, which have to be uniform in order to ensure homogeneous and

efficient gasification and bulk density, which has to be comparable with that of the gasifier bed,
even if the latter can be adjusted via pretreatment and feeding systems.

Following the previous criteria, among the different agricultural biomass waste, hazelnut shells,
which represent an abundant agricultural sub-product in regions of moderate climate [23,24], have
been selected for this study. The characteristics of hazelnut shells are reported in Table 1.

Table 1. Physical and chemical properties of hazelnut shells [25].

Bulk Density (kg/m3) Moisture Content (%wt)

319.14 7.90

Proximate analysis (%wt, dry basis)

Ash Volatile matter Fixed carbon

1.16 72.45 26.39

Ultimate analysis (%wt, dry basis)

C H N O Cl S

50.38 6.03 0.22 42.32 0.38 0.67

Heating values (MJ/kgdry)

HHV LHV

20.20 18.85

2.2. Aspen Plus Modelling

The simulation of the biomass gasification process, carried out on Aspen Plus, is based on
mass-energy balance and chemical equilibrium among all processes. The following assumptions were
considered for the simulation:

• Process is steady state and isothermal [26];
• Drying and pyrolysis happen instantaneously, and volatile products principally consist of H2, CO,

CO2, CH4 and H2O [27];
• Char is 100% carbon [28];
• All gases behave ideally;
• The tars considered are toluene (1-ring), naphthalene (2-ring) and benzene;
• The inorganic contaminants considered are hydrogen sulphide, hydrogen chloride and ammonia.

The Aspen Plus flow sheet of the developed model is shown in Figure 1 while all the units are
described in Table 2.
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Figure 1. Flowsheet of the plant evaluated in this study (the dashed streams are heat streams; the continuous streams are material streams). 

 

Figure 1. Flowsheet of the plant evaluated in this study (the dashed streams are heat streams; the continuous streams are material streams).
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Table 2. Description of ASPEN Plus flowsheet unit operation presented in Figure 1.

ASPEN Plus Name Block ID Description

RYIELD
DECOMP RYield reactor—converts the non-conventional stream

“BIOMASS” into its conventional components

TARPROD RYield reactor—simulates the production of toluene,
naphthalene and benzene

RSTOIC RSTOIC RStoic reactor—simulates the production of H2S,
HCl and NH3

SEP

SEP Separator—separates the biomass in three streams:
VOLATILE, CHAR and INORG

SEPH2 Separator—separates an amount of hydrogen used to
produce tar

H2OREMOV Separator—separates water from syngas

MIXER

MIX1 Mixer—mixes oxidising fluid with VOL stream,
that represents combustible fluid

MIX2 Mixer—mixes the gas from gasifier with INORG
and TAR

MIX3 Mixer—mixes the stream S3 and H2

FSPLIT SPLIT Splitter—splits char unreacted (S3) from char to burn
(TOGASIF)

RGIBBS GASIF

Gibbs free energy reactor—simulates drying, pyrolysis,
partial oxidation and gasification and restricts chemical
equilibrium of the specified reactions to set the syngas
composition by specifying a temperature approach for

individual reactions

In this simulation, the biomass is defined as a nonconventional component, its ultimate and
proximate analyses specified according to Table 1. The Peng–Robinson equation with Boston–Mathias
(PR-MB) modification, has been used to evaluate all physical properties of the conventional components
in the gasification process. HCOALGEN and DCOALGEN models are selected for the evaluation of
the enthalpy and density of both biomass and ash, which are non-conventional components.

2.3. Description of Aspen Plus Flow-Sheet

The power plant is mostly composed of a gasification reactor producing hazelnut shell-derived
syngas. The stream BIOMASS, representing the hazelnut shell feed, goes firstly in the DECOMP
block that is a RYield reactor, used to simulate the decomposition of the unconventional feed into its
conventional components (carbon, hydrogen, oxygen, sulfur, nitrogen and ash, by specifying the yield
distribution according to the biomass ultimate analysis in Table 1). Considering that the DECOMP
block creates N, Cl and S as elemental components, which are known to produce principally HCl, NH3

and H2S, and the results of experimental fractional conversion model are closer to the experimental
data with respect to restricted chemical equilibrium, the product out of DECOMP is moved to the
RStoic block to simulate the production of H2S, HCl and NH3 by the following reactions [5]:

• H2 + S→ H2S (R1)
• Cl2 + H2→ 2HCl (R2)
• 0.5N2 + 1.5 H2→ NH3 (R3)

The fractional conversion considered for S, Cl2 and N2 is equal to 1 [12]. Deriving stream S2 goes
into a separator SEP, which separates the stream S2 in three sub-streams: Volatile part VOLATILE,
char part CHAR and a stream composed by HCl, NH3 and H2S, called INORG. Then, VOLATILE
stream is divided in two sub-streams: VOL and H2; the former, after mixing with the oxidizing fluid,
goes into the gasifier, GASIF, and the latter is used to simulate tar production in the RYield block
TARPROD;. The block TARPROD is necessary since we are in steady-state conditions, and it is not
possible to simulate tar formation inside the gasifier GASIF. CHAR stream is split in two sub-streams:
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TOGASIF that represents the char reacted in the gasifier and S3 that represents the un-reacted char; the
latter is then fed to TARPROD where it reacts with hydrogen from the H2 stream. The tar is assumed to
be a formation of toluene, benzene and naphthalene. The quantities of these tars are set in accordance
with literature [29] and proportions of about 60%, 20% and 20% for benzene, toluene and naphthalene,
respectively, are maintained [30]. The stream S6 is the stream that represents the real output of the
gasifier; in fact, it is made of the union of GASRAW, INORG and TAR streams.

2.4. Gasification Model

The reactions considered in the gasification process are reported in Table 3.

Table 3. Gasification reactions [5].

Reaction Reaction Name Heat of Reaction Reaction Number

Heterogeneous reaction
C + 0.5 O2 → CO Char partial combustion (−111 MJ·kmol−1) (R4)

C + H2O↔ CO + H2 Water-gas (+172 MJ·kmol−1) (R5)
Homogeneous reactions

H2 + 0.5 O2 → H2O H2 partial combustion (−283 MJ·kmol−1) (R6)
CO + H2O↔ CO2 + H2 Water gas-shift (−41 MJ·kmol−1) (R7)
CH4 + H2O→ CO + 3H2 Steam-methane reforming (+206 MJ·kmol−1) (R8)

Equations (R4) to (R8) of Table 3 are the chemical reactions considered in this work for the
gasification process where the oxygen comes from biomass composition, as showed in ultimate analysis,
and from air/oxygen stream if air/oxygen gasification is considered. To simulate the gasification process
on Aspen Plus, a RGibbs reactor, called GASIF in Figure 1, has been used. This reactor was modelled
with the restricted quasi-equilibrium approach, which allows to describe syngas composition more
accurately than equilibrium models, as explained in the Introduction. Therefore, the reactions within
the reactor (listed in Table 3) are conducted at their QET, rather than at the actual temperature of the
gasifier. In order to be more rigorous, a Data Fit of experimental data (about hazelnut or almond shells,
since they have very similar characteristics [5], using steam and/or oxygen or air as gasification agent
with a gasification temperature from 600 ◦C to 870 ◦C and S/B from 0.33 to 1) has been implemented
on Aspen Plus (Table 4). In this way, RGibbs gasifier evaluates the chemical equilibrium constant for
each reaction at the gasifier temperature, and by that, it provides the equilibrium syngas composition.
Since the Data-Fit was made from literature data obtained from experiment carried out with several
gasifying agents (steam, air, oxygen or a mix of these) and silica sand as bad material, the model can
simulate almost all oxidizing gasification agents (i.e., CO2 excluded).

Table 4. Data-fit.

Test 1 [31] 2 [32] 3 [32] 4 [33] 5 [34] 6 [34] 7 [34] 8 [35] 9 [36] 10 [37]

Operational conditions

Biomass flow rate (kg/h) 20 0.060 0.060 0.904 0.750 0.750 0.750 0.300 0.300 125

Air flow rate (kg/h) 0 0 0 0 0 0 0 0 0.650 0

Oxygen flow rate (kg/h) 0 0 0 0 0.094 0.188 0.375 0 0 39

Steam flow rate (kg/h) 16 0.048 0.048 0.298 0.375 0.375 0.375 0.300 0 55

Gasifier temperature (◦C) 850 600 750 765 855 855 855 770 900 825

Main variable for analysis

S/B (steam to biomass ratio) 0.800 0.800 0.800 0.330 0.500 0.500 0.500 1.000 0 0.440

Gas composition (mole fraction)

CO (%dry) 0.245 0.217 0.250 0.385 0.242 0.250 0.256 0.332 0.040 0.300

H2 (%dry) 0.349 0.367 0.500 0.478 0.322 0.333 0.348 0.436 0.100 0.315

CO2 (%dry) 0.410 0.250 0.217 0.076 0.347 0.358 0.340 0.117 0.030 0.245

CH4 (%dry) 0.130 0.100 0.067 0.035 0.058 0.055 0.052 0.115 0.070 0.100
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3. Results and Discussions

In order to demonstrate the feasibility of the developed model with different mix of oxidizing
agents, several comparisons with experimental data have been conducted. The comparisons showed
that the results predicted by the model are reasonable and near to the real ones.

3.1. Steam Gasification Results and Model Validation

The developed simulation model has been validated using experimental data of Rapagnà and
Latif [32] and Karatas and Akgun [38] for steam gasification. Rapagnà and Latif used a lab-scale
fluidized-bed reactor as gasifier, at 1 bar and 800 ◦C and hazelnut shells as biomass feedstock.
The lab-scale reactor used by Karatas and Akgun was a fluidized-bed, at 1 bar and 800 ◦C, and
the biomass feedstock used was walnut shells, which have very similar characteristics with respect
to hazelnut shells. The comparison of the operative conditions and results of the present model
simulation and literature data are reported in Table 5. The discrepancy of the simulative results against
experimental values is shown in Table 6.

Table 5. Comparison of operating conditions and steam gasification results (stream DRYSYNG) of the
present study with literature data.

Results
Case 1 Case 2

Model Simulation Literature Data [32] Model Simulation Literature Data [38]

Gasifier type Fluidized-bed Fluidized-bed Fluidized-bed Fluidized-bed
Bed-material Silica sand Silica sand Silica sand Silica sand

Biomass feedstock Hazelnut shells Hazelnut shells Hazelnut shells Walnut shells
Biomass flow rate (kg/h) 0.06 0.06 0.898 0.898

Gasification pressure (bar) 1 1 1 1
Gasification temperature (◦C) 800 800 770 770

Oxidising agent Steam Steam Steam Steam
S/B ratio 0.8 0.8 0.4 0.4

H2 (%dry mole fraction) 44.2 45.0 31.8 35
CO (%dry mole fraction) 16.7 26.7 20.4 22
CO2 (%dry mole fraction) 22.1 20 20 15
CH4 (%dry mole fraction) 5.3 6.0 7.6 8

NH3 (ppm) 1112.2 Not evaluated 1961.0 Not evaluated
H2S (ppm) 1479.1 Not evaluated 2609.5 Not evaluated
HCl (ppm) 1001.3 Not evaluated 1798.0 Not evaluated

Toluene (g/Nm3) 4.5 Not evaluated 5.3 Not evaluated
Benzene (g/Nm3) 10.6 Not evaluated 12.4 Not evaluated

Naphthalene (g/Nm3) 4.5 Not evaluated 7.4 Not evaluated
LHV (MJ/Kg) 9.5 Not evaluated 11.7 10.1

Gas yield (Nm3/kg) 1.3 1.5 1.6 Not evaluated

Table 6. Discrepancy of simulative results against experimental data.

Results Case 1 Case 2

H2 (%dry mole fraction) 1.7% 9.1%
CO (%dry mole fraction) 37.4% 7.2%
CO2 (%dry mole fraction) 10.5% 33%
CH4 (%dry mole fraction) 12% 5%

The comparison of the resulting composition values with the literature ones, reported in Table 5,
shows a comparable product syngas composition (the difference is below 10% for the main gas, i.e.,
H2, below 38% for CO and CO2 and below 15% for CH4). The under or the over prediction of CH4 is
an ordinary issue in the simulative modelling since tar is not considered in the equilibrium models
and it is simulated apart from the gasifier block. The underproduction of CO and the overproduction
of CO2 might be caused by the fact that the steam kinetic factors were not taken into account in the
simulation. Indeed, steam lowers the gas speed and thus causes an increase in residence time and
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favors the dissociation of H2O. Therefore, the conversion of char and heavy hydrocarbons into light
ones (i.e., CO) was favored. The production of tar and inorganic contaminants is not evaluated by
Rapagnà and Latif and Karatas and Akgun; however, the results obtained for toluene, benzene and
naphthalene agree with other literature experimental sources [25,29,39]. Zhou et al. reported that the
concentration of NH3 in the gasification product is between 500 to 30,000 ppm, depending on the
nitrogen content of the biomass feedstock and the gasifier conditions [40]. The concentration of H2S
reported in literature ranges from 1000 to 14,000 ppm in the raw syngas [41], and the concentration of
HCl is around 750 ppm [41].

3.2. Effect of Steam to Biomass (S/B) Ratio

A sensitivity analysis is carried out in order to evaluate the effect of the S/B ratio on the hazelnut
shell-derived syngas composition that comes from the gasifier at the fixed temperature of 800 ◦C.
In Figure 2, the trend of the dry molar fraction of each component is reported against S/B ratio.
The concentration of H2 and CO2 rises with the rise of S/B ratio, and the concentrations of CO and CH4

decrease with S/B ratio. Increasing steam favors the water-gas reaction and steam methane reforming
reactions resulting in an increase of H2 and CO concentrations; however, the CO concentration decreases
with increasing S/B ratio due to the water-gas shift reaction, which reduces CO reacting with steam
and increases H2 and CO2 concentrations. Similar trends were reported in literature references [42,43].

3.3. Effect of Gasification Temperature on Syngas Composition

A sensitivity analysis is carried out in order to evaluate the effect of the gasification temperature
on the hazelnut shells-derived syngas composition, keeping the S/B ratio fixed at 0.8. In Figure 3,
the trend of the syngas composition as a function of the temperature in the range 770–880 ◦C is shown.
It can be observed that H2 and CO concentrations increase with the increase of temperature, due to
the endothermic reactions R5 (water–gas) and R8 (steam methane reforming). On the other hand,
the increase of temperature causes the decrease of CO2, CH4 and H2O. The decrease of CO2 production
depends on reaction R7 (water–gas shift) that is exothermic, being favored at low temperatures, and
for this reason, the higher temperature means higher CO and lower CO2 production. Similar trends
were observed by [5,44].

3.4. Air-Steam Gasification Results and Model Validation

The developed simulation model has been validated using experimental data of Lv et al. [45] for
air-steam gasification. The experimental set-up was a fluidized-bed reactor, operated at 1 bar and
800 ◦C, and the biomass feedstock used was pine sawdust, which presents very similar characteristics
with respect to hazelnut shells, except for the inorganics that are not considered. The comparison of
the operative conditions and results of the present model simulation and literature data are reported in
Table 7. The discrepancy of the simulative results against experimental values is shown in Table 8.

The comparison of the resulting composition values with the literature ones, reported in Table 7,
shows a comparable product syngas composition (the difference is 6% for the main gas, i.e., H2,
below 18% for CO and CO2 and 80% for CH4, but it has already been mentioned previously that
CH4 is under- or over-predicted). Tar production was not evaluated by Lv et al., but as for the
case mentioned previously in the text, the results obtained for toluene, benzene and naphthalene
agree with other literature experimental sources [25,29,39], and the same goes for the inorganic
compounds’ concentration.



Energies 2020, 13, 53 9 of 15
Energies 2019, 12, x FOR PEER REVIEW 9 of 15 

 

 
Figure 2. Effect of S/B ratio on syngas composition. 

 

Sensitivity Results Curve

SB

CH
4 

CO
2 

CO
 

H2
 

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
0.000

0.005

0.010

0.015
0.020

0.025

0.030

0.035

0.040

0.045

0.050
0.055

0.060

0.065

0.070

0.075

0.080
0.085

0.090

0.095

0.100

0.105

0.110

0.115
0.120

0.125

0.130

0.135

0.120
0.125
0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220
0.225
0.230
0.235
0.240
0.245
0.250
0.255
0.260
0.265
0.270

0.07

0.08

0.09

0.10
0.11

0.12

0.13

0.14

0.15

0.16

0.17
0.18

0.19

0.20

0.21

0.22

0.23
0.24

0.25

0.26

0.27

0.28

0.29

0.30
0.31

0.32

0.33

0.34

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

H2 
CO  
CO 2 
CH4 

Figure 2. Effect of S/B ratio on syngas composition.
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Table 7. Comparison of operating conditions and air-steam gasification results (stream S10) of the
present study with literature.

Results Model Simulation Literature Data [45]

Gasifier type Fluidized-bed Fluidized-bed
Bed-material Silica sand Silica sand

Biomass feedstock Hazelnut shells Pine sawdust
Biomass flow rate (kg/h) 0.445 0.445

Gasification pressure (bar) 1 1
Gasification temperature (◦C) 800 800

Oxidising agent Steam and air Steam and air
S/B ratio 0.5 0.5

ER 0.2 0.2
H2 (%dry mole fraction) 35.0 33.0
CO (%dry mole fraction) 18.0 17.0
CO2 (%dry mole fraction) 34.6 42.0
CH4 (%dry mole fraction) 1.2 5.5

NH3 (ppm) 2095.1 Not evaluated
H2S (ppm) 2787.1 Not evaluated
HCl (ppm) 1621.3 Not evaluated

Toluene (g/Nm3) 6.5 Not evaluated
Benzene (g/Nm3) 15.3 Not evaluated

Naphthalene (g/Nm3) 9.4 Not evaluated
LHV (MJ/Kg) 5 6

Gas yield (Nm3/kg) 1.2 2

Table 8. Discrepancy of simulative results against experimental data.

Results

H2 (%dry mole fraction) 6.0%

CO (%dry mole fraction) 5.8%

CO2 (%dry mole fraction) 17.6%

CH4 (%dry mole fraction) 78.0%

3.5. Steam-Oxygen Gasification Results and Model Validation

Experimental data is rarer regarding steam-oxygen; therefore, the developed simulation model
has been validated using experimental data of Barisano et al. [46] for steam-oxygen gasification that
used olivine instead of silica sand as bed material and almond instead of hazelnut shells as biomass.
Almond shells have very similar characteristics respect to the hazelnut shells, and the olivine is well
known to have a WGS catalyst effect (so the H2 and CO2 contents will be higher meanwhile CO lower).
The experimental set-up used by Barisano et al. was a fluidized-bed reactor, worked at 1 bar and
850 ◦C. The comparison of the operative conditions and results of the present model simulation and
literature data are reported in Table 9. The discrepancy of the simulative results against experimental
values is shown in Table 10.

The comparison of the resulting composition values with the literature ones, reported in Table 9,
shows a comparable product syngas composition (the difference is 16% for the main gas, i.e., H2,
below 16% for CO and CO2 and 58% for CH4, but it has already been mentioned previously that CH4

is under- or over-predicted). Thus, even if olivine was used as bed material, the difference of H2,
CO and CO2 are similar to the previous ones. Tar production was not evaluated by Barisano et al.,
but as for the case mentioned previously in the text, the results obtained for toluene, benzene and
naphthalene agree with other literature experimental sources [25,29,46] and the same goes for the
inorganic contaminants concentration.
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Table 9. Comparison of operating conditions and steam-oxygen gasification results (stream S10) of the
present study with literature.

Results Model Simulation Literature Data [46]

Gasifier type Fluidized-bed Fluidized-bed
Bed-material Silica sand Olivine

Biomass feedstock Hazelnut shells Almond shells
Biomass flow rate (kg/h) 122 122

Gasification pressure (bar) 1 1
Gasification temperature (◦C) 850 850

Oxidising agent Steam and oxygen Steam and oxygen
S/B ratio 0.4 0.4

Oxygen flow rate (kg/h) 44.0 44.0
H2 (%dry mole fraction) 24.2 28.9
CO (%dry mole fraction) 25.1 21.7
CO2 (%dry mole fraction) 28.7 31.8
CH4 (%dry mole fraction) 4.0 9.5

NH3 (ppm) 2357.1 Not evaluated
H2S (ppm) 3136.1 Not evaluated
HCl (ppm) 1790.3 Not evaluated

Toluene (g/Nm3) 7.2 Not evaluated
Benzene (g/Nm3) 17.0 Not evaluated

Naphthalene (g/Nm3) 10.0 Not evaluated
LHV (MJ/Kg) 14.83 15.0

Gas yield (Nm3/kg) 1.1 1.1

Table 10. Discrepancy of simulative results against experimental data.

Results

H2 (%dry mole fraction) 16.3%

CO (%dry mole fraction) 15.6%

CO2 (%dry mole fraction) 9.7%

CH4 (%dry mole fraction) 57.9%

4. Conclusions

In the last decades, biomass gasification technology has been established as a viable technique for
the conversion of many solid biomass residues in valuable syngas that can generate electricity and
heat via cogeneration devices such as combustion engines, turbines or fuel cells or produce biofuels or
chemicals. In order to optimize gasifier design and its operation with minimal time and costs, models
that do not require specific information on the dimensions, capacity and structure of the reactor but that
at the same time can give accurate descriptions of syngas composition are needed. Quasi-equilibrium
temperature models seem to provide an answer to this problem, but there is no model in literature
that encompasses air/steam/oxygen gasification including inorganic (hydrogen sulphide, hydrogen
chloride and ammonia) and organic (toluene, benzene and naphthalene) contaminants. In order to
develop a model that can be applied to almost all the combinations of oxidizing agents, a Data-Fit of
experimental data carried out with several gasifying agents (steam, air, oxygen or a mix of these) has
been taken from literature. The model has been validated using the most abundant lignocellulosic
waste (here hazelnut shell) and the most used oxidizing agents (S/B ratio at 0.4 and 0.8; steam at 0.5
and ER at 0.2; S/B ratio at 0.4 and oxygen to biomass ratio at 0.36) showing good correlation between
simulative and experimental data. The maximum value of discrepancy for the hydrogen concentration,
which is the main component of the gasification gas, is of 16.3%. Moreover, the sensitivity analysis
has showed similar trends to the ones reported in literature. Thus, the model can be used to simulate
composition and contaminants of different gasification processes without taking into account specific
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information on the dimensions, capacity and structure of the reactor but, nevertheless, being able to
have results not too different from experimental ones.
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