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Abstract
In this paper, we suggest a novel way to train Generative

Adversarial Network (GAN) for the purpose of non-parallel,
many-to-many voice conversion. The goal of voice conversion
(VC) is to transform speech from a source speaker to that of a
target speaker without changing the phonetic contents. Based
on ideas from Game Theory, we suggest to multiply the gradi-
ent of the Generator with suitable weights. Weights are calcu-
lated so that they increase the power of fake samples that fool
the Discriminator resulting in a stronger Generator. Motivated
by a recently presented GAN based approach for VC, StarGAN-
VC, we suggest a variation to StarGAN, referred to as Weighted
StarGAN (WeStarGAN). The experiments are conducted on
standard CMU ARCTIC database. WeStarGAN-VC approach
achieves significantly better relative performance and is clearly
preferred over recently proposed StarGAN-VC method in terms
of speech subjective quality and speaker similarity with 75%
and 65% preference scores, respectively.
Index Terms: Voice conversion, generative adversarial net-
works, training algorithm.

1. Introduction
The aim of voice conversion (VC) is to modify the para/non-
linguistic information contained in the speech uttered by a
source speaker, while keeping the linguistic contents un-
changed. Various tasks such as personalized Text-to-Speech
(TTS) systems, entertainment, speaking assistance and speech
enhancements [1, 2, 3, 4] are benefited by the application of VC.

Voice conversion can be formulated as a regression prob-
lem of estimating a mapping function from source to target
speech. A large number of popular statistical approaches like
linear multivariate regression (LMR) [5], Gaussian mixture
model (GMM) [6], joint density GMM (JD-GMM) [7] were in-
troduced more than two decades ago which proved quite suc-
cessful. Over the time, several non-linear spectral mapping
techniques based on restricted Boltzmann machine (RBM) [8],
feed-forward deep neural networks (DNNs) [9, 10], recurrent
DNNs [11] and non-negative matrix factorization (NMF) [12]
have also been proposed. However, most of these conventional
VC methods require aligned parallel source and target speech
data for training. In many scenarios, it is troublesome to collect
parallel utterances. Even when parallel data is accessible, the
required alignment procedures introduces artifacts and leads to
speech-quality degradation. To overcome these limitations, nu-
merous attempts have been made to develop non-parallel VC
methods. Sequence-to-sequence (Seq2Seq) learning has proved
to be outstanding at various research tasks and was successfully
adopted in VC [13, 14, 15]. Seq2Seq VCs mainly uses multiple
modules such as Automatic speech recognition (ASR) and TTS
which are trainable with pairs of speech and its transcript rather

than the source-target speech. These approaches converts both
acoustic features and duration of the source speech. Nonethe-
less, these techniques consist of several training procedures and
they are expensive in terms of both external data and computa-
tion.

Conditional variational autoencoders (CVAEs) approach
were recently adopted for VC [16, 17]. CVAEs are an extended
version of variational autoencoders where the encoder and de-
coder networks can take additional auxiliary input variable. The
VC has experienced significant improvements following the in-
troduction of generative adversarial networks (GANs). The
VAE-GAN framework is an alternate approach for non-parallel
VC that overcomes the weakness of VAEs [18]. Furthermore,
a variation of GANs named cycle-consistent GAN (CycleGAN)
was presented in [19]. CycleGAN utilizes a frame-by-frame ap-
proach which is designed to learn forward and inverse mappings
simultaneously using an adversarial loss and cycle-consistency
loss. One of the drawback of CycleGAN-VC is the ability to
learns only one-to-one mappings. To resolve this issue, Star
generative adversarial network based VC (StarGAN-VC) was
recently introduced [20] which was originally proposed as a
method for simultaneously learning images among multiple do-
mains [21]. It possess a unified model architecture which allows
simultaneous training of multiple domains i.e., many-to-many
mapping within a single network.

Even though, a significant amount of research has been pro-
vided in the literature for non-parallel methods, generation of
high quality audio quality is still very challenging and has room
for improvement. This paper extends the work of StarGAN-VC
and proposes a novel training algorithm inspired by Weighted
GAN (WeGAN) [22]. Furthermore, existing StarGAN-VC uti-
lizes three loss functions with conventional GAN approach.
However, it lacks stable training which can be overcome by
Wasserstein GANs with gradient penalty (WGAN-GP) [23]. In
our proposed approach, we introduce a new and effective weight
factor for WGAN-GP. The proposedWeighted StarGAN (WeS-
tarGAN) algorithm improves the training of the Generator by
transferring ideas from Game Theory. The new algorithm puts
more weight to generated samples whose data distribution are
more closer to the real samples and are more likely to fool the
Discriminator. Simultaneously, it reduces the weights of gener-
ated samples that are confidently discriminated as fake. By do-
ing so, WeStarGAN enhances the robustness of the weak Gen-
erator by adding weights to the training process and we expect
that the inferred Generator is stronger favorably affecting the
convergence properties. Experimental results based on subjec-
tive performance evaluation confirms that our proposed method
achieves better speaker similarity and perceptual speech quality
than baseline StarGAN-VC system.
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2. Generative Adversarial Networks
2.1. Preliminaries

Given the Discriminator D and Generator G, both parameter-
ized via neural networks, D(x) computes the probability of
sample x being real while G(z) is the sample produced by the
Generator given noise input z. In order to be trained, the fol-
lowing objective function of the two-player zero-sum game has
to be optimized:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))].

where pdata is the distribution to be learned, while pz is the noise
input distribution.

2.2. Star Generative Adversarial Networks

Our proposed algorithm is adopted from StarGAN approach
[21] which was proposed for multi-domain image-to-image
translation and slightly differs from StarGAN-VC approach
[20] in terms of both cost functions and DNN architectures.

The objective is to train a single Generator G that learns
mappings among multiple domains i.e., many-to-many speaker
conversion. To achieve this, we train G to convert the attribute
of source x speaker domain into target y speaker domain con-
ditioned on the target domain label c, y′ = G(x, c). Here,
x ∈ RF×D and y ∈ RF×D are the acoustic feature sequences
of speech belonging to attribute domains x and y. The target
domain label c is generated randomly so that G can learn the
flexibility to transform the source speech. An auxiliary classi-
fier is introduced that allows the Discriminator to control multi-
ple domains. Fig. 1 illustrates the training process of StarGAN-
VC approach.

We applied three losses in the objective function, Adversar-
ial Loss, Domain Classification Loss and Reconstruction Loss.
Adversarial Loss: G generates an fake data G(x, c) condi-
tioned on both the source speaker’s data x and the target do-
main label c, whileD tries to distinguish between real and fake
data. While training, G tries to minimize this objective, while
the Discriminator D tries to maximize it. Moreover, we im-
plemented Wasserstein GAN with gradient penalty [23] which
uses a penalty term in the loss and provides strong performance
and stability. The modified adversarial loss forD is defined as,

LDadv-gp = Ex∼psrc [−D(x)] + Ex∼psrc,cD(G(x, c))

+ λgpEx̂[(||∇x̂D(x̂)||2 − 1)2],

LGadv = −Ex∼psrc,c[D(G(x, c))],

where x̂ is sampled uniformly along a straight line between a
pair of real and generated data samples and λgp is a constant
value.
Domain Classification Loss: An auxiliary lassifier is imple-
mented on top of D which imposes the domain classification
loss while optimizing the cost function. Two loss terms are in-
corporated here: domain classification loss of real speech data
which optimizes D and a domain classification loss of fake
speech data which optimizes G. The losses are as follows,

Lrealcls = Ex∼psrc,c′ [− logDcls(c
′|x)],

Lfakecls = Ex∼psrc,c[− logDcls(c|G(x, c))],
where Dcls(c

′|x) represents a probability distribution of
a real data x over domain labels computed by D. D learns
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Figure 1: Overview of StarGAN (in black), consisting of two
modules, a Discriminator D (identical neural network archi-
tecture is used for Classifier except the last convolutional layer)
and a Generator G. The weights (in red) are introduced during
the training optimization process in our proposed algorithm.

to classify a real data to its corresponding original domain c′.
Whereas, Dcls(c|G(x, c)) represents the probability distribu-
tion of a fake data G(x, c) over domain labels computed by D.
G tries to minimize this objective to generate data that can be
classified as target domain c.
Reconstruction Loss: The adversarial and classification losses
assist G to generate speech that are realistic and can be classi-
fied to its correct target domain. However, this does not guaran-
tee on preserving the content of the linguistic information while
changing only the speaker domain-related information. To al-
leviate this problem, a reconstruction loss is introduced to the
Generator, defined as,

Lrec = Ex∼psrc,c,c′ [||x−G(G(x, c), c′)||1],
where G(x, c) is the generated data conditioned on x and the
target domain label c andG(G(x, c), c′) is reconstruct the orig-
inal speech x which is conditioned on G(x, c) and the original
domain label c′. We applied L1 norm as a reconstruction loss.

The overall objective functions to be minimized with re-
spect to G anD can be written as

LD = LDadv-gp + λclsLrealcls ,

LG = LGadv + λrecLrec + λclsLfakecls ,

where λrec and λcls are the hyper-parameters for domain clas-
sification loss and reconstruction loss, respectively.

2.3. Training StarGAN with Weights (WeStarGAN)

In [22], authors presented a training algorithm based on weights
that improved the performance of vanilla GANs. Instead of
equally-weighted ’fake’ samples, a weight to each sample is
assigned which multiplies to the respective gradient term of the
Generator. The weights are designed to impose more strength
to samples that fool the Discriminator and thus are closer to the
real data. Intuitively, the weighted algorithm puts more weight
to fake samples that are more probable to fool the Discrimina-
tor and simultaneously reduces the weight of samples that are
confidently discriminated as fake. A theoretical argument re-
veals that the optimal Generator with weights achieves lower
or equal loss value than the optimal Generator with equally-
weighted samples for a fixed Discriminator. Hence, it is ex-
pected the inferred Generator is stronger favourably affecting
both the point and the speed of convergence with minor addi-
tional computational cost. The proposed algorithm is presented
in Fig. 2.

We extend the training algorithm toWasserstein GANs with
gradient penalty (WGAN-GP). In WGAN-GP, the discrimina-
tor does not return the probability of a sample being real but a
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Algorithm 1

for number of iterations do
for k steps do

Sample {x1, . . . ,xm} from the source data
distribution psrc(x).
Update the Discriminator to minimize the ob-
jective function:
1
m

∑m
i=1[−D(xi) +D(G(xi, c))]

− 1
m

∑m
i=1 λclslogDcls(c

′|xi)
+ 1
m

∑m
i=1 λgp(||∇x̂iD(x̂i)||2 − 1)2]

end
Sample {x1, . . . ,xm} from the source data distri-
bution psrc(x).
Normalize:
D̄i = D(G(xi, c)) − 1

2m
[
∑m
j=1D(xj) +

D(G(xj, c))].
Compute the unnormalized weights:

wi = e
ηmin(0,D̄i), i = 1, ...,m.

Normalize:
wi =

wi∑m
j=1 wj

, i = 1, ...,m.

Update the Generator to minimize the objective
function:∑m
i=1−wiD(G(xi, c)

+ 1
m

∑m
i=1 λrec||xi −G(G(xi, c), c′)||1

− 1
m

∑m
i=1 λcls logDcls(c|G(xi, c))]

end

Figure 2: Training algorithm of WeStarGAN. For a direct com-
parison with the StarGAN, we follow the formulation of [20].

continuous regression-type value. Taking this fact into account,
we uniformly scale the output of the DiscriminatorD(G(x, c))
based on the output of Discriminator conditioned on both real
and fake data and translate the data around axis 0. The normal-
ized output is then employed to the weight function. The proper
weights for WeStarGANs Generator are defined by

wi = e
ηmin(0,D̄i)

where η corresponds to the hyper-parameter which weighs the
factor of the weight values. Note that, the normalized D̄i is only
used to estimate the weights. We empirically set η = 0.1 for our
experiments.

The choice for the weights is dictated by the fact that we
focuses on improving the Generator training by putting more at-
tention on the data that are closer to real distribution. Therefore,
when Discriminator output is D̄i < 0, the weight decreases by
exponential factor. On the other hand, when D̄i > 0. our al-
gorithm takes into account the samples which almost follow the
real data distribution.

3. Experimental Setup
3.1. Experimental conditions

The experiments have been conducted with the CMU Arctic
database [24] that consists of speech spoken by two male speak-
ers (rms and bdl) and two female speakers (clb and slt) and are
divided into two subsets i.e., training and evaluation, without
overlap. As there are four speakers involves in our experiments,
the attribute c is represented as a four-dimensional one-hot vec-
tor depending upon the target speaker attribute. Although, the

database contains parallel speech, we randomly select training
data as our system operates on non-parallel data, The sampling
rate of the speech signals is 16 kHz. For each utterance, 36
dimension mel-cepstral coefficients (MCCs), logarithmic fun-
damental frequency (logF0), and aperiodicities (APs) were ex-
tracted for every 5 ms using the WORLD analyzer [25]. The
logF0 is converted using the logarithm normalized transforma-
tion and the aperiodicities are used directly without any modifi-
cation. Once the training process is completed, we useWORLD
vocoder to generate speech from converted features.

3.2. Network architectures

In the Generator, an acoustic feature sequence is inserted and
the outputs is an acoustic feature sequence of the same length.
We normalize the source and target MCCs per dimension.
The generator network comprises of three convolutional layers
(conv), six residual blocks and three transposed convolutional
layers (Dconv), and seven conv layers is used for Discrimina-
tor. Whereas, in [20], five conv layer and five Dconv layers are
considered in Generator and two separate five conv layers are
used for Discriminator and Classifier networks. Instance nor-
malization [29] is used for the generator but no normalization is
used for the discriminator. All models are trained using Adam
optimizer with β1 = 0.5 and β2 = 0.999. The batch size is set to
32. The overview of network architecture is depicted in Fig 3.

4. Results and Discussion
In this section, we present the experimental results to evaluate
the performance of voice converted speech samples. To assess
the performance based on subjective evaluation experiments,
we conducted listening tests for the speech quality (i.e., natural-
ness) and speaker similarity of the converted speech to the target
speech. Our proposed WeStarGAN-VC were compared against
recently proposed StarGAN-VC architecture. Two separate lis-
tening tests are reported, ’ABX’ and ’AB’ test. In the ’ABX’
test, experimental subjects have to decide whether a given sen-
tence ’X’ is closer in vocal quality to one of a pair of sentences
’A’ and ’B’, which are converted speech samples obtained with
the proposed and baseline methods, not necessarily in that or-
der. Whereas, the ’AB’ test compares the speech quality or nat-
uralness of the converted speech. Fifteen native and non-native
English listeners participated in our listening tests. All the con-
verted speech samples were presented randomly from the eval-
uation set. Furthermore, the evaluation samples contains both
intra-gender pairs and cross-gender pairs.

The evaluation results of the preference test are demon-
strated in Fig. 4. The proposed WeStarGAN algorithm ob-
tained the majority of preferences for best conversion in terms
of sound quality and speaker similarity. For speaker similar-
ity, the result shows that 17% preferences were given to ’No
preference’ option which indicates similar speaker characteris-
tics in the speech samples generated using both the approaches.
Nevertheless, the proposed method performs better with 65%
preference. Moreover, WeStarGAN significantly outperforms
baseline in generating good speech quality. The significant im-
provement in speech quality might be attributed to the fact that
weights are only multiplied to the fake samples of the adver-
sarial loss function which is responsible for generating real-like
speech samples. On the contrary, no weights are introduced
to the domain classification loss that is responsible for speaker
mapping. We finally remark that WeStarGAN has the poten-
tial to be used for the training of lighter Generators which are
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Figure 3: Overview of StarGAN, consisting of two modules, a discriminator D and a generator G. In the input and output layers, h,
w, and ch represent height, width, and number of channels, respectively. In each convolutional layer, k, c, and s denote kernel size,
number of output channels and stride size, respectively. ”Conv”, ”IN”, ”ReLU”, ”LReLU”, ”Deconv” denote convolution, instance
normalization, rectified linear unit, leaky rectified linear unit and transposed convolution respectively. Dcls provides a probability
distribution over domain labels where domain corresponds to the number of speakers used to train VC.

Figure 4: Subjective preference test in (%) for speaker similarity
and speech quality.

necessary in cases such as operating on mobile devices. In-
deed, constraints in computational power which affects the bat-
tery consumption as well as capability to respond in real-time

limits the use of very deep and complicated neural networks.
However, the use of lighter neural networks results in a less ex-
pressive and flexible Generator which may affect the quality of
the converted speech. The application of the weighted algo-
rithm aims to alleviate such issue by enhancing the capacity of
the Generator.

5. Conclusion
In this paper, we proposed WeStarGAN, a novel algorithmic
variation of StarGAN capable of performing non-parallel multi-
domain voice conversion task. With minor additional compu-
tational cost, the suggested approach managed to improve the
training process by devising a stronger generator at each mini-
batch iteration. This development is very crucial because our
approach can overcome the limitation of using a weaker gen-
erator and still can successfully be trained to generate good
quality speech samples. In addition, we extended the weight-
ing approach to the more stable WGAN-GP model. Subjective
evaluation revealed that the proposed method obtained higher
sound quality and speaker similarity than the baseline method.
As future directions, we list a more extensive study in terms of
network architectures and investigation of adding weights to the
discriminator, too.
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