
Interactive Learning and Complex Event Forecasting
Technology version 1

Work Package 6 Tasks 6.2, 6.3, Deliverable 6.2

Elias Alevizos, Alexander Artikis, Alexia Atsidakou, Ioannis Fikioris, Nikolaos
Katzouris, Vissarion Konidaris, Periklis Mantenonglou, Evangelos

Michelioudakis, Emmanouil Ntoulias, Georgios Paliouras, Vasilis Samoladas,
Alexandros Troupiotis

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

1 of 134

Distribution list:

Group: Others:
WP Leader: NCSR
Task Leader: NCSR

INFORE Management Team
INFORE Project Officer

Document history:

Revision Date Section Page(s) Modification
0.1
0.3
0.5
0.7
0.8
1.0

06/04/2020
10/04/2020
15/04/2020
19/04/2020
20/04/2020
29/04/2020

All
All
All
All
All
All

All
All
All
All
All
All

First draft
OMLDM by ATHENA
More experimental results
Cleaning up
Ready for internal review
Final version after integration of review comments

Approvals:

First Author: Elias Alevizos (NCSR) Date: 06/04/2020

Internal Reviewer: Antonios Deligiannakis (Athena) Date: 25/04/2020

Coordinator: Antonios Deligiannakis (Athena) Date: 29/04/2020

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

2 of 134

Contents

1 Introduction 7

1.1 Purpose and Scope . 7

1.2 Relation to other Deliverables . 7

1.3 Structure of the Deliverable . 7

2 Probabilistic Complex Event Recognition 9

2.1 Introduction . 9

2.2 Related Work . 9

2.3 Background . 11

2.4 Online PIEC . 13

2.5 Bounded Support Set . 17

2.6 Experimental Evaluation on a Benchmark Activity Recognition Dataset 19

2.7 Summary and Further Research . 23

3 Online Structure & Weight Learning of Complex Event Patterns 24

3.1 Introduction . 24

3.2 Related Work . 24

3.3 Background . 25

3.4 Structure & Weight Learning in ASP . 27

3.4.1 Generating the Inferred State . 27

3.4.2 Weight Learning . 29

3.4.3 Updating CE patterns’ Structure . 30

3.5 Learning New CE patterns . 31

3.6 Experimental Evaluation . 33

3.6.1 Datasets Used . 33

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

3 of 134

3.6.2 Scalability of Inference . 34

3.6.3 Online Structure & Weight Learning Performance . 35

4 Online Semi-supervised Learning of Event Rules 37

4.1 Background . 37

4.1.1 Online Semi-Supervised Learning for Composite Event Recognition 38

4.1.2 Large-Margin Nearest Neighbour . 40

4.1.3 Mass-based Dissimilarity . 42

4.2 Temporal Label Propagation . 44

4.3 Robust Supervision Completion . 45

4.3.1 Large Margin Feature Selection for Logical Structures . 45

4.3.2 Mass Dissimilarity for Logical Structures . 47

4.4 Robust Graph Construction and Labelling . 49

4.5 Empirical Evaluation . 51

4.5.1 Experimental Setup . 51

4.5.2 Experimental Results . 51

5 Online Machine Learning and Data Mining Component 55

5.1 Overview of the OMLDM component and previous art . 55

5.2 Architecture of the OMLDM component . 56

5.3 Training pipelines . 56

5.4 Prediction pipelines . 57

5.5 Implementing Machine Learning and Data Mining algorithms . 58

5.5.1 Algorithms supported . 59

5.6 Distributed coordination for training pipelines . 60

5.7 Functional Dynamic Averaging . 61

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

4 of 134

5.8 Implementation of the OMLDM component . 63

5.8.1 Pipeline implementation issues . 65

5.9 Future directions . 66

6 Forecasting for the Cancer Simulations of the Life Sciences Use Case 68

6.1 Cancer Simulations . 68

6.2 Methods for Exploring the Parameter Space of Biological Simulations 69

6.2.1 Genetic Algorithm . 70

6.2.2 Random Forest . 70

6.3 Discretization . 71

7 Complex Event Forecasting 74

7.1 Introduction . 74

7.1.1 Running example . 74

7.1.2 Structure of the Section . 75

7.2 Related Work . 75

7.3 Complex Event Recognition with Symbolic Automata . 78

7.3.1 Symbolic Expressions and Automata . 78

7.3.2 Streaming Expressions and Automata . 80

7.4 Complex Event Forecasting with Prediction Suffix Trees . 83

7.4.1 Preliminary definitions and results . 83

7.4.2 Variable-order Markov Models . 85

7.4.3 Prediction Suffix Trees . 86

7.4.4 Embedding of a PSA in a DSFA . 88

7.4.5 Emitting forecasts . 92

7.4.6 Avoiding the construction of the Markov chain . 94

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

5 of 134

7.4.7 Complexity analysis . 97

7.5 Empirical Evaluation . 103

7.5.1 SE Forecasting . 103

7.5.2 Regression CE Forecasting . 104

7.5.3 Classification CE Forecasting . 105

7.5.4 Models Tested . 107

7.5.5 Hardware and Software Settings . 108

7.5.6 Credit Card Fraud Management . 108

7.5.7 Maritime Monitoring . 112

7.6 Summary & Future Work . 117

8 Distributed Parameter Estimation for Online Forecasting 118

8.1 Online Training . 118

8.2 Flink Distribution . 119

8.3 Evaluation . 120

8.4 Integration with the INFORE Architecture . 123

9 Progress Achieved Towards the INFORE objectives 125

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

6 of 134

1 Introduction

This document presents the progress of the INFORE project with respect to Interactive, Online Learning and Data
Mining and Distributed Complex Event Forecasting.

1.1 Purpose and Scope

The reader is expected to be familiar with Complex Event Processing, Artificial Intelligence and Distributed processing
techniques, as well as the general intent and concept of the INFORE project. The target readership is:

• INFORE researchers

• INFORE audit

INFORE focuses on scalable event recognition, forecasting and machine learning of event definitions for extreme scale
analytics. This document presents the current advancements and discusses the scientific and technological issues that
are being investigated in Work-Package 6, with respect to Interactive, Online Learning and Data Mining and Distributed
Complex Event Forecasting.

1.2 Relation to other Deliverables

This document is related to the following project deliverables:

• D1.1 : Requirements and Scenario Definitions (Life Sciences Use Case);

• D2.1 : Requirements and Scenario Definitions (Financial Use Case);

• D3.1 : Requirements and Scenario Definitions (Maritime Use Case);

• D3.1 : Architecture Definition.

1.3 Structure of the Deliverable

This document has the following structure:

• Section 2 presents an extension of an interval-based complex event recognition system, called PIEC, which op-
erates on top of a probabilistic Event Calculus implementation. The improvements we propose concern handling
data streams, contrary to the original batch implementation of PIEC. Towards this goal, we introduce oPIEC, an
on-line event recognition system designed to tackle the uncertainty in data streams of probabilistic instantaneous
event indications.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

7 of 134

• Section 3 presents an Answer Set Programming (ASP) based approach to learning complex event patterns in
the form of weighted temporal logical rules. Our proposed approach is capable of noise/uncertainty-resilient,
probabilistic complex event recognition over an event stream, while using the labeled portions of the stream
to update the underlying event pattern set’s structure and weights. It builds on existing Statistical Relational
Learning techniques, which it significantly improves via allowing to take advantage of the grounding, solving,
optimization and uncertainty modeling abilities of modern answer set solvers.

• Section 4 presents an approach to online semi-supervised learning of rules for complex event recognition. Our
method is built on top of SPLICE, an existing approach based on graph-based semi-supervised learning. We pro-
pose an hybrid distance measure that combines the structural measure of SPLICE with a mass-based dissimilarity.
The structural measure is further enhanced by feature selection optimized for kNN classification, by adapting a
state-of-the-art approach to metric learning. Finally a graph connection strategy is employed that favors temporal
connections and provides guarantees about the labeling of unlabeled examples. Our empirical analysis suggests
that our improved method outperforms its predecessor in terms of inferring the missing labels, at the price of a
tolerable increase in processing time.

• Section 5 presents the Online Machine Learning and Data Mining (OMLDM) component of the INFORE plat-
form. This component implements the state-of-the-art in distributed, online ML adopting a parameter server
paradigm for incremental training of models. At the very same time, previously extracted models are deployed
for analysis and inference purposes. This is in contrast to other frameworks such as SAMOA which lack a pa-
rameter server implementation and fills the gap of existing APIs such as MLlib in Spark or FlinkML which are
mainly focused on batch data processing. The OMLDM Component currently supports (i) classification algo-
rithms Passive Aggressive Classifier, Online Support Vector Machines and Vertical Hoeffding Trees, (ii) cluster-
ing algorithms BIRCH, Online k-means and StreamKM++ and (iii) regression techniques Passive Aggressive
Regressor, Online Ridge and Polynomial Regression, Autoregressive Integrated Moving Average (ARIMA).

• Section 6 presents two methods for exploring the parameter space of cancer simulations. The first one is based on
genetic algorithms, while the second employs random forests as a surrogate model for modeling the interesting
areas of the space. In addition, a time-series discretization technique, called SAX, is used for transforming the
generated simulations into symbolic example sequences that will eventually be used in order to learn patterns for
Complex Event Forecasting (CEF).

• Section 7 presents a formal framework that attempts to address the issue of Complex Event Forecasting (CEF).
Our framework is based on symbolic automata and a variable-order Markov model and has the ability to capture
long-term dependencies in a stream. We also present experimental results with a prototype implementation,
showing how our approach achieves better accuracy scores compared to previous, state-of-the-art CEF solutions.

• Section 8 takes the prototype implementation of the previous section and presents a new version enhanced in two
major ways. First, it presents online training, as the models so far were trained in an offline manner. Second,
it presents the distribution of both training (parameter estimation) and forecasting with the help of Flink. This
distributed implementation is also backed with Kafka for input/output and request handling. Finally, an evaluation
step is made to showcase the efficiency of the distribution.

• Section 9 summarizes our progress towards achieving INFORE objectives.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

8 of 134

2 Probabilistic Complex Event Recognition

2.1 Introduction

Complex Event Recognition systems employ pattern-based algorithms to infer composite events from an input stream
of time-stamped ‘simple, derived events’. This input is derived from the processing of indications and measurements
of various sensors, depending on the domain under examination. The automatic recognition of complex activities has
been deployed in many real-world applications ranging from human activity recognition [134], city transport manage-
ment and maritime surveillance [119] to recognition of attacks in computer network nodes [47] and credit card fraud
detection. A salient issue in most such applications is the uncertainty in the input data which often causes erroneous
event detection. Acknowledging and resolving that inherent uncertainty leads to reliable complex event recognition
systems. For that purpose, simple events have probabilities attached to them, serving as confidence estimates. Various
approaches have been proposed for handling uncertainty in complex event recognition – see [11] for a recent survey.

Prob-EC [134] is a system based on a probabilistic logic programming implementation of the Event Calculus [86, 84],
designed to handle data uncertainty and compute the probability of a complex event at each time-point. The Probabilistic
Interval-Based Event Calculus (PIEC) is an extension of Prob-EC that computes, in linear-time, all maximal intervals
during which a complex event is said to take place, with a probability above a given threshold [16]. By supporting
interval-based recognition, PIEC has proven robust to noisy instantaneous probability fluctuations, and performs better
in the common case of non-abrupt probability change.

We present an extension of PIEC, called oPIECb, which is capable of online recognition, as opposed to the batch
processing of PIEC. This way, oPIECb may handle data streams. More precisely, our contributions are the following.
First, we propose a technique for identifying the minimal set of data points that need to be cached in memory, in order to
guarantee correct complex event recognition in a streaming setting. Furthermore, we present a way to further reduce the
cached data points, supporting highly efficient recognition, while at the same time minimising the effects on correctness.

2.2 Related Work

Systems for complex event recognition accept as input a stream of time-stamped sensor events and identify composite
events of interest—combinations of events that satisfy some pattern. See [47, 25, 14, 13, 119] for a few applications.
The event streams that provide the input data to a complex event recognition system exhibit various types of uncertainty
[11, 56]. Consequently, the input events are often accompanied by a probability value.

A recent survey [11] identified the following classes of methods for handling uncertainty in complex event recognition:
automata-based methods, probabilistic graphical models, probabilistic/stochastic Petri Nets, and approaches based on
stochastic (context-free) grammars. In automata-based methods (e.g. [4, 151]), the representation of time is implicit, and
hierarchical knowledge, i.e., defining a complex event in terms of some other complex event, is not typically supported.
The approaches that use Petri Nets and stochastic grammars do not support relations between attributes of simple events
and complex events [11].

Regarding probabilistic graphical models, Markov Logic Networks (MLNs) [125] have been used for complex event
recognition. As an example, Morariu and Davis [106] employed Allen’s Interval Algebra [12] to determine the most
consistent sequence of complex events, based on the observations of low-level classifiers. A bottom-up process discards
the unlikely event hypotheses, thus avoiding the combinatorial explosion of all possible intervals. This elimination

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

9 of 134

process, however, can only be applied to domain-dependent axioms, as it is guided by the observations. Sadilek and
Kautz [128] employed hybrid-MLNs [147] in order to detect human interactions using location data from GPS devices.
‘Hybrid formulas’, i.e., formulas with weights associated with a real-valued function, such as the distance between two
persons, de-noise the location data. In contrast to the above, a domain-independent probabilistic activity recognition
framework via MLNs was presented in [136]. This framework is based on the Event Calculus [86, 107, 108] and handles
complex event definition uncertainty by modelling imperfect rules expressing complex events.

There are also logic-based approaches to complex event recognition that do not (directly) employ graphical models. The
Probabilistic Event Logic [25, 131] has been used to define a log-linear model from a set of weighted formulas express-
ing complex events [133]. Recognition is performed using ‘spanning intervals’ that allow for a compact representation
of event occurrences satisfying a formula. In [7], complex events are defined in a first-order logic, the input simple
events may be deterministic or probabilistic, while their dependencies are modelled by triangular norms [52]. Shet et
al. [132] handled uncertainty by expressing the Bilattice framework in logic programming [63]. Each complex and
simple event is associated with two uncertainty values, indicating, respectively, a degree of information and confidence.
The more confident information is provided, the stronger the belief about the corresponding complex event becomes.

Skarlatidis et al. [134] presented an activity recognition system based on Prob-EC, a probabilistic logic programming
implementation of the Event Calculus [86, 84]. Similar to [136], Prob-EC computes the probability of a complex event at
each time-point. Unlike [136], Prob-EC is designed to handle data uncertainty. The use of the Event Calculus, as in, e.g.,
[40], allows the development of domain-independent, expressive event recognition frameworks, supporting the succinct,
intuitive specification of complex events, by taking advantage of the built-in representation of inertia. Consequently,
the interaction between event definition developer and domain expert is facilitated, and code maintenance is supported.

Recently, Artikis et al. [16] proposed the Probabilistic Interval-based Event Calculus (PIEC), a method for computing
in linear-time all maximal intervals during which a complex event is said to take place, with a probability above a
given threshold. PIEC was proposed as an extension of Prob-EC, but may operate on top of any Event Calculus dialect
for point-based probability calculation (such as [136, 40]). By supporting interval-based recognition, PIEC is robust to
noisy instantaneous probability fluctuations, and outperforms point-based recognition in the common case of non-abrupt
probability change.

Note that various Event Calculus dialects allow for event duration by means of durative events or by explicitly repre-
senting ‘fluent’ intervals. These dialects, however, cannot handle uncertainty.

PIEC was designed to operate in a batch mode, requiring all available data for correct interval computation. We present
an extension of PIEC for online recognition where data arrive in a streaming fashion.

An area related to complex event recognition is that of ‘Run-time Verification’, i.e., the online monitoring of a system’s
correctness with regard to a set of desired behaviours (specifications). For instance, in [73], the run-time monitoring of
IoT systems is performed by means of an event-oriented temporal logic. The methods of run-time verification need to
handle uncertainty, originating, e.g., from network issues or event sampling [74, 22]. As an example, [22] handles lossy
traces via monitors robust to a transient loss of events (short intervals of missing indications). Similarly, PIEC features
robustness to transient noise in the input complex event probabilities, i.e., brief probability fluctuations.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

10 of 134

2.3 Background

The Event Calculus is a formalism for representing and reasoning about events and their effects [86]. Since its original
proposal, many dialects have been put forward, including formulations in (variants of) first-order logic and as logic
programs. As an example, in Prob-EC [134] a simple version of the Event Calculus was presented, with a linear time
model including integer time-points. The ontology of most such dialects comprises time-points, events and ‘fluents’,
i.e. properties that are allowed to have different values at different points in time. Event occurrences may change the
value of fluents. Hence, the Event Calculus represents the effects of events via fluents. Given a fluent F , the term F =V
denotes that F has value V . A key feature of the Event Calculus is the built-in representation of the common-sense
law of inertia, according to which F =V holds at a particular time-point, if F =V has been ‘initiated’ by an event at
some earlier time-point, and not ‘terminated’ by another event in the meantime. A set of complex event definitions may
be expressed as an Event Calculus event description, i.e., axioms expressing the simple events occurrences as Event
Calculus events, the values of fluents expressing complex vents, and the effects of simple events i.e., the way simple
events define complex events.

The Event Calculus has been expressed in frameworks handling uncertainty, such as ProbLog [84], in the case of Prob-
EC [134], and Markov Logic Networks in [136], in order to perform probabilistic, time-point-based complex event
recognition recognition. The Probabilistic Interval-based Event Calculus (PIEC) [16] consumes the output of such a
point-based recognition, in order to compute the ‘probabilistic maximal intervals’ of complex events, i.e., the maximal
intervals during which a complex event is said to take place, with a probability above a given threshold. Below, we
define ‘probabilistic maximal intervals’; then, we present the way PIEC detects such intervals in linear time.

Definition 1. The probability of interval ICE =[i, j] of a complex event with length(ICE)= j−i+1 time-points, is defined
as

P(ICE)=
∑

j
k= i P(holdsAt(CE, k))

length(ICE)
,

where holdsAt(CE,k) is an Event Calculus predicate which signifies the occurrence of the complex event at time-point
k.

In other words, the probability of an interval of some complex event is equal to the average of the event’s probabilities
at the time-points that it contains. A key concept of PIEC is that of probabilistic maximal interval:

Definition 2. A probabilistic maximal interval ICE =[i, j] of a complex event is an interval such that, given some
threshold T ∈ [0,1], P(ICE)≥T , and there is no other interval I′CE such that P(I′CE)≥T and ICE is a sub-interval of
I′CE.

Probabilistic maximal intervals (PMIs) may be overlapping. To choose an interval among overlapping PMIs of the same
complex event, PIEC computes the ‘credibility’ of each such interval – see [16].

Given a dataset of n instantaneous complex event probabilities In[1..n] and a threshold T , PIEC infers all PMIs of that
complex event in linear-time. To achieve this, PIEC constructs:

• The L[1..n] list containing each element of In subtracted by the given threshold T , i.e., ∀ i ∈ [1,n], L[i]= In[i]−T .
Note that an interval ICE satisfies the condition P(ICE)≥T iff the sum of the corresponding elements of list L is
non-negative.

• The prefix[1..n] list containing the cumulative or prefix sums of list L, i.e., ∀ i ∈ [1,n], prefix[i]=∑
i
j=1 L[j].

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

11 of 134

Table 1: PIEC with threshold T =0.5.

Time 1 2 3 4 5 6 7 8 9 10
In 0 0.5 0.7 0.9 0.4 0.1 0 0 0.5 1

L -0.5 0 0.2 0.4 -0.1 -0.4 -0.5 -0.5 0 0.5

prefix -0.5 -0.5 -0.3 0.1 0 -0.4 -0.9 -1.4 -1.4 -0.9

dp 0.1 0.1 0.1 0.1 0 -0.4 -0.9 -0.9 -0.9 -0.9

• The dp[1..n] list, where ∀ i ∈ [1,n] we have that dp[i]=maxi≤j≤n(prefix[j]). The elements of the dp list are calcu-
lated by traversing the prefix list in reverse order.

Table 1 presents an example dataset In[1..10], along with the lists calculated by PIEC for T =0.5. In this example,
there are three PMIs: [1,5], [2,6] and [8,10].

PIEC processes a dataset sequentially using two pointers, s and e, indicating, respectively, the starting point and ending
point of a potential PMI. Furthermore, PIEC uses the following variable:

dprange[s,e]=

{
dp[e]−prefix[s−1] if s > 1
dp[e] if s=1

(1)

Substituting in the above formulation prefix and dp with their respective definitions, we derive that dprange[s,e] ex-
presses the maximum sum that may be achieved by adding the elements of list L from s to some e∗ ≥ e, i.e.:

dprange[s,e]= max
e≤e∗≤n

(L[s]+ · · ·+L[e∗]). (2)

The following entailment is a corollary of equation (2):

d prange[s,e]≥ 0⇒∃e∗ : e∗ ≥ e and ∑
s≤i≤e∗

L[i]≥ 0. (3)

Consequently, [s,e∗] is a potential PMI. In this case, PIEC increments the e pointer until dprange becomes negative.
When dprange becomes negative, PIEC produces the following PMI: [s,e−1]. Once a PMI is computed, PIEC incre-
ments the s pointer and re-calculates dprange. By repeating this process, PIEC computes all PMIs of a given dataset.

Example 1. Consider the dataset presented in Table 1 and a threshold T =0.5. Initially, s=e=1 and PIEC calculates
that dprange[1,1]=0.1≥ 0. Then, PIEC increments e as long as dprange remains non-negative. This holds until e=6
when dprange[1,6]=−0.4. At that point, PIEC produces the PMI [1,5] and increments s. Subsequently, PIEC calculates
that dprange[2,6]=0.1 and thus increments e, i.e., e becomes 7 while s remains equal to 2. dprange[2,7]=−0.4 < 0
and, accordingly, PIEC produces the PMI [2,6] and increments s, i.e., s=3. dprange[s,7]< 0 holds ∀s ∈ [3,7]. Hence,
PIEC increments s until s=8 when dprange[8,7]=0. Note that for all time-points t we have dprange[t+1, t]=dp[t]−prefix[t]≥ 0
— see the definition of dp. Hence, PIEC avoids such erroneous pointer values, i.e., s > e, by incrementing e. Here, e in-
creases as long as dprange[8,e]≥ 0. This holds for every subsequent time-point of the dataset. Finally, PIEC produces
the PMI [8,10] as P([8,10])≥T and there is no subsequent time-point to add. Summarising, PIEC computes all PMIs
of In[1..10]. �

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

12 of 134

Table 2: PIEC operating on data batches.

Time 1 2 3 4 5 6 7 8 9 10
prefix -0.5 -0.5 -0.3 0.1 -0.1 -0.5 -1 -1.5 0 0.5

dp 0.1 0.1 0.1 0.1 -0.1 -0.5 -1 -1.5 0.5 0.5

By computing PMIs, PIEC improves upon point-based recognition in the presence of noisy instantaneous probability
fluctuations, and in the common case of non-abrupt probability change. See [16] for an empirical analysis supporting
these claims. On the other hand, PIEC was designed to operate in a batch mode, as opposed to an online setting where
data stream into the recognition system. Consider the example below.

Example 2. Assume that the dataset shown in Table 1 arrives in three batches: In[1..4], In[5..8] and In[9,10]. Table 2
shows the elements of the prefix and dp lists in this case. prefix[5] e.g. is now equal to L[5]=−0.1, since the values
of the L[1..4] list are not available at the second data batch. Note that the elements of list L do not change (and are
presented in Table 1). Given the first data batch In[1..4], PIEC, starting from time-point 1, increments pointer e as long
as dprange[1,e]≥ 0. This condition holds for every time-point in the first batch. Hence, PIEC computes the interval
[1,4]. Considering the second data batch In[5..8], PIEC does not compute any interval, as every probability in In[5..8] is
lower than T . For the third batch In[9,10], PIEC initiates with s=e=9 and subsequently computes the interval [9,10],
as dprange[9,10]≥ 0. �

Neither of the intervals [1,4] and [9,10] computed in the above example is a PMI. The former could have been extended
to the right by one time-point, if the next data batch was foreseen. The latter could have started from time-point 8, if that
time-point had been stored for future use. Additionally, the PMI [2,6] was ignored entirely. One way to address these
issues would be to re-iterate over all data received so far upon the receipt of each new data batch. The computational cost
of such a strategy, however, is not acceptable in streaming environments (as will be shown in our empirical analysis).

2.4 Online PIEC

We present an extension of PIEC, called online Probabilistic Interval-based Event Calculus (oPIEC), which operates
on data batches In[i..j], with i≤ j, i.e., oPIEC processes each incoming data batch and then discards it. oPIEC identifies
the minimal set of time-points that need to be cached in memory in order to guarantee correct LTA recognition. These
time-points are cached in the ‘support set’ and express the starting points of potential PMIs, i.e., PMIs that may end
in the future. For instance, after processing the first data batch In[1..4] in Example 2, oPIEC would have cached time-
points t=1 and t=2 in the support set, thus allowing for the computation of PMIs [1,5] and [2,6] in the future. On
the contrary, oPIEC would not have cached time-points t=3 and t=4, because, given that T =0.5, a PMI cannot start
from any of these points, irrespective of the data that may arrive after the first batch.

Upon the arrival of a data batch In[i..j], oPIEC computes the values of the L[i.. j], prefix[i..j], and dp[i..j] lists. To allow
for correct reasoning, the last prefix value of a batch is transferred to the next one. Consequently, the prefix value of the
first time-point of a batch, prefix[i], is set to prefix[i−1]+L[i]. (For the first batch, we have, as in PIEC, prefix[1]=L[1].)
This way, the computation of the values of prefix[i..j] and dp[i..j] is not affected by the absence of the data prior to i.
Subsequently, oPIEC performs the following steps:

1. It computes intervals starting from a time-point in the support set.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

13 of 134

2. It computes intervals starting from a time-point in the current batch.

3. It identifies the elements of the current batch that should be cached in the support set.

Step 2 is performed by means of PIEC (see Section 3.3). In what follows, we present first Step 3 and then move to Step
1.

Support Set

The support set comprises a set of tuples of the form (t,prev prefix[t]), where t is a time-point and prev prefix[t] ex-
presses t’s previous prefix value, which is defined as follows:

prev prefix[t]=

{
prefix[t−1] if t > 1
0 if t=1

(4)

With the use of prev prefix[t], oPIEC is able to compute dprange[t, t ′] for any future time-point t ′, and thus determine
whether t is the starting point of a PMI. For example, the arrival of a time-point t′ > t for which dp[t′]≥ prev prefix[t]
implies that dprange[t, t′]≥ 0 (see equations (1) and (4)), and hence indicates that t is the starting point of a PMI that
may end either at t ′ or at a later time-point (see corollary (3)).

ALGORITHM 1: support set update(ignore value, support set)
1: for t ∈ In[i.. j] do
2: if prev prefix[t]< ignore value then
3: support set add⇐== (t,prev prefix[t])
4: ignore value← prev prefix[t]
5: end if
6: end for
7: return (ignore value,support set)

Algorithm 1 identifies the time-points of a data batch In[i..j] that should be cached in the support set. For each time-point
t ∈ In[i..j], we check whether prev prefix[t] is less than the ignore value—this variable expresses the lowest prev prefix
value found so far. If prev prefix[t] is less than the ignore value, then we append (t,prev prefix[t]) to the support set,
and set the ignore value to prev prefix[t]. A formal justification for this behaviour is given after the following example.

Example 3. Consider the dataset of the previous examples, arriving in three batches, In[1..4], In[5..8], and In[9,10], as
in Example 2. The values of the prefix list are shown in Table 1—recall that operating on data batches, as opposed to
all data received so far, does not affect oPIEC’s computation of the prefix list. Algorithm 1 processes every time-point
of each batch sequentially. For t=1, we have prev prefix[1]=0 < ignore value, since, initially, ignore value=+∞.
Thus, the tuple (1,prev prefix[1]=0) is added to the support set and the ignore value is set to 0. Next, t=2 and
prev prefix[2]=−0.5 < ignore value. Therefore, Algorithm 1 caches the tuple (2,−0.5) and updates the ignore value.
The remaining time-points of the first batch are not added to the support set as their prev prefix value does not satisfy
the condition prev prefix[t]< ignore value. By processing the remaining batches in a similar way, we get the following
support sets:

• [(1,0),(2,−0.5)]; computed after processing batch In[1..4].

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

14 of 134

• [(1,0),(2,−0.5),(8,−0.9)]; computed after processing batch In[5..8].

• [(1,0),(2,−0.5),(8,−0.9),(9,−1.4)]; computed after processing batch In[9..10].

�

This example illustrates that oPIEC caches the time-points with the currently minimal prev prefix value, and no other
time-points. A time-point t may be the starting point of a PMI iff:

∀tprev ∈ [1, t), prev prefix[tprev]> prev prefix[t] (5)

Theorem 1. If [ts, te] is a PMI, then ts satisfies condition (5).

Proof. Suppose that ts does not satisfy condition (5). Then,

∃t′s : t′s < ts and prev prefix[t′s]≤ prev prefix[ts] (6)

We have that:

dprange[t′s, te]=dp[te]−prefix[t′s−1]

=dp[te]−prev prefix[t′s]
from ineq. (6)
≥ dp[te]−prev prefix[ts]

=dprange[ts, te]≥ 0

Note that dprange[ts, te]≥ 0 because [ts, te] is a PMI.

The fact that dprange[t′s, te]≥ 0, as shown above, indicates that ∃t′e : t′e ≥ te and [t′s, t
′
e] is a PMI — see corollary (3). Ad-

ditionally, [ts, te] is a sub-interval of [t′s, t
′
e] since t′s < ts. Therefore, by Definition 2, [ts, te] is not a PMI. By contradiction,

ts must satisfy condition (5). �

Note that a time-point t may satisfy condition (5) and not be the starting point of a PMI in a given dataset. See e.g. time-
point 9 in Example 3. These time-points must also be cached in the support set because they may become the starting
point of a PMI in the future. Consider again Example 3 and assume that a fourth batch arrives with In[11]=0. In this
case, we have a new PMI: [9,11].

Theorem 2. oPIEC adds a time-point t to the support set iff t satisfies condition (5).

Proof. oPIEC adds a time-point t to the support set iff the condition of the if statement shown in line 2 of Algorithm
1 is satisfied. When this condition, prev prefix[t]< ignore value, is satisfied, the ignore value is set to prev prefix[t].
Since Algorithm 1 handles every time-point in chronological order, in its ith iteration, ignore value will be equal to the
minimum prev prefix value of the first i time-points. So, a time-point’s prev prefix value is less than the ignore value iff
it satisfies condition (5). �

According to Theorem 2, therefore, oPIEC caches in the support set the minimal set of time-points that guarantees
correct event recognition, irrespective of the data that may arrive in the future.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

15 of 134

ALGORITHM 2: interval computation(dp, support set, intervals)
1: s← 1, e← 1, flag← false
2: while s≤ support set.length and e≤ dp.length do
3: if dp[e]≥ support set[s].prev prefix then
4: flag← true
5: e += 1
6: else
7: if flag == true then
8: intervals add⇐== (support set[s].timepoint,e−1)
9: end if

10: flag← false
11: s += 1
12: end if
13: end while
14: if flag == true then
15: intervals add⇐== (support set[s].timepoint,e−1)
16: end if
17: return intervals

Table 3: oPIEC operating on data batches.

Time 1 2 3 4 5 6 7 8 9 10
prev prefix 0 -0.5 -0.5 -0.3 0.1 0 -0.4 -0.9 -1.4 -1.4

dp 0.1 0.1 0.1 0.1 0 -0.4 -0.9 -1.4 -0.9 -0.9

Interval Computation

We now describe how oPIEC computes PMIs using the elements of the support set. Algorithm 2 shows this process.
oPIEC uses a pointer s to traverse the support set, and a pointer e to traverse the dp list of the current data batch;
the elements of the support set and all lists maintained by oPIEC are temporally sorted. Algorithm 2 starts from
the first element s of the support set and the first time-point e of the current data batch, and checks if the interval
[support set[s].timepoint,e] is or may be extended to a PMI. The condition in line 3 of Algorithm 2 essentially checks
whether

dprange[support set[s].timepoint,e] (7)

is non-negative. If it is non-negative, then a PMI starts at support set[s].timepoint. The Boolean variable flag is set to
true and, subsequently, e is incremented as an attempt to find the ending point of the PMI starting at support set[s].timepoint.

If the value of expression (7) is negative, then the interval [support set[s].timepoint,e] is not a PMI, and there is no point
extending it to the right. Consequently, oPIEC checks whether the s,e pointers were pointing to a PMI in the previous
iteration. If they were, oPIEC adds the interval of the previous iteration, i.e., [support set[s].timepoint,e−1], to the list
of PMIs (lines 7-8). Then, it sets flag to false, and increments s, as no other PMI may be found that starts at the current
element of the support set.

Example 4. We complete Example 3 by presenting the interval computation process for the same dataset arriving in
batches In[1..4], In[5..8], and In[9..10]. Table 3 displays the values of the dp list as computed by oPIEC, as well as

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

16 of 134

the prev prefix values, aiding the presentation of the example. Upon the arrival of the first batch In[1..4], the sup-
port set is empty, and thus Algorithm 2 does not compute any interval. When the second batch In[5..8] arrives, the
support set is [(1,0),(2,−0.5)] (see Example 3). Hence, Algorithm 2 initializes pointer s to 1 and pointer e to 5.
Since dp[5]≥ prev prefix[1], the flag becomes true and e is incremented (see lines 4–5 of Algorithm 2). In the fol-
lowing iteration, dp[6]< prev prefix[1] and thus Algorithm 2 produces the PMI [1,5]. Next, s is set to 2. Because
dp[6]> prev prefix[2], Algorithm 2 decides that there is a PMI starting from t=2. However, it fails to extend it in the
following iteration. Therefore, Algorithm 2 produces the PMI [2,6] and terminates for this data batch. When the third
batch In[9..10] arrives, the support set is [(1,0),(2,−0.5),(8,−0.9)]. Since dp[9]=−0.9 is less than the prev prefix
values of the first two elements of the support set, Algorithm 2 skips these elements, and sets s to the third element, i.e.,
support set[s].timepoint=8. Following similar reasoning, Algorithm 2 increments e and eventually produces the PMI
[8,10]. �

In this example dataset, oPIEC computes all PMIs. This is in contrast to PIEC that does not compute any of the PMIs,
given the partitioned stream of Example 2.

2.5 Bounded Support Set

The key difference between the complexity of oPIEC and PIEC is that the former takes into consideration the support
set in interval computation. The size of the support set depends on the data stream of instantaneous probabilities and the
value of the threshold T . In brief, high threshold values increase the size of the support set, and vice versa. In any case,
to allow for efficient reasoning in streaming environments, the support set needs to be bound. To address this issue, we
present oPIECb, which introduces an algorithm to decide which elements of the support set should be deleted, in order
to make room for new ones. Consequently, when compared to PIEC and oPIEC, oPIECb may detect shorter intervals
and/or fewer intervals.

When a time-point t satisfying condition (5) arrives, i.e., t may be the starting point of a PMI, oPIECb will attempt
to cache it in the support set, provided that the designated support set limit is not exceeded. If it is exceeded, then
oPIECb decides whether to cache t, replacing some older time-point in the support set, by computing the ‘score range’,
an interval of real numbers defined as:

score range[t]=[prev prefix[t],prev prefix[prevs[t]]) (8)

The score range is computed for the time-points in set S, i.e., the time-points already in the support set, and the time-
points that are candidates for the support set. All the time-points in S satisfy condition (5) and thus are in descending
prev prefix order. prevs[t] is the time-point before t in S.

With the use of score range[t], oPIECb computes the likelihood that a time-point t, satisfying condition (5), will
indeed become the starting point of a PMI. Suppose, e.g., that a time-point te > t arrives later in the stream, with
dp[te] ∈ score range[t], i.e., prev prefix[t]≤ dp[te]< prev prefix[prevs[t]] (see eq. (8)). In this case, we have dprange[t, te]≥ 0
and dprange[prevs[t], te]< 0 (see eq. (1) and (4)). Hence, a PMI will start from t. The longer the score range[t], i.e.,
the longer the distance between prev prefix[t] and prev prefix[prevs[t]], the more likely it is, intuitively, that a future
time-point te will arrive with dp[te] ∈ score range[t], and thus that t will be the starting point of a PMI. Consequently,
oPIECb stores in the support set the elements with the longer score range.

Algorithm 3 presents the support set maintenance algorithm for a support set of size m and k candidate elements.
oPIECb gathers every element of the support set and the candidate tuples in set S. The goal is to compute the elements
of S with the shortest score ranges, in order to cache the remaining elements in the new support set.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

17 of 134

ALGORITHM 3: support set maintenance(support set, new tuples)
1: m← support set.length, k← new tuples.length
2: S← /0, S add⇐== support set, S add⇐== new tuples
3: counter← 1, temp array← /0
4: for (t,prev prefix[t]) ∈ S do
5: score range size← prev prefix[prevs[t]]−prev prefix[t]
6: if counter ≤ k then
7: temp array add⇐== (t,prev prefix[t],score range size)
8: if counter == k then
9: longest elem← find longest range(temp array)

10: end if
11: else
12: if score range size < longest elem.score range then
13: temp array.delete(longest elem)

14: temp array add⇐== (t,prev prefix[t],score range size)
15: longest elem← find longest range(temp array)
16: end if
17: end if
18: counter += 1
19: end for
20: for elem ∈ temp array do
21: S.delete(elem)

22: end for
23: support set← S
24: return support set

Example 5. Consider the dataset In[1..5] presented in Table 4. With a threshold value T of 0.5, this dataset has a single
PMI: [2,5]. Assume that the data arrive in two batches: In[1..4] and In[5]. Therefore, given an unbounded support set,
oPIEC would have cached time-points 1, 2, 3 and 4 into the support set.

Assume now that the limit of the support set is set to two elements. oPIECb processes In[1..4] to detect the time-points
that may be used as starting points of PMIs, i.e., those satisfying condition (5). These are time-points 1, 2, 3 and 4. In
order to respect the support set limit, oPIECb has to compute the score ranges:

• score range[1] is set to [0,+∞) since t=1 has no predecessor in the support set.

• score range[2]=[prev prefix[2],prev prefix[1])=[−0.5,0).

• score range[3]=[prev prefix[3],prev prefix[2])=[−0.7,−0.5).

• score range[4]=[prev prefix[4],prev prefix[3])=[−0.9,−0.7).

Given these score range values, oPIECb caches the tuples (1,0) and (2,−0.5) in the support set, since these are the
elements with the longest score range. oPIECb chooses time-point t=2, e.g., over time-points t=3 and t=4 for the

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

18 of 134

Table 4: oPIECb in action.

Time 1 2 3 4 5
In 0 0.3 0.3 0.6 0.9

L -0.5 -0.2 -0.2 0.1 0.4

prefix -0.5 -0.7 -0.9 -0.8 -0.4

prev prefix 0 -0.5 -0.7 -0.9 -0.8

dp -0.5 -0.7 -0.8 -0.8 -0.4

support set, because it is more likely that a future time-point t ′ will have a dp[t′] value within score range[2] than within
score range[3] or score range[4].

With such a support set, oPIECb is able to perform correct event recognition, i.e., compute PMI [2,5], upon the arrival
of the second data batch In[5]. Note that dprange[2,5]=0.1≥ 0 and t=5 is the last time-point of the data stream so far.
Also, for the other time-point of the support set, t=1, we have dprange[1,5]=−0.4 < 0, and hence a PMI cannot start
from t=1.

Following a somewhat naive maintenance strategy, i.e., deleting the oldest element of the support set to make room for
a new one, as opposed to the strategy of oPIECb based on score range, would have generated, after processing In[1..4],
the following support set: [(3,−0.7),(4,−0.9)]. Consequently, upon the arrival of In[5], the interval [3,5] would have
been computed, which is not a PMI. �

2.6 Experimental Evaluation on a Benchmark Activity Recognition Dataset

Datasets

To evaluate oPIECb we used CAVIAR1, a benchmark activity recognition dataset. CAVIAR includes 28 videos with
26,419 video frames in total. The videos are staged, i.e., actors walk around, sit down, meet one another, fight, etc.
Each video has been manually annotated by the CAVIAR team in order to provide the ground truth for both simple
events, taking place on individual video frames, as well as composite events. The input to the activity recognition
system consists of the simple events ‘inactive’, i.e., standing still, ‘active’, i.e., non-abrupt body movement in the same
position, ‘walking’, and ‘running’, together with their time-stamps, i.e., the video frame in which the event took place.
The dataset also includes the coordinates of the tracked people and objects as pixel positions at each time-point, as well
as their orientation. Given such an input, the task is to recognise complex events such as two people having a meeting
or fighting.

The CAVIAR dataset includes inconsistencies, as the members of the CAVIAR team that provided the annotation did
not always agree with each other [95, 134]. To allow for a more demanding evaluation of activity recognition systems,
Skarlatidis et al. [134] injected additional types of noise into CAVIAR, producing the following datasets:

• Smooth noise: a subset of the simple events have probabilities attached, generated by a Gamma distribution with
a varying mean. All other simple events have no probabilities attached, as in the original dataset.

1Section “Clips From INRIA” of http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

19 of 134

http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

• Strong noise: probabilities have been additionally attached to contextual information (coordinates and orientation)
using the same Gamma distribution, and spurious simple events that do not belong to the original dataset have
been added using a uniform distribution.

Note that CAVIAR is a surrogate dataset we used as a proof-of-concept of the applicability of our system. We plan on
employing oPIECb for experiments on maritime datasets.

In the analysis that follows, we use the original CAVIAR dataset as well as the ‘smooth noise’ and ‘strong noise’
versions. The target complex events are ‘meeting together’ and ‘fighting’. All versions of CAVIAR, along with the
definitions of these events in the Event Calculus, are publicly available2.

Predictive Accuracy

The aim of the first set of experiments was to compare the predictive accuracy of oPIECb against that of PIEC. We
focused our comparison on four cases in which PIEC has a noticeably better performance than the underlying system
performing point-based event recognition. In these experiments, we use two such systems, Prob-EC [134] and OSLα

[104, 102]. Prob-EC is an implementation of the Event Calculus in ProbLog [84], designed to handle data uncertainty.
OSLα is a supervised learning framework employing the Event Calculus in Markov Logic [136], to guide the search
for weighted LTA definitions. Our comparison concerns the following cases:

• Prob-EC recognising the ‘meeting’ event when operating on the ‘strong noise’ dataset.

• Prob-EC recognising the ‘fighting’ event when operating on the ‘smooth noise’ and the ‘strong noise’ datasets.
The complex event definitions used by Prob-EC were manually constructed and do not have weights attached
[134].

• OSLα recognising the ‘meeting’ event when operating on the original CAVIAR dataset. Prior to recognition,
OSLα was trained to construct the complex event definition in the form of weighted Event Calculus rules, given
the annotation provided by the CAVIAR team (see [104] for the setup of the training process).

In each case, PIEC and oPIECb consumed the output of point-based event recognition.

Figure 1 shows the experimental results in terms of the f1-score, which was calculated using the ground truth of
CAVIAR. Each of the diagrams of Figure 1 shows the performance of point-based event recognition (Prob-EC in
Figures 1(a)–(c) and OSLα in Figure 1(d)), PIEC, oPIECb operating on data batches of 1 time-point, i.e., performing
reasoning at each time-point and then discarding it, unless cached in the support set (see ‘batch size=1’ in Figure 1),
and oPIECb operating on batches of 10 time-points. We used the threshold value leading to the best performance for
each system. For recognising ‘meeting’ and ‘fighting’ under ‘strong noise’, we set T =0.5, while in the recognition
of ‘meeting’ with the weighted definitions of OSLα , we set T =0.7. In these cases, where the same threshold value
is used for point-based and interval-based recognition, the performance of oPIECb, when operating on batches of 1
time-point with an empty support set, amounts to the performance of point-based recognition. See Figures 1(a), (c)
and (d). In the case of ‘fighting’ under ‘smooth noise’, the best performance for Prob-EC is achieved for a different
threshold value than that leading to the best performance for PIEC. Thus, Prob-EC operated with T =0.5, while PIEC
and oPIECb operated with T =0.9.

Figure 1 shows that oPIECb reaches the performance of PIEC, even with a small support set (≤ 50), and with the
2https://anskarl.github.io/publications/TPLP15/

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

20 of 134

https://anskarl.github.io/publications/TPLP15/

0 50 100 150
0.6

0.7

0.8

0.9

support set size

f1
-s
co
re

oPIECb with batch size = 1

oPIECb with batch size = 10

PIEC

Prob-EC

(a) ‘Meeting’ event; ‘strong
noise’.

0 50 100 150
0.6

0.7

0.8

0.9

support set size

f1
-s
co
re

oPIECb with batch size = 1

oPIECb with batch size = 10
PIEC
Prob-EC

(b) ‘Fighting’ event; ‘smooth
noise’.

0 50 100 150
0.3

0.4

0.5

0.6

support set size

f1
-s
co
re

oPIECb with batch size = 1

oPIECb with batch size = 10
PIEC
Prob-EC

(c) ‘Fighting’ event; ‘strong
noise’.

0 50 100 150
0.6

0.7

0.8

0.9

support set size
f1
-s
co
re

oPIECb with batch size = 1

oPIECb with batch size = 10

PIEC

OSLα

(d) ‘Meeting’ event; weighted pat-
tern.

Figure 1: Predictive accuracy.

common option for streaming applications of the smallest batch size (= 1). In other words, oPIECb outperforms point-
based recognition, requiring only a small subset of the data.

0 50 100 150
0.6

0.7

0.8

0.9

support set size

p
re
ci
si
on
/r
ec
al
l

oPIECb precision

oPIECb recall
PIEC precision
PIEC recall

(a) ‘Meeting’ event; ‘strong
noise’.

0 50 100 150
0.3

0.4

0.5

0.6

support set size

p
re
ci
si
on
/r
ec
al
l

oPIECb precision

oPIECb recall
PIEC precision
PIEC recall

(b) ‘Fighting’ event; ‘strong
noise’.

Figure 2: Precision and recall. For oPIECb, batch size = 1.

Figure 2 shows the precision and recall scores of oPIECb (operating on batches of 1 time-point) and PIEC, in the task
of recognising the ‘meeting’ and ‘fighting’ events in the ‘strong’ noise dataset. In both cases, Prob-EC provides the
instantaneous probabilities. In the case of ‘fighting’, both precision and recall increase for oPIECb as the support set
increases, eventually reaching the precision and recall of PIEC. In the case of ‘meeting’, the precision of oPIECb is
initially higher than that of PIEC, and drops, as the support set increases, approaching the precision of PIEC. Recall
that, due to the bounded support set, oPIECb may detect shorter intervals and/or fewer intervals than PIEC. In this
particular case, the limit on the size of the support set leads, also, to correcting some of PIEC’s errors, i.e. reducing its

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

21 of 134

false positives.

0 50 100 150
0.7

0.8

0.9

1

support set size

f1
-s
co
re

oPIECb

Naive oPIECb

(a) ‘Meeting’ event; ‘strong
noise’.

0 50 100 150
0.7

0.8

0.9

1

support set size

f1
-s
co
re

oPIECb

Naive oPIECb

(b) ‘Fighting’ event; ‘strong
noise’.

Figure 3: Support set maintenance. Batch size = 1.

The aim of the next set of experiments was to evaluate the effects of the support set maintenance strategy of oPIECb.
Figure 3 compares the performance of oPIECb against that of a naive maintenance strategy, according to which the
oldest element of the support set is deleted to make room for a new one. In these experiments, the ground truth was the
output of PIEC. As shown in Figure 3, in most cases the strategy of oPIECb, based on the score range, leads to a better
approximation of the performance of PIEC.

0 2,000 4,000 6,000 8,000
0

2

4

6

8

10

processed timepoints

ru
n
-t
im

e
(m

s)

PIEC

oPIECb

(a) ‘Smooth noise’.

0 2,000 4,000 6,000 8,000
0

2

4

6

8

10

processed timepoints

ru
n
-t
im

e
(m

s)

PIEC

oPIECb

(b) ‘Strong noise’.

Figure 4: Recognition times for ‘fighting’: PIEC vs oPIECb with a support set limit of 60 elements.

Recognition Times

In these experiments, the aim was to compare the recognition times of oPIECb and PIEC in a streaming setting, i.e.,
when the recognition system must respond as soon as a data batch arrives. To achieve this, we instructed Prob-EC to
recognise the ‘fighting’ event in the videos of the ‘smooth’ and ‘strong noise’ datasets with instances of this complex
event. Then, we provided the output of Prob-EC in batches of 1 time-point to oPIECb and PIEC, for interval-based
recognition. Upon the arrival of a data batch, PIEC was instructed to reason over all data collected so far, as this is
the only way to guarantee correct PMI computation. oPIECb was instructed to operate on a support set limited to
60 elements, as this is sufficient for reaching the accuracy of PIEC. Figure 4 shows the experimental results. Note
that the ‘strong noise’ dataset is larger due to the injection of spurious simple events. As shown in Figure 4, oPIECb

has a constant (low) cost, in contrast to the cost of PIEC, which increases as data stream into the recognition system.
The comparison of recognition times under different configurations (complex events, datasets, underlying point-based
recognition system) yields similar results, and is not shown here to save space.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

22 of 134

2.7 Summary and Further Research

We presented oPIECb, an algorithm for online complex event recognition under uncertainty. oPIECb identifies the
minimal set of data points that need to be cached in memory, in order to guarantee correct activity recognition in
a streaming setting. Moreover, oPIECb adopts a method for further reducing the cached data points, according to
memory limits. This leads to highly efficient recognition, while at the same time minimising any effect on correctness.
Our empirical evaluation on a surrogate activity recognition dataset showed that oPIECb achieves a higher predictive
accuracy than point-based recognition models that have been manually constructed (Prob-EC) or optimised by means of
relational learning (OSLα). Moreover, oPIECb reaches the predictive accuracy of batch interval-based event recognition
(PIEC), with a small support set, thus supporting streaming applications.

For future work, we aim at developing new support set maintenance techniques that reduce further the errors of PIEC.
Moreover, we plan to compare oPIECb with additional machine learning frameworks, such as [79] and test our approach
on maritime datasets.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

23 of 134

3 Online Structure & Weight Learning of Complex Event Patterns

3.1 Introduction

Complex Event Recognition (CER) systems [36] detect occurrences of complex events (CEs) in streaming input, defined
as spatio-temporal combinations of simple events (e.g. sensor data), using a set of CE patterns. Since such patterns are
not always known beforehand, while existing ones often need to be updated, machine learning algorithms for the
automatic construction/revision of CE patterns are highly useful. Such algorithms should ideally operate in an online
fashion, by using the current CE pattern set for inference (CER) in the incoming data stream, and the labeled portions of
the stream for updating the CE pattern set. Moreover, such algorithms should be resilient to noise & uncertainty, which
are ubiquitous in temporal data streams [11], and support reasoning with existing domain knowledge, while taking into
account commonsense phenomena [109], which often characterize dynamic application domains, such as CER.

Logic-based CER systems [19] stand up to the aforementioned challenges. They combine reasoning under uncertainty
with machine learning, via Statistical Relational AI techniques [42], while they are capable of reasoning with time and
change, and incorporating commonsense principles via action formalisms, such as the Event Calculus [17].

A number of online learning algorithms, capable of temporal reasoning with a set of CE patterns, while continuously
updating these patterns in the face of new data, have already been proposed [79, 101]. We advance the state of the art
by proposing a novel implementation of one such algorithm, called WOLED (Online Learning of Weighted Event Defi-
nitions) [80], originally based on Markov Logic Networks (MLNs), which learns CE patterns in the form of weighted
rules in the Event Calculus. Our new implementation, which is based entirely on Answer Set Programming (ASP),
allows to take advantage of the grounding, solving, optimization and uncertainty modeling abilities of modern answer
set solvers, while employing structure learning techniques from non-monotonic Inductive Logic Programming (ILP)
[43], which are easily implemented in ASP, towards more robust learning.

We compare our novel ASP-based implementation to an MLN-based one, and to crisp version of the algorithm that
learns unweighted rules, on three CE datasets for activity recognition, maritime surveillance and vehicle fleet manage-
ment. Our results demonstrate the superiority of our novel implementation, both in terms of efficiency and predictive
performance.

3.2 Related Work

Event Calculus-based CER [17] was combined with MLNs in [137], in order to deal with the uncertainty of CER
applications. An inherent limitation of this approach is the fact that the non-monotonic semantics of the Event Calculus
is incompatible with the open-world semantics of MLNs. Therefore, performing inference with Event Calculus-based
MLN theories calls for extra, costly operations, such as computing the completion of a theory [109], in order to endow
the first-order logic representations on which MLNs rely with a non-monotonic semantics. We bridge this gap via
translating probabilistic inference with MLNs into an optimization task in ASP, which naturally supports non-monotonic
and commonsense reasoning. This also allows to delegate probabilistic temporal reasoning and machine learning tasks
to sophisticated, off-the-self answer set solvers.

Translating MLN inference in ASP has been put forth in [91, 90]. This line of work is mostly concerned with theoretical
aspects of the translation, limiting applications to simple, proof-of-concept examples. Although we do rely on the
theoretical foundation of this work, we take a more application-oriented stand-point and investigate the usefulness of

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

24 of 134

(a)
Predicate Meaning
happensAt(E,T) Event E occurs at time T .
initiatedAt(F,T) At time T , a period of time for

which fluent F holds is initiated.
terminatedAt(F,T) At time T , a period of time for

which fluent F holds is terminated.
holdsAt(F,T) Fluent F holds at time T .
(b)
The axioms of the Event Calculus

holdsAt(F,T +1)← (1)
initiatedAt(F,T)

holdsAt(F,T +1)← (2)
holdsAt(F,T),
not terminatedAt(F,T)

(c) (d)
Observations I1 at time 1: Weighted CE patterns:

happensAt(walk(id1),1). 1.234 initiatedAt(move(X ,Y),T)←
happensAt(walk(id2),1). happensAt(walk(X),T),
coords(id1,201,454,1). happensAt(walk(Y),T),
coords(id2,230,440,1) close(X,Y,25,T),
direction(id1,270,1 orientation(X,Y,45,T)
direction(id2,270,1

Target CE instances at time 1: 0.923 terminatedAt(move(X ,Y),T)←
holdsAt(move(id1, id2),2) happensAt(inactive(X),T),
holdsAt(move(id2, id1),2) not close(X,Y,30,T)

Table 5: (a), (b) The basic predicates and the EC axioms. (c) Example CAVIAR data. For example, at time point 1 person with id1 is walking, her
(X ,Y) coordinates are (201,454) and her direction is 270◦. The query atoms for time point 1 ask whether persons id1 and id2 are moving together at
the next time point. (d) An example of two domain-specific axioms in the EC. E.g. the first rule dictates that moving together between two persons
X and Y is initiated at time T if both X and Y are walking at time T , their euclidean distance is less than 25 pixel positions and their difference in
direction is less than 45◦. The second rule dictates that moving together between X and Y is terminated at time T if one of them is standing still at
time T and their euclidean distance at T is greater that 30.

these ideas in challenging domains, such as CER. Another important difference from previous work on combining
MLNs with ASP is that while the latter does not touch upon machine learning, we propose a methodology for learning
both the structure and the weights of rules representing CE patterns, in an online fashion, using ASP tools.

Regarding machine learning, a number of algorithms in the non-monotonic branch of Inductive Logic Programming
(ILP), such as XHAIL [124], TAL [21] and ILASP [88] are capable of learning Event Calculus theories. However, these
algorithms are batch learners, they are thus poor matches to the online nature of CER applications. Moreover, they learn
crisp logical theories, thus their ability to cope with noise and uncertainty is limited. Existing online learning algorithms
[79, 101] rely on MLNs, so they suffer from the same limitations discussed earlier in this section, while a recent online
learner based on probabilistic theory revision [66] is limited to Horn logic and cannot handle Event Calculus reasoning.

3.3 Background

We assume a first-order language where atoms, literals (possibly negated atoms), rules and logic programs are defined as
in [59] and not denotes negation as failure. Rules, atoms, literals and programs are ground if they contain no variables.
Rules are denoted by α ← δ1, . . . ,δn, where α is an atom and δ1, . . . ,δn a conjunction of literals. An interpretation I is
a set of true ground atoms. I satisfies a ground literal a (resp. not a) iff a ∈ I (resp. a /∈ I) and it satisfies a ground rule
iff it satisfies the head, or does not satisfy the body. I is a minimal (Herbrand) model of a logic program Π iff it satisfies

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

25 of 134

every ground rule in Π and none of its strict subsets has this property. I is an answer set of Π iff it is a minimal model of
the program that results from the ground instances of Π, after removing all rules with a negated literal not satisfied by
I, and all negative literals from the remaining rules. A choice rule is an expression of the form {α} ← δ1, . . . ,δn. with
the intuitive meaning that whenever the body δ1, . . . ,δn is satisfied by an answer set I of a program that includes the
choice rule, instances of the head α are arbitrarily included in I (satisfied) as well. A weak constraint is an expression
of the form : ~ δ1, . . . ,δn.[w], where δi’s are literals and w is an integer. The intuitive meaning of a weak constraint c
is that the satisfaction of the conjunction δ1, . . . ,δn by an answer set I of a program that includes c incurs a cost of w
for I. Inclusion of weak constraints in a program triggers an optimization process that yields answer sets of minimum
cost. We refer to [59] for a formal account of choice rules and weak constraints’ semantics. In what follows we use the
Clingo3 syntax for representing these constructs.

The Event Calculus is a temporal logic for reasoning about events and their effects. Its ontology comprises time points
(integers), fluents, i.e. properties which have certain values in time, and events, i.e. occurrences in time that may affect
fluents and alter their value. Its axioms incorporate the commonsense law of inertia, according to which fluents persist
over time, unless they are affected by an event. Its basic predicates and axioms are presented in Table 5(a), (b). Axiom
(1) states that a fluent F holds at time T if it has been initiated at the previous time point, while Axiom (2) states that
F continues to hold unless it is terminated. Definitions of initiatedAt/2 and terminatedAt/2 predicates are provided in a
application-specific manner.

Using the Event Calculus in a CER context allows to reason with CEs that have duration in time and are subject to
commonsense phenomena, via associating CEs to fluents. In this case, a set of CE patterns is a set of conditions that
initiate/terminate a target CE, i.e., a set of initiatedAt/2 and terminatedAt/2 rules.

As an example we use the task of activity recognition, as defined in the CAVIAR project4. The CAVIAR dataset consists
of videos of a public space, where actors perform some activities. These videos have been manually annotated by the
CAVIAR team to provide the ground truth for two types of activity. The first type, corresponding to simple events,
consists of knowledge about a person’s activities at a certain video frame/time point (e.g. walking, standing still and
so on). The second type, corresponding to CEs/fluents, consists of activities that involve more than one person, for
instance two people moving together, meeting each other and so on. The aim is to detect CEs as of combinations of
simple events and additional domain knowledge, such as a person’s position and direction.

Table 5(c) presents an example of CAVIAR data, consisting of observations for a particular time point, in the form of
an interpretation I1. A stream of interpretations is matched against a set of CE patterns (initiation/termination rules –
see Table 5(d)), to infer the truth values of CE instances in time, using the Event Calculus axioms as a reasoning engine.
We henceforth call the atoms corresponding to CE instances whose truth values are to be inferred/predicted, target CE
instances. Table 2(c) presents the target CE instances corresponding to the observations in I1. Note that at time t the
corresponding target CE instances refer to t+1, in accordance to the Event Calculus axioms, which infer the truth value
of a CE instance at a time point, base on what happens at the previous time point.

In WOLED, the CE patterns included in a logic program Π are associated with real-valued weights, defining a probability
distribution over answer sets of Π. Similarly to Markov Logic, where a possible world may satisfy a subset of the
formulae in an MLN, and the weights of the formulae in a unique, maximal such subset determine the probability of
the possible world, an answer set of a program with weighted rules may satisfy subsets of these rules, and these rules’
weights determine the answer set’s probability. Based on this observation, [91] propose to assign probabilities to answer
sets of a program Π with weighted rules as follows: For each interpretation I, first find the maximal subset RI of the

3https://potassco.org/
4http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

26 of 134

https://potassco.org/
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

weighted rules in Π that are satisfied by I. Then, assign to I a weight WΠ(I) proportional to the sum of weights of the
rules in RI , if I is an answer set of RI , else assign zero weight. Finally, define a probability distribution over answer sets
of Π by normalizing these weights.

Formally, let wr be the weight of rule r and ans(Π) the set of all interpretations I which are answer sets of RI and which,
moreover, satisfy all hard-constrained rules in Π (rules without weights). Then

WΠ(I) =

 exp
(

∑
r∈RI

wr

)
if I ∈ ans(Π)

0 otherwise
(9)

PΠ(I) =
WΠ(I)

∑
J∈ans(Π)

WΠ(J)
(10)

3.4 Structure & Weight Learning in ASP

The task that WOLED addresses is to online learn the structure and weights of CE patterns, while using their current
version at each point in time to perform CER in the streaming input. We adopt a standard online learning approach
consisting of the following steps: at time t the learner maintains a theory Ht (weighted CE pattern set, as in Table 5(c)),
has access to some static background knowledge (e.g. the axioms of the Event Calculus – Table 5(a)) and receives an
interpretation It , consisting of a data mini-batch (as in Table 5(b)). Then (i) the learner performs inference (CER) with
B∪Ht on It and generates a “predicted state”, consisting of inferred holdsAt/2 instances of the target predicate. Via
closed-world assumption, all such instances not present in the predicted state are false; (ii) if available, the true state,
consisting of the actual truth values of the predicted atoms is revealed; (iii) the learner identifies erroneous predictions
via comparing the predicted state to the true one, and uses these mistakes to update the structure and the weights of the
CE patterns in Ht , yielding a new theory Ht+1.

We next discuss each of these steps and their implementation using ASP tools.

3.4.1 Generating the Inferred State

To make predictions with the weighted CE patterns in the incoming data interpretations, WOLED uses MAP (Maximum
A Posteriori) probabilistic inference5, which amounts to computing a most probable answer set A of Π = B∪Ht ∪ It .
From Equations (9), (10) it follows that

A = argmax
I∈ans(Π)

PΠ(I) = argmax
I∈ans(Π)

WΠ(I) = argmax
I∈ans(Π)

∑
r∈RI

wr (11)

5Marginal inference, i.e. computing the probability of each target CE instance is also possible, but it is computationally expensive since it requires
a full enumeration of a program’s answer sets, of utilizing techniques for sampling from such answer sets. We are not concerned with marginal
inference in this work.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

27 of 134

ALGORITHM 4: MAPInference(B,Ht, It)

1: T (Ht) := /0
2: for each CE pattern ri = α ← δ1, . . .δn in Ht with integer weight wi do
3: let vars(α) be a term wrapping the variables of α .
4: Add to T (Ht) the following rules:
5: α ← satisfied(vars(α), i).
6: {satisfied(vars(α), i)}← δ1, . . .δn.

7: : ~ satisfied(vars(α), i). [−wi,vars(α), i]
8: end for
9: Find an optimal answer set Aopt of B∪T (Ht)∪ It .

10: return the target CE instances in Aopt.

that is, a most probable answer set is one that maximizes the sum of weights of satisfied rules, similarly to the MLN
case, for possible worlds. This is a weighted MaxSat problem that may be delegated to an answer set solver using
built-in optimization tools. Since answer set solvers only optimize integer-valued objective functions, a first step is to
convert the real-valued CE pattern weights to integers. We do so by scaling the weights, via multiplying them by a
positive factor, while preserving their relative differences, and rounding the result to the closest integer. Note that as it
may be seen from Equation (11), weight scaling by a positive factor does not alter the set of most probable answer sets,
therefore, the inference result remains unaffected.

To make sure that small relative differences between weights are maintained once the weights are converted to integers,
we set the scaling factor to K/dmin, where dmin = mini6=j|wi−wj| is the smallest distance between any pair of weights
and K is a large positive constant, which reduces precision loss when rounding the scaled weights to integer values.

The MAP inference/weighted MaxSat computation is realized via a standard generate-and-test ASP approach, pre-
sented in Algorithm 4, whose input is the background knowledge B, the current CE pattern set Ht and the current
interpretation It . First, Ht is transformed into a new program, T (Ht), as follows: each CE pattern ri in Ht of the form
ri = headi← bodyi is “decomposed”, so as to associate headi with a fresh predicate, satisfied/2, wrapping headi’s vari-
ables and its unique id, i (line 5, Algorithm 4). The choice rule in line 6, the “generate” part of the process, generates
instances of satisfied/2 that correspond to groundings of bodyi. The weak constraint in line 7, the “test” part of the
process, decides which of the generated satisfied/2 instances will be included in an answer set, indicating groundings
of the initial CE pattern ri, that will be true in the inferred state.

As it may be seen from line 7, the violation of a weak constraint by an answer set A of Π = B∪ T (Ht)∪ It , i.e.
the satisfaction of a ground instance of ri by A , incurs a cost of −wi on A , where wi is ri’s integer-valued weight.
The optimization process triggered by the inclusion of these weak constraints in a program generates answer sets of
minimum cost. During the cost minimization process, costs of −wi are actually rewards for rules with a positive wi,
whose satisfaction by an answer set, via the violation of the corresponding weak constraint, reduces the answer set’s
total cost. The situation is reversed for rules with a negative weight, whose corresponding weak constraint is associated
with a positive cost.

Obtaining the inferred state amounts to “reading-off” target CE instances from an optimal (minimum-cost) answer set
of the program B∪T (Ht)∪ It .

Example 6. We illustrate the inference process via the example in Figure 5. In (a) the Event Calculus axioms are
presented, with an extra predicate, targetCE/1, indicating the target CE whose occurrences we wish to detect and
which is subject to the effects of inertia; (b) presents a CE pattern set Ht , where we assume that the actual real-valued

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

28 of 134

Figure 5: ASP-based MAP inference with the Event Calculus.

weights of the patterns have been converted to integers, as described earlier; (c) presents the current data interpretation
It ; (d) presents the program T (Ht) obtained from Ht , via the transformation in Algorithm 4, to allow for MAP inference;
(e) presents the inferred state obtained with crisp logical inference, i.e. the target CE instances included in the unique
answer set of the program BK∪Ht ∪ It , where the CE patterns’ weights have been disregarded. Note that the occurrence
of happensAt(b,2) ∈ It initiates the target CE a via rule1 ∈ Ht , so a holds at the next time point, 3, and it also holds at
time points 4 & 5 via inertia. Then, the occurrence of happensAt(c,5) ∈ It terminates a, via rule2 ∈ Ht , so a does not
holds at times 6,7,8, while the occurrence of happensAt(d,8) ∈ It re-initiates a, via rule3 ∈Ht , so a holds at times 9 & 10.
Finally, (f) presents the MAP-inferred state, i.e. the target predicate instances included in an optimal (minimum-cost)
answer set of the program BK ∪ T (Ht)∪ It (for illustrative purposes the satisfied/2 instances in the optimal answer
set are also presented). Note that the set of target CE inferences is reduced, as compared to the crisp case, since the
negative-weight, rule3 ∈ Ht is not satisfied by the optimal answer set. The satisfied/2 instances in the MAP-inferred
state correspond to the ground atoms terminatedAt(a,5), initiatedAt(a,2), which, along with inertia, are responsible for
the target CE inferences.

3.4.2 Weight Learning

Once the learner makes a prediction on the incoming interpretation It and generates the inferred state, the true state is
revealed, if available (i.e., if It is labeled), and the CE patterns’ weights are updated by comparing their true groundings
in the inferred and the true state. For a target CE α and an initiatedAt/2 (resp. terminatedAt/2) CE pattern ri, a true
grounding, either in the inferred, or in the true state, is a grounding of ri at time t, such that holdsAt(α, t + 1) is true
(resp. false). CE patterns that contribute towards correct predictions (target CE inferences) are promoted, while those
that make erroneous predictions are down-weighted.

As in [80], we use the AdaGrad algorithm [49] for weight updates, a version of Gradient Descent that dynamically adapts
the learning rate, i.e. the magnitude of weight promotion/demotion, for each CE pattern individually, by taking into
account the pattern’s performance on the past data. AdaGrad updates a weight vector, whose coordinates correspond to
a set of features (the CE patterns in out case), based on the subgradient of a convex loss function of these features. Our
loss function is a simple variant of the hinge loss for structured prediction, originally used in [72] for MLNs, whose
subgradient is the vector with ∆gi in its i-th coordinate, the difference in the i-th CE pattern’s true groundings in the true
and the inferred state respectively. The weight update rule for the i-th CE pattern is then:

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

29 of 134

wt+1
i = sign(wt

i−
η

Ct
i
gt

i) max{0, |wt
i−

η

Ci
t
gt

i|−λ
η

Ci
t
}

where t/t +1-superscripts in terms denote respectively the previous and the updated values, η is a learning rate param-

eter, λ is a regularization parameter and Ct
i = δ +

√
∑

t
j=1(g

j
i)

2 is a term that expresses the CE pattern’s quality so far,
as reflected by the accumulated sum of ∆gi’s, amounting to its past mistakes (plus a δ ≥ 0 to avoid division by zero in
η/Ct

i). The Ct
i term is the adaptive factor, since the magnitude of a weight update via the term |wt

i − η

Ci
t
gt

i| is affected

by the CE pattern’s previous history, in addition to its current mistakes, expressed by gt
i . The regularization term in

Equation (1), λ
η

Ci
t
, is the amount by which the i-th CE pattern’s weight is discounted when gt

i = 0. This is to eventually
push to zero the weights of irrelevant rules, which have very few, or even no groundings in the data.

3.4.3 Updating CE patterns’ Structure

Similarly to OLED [79], WOLED learns CE patterns via a classical in ILP, hill-climbing search process, generating a
bottom rule [43]⊥α from a CE instance α and then searching for a high-quality CE pattern into the subsumption lattice
defined by ⊥α . It does so by progressively specializing an initially empty-bodied rule with the addition of one literal
at a time from ⊥α . To make this process online, the data in the incoming interpretations are used once, to evaluate
a CE pattern and its current specializations. A Hoeffding test [45] allows to identify, with high probability, the best
specialization from a small subset of the input interpretations. Once the test succeeds, the parent rule is replaced by its
best specialization and the process continues for as long as new specializations improve the current rule’s performance.
New bottom rules are generated over time from “missed” CE instances (not entailed by none of the existing CE patterns).
Each such bottom rule instantiates a new subsumption lattice, which is searched for new CE patterns.

In particular, at each point in time WOLED evaluates a parent rule and its specializations on incoming data, via an
information gain scoring function, assessing the cumulative merit of a specialization over the parent rule, across the
portion of the stream seen so far:

G(r,r′) = Pr · (log
Pr

Pr +Nr
− log

Pr′

Pr′ +Nr′
)

where r′ is r’s parent rule and for each rule r, Pr (resp. Nr) denotes the sum of true (resp. false) groundings of
r in the MAP-inferred states generated so far. The information gain function is normalized in [0,1] by taking 0 as
the minimum (as we are interested in positive gain only) and dividing a G-value by its maximum, Gmax(r,r′) = Pr′ ·
(−log Pr′

Pr′+Nr′
). When the range of G is [0,1], a Hoeffding test succeeds, allowing to select r1 as the best of a parent

rule r’s specializations, when G(r1,r)−G(r2,r) > ε =
√

log1/δ

2N , where r1,r2 are respectively r’s best and second-best
specializations, δ is a confidence parameter and N is the number of observations seen so far, we refer to [79] for further
details.

A successful Hoeffding test results in replacing the parent rule r with its best specialization r1 and moving one level
down in the subsumption lattice, via generating r1’s specializations and subsequently evaluating them on new data.

Figure 6 illustrates the process for an initiation CE pattern. The rules at each level of the lattice represent the special-
izations of a corresponding rule at the preceding level. The greyed-out part of the search space in Figure 6 represents
the portion that has already been searched, while the non greyed-out rule at the third level represents the best-so-far rule
that has resulted from a sequence of Hoeffding tests.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

30 of 134

initiatedAt(meet(X ,Y),T) ←

initiatedAt(meet(X ,Y),T) ←
happensAt(inactive(X),T)

initiatedAt(meet(X ,Y),T) ←
happensAt(active(X),T)

initiatedAt(meet(X ,Y),T) ←
happensAt(active(X),T),
orientation(X ,Y , 45),T)

initiatedAt(meet(X ,Y),T) ←
happensAt(active(X),T),
close(X ,Y , 25),T)

initiatedAt(meet(X ,Y),T) ←
happensAt(active(X),T),
close(X ,Y , 25),T),
orientation(X ,Y , 45),T)

initiatedAt(meet(X ,Y),T) ←
happensAt(active(X),T),
close(X ,Y , 25),T),
happensAt(inactive(X),T)

. . .

. . .

. . .

Bottom Rule

.

Figure 6: A subsumption lattice.

The specializations’ weights are learnt simultaneously to those of their parent rules as described in Section 3.4.2, by
comparing the specializations’ true groundings over time in the MAP-inferred states (generated from “top theories”,
consisting of parent rules only) and the true states respectively.

3.5 Learning New CE patterns

If necessary, the existing CE pattern set Ht is expanded with the addition of new CE patterns, generated in response to
erroneous predictions. New initiatedAt/2 (resp. terminatedAt/2) patterns, generated from false negative (FN) (resp. false
positive (FP)) mistakes, have the potential to prevent similar mistakes in the future. For instance, an FN mistake at time
t, i.e. a target CE instance predicted as false, while actually being true at t, could have been prevented via a pattern that
initiates the target CE at some time prior to t.

Generating new CE patterns from the entirety of mistakes may result in a very large number of rules, most of which are
redundant. To avoid that, WOLED uses the following strategy for new CE pattern generation, presened in Algorithm 5:
First, a set of bottom rules (BRs) is generated (line 4), using the constants in the erroneously predicted atoms to generate
ground initiatedAt/2 and terminatedAt/2 atoms, which are placed in the head of a set of initially empty-bodied rules. The
bodies of these rules are then populated with literals, grounded with constants that appear in the head, that are true in
the current data interpretation It . The signatures of allowed body literals are specified via mode declarations [43].

Next, constants in the BRs are replaced by variables and the BR set is “compressed” (line 6) to a bottom theory H⊥,

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

31 of 134

ALGORITHM 5: LearnNewCEPatterns(B,M,Ht, It, IMAP
t , Itruet)

1: Π := /0, Hnew := /0, H⊥ := /0, T(H⊥) := /0
2: Mistakes := Itruet \ IMAP

t .
3: for each m ∈Mistakes do
4: H⊥← generateBottomRule(m, It ,M)

5: end for
6: H⊥← compressBottomRules(H⊥)
7: for each bottom rule ri = αi← δ 1

i , . . .δ
n
i in H⊥ do

8: Add to T (H⊥) the following rules:
αi← use(i,0), try(i,1,v(δ 1

i)), . . . , try(i,n,v(δ n
i)).

try(i,1,v(δ 1
i))← use(i,1),δ 1

i .

try(i,1,v(δ 1
i))← not use(i,1).

. . .
try(i,n,v(δ n

i))← use(i,n),δ n
i .

try(i,n,v(δ n
i))← not use(i,n).

9: end for
10: Π← B∪ It ∪T (Ht)∪T (H⊥),

where T (Ht) is the MAP inference-related transformation
of Algorithm 4 applied to the current CE pattern set Ht .

11: Add to Π the following rules:
{use(I,J)}← ruleId(I), literalId(J).
: ~ use(I,J). [1, I,J]

12: Add to Π one weak constraint of the form : ~ not α. [1]
(resp. : ~ α. [1]) for each target CE instance α included
(resp. not included – closed world assumption) in Itruet .

13: Find an optimal answer set Aopt of Π.
14: Remove from H⊥ every body literal δ

j
i for which use(i, j) /∈Aopt and each rule ri for which use(i,0) /∈Aopt .

15: Hnew← H⊥.
16: return Hnew.

which consists of unique, w.r.t. θ -subsumption, variabilized BRs. The new CE patterns are chosen among those that
θ -subsume H⊥. To this end, the generalization technique of [124, 78], which allows to search into the space of theories
that θ -subsume H⊥, is combined with inference with the existing weighted CE pattern set Ht , yielding a concise set of
CE patterns Hnew, such that an optimal answer set of B∪Ht ∪Hnew∪ It best-approximates the true state associated with
It .

To this end, each BR ri ∈ H⊥ is “decomposed” in the way shown in line 8 of Algorithm 5, where the head of ri corre-
sponds to an atom use(i,0) and each of its body literals, δ

j
i , to a try/3 atom, which, via the try/3 definitions provided,

may be satisfied either by satisfying δ
j

i and an additional use(i, j) atom, or by “assuming” not use(i, j). Choosing be-
tween these two options is done via ASP optimization in line 11 of Algorithm 5, where the choice rule generates use/2
atoms that correspond to head atoms/body literals for H⊥, and the subsequent weak constraint minimizes the generated
instances to those necessary to approximate the true state, as encoded via the additional weak constraints in line 12.
New rules are “assembled” from the bottom rules in H⊥, by following the prescriptions encoded in the use/2 atoms of
an optimal answer set of the resulting program, as in line 14.

This is essentially the XHAIL algorithm [124] in an ASP context. The difference of our approach from usages of this
technique in previous works [124, 78], is that here the search into the space of H ′⊥s subsumers is combined with MAP

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

32 of 134

ALGORITHM 6: WOLED(B,M,I)

1: Ht := /0.
2: for each interpretation It ∈I do
3: IMAP

t := MAPInference(B,Ht, It).
4: Receive Itruet .
5: Mistakes := Itruet \ IMAP

t .
6: Ht ← SpecializeCEPatterns(Ht).
7: Hnew := LearnNewCEPatterns(B,M, It , IMAP

t , Itruet).
8: Hnew← UpdateWeights(Ht ∪Hnew,mistakes).
9: Ht ← Ht ∪Hnew.

10: end for

inference with the existing set of weighted CE patterns (line 10, Algorithm 5). Therefore, new patterns are generated
only insofar they indeed help to better approximate the true state. This technique allows to generalize from the data in
the current interpretation via avoiding to over-fit that data, which may be potentially corrupted by noise.

Once the new CE patterns are generated, their weights (initially set to a near-zero value) are updated based on their
groundings in It and the true state. Moreover, each new pattern r is associated with the bottom rules from H⊥, which
are θ -subsumed by ri. These bottom rules are used as a pool of literals for further specializing r over time, as described
in Section 3.4.3.

WOLED’s learning strategy, mentioned at the beginning of Section 3.4, is summarized in Algorithm 6.

3.6 Experimental Evaluation

We present an experimental evaluation of our approach on two CER data sets from the domains of activity recognition
and maritime monitoring.

3.6.1 Datasets Used

CAVIAR is a benchmark dataset for activity recognition, described in Section 3.3, consisting of 28 videos with 26,419
video frames in total. We experimented with learning CE patterns for two CEs from CAVIAR, related to two people
meeting each other and moving together, which we henceforth denote by meeting and moving respectively. There are
6,272 video frames In CAVIAR where moving occurs and 3,722 frames where meeting occurs. A fragment of a CE
definition for moving is presented in Table 5(d).

Our second dataset is a publicly available dataset from the field of maritime monitoring6. It consists of Automatic
Identification System (AIS) position signals collected from vessels sailing in the area of Brest, France, for a period
of six months, between October and March 2015. The data have been pre-processed using trajectory compression
techniques [115], whereby major changes along each vessels movement are tracked. This process allows to identify
critical points along each trajectory, such as a vessel stop, a turn, or a slow motion movement. Using the retained
movement features, i.e. the critical points, the trajectory of a vessel may be reconstructed with small deviations from

6https://zenodo.org/record/1167595#.WzOOGJ99LJ9

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

33 of 134

1.1K 2.2K 9K 15K

0

2

4

6

8

10

Avg. #atoms in ground program

G
ro
u
n
d
in
g
+

so
lv
in
g
(s
ec
)

WOLED-ASP
WOLED-MLN

(a) Meeting

1.3K 2.6K 10K 19.2K

0

2

4

6

8

10

12

Avg. #atoms in ground program

G
ro
u
n
d
in
g
+

so
lv
in
g
(s
ec
)

WOLED-ASP
WOLED-MLN

(b) Moving

2.6K 3.8K 18K 29K

0

5

10

15

20

Avg. #atoms in ground program

G
ro
u
n
d
in
g
+

so
lv
in
g
(s
ec
)

WOLED-ASP
WOLED-MLN

(c) Rendezvous

Figure 7: Scalability of MAP inference.

the original one. The maritime dataset has been additionally pre-processed, in order to extract spatial relations between
vessels (e.g. vessels being close to each other) and areas of interest, such as protected areas, areas near coast, open-sea
areas etc. There 16,152,631 critical points in the maritime dataset, involving 4,961 vessels and 6,894 areas, for a total
size of approximately 1,3GB.

The maritime dataset is not labeled in terms of occurring CE instances, we therefore used hand-crafted CE patterns to
perform CER on the critical points, thus generating the annotation, and the purpose of learning was to reconstruct the
hand-crafted CE patterns. We experimented with learning CE patterns for a CE related to vessels involved in potentially
suspicious rendezvous (henceforth denoted by rendezVous), which holds when two vessels are stopped, or move with
very low speed in proximity to each other in the open sea.

All experiments were carried-out on a 3.6GHz processor (4 cores, 8 threads) and 16GB of RAM. The code for all
algorithms used in these experiments in available online7.

3.6.2 Scalability of Inference

The purpose of our first experiment was to assess the scalability of the ASP-based MAP inference process, which
lies at WOLED’s core. In this respect, we compare the ASP-based version of WOLED, which we henceforth denote by
WOLED-ASP, with the version of [80], which relies on MLN libraries, and which we henceforth denote by WOLED-MLN.

Contrary to WOLED-ASP, which is based entirely on the Clingo8 answer set solver, WOLED-MLN is based on a number
of different software tools. It uses the LoMRF library for Markov Logic Networks [135], for grounding MLN theories
and performing circumscription via predicate completion [137], in order to convert them into a form that supports the
non-monotonic semantics of the Event Calculus for reasoning, something that WOLED-ASP has out of the box. MAP
inference in WOLED-MLN is performed via a state-of-the-art in MLNs, Integer Linear Programming-based approach,
which is introduced in [71] and is implemented using the lpsolve9 solver.

To compare the MAP inference scalability of the two implementations, we used the task of online weight learning with
hand-crafted CE patterns, where the learner is required to first perform MAP inference on the incoming interpretations

7https://github.com/nkatzz/ORL
8https://potassco.org/
9https://sourceforge.net/projects/lpsolve/

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

34 of 134

https://potassco.org/

Method Prequential
Loss

F1-score (test
set)

Theory size Inference Time
(sec)

Pred. Compl.
Time (sec)

Total Time (sec)

Moving WOLED-ASP 1.723 0.821 26 15 – 112
WOLED-MLN 2.817 0.801 47 187 28 478

OLED 3.755 0.730 24 13 – 74
HandCrafted 6.342 0.637 28 – – –

HandCrafted-WL 4.343 0.702 28 16 – 52

Meeting WOLED-ASP 1.212 0.887 34 12 – 82
WOLED-MLN 2.554 0.841 56 134 12 145

OLED 3.224 0.782 42 10 – 36
HandCrafted 5.734 0.735 23 – – –

HandCrafted-WL 4.024 0.753 23 13 – 31

Rendezvous WOLED-ASP 0.023 0.98 18 647 – 4,856
WOLED-MLN 0.088 0.98 18 2,923 434 6,218

OLED 0.092 0.98 18 623 – 4,688

Table 6: Online structure & weight learning results.

with a fixed-structure CE pattern set, and then update the CE patterns’ weights based on their contribution to erroneous
inferences in the MAP-inferred state. Given that the weight update cost is negligible and the CE pattern set is fixed,
the MAP inference cost is the dominant one in this task, and in turn, it depends on the cost of grounding the current
CE pattern set, plus the cost of solving the corresponding weighted MaxSat problem for each incoming interpretation.
Note that since the CE pattern sets for each CE are fixed in this experiment, predicate completion in WOLED-MLN is
performed only once at the beginning of a run, therefore its cost is negligible.

The data were consumed by the learners in mini-batches, where each mini-batch is an interpretation consisting of data
in a particular time interval. We performed weight learning with different mini-batch sizes of 50, 100, 500 & 1000 time
points. The size, in total number of literals in a CE pattern set, of the hand-crafted theories used in this experiment was
as follows: meeting 23 literals, moving 28 literals, rendezVous 18 literals.

We measured the average MAP inference time (grounding plus solving time) for WOLED-ASP and WOLED-MLN respec-
tively, throughout a single-pass over the data, for different mini-batch sizes. Note that as the mini-batch size grows, so
does the size of the corresponding ground program from which the MAP-inferred state is extracted.

Figure 7 presents the results, which indicate that the growth in the size of the ground program, as the mini-batch size
increases, entails an exponential growth to the MAP inference cost for WOLED-MLN. In contrast, thanks to Clingo’s highly
optimized grounding and solving abilities, MAP inference with WOLED-ASP takes near-constant time.

3.6.3 Online Structure & Weight Learning Performance

In our next experiment we assess WOLED-ASP’s predictive performance and efficiency in the task of online structure
& weight learning and we compare it to (i) WOLED-MLN; (ii) OLED [79], the crisp version of the algorithm that learns
unweighted CE patterns; (iii) HandCrafted, a set of predefined rules for each CE and (iv) HandCrafted-WL, the rules in
HandCrafted with weights learnt by WOLED-ASP.

To assess the predictive performance of the systems compared we used two methods: Prequential (predictive sequen-

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

35 of 134

tial) evaluation, or interleaved test-then-train [24], where each incoming data interpretation is first used to evaluate
the current CE pattern set and then to update its structure and weights, and standard cross-validation. In prequential
evaluation we typically measure the average prediction loss over time, which is an indication of a learner’s ability to
incorporate new knowledge that arrives over time into the current model. With cross-validation we assess a learner’s
generalization abilities, by evaluating the predictive performance of a learnt model on a test set.

The results are presented in Table 6, where the following statistics are reported for each one of the systems being
compared: (i) the average prequential loss, which, for the n-th mini-batch in the learning process is defined as S/n,
where S is the cumulative sum of false positive and false negative predictions up to that time. The value reported in 6
is the final value of S/n in a prequential run; (ii) F1-score on a test set. For CAVIAR we used tenfold cross-validation
and the reported F1-scores are micro-averages obtained from ten different test sets. For the maritime and the fleet
management datasets, whose size makes tenfold cross-validation impractical, we used half the dataset for training and
half for testing, so the reported F1-scores are obtained for the latter half; (iii) CE pattern set sizes (total number of
literals) at the end of a prequential run (i.e., after a single-pass over a dataset); (iv) Total inference time at the end of a
prequential run (MAP inference for WOLED-ASP, WOLED-MLN & HandCrafted-WL, crisp logical inference for OLED); (v)
For WOLED-MLN, total time spent on predicate completion at the end of a prequential run; (vi) Total training time at the
end of a prequential run, which includes time spent on CE pattern generation, computing θ -subsumption etc, i.e. the
dominant costs involved in learning CE patterns structure. Note that we report on (iv), (v), (vi) only for approaches that
require training (i.e., not for HandCrafted). Also, we did not experiment with hand-crafted CE patterns in the maritime
and the fleet management datasets, since in these datasets hand-crafted CE patterns were used to generate the ground
truth in the first place.

In addition to the different implementations of probabilistic inference, an important difference between WOLED-ASP and
WOLED-MLN from an algorithmic perspective, lies in the new CE pattern generation process of Section 3.5. Thanks to
its ASP-based implementation and the underlying optimization tools, WOLED-ASP is able to perform the search for new
CE patterns, while taking into account the contribution of the weights of existing ones in approximating the true state
of an interpretation It . As a result, it generates new patterns only when this does indeed result in a better approximation
of the true state, given the existing weighted patterns. In contrast, WOLED-MLN, lacks this ability. It generates a bottom
theory H⊥ from the erroneously predicted atoms, and then attempts to gradually learn a high-quality CE pattern from
the rules therein, regardless of their quality. In comparison, WOLED-ASP’s strategy may lead, in principle, to simpler
theories of more meaningful rules and lower online error (i.e. better prequential performance). The results in Table 6
seem to validate this claim. WOLED-ASP achieves the best prequential performance among all compared approaches. It
also achieves superior cross-validation performance, as compared to WOLED-MLN (test set F1-scores), which indicates
that its new CE pattern generation strategy affects its ability to generalize. Moreover, WOLED-ASP learns simpler CE
patterns sets, as shown by the theory size statistic. OLED lacks the ability for weight learning, while HandCrafted-WL
does not update the CE patterns’ structure, which explains their inferior prequential and cross-validation performance.
The trade-off is their lower training times.

Regarding efficiency, it may be seen by comparing inference times to total training times, that the dominant cost is
related to structure learning tasks (recall that total training times factor-in such costs). Yet, in comparison to WOLED-

MLN, WOLED-ASP achieves significantly lower costs for MAP inference, which approximate the cost of OLED’s crisp
logical inference. In addition to its more sophisticated CE pattern creation strategy, which tends to generate fewer CE
patterns of highly quality, this results in WOLED-ASP being significantly more efficient than WOLED-MLN. Note also,
that an additional, not negligible cost for WOLED-MLN stems from the necessity of predicate completion.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

36 of 134

4 Online Semi-supervised Learning of Event Rules

Symbolic complex event recognition (CER) systems [37] consume input sequences of simple events (SEs), match them
against a knowledge base of first-order rules [20, 11], and recognise complex events (CEs) of interest. CEs are usually
defined as multi-relational structures over actors and objects involved in an event, and thus, manual derivation of such
rules can be cumbersome and error-prone. In addition, event recognition applications typically operate in noisy data
streams of significant volume and velocity [62], which further renders the synthesis of such relational dependencies
unrealistic. To that end, methods for learning the structure of the CEs in a single pass over the data stream are essential
[138, 48, 57].

Several online relational learners have been proposed for the automated discovery of CE structures under uncertainty
[79, 81, 100], stemming from Inductive Logic Programming [122] and Statistical Relational Learning [60]. Nonetheless,
all of them presume that a fully labelled training sequence arrives for processing, which of course is an unrealistic
assumption.

SPLICE [103] is a recent method that aids semi-supervised learning of CE rules by completing the missing labels using a
graph label propagation technique [154]. Since the training instances are represented as sets of logical atoms, it employs
a structural distance, adapted from [111], to compute the distance of unlabelled data to their labelled counterparts.
The labelling is achieved online (single-pass), by storing previously seen labels for future usage. Although SPLICE

facilitates the learning of CE rules in the presence of missing labels, its distance measure may be compromised by
irrelevant features or imbalanced supervision. Moreover, its approach to online label propagation does not provide any
guarantee about the labelling inferred from the local graphs built as the data stream-in.

We propose an improved hybrid distance measure that combines the structural measure of SPLICE with a mass-based
dissimilarity [141], that employs mass estimation theory [140] to quantify the distance between examples. We further
enhance the structural distance by performing feature selection optimised for kNN classification. To that end, we adapt
LMNN [148], a state-of-the-art approach to metric learning. Finally, in order to provide guarantees about the online
labelling, we use a technique proposed by [146] that retains a synopsis of the graph. Similar to SPLICE, the completed
training data can be subsequently used by any supervised structure learner.

The proposed method (SPLICE+) is compared to its predecessor (SPLICE) on the task of maritime monitoring, where
the goal is to recognise vessel activities, by exploiting information such as vessel speed, location and communication
gaps. Our empirical analysis suggests that our improved method outperforms its predecessor in terms of inferring the
missing labels, at the price of a tolerable increase in processing time.

4.1 Background

We present existing methods that are employed in the rest of the manuscript. We begin by briefly presenting SPLICE,
an approach proposed for online semi-supervised learning for complex event recognition. Then, in Section 4.1.2 we
present a metric learning technique targeted to kNN classification and in Section 4.1.3 a data-driven dissimilarity based
on probability mass estimation. Finally, in Section 4.2 we discuss temporal label propagation, a method proposed for
semi-supervised learning via label propagation in data streams.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

37 of 134

4.1.1 Online Semi-Supervised Learning for Composite Event Recognition

SPLICE [103] is a recent approach that enables online structure learning for complex event recognition in the presence
of incomplete supervision. Towards that goal, it employs a graph-based technique proposed by [154], to derive labels
for the unlabelled data, based on their distance to their labelled counterparts. Composite events are usually defined
over multi-relational data [37], instead of simple numerical data points. Therefore, an appropriate distance function for
sets of logical atoms is employed, which basically represent the incoming training examples. The labelling process is
achieved in a single-pass over the data stream by storing previously seen labelled examples, and filtering out noisy ones
that may compromise accuracy.

Micro-Batch Dt

HappensAt(lowSpeed(ID1), 100)
HappensAt(changingSpeed(ID1), 100)
HappensAt(stopped(ID2, FarFromPorts), 100)
Proximity(ID1, ID2, 100)
HoldsAt(rendezvous(ID1, ID2), 100)
. . .
HappensAt(stopped(ID1, FarFromPorts), 150)
HappensAt(stopped(ID2, FarFromPorts), 150)
Proximity(ID1, ID2, 150)
? HoldsAt(rendezvous(ID1, ID2), 150)
. . .

Micro-Batch Dt+1

HappensAt(stopped(ID1, FarFromPorts), 200)
HappensAt(changingSpeed(ID1), 200)
HappensAt(lowSpeed(ID2), 200)
¬Proximity(ID1, ID2, 200)
¬HoldsAt(rendezvous(ID1, ID2), 200)
. . .
HappensAt(lowSpeed(ID1), 220)
HappensAt(lowSpeed(ID2), 220)
¬Proximity(ID1, ID2, 220)
HappensAt(withinArea(ID2, NearCoast), 220)
? HoldsAt(rendezvous(ID1, ID2), 220)
. . .

. . .

. . .
Data Stream/Training Examples

Data
Partitioning

Label Caching

and Filtering

Graph
Construction

Supervision
Completion

Structure
Learning

Figure 8: The Semi-Supervised Online Structure Learning (SPLICE) procedure.

SPLICE procedure, as depicted in Fig. 8, is fivefold. It assumes that the training sequence arrives for processing in
micro-batches. Each incoming micro-batch contains a sequence of ground evidence atoms, i.e., a set of first-order logic
ground atoms. For instance, micro-batch Dt describes two vessels far from ports, one sailing at low speed and another
one stopped, while being close to each other. The micro-batches can be fully labelled, partially labelled or contain no
labels at all. For instance, at time 100, a labelled query atom arrives stating that the two vessel are performing some
illegal activity. On the other hand, query atom at time 150 is unlabelled. Unlabelled query atoms are prefixed by the
symbol ‘?’.

Each micro-batch is first passed onto the data partitioning component which groups the ground atoms into examples,
as depicted in Fig. 9. Grouped examples contain exactly one ground query atom and a proper subset of the evidence
atoms in the micro-batch. These evidence atoms are linked to the query through their shared constants, i.e., they are
relevant to the complex event of interest. Each example is essentially a bottom rule, that is, the most specific rule that
explains a single ground query atom. Therefore, every example can also be seen as a clause by replacing it’s constants
with variables. For instance, the top example of Fig. 9 can be transformed into the following clause:

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

38 of 134

Micro-Batch Dt

HappensAt(lowSpeed(ID1), 5)
HappensAt(stopped(ID2, FarFromPorts), 5)
Proximity(ID1, ID2, 5)
HoldsAt(rendezvous(ID1, ID2), 5)
. . .
HappensAt(stopped(ID1, NearPorts), 20)
HappensAt(lowSpeed(ID2), 20)
¬Proximity(ID1, ID2, 5)
HappensAt(withinArea(ID1, Anchorage), 20)
HappensAt(withinArea(ID2, NearCoast), 20)
¬HoldsAt(rendezvous(ID1, ID2), 20)
. . .
HappensAt(stopped(ID1, FarFromPorts), 50)
HappensAt(stopped(ID2, FarFromPorts), 50)
Proximity(ID1, ID2, 50)
? HoldsAt(rendezvous(ID1, ID2), 50)
. . .

Training Sequence
HappensAt(lowSpeed(ID1), 5)
HappensAt(stopped(ID2, FarFromPorts), 5)
Proximity(ID1, ID2, 5)

Example: HoldsAt(rendezvous(ID1, ID2), 5)

HappensAt(stopped(ID1, NearPorts), 20)
HappensAt(lowSpeed(ID2), 20)
¬Proximity(ID1, ID2, 5)
HappensAt(withinArea(ID1, Anchorage), 20)
HappensAt(withinArea(ID2, NearCoast), 20)

Example: ¬HoldsAt(rendezvous(ID1, ID2), 20)

HappensAt(stopped(ID1, FarFromPorts), 50)
HappensAt(stopped(ID2, FarFromPorts), 50)
Proximity(ID1, ID2, 50)

Example: ? HoldsAt(rendezvous(ID1, ID2), 50)

Figure 9: Data partitioning into examples. Each example contains a ground query atom, either labelled or unlabelled, as
well as a set of true ground evidence atoms that are linked to the query atom through their constants.

HoldsAt(rendezvous(x,y), t)⇐
HappensAt(lowSpeed(x), t)∧HappensAt(stopped(y,FarFromPorts), t)∧Proximity(x, y, t)

In order to address the online processing requirement and the fact that labels are infrequent, SPLICE caches previously
seen labelled examples for future usage. The caching mechanism only stores unique examples, along their frequency
(the number of times they have appeared in the stream) in order to favour compression. To that end, SPLICE also stores
the clausal form of each example and employs logical unification in order to check for uniqueness. The stored labelled
examples along the unlabelled examples of the current micro-batch compose the example vertices of the graph used in
the subsequent steps.

Once the example vertices have been collected, they are connected by edges representing the structural similarity of
their underlying evidence atoms. The structural similarity is adapted from [111] by replacing the Haussdorf metric
by the Kuhn–Munkres algorithm [87]. More formally, let a pair of vertices vi = {ei1 . . . ,eiM} and v j = {e j1, . . . ,e jK}
consisting of M and K evidence atoms respectively. SPLICE first computes the structural distance between each pair
of evidence atom d(eim, e jk) where m ∈ {1, . . . ,M} and k ∈ {1, . . . ,K} resulting in a M×K distance matrix D, where
M > K.

The matrix D is then given as an input cost matrix to the Kuhn-Munkres algorithm, in order to find the optimal mapping
of evidence atoms. The optimal mapping is denoted here by the function g : V ×V 7→ {(m, k) : m, k ∈ {1, . . . , K}} and
is the one that minimises the total cost, i.e., the sum of the distances of the mappings. Finally, SPLICE computes the
total distance between the vertices vi,v j as the sum of the distances yielded by the optimal mapping normalised by the
greater dimension, that is M, of the matrix:

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

39 of 134

d(vi,v j) =
1
M

[
(M−K)+ ∑

(m,k)∈g(vi,v j)

Dmk

]
(12)

where M−K penalises all unmatched evidence atoms by the greatest possible distance, that is 1. Thus, M−K can be
seen as a regularisation term. The distance is turned into a similarity as s(vi,v j) = 1−d(vi,v j) and yields a similarity
matrix W. Subsequently, a sparsification method is used on the fully connected graph in order to retain only edges
between very similar vertices. To do so, SPLICE employs a classic k-nearest neighbour approach. In order to avoid
tie-breaking, kNN selects the top k distinct weights in a vertex neighbourhood, and then connect all neighbours having
such a weight. The resulting graph is used to derive labels for all unlabelled examples in the micro-batch by obtaining
the harmonic solution and apply thresholding at zero to produce binary labels.

As a final step, the labelled micro-batch is passed down to a structure learner, such as [79, 100, 81], in order to induce
CE rules or enhance existing ones that capture the complex events of interest. The process is repeated as long as
micro-batches continue to stream-in.

Although SPLICE aids the automated discovery of CE rules in the presence of incomplete supervision, its online pro-
cedure and distance function are far from perfect. Specifically, its performance is compromised in the presence of
irrelevant features because the distance function is agnostic about the feature information. Moreover, it does not pro-
vide any guarantee about the harmonic solution computed per micro-batch with respect to the solution on the entire
graph. In fact, as the micro-batch size gets smaller the harmonic solution tends to be more independent from the unla-
belled examples. It is interesting to note that, in the case of true streaming (one example per micro-batch), the graph is
actually the k-nearest neighbour function and thus the optimisation reduces to k-nearest neighbour classification ([28],
Section 11.6).

4.1.2 Large-Margin Nearest Neighbour

Graph-based methods to semi-supervised learning rely on the idea of the cluster assumption, that is, similar examples
should yield the same labelling. Thus, the distance function constitutes an essential component of these methods and in
fact controls the quality of the solution. A common issue of distance measures is that they are agnostic about the input
feature information. As a consequence, their measurements may suffer in the presence of irrelevant or noisy features.

Large margin nearest neighbour (LMNN) [148] is a state-of-the-art metric learning technique that learns a distance
pseudo-metric targeted to kNN classification. Intuitively, LMNN attempts to increase the number of training examples
whom k-nearest neighbours share the same label. To that end, it learns a linear transformation of the input feature space
using the Euclidean distance. Euclidean distances can be parametrised by a matrix L that applies a linear transformation
to each data vector x as follows:

dL(xi,x j) = ||L(xi−x j)||22 (13)

Euclidean distances in the transformed space can equivalently be viewed as Mahalanobis distances in the original space
in terms of a square matrix M = L>L as follows:

dM(xi,x j) = (xi−x j)
>M(xi−x j) (14)

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

40 of 134

where the Euclidean distance can be recovered by setting M equal to the identity matrix I.

In order to optimise kNN classification, one seeks a linear transformation such that nearest neighbours computed from
the distance in eq. (13) share the same labels. Towards that goal, LMNN minimises a loss function consisting of two
terms, one which pulls target neighbours closer together, and another which pushes differently labelled examples apart.

The first term penalises large distances between nearby instances, e.g., nearest neighbours, sharing the same label. In
terms of the linear transformation L of the input space, the sum of these squared distances is given by:

εpull(L) = ∑
j∈N k

i

||L(xi−x j)||2 (15)

where N k
i denotes the set of target k-nearest neighbours of the instance xi. The target neighbours of xi are those

instances that we desire to be the closest to xi.

The second term penalises small distances between differently labelled examples, called impostors. More formally, for
an example xi with label yi and target neighbour x j, an impostor is any example xl with label yl 6= yi such that:

||L(xi−xl)||2 ≤ ||L(xi−x j)||2 +1 (16)

In other words, an impostor xl is any differently labelled example that invades the perimeter plus unit margin defined
by any target neighbour x j of the example xi. Therefore, the second term penalizes violations of the above inequality as
follows:

εpush(L) = ∑
i, j∈N k

i

∑
l
(1− yil)

[
1+ ||L(xi−x j)||2−||L(xi−xl)||2

]
+

(17)

where the indicator variable yil = 1 if and only if yi = yl , and yil = 0 otherwise. Moreover, [z]+ = max(z,0) denotes the
standard hinge loss which monitors the inequality of eq. (16). If the inequality does not hold (i.e., the input xl lies a safe
distance away from xi), then its hinge loss has a negative argument and makes no contribution to the overall loss. The
combined loss derived from eq. (15) and eq. (17) is as follows:

ε(L) = (1−µ)εpull(L)+µ εpush(L) (18)

were the weighting parameter µ ∈ [0,1] balances the two goals.

Since the loss function is not convex, LMNN reformulates the optimisation problem as an instance of semidefinite
programming (SDP) by substituting eq. (14) into eq. (18) to obtain:

ε(M) = (1−µ) ∑
j∈N k

i

dM(xi,x j)+µ ∑
i, j∈N k

i

∑
l
(1− yil)

[
1+dM(xi,x j)−dM(xi,xl)

]
+

(19)

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

41 of 134

The resulting loss function is expressed over positive semidefinite matrices M � 0, as opposed to real-valued matrices
L. Therefore, an SDP is obtained by introducing non-negative slack variables ξi jl to mimic the effect of the hinge loss.
In particular, each slack variable ξi jl ≥ 0 is used to measure the amount by which the large margin inequality in eq. (16)
is violated. The final SDP is formulated as follows:

minimise (1−µ) ∑
j∈N k

i

(xi−x j)
>M(xi−x j)+µ ∑

i,l, j∈N k
i

(1− yil)ξi jl

subject to (1) (xi−xl)
>M(xi−xl)− (xi−x j)

>M(xi−x j)≥ 1−ξi jl

(2) ξi jl ≥ 0

(3) M� 0

Large margin feature weighting (LMFW) [29] is a derivation of the LMNN technique that aims to learn a weighting
feature vector m, instead of a distance, by assuming that M is a diagonal matrix with Mpp = mp ≥ 0, and mp is the
weighting factor of the pth feature. Thus, the loss function depicted in eq. (19) becomes:

ε(m) = (1−µ) ∑
j∈nk

i

dm(xi,x j)+µ ∑
i, j∈nk

i

∑
l
(1− yil)

[
1+dm(xi,x j)−dm(xi,xl)

]
+

(20)

The minimisation of the simplified objective function presented above can be represented as a linear optimisation
problem with linear constraints:

minimise (1−µ) ∑
j∈N k

i

||m(xi−x j)||2 +µ ∑
i,l, j∈N k

i

(1− yil)ξi jl

subject to (1) ||m(xi−xl)||2−||m(xi−x j)||2 ≥ 1−ξi jl

(2) ξi jl ≥ 0

(3) m≥ 0

(21)

4.1.3 Mass-based Dissimilarity

Supervised learning approaches to feature selection require explicit or implicit computation of the information/impor-
tance per feature using the labels available in the training examples. However, in a semi-supervised learning task,
that information may be inaccurate due the limited labels. Therefore, such criteria are not always reliable and their
optimality guarantees suffer from the fact that only very few training examples are used during the optimisation.

[141] recently proposed a mass-based dissimilarity, that employs estimates of the probability mass to quantify the
dissimilarity of two points rather than the classic geometric model. Geometric approaches, such as the Euclidean
distance, depend on the geometric positions of data points alone to derive a measurement. Instead mass dissimilarity
measures mainly depend on the distribution of the data. The intuition is that the dissimilarity of two points primarily
depends on the amount of probability mass in the region of space covering the two points. Thus, two points in a dense
region are less similar to each other than two points of the same interpoint distance in a sparse region.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

42 of 134

More formally, let H denote a hierarchical partitioning of a space Rq into a set of non-overlapping regions that col-
lectively span Rq. Moreover, each region in the hierarchy corresponds to the union of its child regions. Let H (D)

denote the set of all such hierarchical partitions H that are admissible under a data set D such that each non-overlapping
region contains at least one point from D. Then the smallest region covering a pair of points x,y ∈ Rq with respect to a
hierarchical partitioning model H of Rq is defined as:

R(x,y|H) = argmax
r∈H s.t.{x,y}∈r

depth(r;H)

where depth(r;H) is the depth of region r in the hierarchical model H.

Suppose that a dataset D is sampled from an unknown probability density function F . Then, the mass-based dissimilarity
of x and y w.r.t. D is defined as the expectation of the probability that a randomly chosen point would lie in the region
R(x,y|H):

m(x,y|D) = EH (D)

[
PF(R(x,y|Hi;D))

]
where the expectation is computed over all possible partitioning H (D) of the data. In practice, however, mass-based
dissimilarity can be estimated from a finite number of partitioning models Hi ∈H (D), i = 1, . . . ,T as follows:

m̃(x,y|D) =
1
T

T

∑
i=1

P̃(R(x,y|Hi;D)) (22)

where P̃(R) = 1
|D| ∑z∈D1(z ∈ R) estimates the probability of the region R by counting the data points in that region; and

1(·) denotes an indicator function. Thus, the probability of the data falling into the smallest region containing both x
and y, is analogous to the shortest distance between them measured in the geometric model.

In order to generate partitioning models H, a recursive partitioning scheme is employed based on Isolation Forest
[96]. Isolation Forest is essentially an ensemble of random trees, called Isolation Trees. Each Isolation Tree is built
independently using a subset of the data. At each internal node of the tree a random split is made to partition the data
at that node into two non-empty subsets. The process is repeated recursively until either every data point is isolated or
a given maximum tree height is reached.

Subsequently the resulting Isolation Forest can be used to compute the mass-based dissimilarity of eq.(22). Since each
Isolation Tree essentially represents a partitioning Hi, the mass-based dissimilarity can be defined as:

m̃(x,y) =
1
T

T

∑
i=1

|R(x,y|Hi)|
|D| (23)

where |R(x,y|Hi)|
|D| estimates the probability of region R, as denoted by P̃(R) in eq. (22). To compute eq. (23), x and y

are passed through each Isolation Tree to find the mass of the deepest node containing both x and y i.e., ∑i |R(x,y|Hi)|.
Finally, m̃ is the mean of these masses over the T trees.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

43 of 134

4.2 Temporal Label Propagation

Traditionally, graph-based methods to semi-supervised learning [155] assume that all labelled and unlabelled data are
stored in memory and thus are available during the optimisation (label propagation) that yields the harmonic solution.
However, that is an unrealistic assumption in online processing of data streams. SPLICE, as presented in Section 4.1.1,
relaxes that assumption by storing previously seen labelled examples and reusing them in subsequent micro-bathes.
Nevertheless, it still ignores previously seen unlabelled examples and by extension their respective distances to the rest
of the graph. Therefore, SPLICE cannot guarantee that the global harmonic solution obtained by label propagation on
the entire graph is preserved on the local graph of the micro-batch.

TLP [146] is a recently proposed approach to label propagation for fast-moving data streams. TLP stores a synopsis
of the full history of the stream in order to retain the previous knowledge for both labelled and unlabelled examples
and incorporate it into the subsequent optimisations. To that end, TLP draws inspiration from the connection of label
propagation to the theory of electric networks [154] and, in particular, the idea of the short-circuit operator. The latter
allows for a graph G to be encoded into a smaller (re-weighted) graph using only a subset Vτ of the actual vertices V ,
called terminals. The reduced graph G 〈Vτ〉 is called short-circuit graph and it is known to retain the global properties
of G ; most importantly, it preserves the effective weights between every pair of terminal vertices. [146] proved that the
aforementioned property allows for the harmonic solution to be preserved in the synopsis graph.

The Laplacian matrix of G 〈Vτ〉, required to obtain the harmonic solution, is given by the Schur Complement [46].
Since computing the Shur Complement is as expensive as computing the harmonic solution on the entire graph G ,
it provides no substantial speed-up for the offline label propagation. However, TLP operates in a online fashion and
computes G 〈Vτ〉 as a sequence of local operations, called star-mesh transforms. The latter is a direct consequence of
the sequential property of Schur complement ([150], Theorem 4.10; [46], Lemma III.1).

Definition 3. Star-mesh transform on a vertex vo in a graph G = (V,E,W) is as follows:

1. Star: Remove vo from G along its incident edges.

2. Mesh: For every pair of vertices v,v′ ∈ V such that (v,vo) ∈ E and (v′,vo) ∈ E, add the edge (v,v′) to E with
weight wvo,vwvo,v′/degree(vo). If (v,v′) is already in E, then add the new weight to its current weight.

The intuition is to apply star-mesh transforms as the data arrive for processing in order to continuously update the in-
memory graph synopsis and deliver labels for the incoming unlabelled examples by computing the harmonic solution
on the compressed graph. The star-mesh transforms remove edges by meshing their weights with the remaining graph,
so that the information provided by the removed vertex vo remains encoded. Thus the synopsis retains the ability to
compute the harmonic solution for the rest of the vertices as if vo was still in the graph ([146], Theorem 4.1).

More formally, consider a (possibly infinite) data stream {vt}∞
t=1 of incoming example vertices that can be either labelled

or unlabelled. TLP maintains a graph G 〈Vτ〉 that stores the τ more recent unlabelled examples, in addition to a pair of
labelled node clusters containing all the labelled examples seen so far. When a new unlabelled example arrives, TLP
appends it to G 〈Vτ〉 and evicts the oldest unlabelled example by applying the star-mesh transform of Definition 3. In the
simplest case where a labelled example arrives it just appends it to the appropriate cluster node, thus always maintaining
τ + 2 nodes. The harmonic solution for each new unlabelled example is then computed on G 〈Vτ〉 and it is provably
equal to the one computed on the entire stream seen so far.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

44 of 134

4.3 Robust Supervision Completion

SPLICE, as presented in Section 4.1.1, aims to effectively learn the structure of composite event rules in the presence
of incomplete supervision. However, there are a couple of downsides, related to graph construction (see Fig. 8), that
may compromise the online labelling of the unlabelled data. First, the underlying structural distance may be deluded
in the presence of irrelevant or noisy features. Second, the distance measurements between labelled and unlabelled
data, inevitably, are as informative as the provided labels. If the given labels are not representative of the underlying
class distribution, so are the measurements. Third, the online labelling inferred from the local graphs per micro-batch,
provides no guarantee with respect to the global solution obtained if all data where to be accessed at once.

Our goal is to improve the quality of the graph construction component leading to a more robust and accurate labelling
of the incoming unlabelled data. Towards that goal, we propose a hybrid distance measure composed of two elementary
distances, that combined aim to eliminate the drawbacks of the structural distance alone. The former distance is an
enhanced version of eq. (12) that accounts for irrelevant or noisy features by selecting only a subset of them, that
is, the ones optimising kNN classification in labelled data. Since such a feature selection is achieved using only the
labelled data, the selected features may not always be representative of the underlying classes. Therefore, we combine
the optimised structural distance with a data-driven mass-based dissimilarity, adapted for logical structures. The latter
samples the space of logical structures, and employs mass estimation theory to compute the relative distance between
examples, which is measured as the probability density of their least general generalisation [120].

In order to render SPLICE aware of the temporal aspect of the data, that is native to online processing and CER, we
further alter its strategy for interconnecting graph vertices. We connect each unlabelled vertex to its k-nearest labelled
neighbours, as well as, the temporally previous unlabelled vertex. This way we promote temporal interactions between
temporally adjacent unlabelled vertices during label propagation. Finally, we store a synopsis of the full history of the
stream, by means of a short-circuit operator, that preserves the effective distances of labelled and unlabelled example
vertices to subsequent optimisations.

Henceforth, we refer to our enhanced approach as SPLICE+. The proposed improvements introduced by our method
are detailed in the following subsections. To aid the presentation, we employ examples from maritime monitoring.

4.3.1 Large Margin Feature Selection for Logical Structures

In order to render the structural distance of eq. (12) aware of irrelevant or noisy features, we introduce a mechanism
for feature selection based on the ideas of LMNN metric learning. We adapt the idea of feature weighting, as presented
in Section 4.1.2, by learning a binary vector, instead of real-value one, that represents the set of selected logical atoms
that should be used for computing distances. More formally, let A be a set of first-order atoms that can be constructed
from a Hebrand base B and a set of mode declarations M , by replacing constants with variables. Assuming a strict
ordering of atoms in A , let b be a vector of binary variables, one of each first-order atom ai ∈A . Thus, each indicator
variable bi = 1 if the ith atom is selected, and bi = 0 otherwise. Since each labelled training example is essentially a
clause c, it can also be seen as a binary vector xc = [x1, . . . ,x|A |]>, where each variable xi refers to the presence of the
corresponding atom ai from A in the clause represented by xc. For instance, assuming that B contains the ground
atoms appearing in Fig. 9, we can create an ordered set of atoms as follows:

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

45 of 134

A =
{
HappensAt(lowSpeed(x), t), HappensAt(lowSpeed(y), t), Proximity(x, y, t),

HappensAt(stopped(x,FarFromPorts), t), HappensAt(stopped(y,FarFromPorts), t),

HappensAt(withinArea(x,NearCoast), t), HappensAt(withinArea(y,NearCoast), t)
}

Then, the top example from Fig. 9 is represented as xtop = [1,0,1,0,1,0,0], then middle as xmid = [0,1,0,1,0,1,1] and
the bottom as xbot = [0,0,1,1,1,0,0]. Thus, the distance between two such examples is essentially a Hamming distance,
which is equivalent to the general Minkowski distance for p = 1. Since the Minkowski distance is a generalisation of
the Euclidean distance, we reformulate the loss function of eq. (20) as follows:

ε(b) = (1−µ) ∑
j∈N k

i

b|xi−x j|+µ ∑
i, j∈N k

i

∑
l
(1− yil)

[
1+b|xi−x j|−b|xi−xl |

]
+

where x is the clausal form of an example represented as a binary vector according to a predetermined strict ordering
over A . The resulting minimisation problem of the above loss function is an integer programming problem and can be
solved by any linear programming solver, however less efficiently than the real value one.

minimize (1−µ) ∑
j∈N k

i

b|xi−x j|+µ ∑
i,l, j∈N k

i

(1− yil)ξi jl

subject to (1) b|xi−xl |−b|xi−x j| ≥ 1−ξi jl

(2) bxi ≥ 1

(3) ξi jl ∈ N≥

(4) b ∈ {0,1}|A |

(24)

Similarly to LMFW (see Section 4.1.2), the intuition of our proposed feature selection (LMFS) is to keep the minimal
set of features that are necessary to have optimal distances according to the given set of labelled examples. Note that
the slack variables that monitor the hinge loss are integers instead of real values since a hamming distance yields only
integer differences. Moreover, we have added an extra constraint that forces all labelled examples to have at least one
positive atom that is selected. This constraint is necessary to avoid extremely sparse solutions that remove many atoms
yielding empty examples. As soon as the optimal vector b has been found, we can generalise all example vertices by
removing irrelevant features, that is, features for which bi = 0. Then, the structural distance can be computed as usual
using eq. (12) over the generalised vertices:

db
s (vi,v j) = ds(vb

i ,v
b
j) (25)

where vi,v j are vertices and vb
i ,v

b
j have been generalised by removing the corresponding first-order atoms. In case an

atom does not appear in the labelled examples we assume it is selected (b = 1) and use it for measuring distances.

LMNN requires that training examples are accompanied by some form of labelling. Then the optimisation above would
retain the features that are necessary to discriminate between these labels. However, in a Hamming space distances
change quite abruptly because a single mismatch between two binary vectors always yields a penalty of 1 between

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

46 of 134

the vectors. Therefore, while in an Euclidean space two points can be close or far in a specific dimension, according
to their real-value difference, in a Hamming space either they are close or they are far. Moreover, clauses formed
from training examples can be very different inside the boundaries of a specific class, leading to very sparse solutions
since the optimisation would try to make them similar by removing atoms that mismatch between them. To avoid such
situations, we perform clustering into the examples of each class and use the clusters as distinct classes to solve the
optimisation problem.

Since we are interested in grouping together the examples of each class in such a way that clusters contain patterns of
similar structure, we employ a hierarchical clustering approach based on θ -subsumption. Specifically for each set of
labelled examples, we select the one having the maximum number of atoms and create a unit cluster. Then for each
remaining example we add it in an existing cluster, if it θ -subsumes at least one example from it, or create a new unit
cluster otherwise.

ALGORITHM 7: LMFS(VL, M)
Input: VL: a set of labelled example vertices, M : a set of mode declarations
Output: b: a vector of binary values corresponding to selected features

1 Partition VL into positive VP and negative VN vertices;
2 Find vmaxi = argmaxvi∈VP

|vi| and vmaxj = argmaxv j∈VN
|v j|;

3 Form unit clusters C = {{vmaxi },{vmaxj }};
4 foreach vi ∈ VL/vmaxi ,vmaxj

do
5 foreach c ∈C do
6 if ∃ v′ ∈ c : clause(vi)θ ⊆ clause(v′) then
7 c = c

⋃
vi

8 Solve optimisation of eq. (24) using C as a set of examples;
9 return b;

Algorithm 7 presents the pseudo-code for selecting the first-order atoms that best discriminate the known labelled
vertices. The algorithm requires as an input a set of labelled example vertices, a set of mode declarations, and produces
a vector of selected features. At line 1 we partition the given example vertices into positive and negative examples. Then
for each of these groups we find the vertex having the maximum number of evidence atoms (we break ties randomly)
and create unit clusters (lines 2–3). For each of the remaining vertices we either append it to an existing cluster, if
another vertex exists that is θ -subsumed by the candidate, or create a new unit cluster (lines 4–7). Finally, we solve the
optimisation of eq. (24) using the clusters as distinct classes and return a the vector of selected features (lines 8–9).

4.3.2 Mass Dissimilarity for Logical Structures

Supervised learning approaches to feature selection require explicit or implicit computation of the information/impor-
tance per feature using the labels available in the training examples. However, in a semi-supervised learning task,
that information may be inaccurate due the limited labels. Therefore, such criteria are not always reliable and their
optimality guarantees suffer from the fact that only very few training examples are used during the optimisation.

In order to address these issues, we combine the optimised distance, as presented in Section 4.3.1, to a data-driven
dissimilarity that uses mass estimation theory to measure the distance between data points. The intuition of the measure
is that two points are considered to be more similar if they coexist in a sparse space rather than a dense one. Moreover,
since it is data-driven it exploits both labelled and unlabelled data to quantify the distances between examples of interest.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

47 of 134

To that end, we adapt the approach presented in Section 4.1.3 to logical structures by means of the Herbrand base B

and a set of mode declarations M that combined span a set of logical atoms A . Since the space of logical atoms is a
hypercube {0,1}|A |, we can define a hierarchical partitioning H of the hypercube by randomly constructing Isolation
Tree. In contrast to the approach presented by [141], which assumes real value features, we can construct the trees
beforehand since each internal node of the tree can only have one possible split.

ALGORITHM 8: CREATEFOREST(A , T , h)
Input: A : a set of first-order atoms, T : number of trees, h: maximum tree height
Output: F : an isolation forest (set of isolation trees)

1 F = /0;
2 foreach i = 1 to T do
3 F = F

⋃
CreateTree(A ,0,h)

4 return F ;
5 CreateTree(A , d, h)
6 if d > h∨|A |< 1 then
7 return Node(size← 0, split← /0, left← /0, right← /0);
8 else
9 Randomly select an atom a ∈A ;

10 return Node(size← 0, split← a, left← CreateTree(A /a,d+1,h−1),
11 right← CreateTree(A /a,d+1,h−1));

Algorithm 8 presents the pseudo-code for creating a forest of binary isolation trees. The algorithm requires as an input
a set of first-order atoms, a number of trees, and a maximum height for each tree. We start from an empty set and
iteratively we generate random trees (see lines 1–4). Each tree is built recursively by picking a random atom from
the given set of available atoms and creating two random subtrees on the remaining atoms (lines 9–11). The process
terminates if no more atoms are left in the set A or the maximum height is achieved.

Note that during tree creation, each internal node has zero size. The internal node’s size of each tree updates its counts
as more data stream-in. More specifically, for each incoming example we pass its clausal representation through each
constructed Isolation Tree and match the internal nodes. The path from the root the the leaf that contains that matches
the atoms of the given example increment their counts.

ALGORITHM 9: UPDATEFOREST(F , V)
Input: F : a set of isolation trees, V : a set of example vertices

1 foreach tree ∈F ∧ v ∈V do
2 UpdateSize(tree,v);

3 UpdateSize(tree, v)
4 tree.size← tree.size+1;
5 if tree.left 6= /0∧ tree.split /∈ v then
6 UPDATESIZE(tree.left, v);
7 else
8 tree.right 6= /0∧ tree.split ∈ v
9 UPDATESIZE(tree.right, v/split);

Algorithm 9 presents the pseudo-code for updating the mass of a forest. The algorithm requires as an input a binary
isolation forest and a set of example vertices. For each vertex it updates the counts of the internal nodes of each tree

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

48 of 134

(lines 1–2). The update procedure is a recursive process that increments the size of the current node and then proceeds
to the update of the child node that matches the split criterion of the current node (lines 5–7).

>

HappensAt(changeSpeed(x), t)
[5]

HappensAt(lowSpeed(x), t)

HappensAt(lowSpeed(x), t),
HappensAt(lowSpeed(x), t)

[2]
HappensAt(lowSpeed(x), t),

Proximity(x, y, t)

[1]
HappensAt(lowSpeed(x), t),

Proximity(x, y, t)
HappensAt(stopped(x), t),

[1]
HappensAt(lowSpeed(x), t),

Proximity(x, y, t)
¬HappensAt(stopped(y), t)

. . .

[3]
HappensAt(lowSpeed(x), t),

¬Proximity(x, y, t)

[2]
¬HappensAt(lowSpeed(x), t)

. . .

. . .

⊥

Figure 10: Path selected by a random tree from the subsumption lattice.

The intuition behind these relational version of Isolation Trees is that we estimate the mass of specific areas of the
subsumption lattice generated from a given Herbrand base B and constrained by the mode declarations M . Fig. 10
depicts a part of the subsumption lattice constructed from the atoms appearing in the training sequence of Fig. 8. The
highlighted part of the lattice presents a possible Isolation Tree constructed by selecting one split atom per level, while
the numbers represents the counts of each node. Therefore, each tree essentially represents only a part of the lattice and
their mean represent the probability of the overlap of two rules to be located in a sparse part of the space. The overlap
of two rules on a subsumption lattice is their least general generalisation.

The resulting Isolation Forest can be used to compute the mass-based dissimilarity of eq. (23) for example vertices as
follows:

m̃(vi,v j) =
1
T

T

∑
i=1

|R(vi,v j|Hi)|
|D|

4.4 Robust Graph Construction and Labelling

In order to construct the similarity graph for performing label propagation we combine the mass-based dissimilarity as
presented in Section 4.3.2 to the optimised structural distance of eq. (25) as follows:

db
h (vi,v j) = α db

s (vi,v j)+(1−α) m̃(vi,v j)

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

49 of 134

where α controls the balance between the two distances. Fully connecting the vertices generates a N×N symmetrical
adjacency matrix W comprising the weights of all graph edges. In order to turn the similarity matrix W into a graph, we
use a connection heuristic, which retain edges only between vertices that are very similar, i.e., they have a high weight.
SPLICE+ uses a temporal variation of kNN that connects each unlabelled vertex to its temporally adjacent vertices and
its k-nearest labelled neighbours. Intuitively, that heuristic captures the notion that far away vertices should not directly
affect the labelling of each other, but only through their temporal neighbours.

Moreover, in order to provide guarantees for the online labelling found by label propagation on the local graphs built as
the micro-batches stream-in, we store a synopsis of the graph, as presented in Section 4.2. The synopsis removes older
vertices from the graph in order to make room for newer ones by meshing their edges to the rest of the graph using
star-mesh transforms. The harmonic solution computed on the compressed graph is guaranteed to be equal to the one
computed on the entire stream seen so far. Therefore the synopsis renders the labelling invariant to different batch sizes.

ALGORITHM 10: GRAPHCONSTRUCTION(F , V)
Input: F : a set of isolation trees, V : a set of example vertices

1 Partition example vertices into labelled and unlabelled V = (VL,VU);
2 UPDATEFOREST(F ,V t

L ∪V t
U);

3 if V t
L 6= /0 then

4 Z = LMFS(VL,M);
5 Vτ ← VL∪VU/V t

U ;
6 foreach vi ∈ V do
7 foreach v j ∈ V t

U do
8 wvi,v j ← 1−dh(vi,v j);

9 Vτ ←Vτ ∪V t
U ;

10 Apply the connection heuristic: Wh = h(W);
11 while |Vτ |> τ + |VL| do
12 Find oldest vertex vo← Vτ/VL;
13 foreach vertex pair v 6= v′ in Vτ do
14 wv,v′ ← wv,v′ +

wvo ,vwvo ,v′
degree(vo)

;

15 Remove all vo edges from Wh;

16 return Wh

Algorithm 10 presents the pseudo-code for constructing the graph. The algorithm requires as an input a pre-built
Isolation Forest, and a set of example vertices. The example vertices are partitioned into labelled and unlabelled at
line 1. Then only the example vertices (both labelled and unlabelled) received in the current micro-batch t are used
for updating the forest counts at line 2. Subsequently, if labelled vertices exist in the current micro-batch, the feature
selection optimisation is re-computed to update the selected features (lines 3–4). In lines 5–9 the graph connection
process takes place. Each stored vertex is connected to the unlabelled vertices received at micro-batch t. The set of τ

stored vertices is composed of all the labelled vertices and the previously stored unlabelled ones. Then, the connection
heuristic is applied at line 10. As a final step, while the number of stored vertices is greater than the given memory the
algorithm evicts the oldest vertex along its edges and applies star-mesh transforms to its neighbours (lines 11–15).

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

50 of 134

4.5 Empirical Evaluation

We compare SPLICE+ to its predecessor (SPLICE) on the task of complex event recognition using a real maritime
surveillance dataset.

4.5.1 Experimental Setup

The maritime dataset consists of vessel position signals sailing in the Atlantic Ocean, around Brest, France. The SEs
express compressed trajectories in the form of ‘critical points’, such as communication gap (a vessel stops transmitting
position signals), vessel speed change, and turn. It has been shown that compressing vessel trajectories in this way
allows for accurate trajectory reconstruction, while at the same time improving stream reasoning times significantly
[116]. We focus on the rendezvous and pilotOps CEs. The former expresses an illegal activity where two vessels
are moving slowly in the open sea and are close to each other possibly exchanging commodities, while the latter
describes the activity of a pilot boat. Since the dataset is unlabelled, we produced synthetic annotation by performing
CER using the RTEC engine [18] and hand-crafted definitions of rendezvous and pilotOps CEs. We have extracted
6 sequences for each CE. Regarding rendezvous, the total length of the sequences is 11,930 timestamps, while for
pilotOps sequences comprise of 6,678 timestamps. There are 1,425 example instances in which rendezvous occurs
and 769 in which pilotOps occurs.

The evaluation concerns two learning scenarios. In the first one, a number of micro-batches was selected uniformly
at random to remain fully labelled while the rest of the micro-batches arrive completely unlabelled. We experimented
using 5%,10%,20%,40% and 80% of the total supervision, retaining the corresponding proportion of labelled micro-
batches. We repeated the uniform selection 20 times, leading to 20 datasets per supervision level, in order to obtain
a good estimate of the performance. This scenario was the one assumed by SPLICE [103] and thus we also present
results on it here for consistency. However, on a typical learning task from data streams, usually, the assumption of
labels arriving on-stream is unrealistic. A more appropriate situation is when a training set appears in the beginning of
the stream, or stored in a database as historical data, while the rest of the data stream-in completely unsupervised. To
that end, the second scenario assumes a number of fully labelled training sequences is provided in the beginning of the
stream, while the rest of the data arrive completely unsupervised. We experimented using 1, 2 and 4 labelled training
sequences. We created all possible datasets having a single labelled training sequence, while the rest of the sequences,
for creating 2 and 4, were randomly selected. We considered only sequences that contained both positive and negative
examples, leading to 30 datasets.

Throughout the experimental analysis, we used T=100 isolation trees for computing the mass-based dissimilarity and
set α=0.5 in order to balance the influence of each distance measure. Following the experimental results of SPLICE we
chose to run the evaluation using k-nearest neighbour for k=1 and k=2. The accuracy results for supervision completion
were obtained using the F1-score. All reported statistics are micro-averaged over the instances of CEs. The experiments
were performed in a computer having an Intel i7 4790@3.6GHz CPU (4 cores, 8 threads) and 16GiB of RAM.

4.5.2 Experimental Results

We compare the performance of SPLICE+ against SPLICE, for both pilotOps and rendezvous CEs. Figure 11 depicts
the F1-score achieved by the supervision completion on both scenarios. The notation kt refers to temporal kNN, as
described in Section 4.4, while ds and db

h refer to the structural and hybrid distances respectively. The results suggest

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

51 of 134

that SPLICE+ effectively infers the missing labels and its performance increases as more supervision is given. More
importantly, it significantly outperforms SPLICE in all cases for both k=1 and k=2 even for high supervision levels
(80% uniform supervision or 4 sequences). As expected, the difference is greater in the second scenario since labelled
data are provided only in the beginning of the training sequence making available labels unrepresentative of the actual
distribution that the underlying classes follow. For SPLICE, k = 2 performs much better than k = 1. SPLICE+, on
the other hand, performs better for k = 1, however, it also performs well for k = 2, since the F1-score does not drop
significantly, which is an indication of robustness to noise in the neighbourhood.

On the other hand, the improved performance comes at the cost of a decrease in runtime, as shown in Figure 12. The
presented runtime is macro-averaged over all samples. Note that SPLICE+ is always slower than SPLICE since it has to
update the isolation trees for every micro-batch, as well as selecting appropriate features, which are time-consuming.
However the penalty is tolerable since, taking into account the standard deviation, it lies between 10 to 25 seconds for
the whole training procedure. Note that there is a significant increase in runtime, on the first scenario between 5% and
20%, that decreases as more supervision is given. That is due to the fact that SPLICE+ runs feature selection only when
a labelled micro-batch arrives followed by an unlabelled one. Therefore, in the cases of 20% or 40%, such sequences
occur much more frequently than 5% or 80%. The same applies to the second scenario, where the supervision only
appears in the beginning of training, thus feature selection only runs once.

In Table 7, we present the change in F1-score as the batch size increases. Note that SPLICE tends to have larger changes
in F1-score compared to SPLICE+as the batch size increases. For instance, on pilotOps, when 1 supervised sequence
is provided, SPLICE accuracy varies from 0.02 to 0.1, while SPLICE+ varies only 0.01. For 2 supervised sequences the
variation is even greater, since SPLICE varies from 0.03–0.18, in contrast to SPLICE+ where the variation remains 0.01.
The same situation holds for the rendezvous CE, where for 1 supervised sequence, SPLICE varies from 0.08–0.15,
while SPLICE+ varies only 0.01. These results suggest that SPLICE+ seem to be more robust to different batch sizes
than its predecessor.

CE Batch size
Number of supervised sequences

1 2 4

pilotOps

10 0.63/0.96 0.88/0.97 0.92/0.97
25 0.69/0.96 0.85/0.96 0.91/0.97
50 0.71/0.96 0.88/0.96 0.91/0.97
100 0.61/0.95 0.70/0.96 0.75/0.97

rendezvous

10 0.63/0.74 0.77/0.86 0.87/0.93
25 0.58/0.74 0.72//0.86 0.84/0.90
50 0.56/0.74 0.75/0.86 0.83/0.90
100 0.48/0.75 0.61/0.81 0.83/0.92

Table 7: F1-score for varying batch sizes for pilotOps and rendezvous (SPLICE/SPLICE+).

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

52 of 134

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

k=1,ds(Splice)

k=2,ds(Splice)

kt=1,dbh(Splice
+)

kt=2,dbh(Splice
+)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

% supervision kept

F
1
-s
co
re

k=1,ds(Splice)

k=2,ds(Splice)

kt=1,dbh(Splice
+)

kt=2,dbh(Splice
+)

1 2 4
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

k=1,ds(Splice)

k=2,ds(Splice)

kt=1,dbh(Splice
+)

kt=2,dbh(Splice
+)

1 2 4
0

0.2

0.4

0.6

0.8

1

#supervised sequences

F
1
-s
co
re

k=1,ds(Splice)

k=2,ds(Splice)

kt=1,dbh(Splice
+)

kt=2,dbh(Splice
+)

Figure 11: F1-score of supervision completion on pilotOps (left) and rendezvous (right) as supervision increases.
First scenario, where supervision arrives uniformly (top), and the second one, where supervision is provided only in the
beginning of the training sequence (bottom).

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

53 of 134

0 20 40 60 80
0

10

20

30

40

% supervision kept

R
u
n
ti
m
e
(s
ec
)

k=1,ds(Splice)

k=2,ds(Splice)

kt=1,dbh(Splice
+)

kt=2,dbh(Splice
+)

0 20 40 60 80
0

10

20

30

40

% supervision kept

R
u
n
ti
m
e
(s
ec
)

k=1,ds(Splice)

k=2,ds(Splice)

kt=1,dbh(Splice
+)

kt=2,dbh(Splice
+)

1 2 4
0

10

20

30

40

#supervised sequences

R
u
n
ti
m
e
(s
ec
)

k=1,ds(Splice)

k=2,ds(Splice)

kt=1,dbh(Splice
+)

kt=2,dbh(Splice
+)

1 2 4
0

10

20

30

40

#supervised sequences

R
u
n
ti
m
e
(s
ec
)

k=1,ds(Splice)

k=2,ds(Splice)

kt=1,dbh(Splice
+)

kt=2,dbh(Splice
+)

Figure 12: Runtime of supervision completion on pilotOps (left) and rendezvous (right) as supervision increases.
First scenario, where supervision arrives uniformly (top), and the second one, where supervision is provided only in the
beginning of the training sequence (bottom).

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

54 of 134

5 Online Machine Learning and Data Mining Component

This section outlines the design and implementation state of the Online Machine Learning and Data Mining (OMLDM)
component of the INFORE architecture. The goal of the OMLDM component is to provide a general-purpose infras-
tructure for a broad collection of extreme-scale training of online machine-learning and data mining algorithms, that
will work seamlessly with other components of the INFORE platform.

5.1 Overview of the OMLDM component and previous art

Extreme-scale online learning has been approached in many different ways. In the OMLDM component, we strive to
achieve this by distributed computation, which can unleash the inexhaustible potential of modern cloud-based infras-
tructures. To this end, the OMLDM component is first and foremost a high-performance computing platform, able to
perform a broad family of distributed learning algorithms on rapid streams of training data. In addition, the component
has to provide excellent support for model-based prediction over massive data streams.

Several high-quality frameworks for large-scale machine learning and data mining have existed for many years, and
it is not our intention to build yet another such framework. For example, RapidMiner and ADAMS (among many
others) provide excellent end-to-end facilities, including great visualization and interactivity. Vowpal Wabbit, SparkML,
scikit.learn, ELKI, and many others, host a very broad pallette of different algorithms, while Petuum and DistBelief can
scale to thousands of cores.

First and foremost, the scope of OMLDM component is focused on a particular scenario; online and distributed machine
learning and data mining. In this arena, the competition from previous work is much more limited. Although, in some
sense, many platforms out there could be considered to offer some distributed OMLDM facilities, to our knowledge the
only platform with a clear commitment to the same goals as the OMLDM is SAMOA.

It should not come as a surprise that OMLDM and SAMOA have many similarities in common. Both platforms are
specialized to distributed machine learning over rapid, massive data streams. Both platforms are embedded into large
scale distributed stream processing platforms—Samza for SAMOA, although it is portable to others—and Flink for
OMLDM. Both frameworks employ these platforms for scalability and fault tolerance.

However, OMLDM takes a decidedly different approach to SAMOA when it comes to its model of computation. The
architecture of SAMOA follows the Agent-based pattern; an algorithm is a set of distributed processors that comunicate
with streams of messages. Little more is provided, and this is intentional [85]. It is argued that providing a more
structured model of computation, reduces the applicability of the framework unacceptably.

We do not agree with this proclamation, and we are building OMLDM in order to validate our own vision. Our
system architecture is much more structured. We follow a parameter server distributed model, where a collection
of identical learners distribute amongst themselves the computational load of training on an incoming data stream of
training samples [93]. The OMLDM platform aims to provide a set of well-engineered. high-performance-oriented
policies for orchestrating the distributed computation. In addition, the platform strives to supply a number of added-
value services, such as monitoring the state of the learning task and allowing the user to interact heavily with it. Used
within the INFORE architecture, users of our component will benefit from a synergistic set of services, including
learning from synopses maintained by the Synopsis Data Engine (SDE), and being automatically tuned by the workflow
optimizer.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

55 of 134

In the following, we present the current design and a high-level view of the implementation of the OMLDM component.
First, we describe the abstractions it offers to the user, and also to the developer. Then, we discuss some of the technical
aspects of our research and finally we present the salient points of our implementation on top of Apache Flink.

5.2 Architecture of the OMLDM component

The top-level concept in the architecture of OMLDM is a pipeline. A pipeline is a linear sequence of stages, with
a stream of tuples entering the first stage. Each subsequent stage applies some operation on the incoming data and
generates data for the next component in line. The last stage may output a stream of data to the rest of the system.
Pipelines are of two types, training pipelines and prediction pipelines.

Training pipelines are specialized to performing data mining on the incoming stream, in order to train some Machine
Learning model on the data or estimate some other statistical model, such as advanced summarization, feature extrac-
tion, clustering, etc. Training pipelines are data sinks, that is, they do not generate an output stream. Instead, they
maintain a model and make it available on-demand to other operators of an INFORE workflow.

Prediction pipelines are transformations of the incoming data stream to an outgoing data stream. Although in principle
these transformations can be arbitrary, the intended purpose of this type of pipeline is to employ some model for
classification, interpolation or inference. The result of this transformation is an output stream which can be processed
further by the INFORE workflow.

5.3 Training pipelines

A training pipeline accepts a stream of training samples and maintains online a model trained on these samples. Struc-
turally, the pipeline contains a sequence of preprocessing stages, and terminates at a learning stage, as per Fig. 13.

Input stream Preprocessor Preprocessor Learner

Figure 13: Structure of a training pipeline.

Preprocessors are customizable by hyper-parameters. Two useful preprocessors are the following:

Scaler This preprocessor transforms individual features (coordinates) of the feature vector of a training sample. The
output of this transformation consists of features with a mean of 0 and scaled to multiples of the standard deviation
of the input.

Polynomial features This preprocessor extends the feature vector of each training sample by adding powers of the
initial features, up to some predefined degree (a hyperparameter of the preprocessor). For example, the 2nd
degree transformation on a vector with two features is the following mapping:

(x1,x2)→ (x1,x2,x2
1,x1x2,x2

2)

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

56 of 134

After preprocessing, the incoming stream of training samples is forwarded to the learner. A configurable portion of the
stream (say 3%), is sampled and stored in a buffer, in order to perform periodic scoring of the learned model. The bulk
of the stream is used to fit the model at the learner.

The learner stage supports parallel, high-throughput processing of the input stream, as it continually fits a model on the
training samples. It is implemented as a collection of parallel instances of a learning algorithm, called local learners.
Each local learner receives a partition of the incoming data stream and fits a local model to this partition. Periodically,
the local learners synchronize with a Parameter Server, which maintains the global model. The OMLDM component’s
implementation can assign each local learner on a different compute node, which can be multithreaded and/or may
support GPU-based or TPU-based accelarators. Furthermore, in order to minimize communication overheads, the
preprocessor stages are also parallelized, and each local learner is co-located on its node with a parallel instance of its
preprocessors. This architecture is depicted in Fig. 14

P L1

P L2 L: Param Srv

P L3

Π1

Π2

Π3

Figure 14: A training pipeline of 2 components, with parallelism set to 3. The diagram shows allocation of objects
to distributed nodes (blue rectangles). Three of the nodes, accept partitions Πi, i = 1, . . . ,3 of the input stream. The
preprocessor component is replicated in each node. The local learners synchronize periodically with the Parameter
Server.

5.4 Prediction pipelines

Prediction pipelines accept a data stream of feature objects (vectors) and annotate each object with additional informa-
tion, inferred by some learned model. A prediction pipeline is a linear sequence of stages, applying transformations and
filtering. The output of the prediction pipeline is a stream of transformed objects.

Prediction pipelines do not train the models they apply; these models are loaded externally. A model can be changed
dynamically during execution of the pipeline, if there has been concept drift in the data stream. A prediction pipeline
may need to contain preprocessor stages that are compatible with the preprocessing that occurs during training of the
model. For example, assume that some application requires labeling an incoming stream with the output of some
classifier C. Furthermore, assume that during training (in another pipeline) of classifier C, the feature vector of each
sample was augmented with additional Polynomial features. In order to apply this classifier to unlabeled records, the
features of each unlabeled record need to be complemented with the result of the Polynomial features preprocessor.
Furthermore, the smae pipeline may apply multiple inferences per sample; for example, one may apply both a classifier
and a regressor on the every sample.

In order to achieve high throughput, prediction pipelines are embarrassingly parallelizable. Both input and output
streams are partitioned into a number of partitions, which is matched by the parallelism of the inference process. For

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

57 of 134

correctness, all parallel instances of the pipeline objects are identical and are kept identical during dynamic updates.
This leads to a very simple architecture, depicted in Fig. 15.

P1 T P2

P1 T P2

P1 T P2

Π1 Ξ1

Π2 Ξ2

Π3 Ξ3

Figure 15: A prediction pipeline of 3 stages, with parallelism set to 3. The first stage is preprocessor P1, the second
stage is transformer T and the third stage is postprocessor P2. The diagram shows allocation of objects to distributed
nodes (blue rectangles). Each node i, accepts partition Πi, i = 1, . . . ,3 of the input stream and generates partition Ξi of
the output stream.

5.5 Implementing Machine Learning and Data Mining algorithms

The OMLDM component is not dedicated to any particular ML or DM task in INFORE, but strives to integrate many
such tasks under the same architecture, in order to provide a uniform, well-tested, high-throughput implementation
which is easily customizable with new algorithms. To this end, it employs the paradigm of model averaging in order to
distribute large-scale training computations on several nodes.

Model averaging applies to models which are representable as high-dimensional vectors, and where the learner incre-
mentally updates this vector by repeatedly adding small increments. In particular, we assume some model update rule of
the form wt+1 = wt +F(wt ,xt), where wt is the model being trained at time step t and xt represents a subset of training
samples processed at step t. This type of iteration is extremely common in ML and DM online streaming techniques.

The implementation of an algorithm in OMLDM requires customizing (via inheritance) a number of classes, that can
then become instantiated into training and/or prediction pipelines. These classes are of tree types, and for each type
there is an interface (declared in Scala) that they must implement.

Parameter servers hold and update the state of the learning process, including the current version of the trained model.

The parameter server interface contains the following methods:
Method Description

push(update) Add an update to the current model.
pull() Return the current model.
marshalModel() Return a textual representation of the current model.
unmarshalModel(mtxt) Set the current model by parsing the provided textual repre-

sentation.

Learners compute the updates to the model and coordinate via the paramater server. Learners also act as predictors, if
passed an unlabeled sample.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

58 of 134

The learner interface contains the following methods:
Method Description

fit(x) Compute an update to the current model, using the training
sample (x,y).

score(x) Return a score (loss) reflecting the accuracy of the model on
training sample x.

predict(x) Return a vector y representing the current model’s predic-
tion for sample x.

setHyperParam(p,v) Set the value of hyperparameter p
getHyperParam(p) Return the value of a hyperparameter
marshalModel() Return a textual representation of the current model.
unmarshalModel(mtxt) Set the current model by parsing the provided textual repre-

sentation.

Preprocessors transform data samples before the learning algorith is applied, and/or after a prediction is made (in
prediction pipelines).

The preprocessor interface contains the following methods:
Method Description

transform(x) Return a vector x′ representing the result of the transforma-
tion applied to x.

setHyperParam(p,v) Set the value of hyperparameter p
getHyperParam(p) Return the value of a hyperparameter

5.5.1 Algorithms supported

We have implemented some standard online machine learning algorithms, which we describe briefly.

Passive Agressive Classifier. Proposed in [35], it is a binary linear classifier. The model is a vector w ∈ Rn. A sample
x ∈ Rn is classified as

signwT x ∈ {−1,−1}
The algorithm has one hyperparameter, the aggressiveness C (typically set to 0.01).

Passive Agressive Regression. This online regression scheme maintains an online linear regression y = wT x. An ad-
ditional hyper-parameter is the sensitivity ε .

Support Vector Machine (SVM). One of the most funndamental techniques in machine learning, provides a maximum
margin linear classifier.

Hoeffding Trees where proposed in [44] under the name VFDT (Very Fast Decision Tree) and has become the de facto
standard for incremental (streaming) decision trees.

Online Ridge Regression. Ridge regression (aka. regularized linear regression) is useful in under-constrained prob-
lems, where the dimensionality of the model is comparable (maybe exceeds) the number of samples.

AutoRegressive Iterated Moving Average (ARIMA). This is a well-known technique for autoregressive forecasting
of time series.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

59 of 134

Online k-means++. This is the well-known unsupervised learning algorithm, whose model represents a multiclass
classifier. Our implementation exploits coreset synopses maintained by the Synopsis Data Engine.

BIRCH. This is another very popular unsupervised clustering algorithm, introduced in [152]. It is highly scalable,
as it coalesces samples into clustering features (CF), which are represented succinctly. Our implementation can
exploit the Synopsis Data Engine in collecting CF.

By implementing the above methods for each type of pipeline stage, the pipeline is able to orchestrate the flow of data
through its stages and drive the computation forward. The responsibilities of a pipeline include:

• Controlled initialization of all stages, on different nodes. Some learning algorithms require information about the
level of parallelism, or other global information.

• Efficient transfer of data through the pipeline. Incoming streaming data is batched in customizable ways and
processing can occur on a per-minibatch basis.

• Distributed checkpointing of the pipeline state on each node, in order to support restart semantics in case of
failure.

• Restoration of state of a node, after a failure. To this extent, the pipeline manager on a local node which is
restarted after a failure, is respo

• Avoiding race conditions when the hyperparameters of various stages are changed interactively. Since pipelines
are distributed on multiple nodes, a hyperparameter change may, if not done carefully, lead to inconsistencies
among nodes.

• Collection of statistics related to the execution. In particular, two types of statistics are maintained; statistics that
concern the performance of the computation (samples processed, processing rate, etc), and statistics that concern
the state of the computation. The latter is meaningful mostly for training pipelines, but is also useful in debugging
pipelines.

An important statistic is the prequential score [58] for learners; a customizable fraction of the training data is used
to score the model continuously; naturally, this data is then used for fitting as well.

5.6 Distributed coordination for training pipelines

In addition to the responsibilities outlined previously, for training pipelines, it is the pipeline’s responsibility to syn-
chronize the processing between the local learners and the parameter server. The synchronization policy is extremely
important to the performance of the training computation, both in terms of the quality of the learned model (accuracy,
size) and in terms of computational cost (CPU utilization, communication cost, memory consumption etc).

Ideally, we would like to make the details of this policy customizable at a fine grain; in practice, this is too complex to
do correctly. Therefore, we decided to support a set of discrete policies, with little customization in each policy. We
note that this is the approach followed by the majority of previous ML platforms.

In OMLDM we currently support three distinct policies:

• Bulk Synchronous Parallel policy (BSP)

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

60 of 134

• ASP Asynchronous Parallel policy (ASP)

• Dynamic Averaging policy (DA)

The synchronous policy (BSP) works in rounds. In each round, a mini-batch of training data is allocated to each learner.
Each learner obtains the current model wt from the parameter server and fitting is performed. Each learner forwards
its update to the parameter server and wt+1 is computed. This policy is popular in theoretical analyses of machine
learning algorithms, and exhibits good learning in practice; however performance-wise it is not very scalable; when
many learners are used, the total utilization is low, because of stragglers. However, when the performance of the system
is network-bound instead of CPU-bound, this method may be preferable, since the stragglers’ delay will be masked by
network delays.

The asynchronous policy (ASP) on the other hand does not enforce any synchronization between learners. When a
learner is allocated a training minibatch, it receives the current model from the parameter server, fits the model using
the minibatch and sends its update to the parameter server. Parameter servers sequentially apply updates to the model,
as they receive them. This policy is the policy of choice in large-scale machine learning; although it may lead to slightly
slower convergence in terms of the amount of training data processed, the processing speed is much higher when many
learners are used, and therefore training is more efficient.

One problem with both the synchronous and the asynchronous method is the choice of the right batch size. There is
empirical evidence [83] that large minibatch size tends to overfit. On the other hand, a small minibatch size (32 to 256
samples is the pervailing rule of the thumb) results in too frequent interactions with the parameter server and therefore
high network cost.

The dynamic averaging policy was introduced by Kamp et al. [76, 77, 75] and takes a different approach to synchro-
nization. The protocol is synchronous in that it works in rounds. At the beginning of round t, the model wt is sent to
every learner. However, instead of of a fixed batch size, each learner is provided with a threshold ∆t . The learners start
updating their local copy of the model, by fitting incoming training samples independently of each other. Each learner
monitors the local condition

‖w(i)−wt‖2 ≤ ∆t ,

where w(i) is the (updated) model at learner i. When this condition fails in some node, the parameter server collects all
local updated models and updates the global model by

wt+1 =
1
k

k

∑
i=1

w(i), (26)

where k is the number of learners. Because of the convexity of the Euclidean norm, this process guarantees the following
constraint at each round:

‖wt+1−wt‖2 ≤ ∆t . (27)

DA has been empirically evaluated on several learning scenarios, where it was shown to outperform BSP or ASP.

5.7 Functional Dynamic Averaging

Dynamic averaging is a method inspired from Geometric Monitoring techniques, developed for distributed streaming
algorithms. The success of DA prompted us to test a more recent improvement, the Functional Geometric Monitoring

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

61 of 134

of [130]. We propose Functional Dynamic Averaging (FDA), a synchronization policy that retains the quality of training
afforded by the DA policy but reduces the communication cost even further.

Our starting point is a constraint of the form
U(wt+1,wt)≤ ∆t . (28)

Function U could be the squared Euclidean norm as in DA, or any other function; indeed, the choice of the Euclidean
norm is rather arbitrary in many conceivable scenarios. Given wt , U and ∆t , the FDA introduces the concept of a safe
function:

Definition 4. Given U, wt and ∆t , a function φ : Rn→ R is safe if

• φ is convex, and

• ∀u ∈ Rn, φ(u)≤ 0 =⇒ U(wt +u,w)≤ ∆t .

Our protocol, similarly to DA, works in rounds. At the beginning of a round, the parameter server ships wt to each
learner. Learners start to fit based on the inconing training data. Collectively, the system monitors the following value:

ψ =
k

∑
i=1

φ(w(i)−wt).

The round lasts, as long as ψ ≤ 0. When the round ends, the protocol behaves similarly to the DA; the updated local
models are sent to the parameter server, and the global model is updated as per Eq. 26.

Proposition 1. The FDA protocol guarantees the constraint of Eq. 28.

Proof. The key property is the convexity of φ . As long as ψ ≤ 0, we have

ψ =
1
k ∑

i=1
φ(w(i))≤ φ(

1
k

k

∑
i=1

w(i))≤ 0.

The last inequality and the safety of φ imply the condition of Eq. 28.

As an example, by setting φ(u) = ‖u‖2−∆t we obtain exactly the condition of Eq. 27, which is the condition of DA.
However, even with this choice of φ , a round in FDA will last much longer that a round in DA. Indeed, a DA round ends
the moment φ(w(i)) becomes non-negative at any learner i, whereas in FDA, it is the average (ψ/k) that must become
non-negative, to end the round. This implies less communication between learners and the coordinator.

The FDA has been experimentally evaluated on various ML scenaria. It is shown to be much more scalable than DA
when the number of learners grows. See Fig. 16.

The FDA protocol is under actively researched and more results will be available as the project progresses.

We have extended our experimental evaluation of FDA in settings including Convolutional Neural Networks and the
Extreme Learning Machine [70].10

10We are in the process of writing a conference paper where we report on our empirical results.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

62 of 134

Figure 16: A comparison of the communication cost of several FDA (blue line) and DA (red line) scenaria, with CNN
learners.

In the latter case we have shown that the Adaptive Online Sequential ELM variant [30], in a scenario with significant
concept drift, achieves about an order of magnitude less communication under the FDA policy compared to the DA
policy, and in addition achieves much better learning accuracy.

In addition, in all our experiments it was demonstrated that the FGM is much more robust in scenaria where the
streaming rates at different learners are significantly different. This scenario is motivated by a case where some of
processing nodes in the system are equipped with GPU and TPU accelerators, whereas others aren’t.

5.8 Implementation of the OMLDM component

In this section we report on the the implementation of the OMLDM component, its current state, future directions, and
on the challenges that we faced.

The OMLDM component is implemented on top of Apache Flink 1.9. Most of the implementation is done in Scala.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

63 of 134

The component can be run independently of other components, but there is providence for tighter integration with other
parts of the INFORE platform, including the optimization module and the user interface.

Operationally, an instance of the OMLDM component is deployed on the cluster as a Flink job. We refer to this instance
as an OMLDM job (or simply a job). One important design choice was that there may be several OMLDM jobs within
an INFORE workflow. This choice allows for future scenaria where an INFORE workflow may span multiple compute
clusters.

Each OMLDM job processes a single type of data. If a particular INFORE workflow requires processing on different
types of data (for example, both Level 1 and Level 2 financial data), there need to be two distinct OMLDM jobs in
the workflow. This choice was dictated by particular limitations imposed on Flink jobs; namely, a Flink job declares a
maximum level of parallelism that is not changeable at runtime.

Communication with the outside world happens through Apache Kafka, in accordance with the overall INFORE archi-
tecture. Each instance of the component interacts with at most 5 Kafka topics:

Training data stream: This topic provides training data to training pipelines.

Prediction input stream: This topic provides unlabeled data to prediction pipelines.

Prediction output stream: This topic outputs the result of prediction pipelines.

Control request topic: This topic is used to receive control requests from the INFORE workflow orchestration.

Control response topic: This topic is used to publish responses to control requests.

Each OMLDM job can support multiple pipelines. The data arriving at the training data stream is delivered to all
training pipelines. Similarly, the data received from the prediction input stream is forwarded to all prediction pipelines
and the outputs of all pipelines are combined into the prediction output stream. Overall, the flow of data in a job is
shown in Fig. 17.

Resource type Create Read Update Delete Remarks

Job - get full status - -

Pipeline create get full status - delete

Model - get current set current - Only for training pipelines,
obtained from Param server.

Score - get current
model score

- - Only for training pipelines.

Parameter - get value set value, if it
is updateable

- By name.

Preprocessor - get full status -

Learner - get full status - Only for training pipelines

Param Server - get full status - Only for training pipelines

Table 8: The control API of an OMLDM job. Empty cells imply that the call is unsupported

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

64 of 134

P L

Training data stream Parser P P L

P T

Prediction in-
put stream Parser P T P Formatter

Prediction out-
put stream

P L

Training pipelines

Prediction pipelines

Control req. Control resp.

Figure 17: Overall architecture of a OMLDM job.

The control topics deliver control messages to and from a job. These messages follow the request-response pattern.
They implement a ReSTful-like API, although the message format is not http, but instead is based on JSON. Entities in
a job have path-like identifiers and the job control API understands Create/Read/Update/Delete (CRUD) commands for
each type of resource. A brief overview of these messages appears in Table 8.

5.8.1 Pipeline implementation issues

Pipelines are implemented by flatMap operators in Flink. A flatMap operator is a collection of Java objects, each living
on a different node. The number of these objects is the flatMap operator’s parallelism. A flatMap is equipped with
a callback, which Flink calls every time there is more data to be processed. Unfortunately, Flink does not allow for
new operators to be created dynamically, while in OMLDM we support dynamic creation and deletion of pipelines.
Therefore, all pipelines are implemented on a fixed number of Flink operators, as shown in Fig. 18.

All flatMaps (including the parsers) are fully parallel, so that the load can be distributed on multiple compute nodes.

The training pipelines are implemented by a pair of flatMaps. The iterative nature of learning and mining computations
requires communication between all parallel nodes, and this is done by the parameter servers in each pipeline. When
the parameter servers respond to learners, they need to perform “upstream” communication. Such a flow would cause
the Flink operator graph to be cyclic, which Flink does not allow; however, in order to support iterative computations,
it supports a limited and controlled manner of upstream data flow.

Unfortunately, the current support for iteration leaves too much to be desired. Using the iterative construct in Flink,
invalidates the fault tolerance mechanisms that Flink supports. That is, in case of a node failure, there will be loss of
data from the system. This can be quite catastrophic, since it is impossible to detect. It could very well lead to deadlocks
in our processing logic.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

65 of 134

Training
data stream

Kafka
connector

Parser
Training
flatMap

Training
Param.Srv.

Control
request
stream

Kafka
connector

Prediction
input

stream

Kafka
connector

Parser
Prediction

flatMap
Kafka

connector

Prediction
output
stream

Control
response
stream

Kafka
connector

Feedback
kafka
stream

Figure 18: A simplified view of the implementation of OMLDM in Flink. The Flink operators form a directed acyclic
graph. Square nodes indicate flatMaps, whereas rounded nodes are connectors. The feedback Kafka topic is used to
implement upstream communication from the parameter server flatMap back to the Training flatMap.

Therefore, we investigated alternative ways to implement the upstream communication functionality. One option, which
is compatible with fault tolerance, is to use a dedicated Kafka topic to perform upstream communication. This scheme
can be made fault tolerant, because Kafka does not lose records in case of failure. Therefore, by inserting marker
records in the feedback Kafka stream, using the Chandy-Lamport algorithm.

A concern with this scheme was performance. To this end, we performed timing experiments to discern the overhead of
the feedback communication. Surprisingly, we found the the overall performance of this scheme is better than Flink’s
native iteration mechanism, as shown in Fig. 19.

5.9 Future directions

The OMLDM is currently actively developed. The features described in this section have been tested reasonably well
and are likely to remain in the design, but as the integration of the INFORE platform progresses, new features are likely
to become important.

The OMLDM component is an excellent testbed for much research in the context of WorkPackage 6. The main research
directions we are currently pursuing are the development and empirical evaluation of more distributed ML and DM
algorithms, development of the FDA synchronization policy and scalability to extreme data rates via model-based
parallelism.

In terms of algorithmic development, we note that distributed online machine learning is a very active research area,

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

66 of 134

2 5 10

0

100

200

300

400

se
c

Parallelism=18 nodes

Flink iteration Kafka feedback
2 5 10

0

100

200

300

400

million records
se

c

Parallelism=36 nodes

Flink iteration Kafka feedback

Figure 19: Total time for processing a dataset in OMLDM, with feedback channel implemented by Flink iteration, or
Kafka. The processed dataset sizes where 2, 5 and 10 million records. Parallelism was 18 or 36 nodes.

and new developments happen daily. The INFORE demonstrators provide an excellent opportunity to work on these
problems with real-world datasets. We believe that the OMLDM component will prove a versatile tool in this regard.

Closely related, is our work on FDA synchronization for distributed learning. The broader idea behind FDA is to steer
a distributed computation by lightweight monitoring of the global state of the processing. We believe that this method
has the potential to make distributed Machine Learning both more efficient, in terms of performance, more effective, in
terms of the quality of learning, and more user friendly, in terms of robustness with less need for fine tuning. Towards
this vision, much work is needed. Our primary focus is on proving theoretical properties of FDA, to bring it on par with
previous techniques, to study its effectiveness on a broad spectrum of machine learning techniques, and to constrast it
emprirically with state-of-the-art competitors.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

67 of 134

6 Forecasting for the Cancer Simulations of the Life Sciences Use Case

Our work for the Life Sciences use case (WP1) aims in contributing to the field of cancer research by using the expertise
of the areas of forecasting and machine learning. More specifically, we explore the effect of several cancer treatments
on cell populations, with the goal of finding interesting treatment properties that can provide some new perspectives for
clinical research. Our contribution to the Life Sciences use case is manifold. The first is to create a dataset consisting of
simulation results that correspond to different cancer treatments, which can be used for future cancer research. The main
challenge is to create a diverse dataset, which contains simulations that correspond to interesting and implementable
treatments, so that they can potentially give insights to researchers. Second, our work aims in learning how to forecast
whether a running cancer simulation will eventually produce interesting results. Finally, although several differect
forecasting approaches have been proposed, in order for our results to be interpretable and lead to usefull conclusions,
we have created a symbolic form of our dataset that will be used for forecasting purposes (Section 7).

6.1 Cancer Simulations

The dataset that we created consists of multi-cellular tumour simulations that have been produced using PhysiBoSS
11 [92]. PhysiBoSS is an open source software that allows exploring the results of several environmental and genetic
alterations to populations of cells. It employs MaBoSS [139], an environment for stochastic boolean modeling, that
allows simulating populations of cells and modeling stochastically intracellular mechanisms. PhysiBoSS also uses
PhysiCell [61], an open source agent-based modeling framework for multicellular simulations. Thus, for example
PhysiBoSS can be used for studying heterogeneous cell populations’ response to different treatments. PhysiBoSS allows
users to define several system parameters, including global properties for the simulation, cell properties, properties of
the computational network of the cells and properties about the initial configuration of the simulation.

We used PhysiBoSS to produce simulations that can be used for studying the response of heterogeneous cell populations
to TNF treatment. Each simulation corresponds to a different combination of values for the following parameters:

• time add TNF : Frequency of TNF injections.

• time remove TNF : Time point at which TNF is removed from the system.

• duration add TNF : Duration of the TNF injections.

• TNF concentration : Concentration of TNF.

The rest of the simulation parameters are fixed to their default values. Figure 20 shows the course of a simulation
produced by PhysiBoSS. The figure contains three lines, one corresponding to the number of alive cells for each time
point, one corresponding to the number of cells that have been programmed to die (apoptotic), and another line (necrotic)
for the number of cells that have died due to other causes (in our case due to TNF injections).

So far, the afformentioned TNF parameter values have been chosen at random from their allowed range, in order to
produce an adequate number of simulations and perform sufficient exploration of the parameter space. Currently, new
methods of parameter selection have been employed, which aim in discovering the areas of the parameter space that
lead to interesting simulations. These methods will be further explained in subsection 6.2.

11https://github.com/gletort/PhysiBoSS

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

68 of 134

Figure 20: A PhysiBoSS simulation from the biological use case dataset.

As we mentioned before, the simulations can be used to study the response of cell populations to TNF treatment.
Therefore, we roughly characterize a simulation as interesting if there is a significant response to the treatment. In
practice, in order to classify the simulations in our dataset, we have used a 1-NN classifier, which uses some known
cases to determine if a simulation is interesting or not. Figure 21a shows the course of a simulation that has been
classified as interesting. In this simulation the number of necrotic cells significantly increases over time, therefore we
could say that the population responds to the treatment. On the other hand, in Figure 21b the number of alive cells
is constantly increasing during the simulation time, thus we can surmise that the treatment selected will not lead to
positive results. The generated dataset contains around 900 simulations, out of which around 150 have been classified
as interesting and 750 as not interesting.

(a) An interesting simulation. (b) A not-interesting simulation.

Figure 21: Examples of interesting and not interesting simulations.

6.2 Methods for Exploring the Parameter Space of Biological Simulations

As mentioned, the parameter space defined by the allowed ranges of the parameters of interest (time add TNF, time remove TNF,
duration add TNF and TNF concentration) is too large to be sampled at random. Therefore, we are using some addi-
tional methods, in order to explore the parameter space more efficiently and define the boundaries between areas that

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

69 of 134

lead to interesting and not-interesting simulations, following the idea of [112].

6.2.1 Genetic Algorithm

For performing better exploration of the parameter space, we have used a genetic algorithm. The genetic algorithm is
used with the goal of converging to interesting areas of the parameter space and, thus, revealing interesting combinations
of the parameters. For the implementation of the genetic algorithm, we used the DEAP framework 12, as follows:

Individuals: Each individual is a vector of 4 elements and each one of the elements represents a value for the corre-
sponding parameter. In other words, an individual is a combination of values for the parameters mentioned, that will be
given as input to PhysiBoSS.

Population: The population consists of 20 individuals. This number has been selected to be relatively small because
each simulation requires substantial amount of time.

Crossover: The crossover probability has been selected equal to 0.7. The crossover function picks at random an index
and swaps the corresponding values between the two individuals, after these values have been multiplied by a factor
close to 1. The reason behind this multiplication is that individuals consist of only four values. Therefore, we are
trying to avoid replication of individuals. In addition, this function swaps each other pair of corresponding values
of two individuals with probability 0.5. Finally, since the parameter values have to respect some additional rules
(e.g. time add TNF ≥ duration add TNF), if after swapping the values these conditions are not met, we pick random
acceptable values for each parameter, in order to return two new, acceptable individuals.

Mutation: With probability 0.5 the algorithm replaces each parameter with a random value that is uniformely selected
from an acceptable range. Again, the acceptable ranges depend on the values selected for the other parameters. More-
over, the function checks that at least one value of the individuals will change.

Objective function: The algorithm evaluates an individual by running a PhysiBoSS simulation with the parameters that
it indicates. For now, the objective function has been selected to be the difference between the final number of necrotic
and alive cells during the corresponding simulation, as proposed in [112] for a similar setup. Of course, the objective
function could be altered to take into account more values of the simulation.

Generations: Currently, the algorithm uses 20 generations. Again, because of the long simulation time, we selected a
relatively small number of generations.

6.2.2 Random Forest

While genetic algorithms can be very efficient in discovering optimal solutions in large spaces, they are not sufficient
for estimating the structure of complex parameter spaces. On the other hand, random forests [68] can provide useful
insight about the parameter space. In order to avoid the tendency of decison trees to overfit, random forests construct
several decison trees and compute the mode of the resulted classes for each input sample.

In our setup, random forests can be used in an active learning way, in order to better determine the boundaries of the

12https://github.com/DEAP/deap

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

70 of 134

different areas of the parameter space. Iteratively, such an algorithm fits a random forest and then selects samples close
to the classification boundaries, evaluates them and adds them in the training dataset. At each step, this procedure
produces better classification boundaries and improves the estimation of the parameter space. Note that the level of
space exploration can be increased by introducing randomness to the point selection procedure. For the implementation
of random forests, we have used the scikit-learn library in Python [118]. We will now provide a description of the
algorithm implemented:

The algorithm requires a training dataset, which contains examples of interesting and not-interesting simulations. For
this purpose we have used the dataset that we have created so far, from our random sampling method and classified via
1-NN and known cases. This dataset is used to construct an initial random forest.

During each iteration:

• The algorithm constructs a random forest based on the examples that are at that point in the dataset.

• Creates a fine grid in the parameter space and classifies its points using the random forest that has been con-
structed.

• Computes the class uncertainty of these points and keeps the points with the highest uncertainty value, as candi-
date points.

• If the number of candidate points is bigger than a threshold (k), the algorithm clusters the candidate points into k
groups, based on their position in the grid. (We do that in order to avoid neglecting some areas of the parameter
space). Then, it selects one point from each cluster at random

• Evaluates the selected points by running a PhysiBoss simulation and using a 1-NN classifier.

• These points are added to the dataset.

6.3 Discretization

Having produced an adequate number of biological simulations, the goal is to use these examples to learn how to forecast
whether a running simulation will eventually become interesting or not. Moreover, from a biological perspective it is
usefull to extract some features or patterns that can facilitate the forecasting procedure, while being in some easily
interpretable form that will allow researchers to draw conclusions about the results. A promising way to achieve both
of these goals is to transform the produced time-series into strings, and learn regular expressions patterns that can be
used by the complex event forecasting module (Section 7).

Over the years, many time-series representation methods have been introduced, including traditional DWT [41] and
DFT [34] based methods. We employed the Symbolic Aggregate Approximation (SAX) method [94] to discretize the
time-series and transform them into symbolic sequences, since it produces an appropriate representation for learning
regular expressions and led to very small information loss in our dataset. The method consists of two steps, one for
dimensionality reduction and another one for time-series discretization.

More formally, SAX allows a time-series of arbitrary length n, to be reduced to a string of arbitrary length w (tradi-
tionally w < n), using symbols from an alphabet that has an arbitrary size a. To that end, SAX employs the Piecewise
Aggregate Approximation (PAA) method [82] as an intermediate step for dimensionality reduction, by dividing the
time-series into w equal sized frames and computing the mean value of the series in each frame:

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

71 of 134

More formally, let C be a time-series of length n. Then, C can be represented in a w-dimensional space by a vector
C = c1, ...,cw, where:

ci =
w
n

n
w i

∑
j= n

w (i−1)+1
c j

An important note for using this method is that the input time-series should be z-normalized (with a mean of 0 and
a standard deviation of 1). This step is neccessary when comparing time-series with different offsets and amplitudes,
because otherwise we run the risk of huge information loss.

Having transformed the time-series into the PAA representation, the SAX method dictates applying the following trans-
formation to obtain a discrete representation. Note that it is desirable to have a discretization technique that produces
equiprobable symbols, that is symbols that are expected to appear in the discretized dataset with almost equal fre-
quency. Since normalized time-series have a highly Gaussian distribution, according to the SAX method we determine
the breakpoints that produce a equal sized areas under a Gaussian curve. Having determined the breakpoints that divide
the range of values for the time-series into a areas, we can match each of the areas with a discrete symbol and extract
the symbolized version of the time-series.

(a) Alive cells line. (b) Necrotic cells line.

Figure 22: Original vs discretized time-series for the alive and necrotic cells.

Figure 22 shows an application of the SAX method to a time-series produced by PhysiBoSS. For this representation we
have used a = 20 discrete symbols and w = n, because the dimensionality of our time-series was quite small. Figure
22a depicts the course of alive cells during the simulation. The green line contains the normalized original time-series
points and the blue line is their corresponding discrete form. Similarly, figure 22b corresponds to the number of necrotic
cells during the simulation.

We measured the information loss from applying the SAX discretization tecnhique in our dataset, using a 1-NN classifier
with several distance measures, including Euclidian, Hamming and Dynamic Time Warping distances. We considered

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

72 of 134

as a misclassification the discrepancy between the original (continuous time-series) classification result and the result
when we reclassified our dataset using symbolic representations only. In all cases, the classification error was bellow
1%.

Additionally, we performed a 10-fold cross validation with a 1-NN classifier and Dynamic Time Warping distance,
which was the distance measure that led to the smallest classification error during our reclassification tests. Again, we
measured a classification error of less than 1%.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

73 of 134

7 Complex Event Forecasting

7.1 Introduction

The avalanche of real-time data in the last decade has sparked an interest in fields focused on processing high-velocity
data streams. Complex Event Recognition (CER) is one of these fields which have enjoyed increased popularity [37, 62].
The main goal of a CER system is to detect interesting activity patterns occurring within a real-time stream of events,
coming from sensors or other devices. Complex Events must be detected with minimal latency. As a result, a significant
body of work has been devoted to optimization issues. Less attention has been paid to learning and forecasting event
patterns [62], despite the fact that forecasting has attracted considerable attention in various related research areas, such
as time-series forecasting [105], sequence prediction [23, 26, 127, 33, 149], temporal mining [145, 89, 153, 31] and
process mining [99]. The need for Complex Event Forecasting (CEF) has been acknowledged though, as evidenced by
several conceptual proposals [55, 32].

In this section, we present a complete and formal framework for CEF, along with an implementation and extensive
experimental results. Our framework allows a user to define a pattern for a complex event and then constructs a
probabilistic model for it in order to forecast, while consuming a stream of events, if and when a complex event is
expected to occur. We use the formalism of symbolic automata [39] to encode a pattern and that of prediction suffix
trees [127, 126] to learn a probabilistic model for the pattern. We formally show how symbolic automata can be
combined with prediction suffix trees to perform event forecasting. Prediction suffix trees fall under the class of the
so-called variable-order Markov models, i.e., Markov models whose order (how deep into the past they can look for
dependencies) can be increased beyond what is possible with full-order models. They can do this by avoiding a full
enumeration of every possible dependency and focusing only on “meaningful” dependencies. Our experimental results,
on both synthetic and real-world datasets, show the advantage of being able to use high order models over previous
proposed methods for CEF, based on low order models or non-Markov models (like Hidden Markov Models).

7.1.1 Running example

We now present the general idea behind CER systems, along with an example that we will use throughout the rest of
the section to make our presentation more accessible. The input to a CER system consists of two main components:
a stream of events, also called simple events (SEs); a set of patterns that define relations among the SEs and must be
detected upon the input stream. Instances of pattern satisfaction are called Complex Events (CEs). The output of the
system is another stream, composed of the detected CEs. It is typically required that CEs must be detected with very
low latency, which, in certain cases, may even be in the order of a few milliseconds [97, 51, 67].

As an example, consider the scenario of a system receiving an input stream consisting of events emitted from vessels
sailing at sea. These events may contain information regarding the status of a vessel, e.g., its location, speed, head-
ing. This is indeed a real-world scenario and the emitted messages are called AIS (Automatic Identification System)
messages. Besides information about a vessel’s kinematic behavior, each such message may contain additional infor-
mation about the vessel’s status (e.g., whether it is fishing), along with a timestamp and a unique identifier. Table 9
shows a possible stream of AIS messages, where we only include the speed attribute and the timestamp is shown as
a sequence of increasing indexes. An analyst may be interested to detect several activity patterns for the monitored
vessels, such as sudden changes in the kinematic behavior of a vessel (e.g., sudden accelerations), sailing in restricted
(e.g., NATURA) areas, etc. The typical workflow consists of the analyst first writing these patterns in some (usually)
declarative language, which are then used by a computational model applied on the stream of SEs to detect CEs.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

74 of 134

Table 9: Example stream.

type fishing fishing fishing under way under way under way ...

vessel id 78986 78986 78986 78986 78986 78986 ...

speed 2 1 3 22 19 27 ...

timestamp 1 2 3 4 5 6 ...

7.1.2 Structure of the Section

We start by presenting in Section 7.2 the relevant literature on CEF. Since work on CEF has been limited thus far, we
also briefly mention forecasting ideas from some other related fields that can provide inspiration to CEF. Subsequently,
in Section 7.3 we discuss the formalism of symbolic automata and how it can be adapted to perform recognition on
real-time event streams. Section 7.4 shows how we can create a probabilistic model for a symbolic automaton by using
prediction suffix trees. We then demonstrate the efficacy of our framework in Section 7.5, by showing experimental
results on two datasets. We conclude with Section 7.6, discussing some possible directions for future work. The section
assumes a basic familiarity with automata theory, logic and Markov chains.

7.2 Related Work

There are multiple ways to define the task of forecasting over time-evolving data streams. Before proceeding with the
presentation of previous work on forecasting, we first begin with a terminological clarification. It is often the case that
the terms “forecasting” and “prediction” are used interchangeably as equivalent terms. For reasons of clarity, we opt
for the term of “forecasting” to describe our work, since there does exist a conceptual difference between forecasting
and prediction, as the latter term is understood in machine learning. In machine learning, the goal is to “predict” the
output of a function on previously unseen input data. The input data need not necessarily have a temporal dimension
and the term “prediction” refers to the output of the learned function on a new data point. For this reason we avoid using
the term “prediction”. Instead, we choose the term “forecasting” to define the task of predicting the temporally future
output of some function or the occurrence of an event. Time is thus a crucial component for forecasting. Moreover, an
important challenge stems from the fact that, from the (current) timepoint where a forecast is produced until the (future)
timepoint for which we try to make a forecast, no data is available. A forecasting system must (implicitly or explicitly)
fill in this data gap in order to produce a forecast, whereas in a typical machine learning task a prediction can be made
using all available data that refer to the target point of the prediction.

In what follows, we present previous work on forecasting, as defined above, in order of increasing relevance to CER.
Since work on CEF has been limited thus far, we start by briefly mentioning some forecasting ideas from other fields
and discuss how CEF differs from these research areas.

Time-series forecasting. Time-series forecasting is an area with some similarities to CEF, with a significant history of
contributions [105]. However, it is not possible to directly apply techniques from time-series forecasting to CEF. Time-
series forecasting typically focuses on streams of (mostly) real-valued variables and the goal is to forecast relatively
simple patterns. On the contrary, in CEF we are also interested in categorical values, related through complex patterns
and involving multiple variables. Another limitation of time-series forecasting methods is that they often do not target
a pattern, but try to forecast the next value(s) from the input stream/series. In CER, the equivalent task would be to

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

75 of 134

forecast the next input event(s) (SEs). This task in itself is not very useful for CER though, since most SEs are often
“irrelevant” and do not contribute to the detection of CEs (see the discussion on selection policies in Section 7.3). CEs
are more like “anomalies” and their number is typically orders of magnitude lower than the number of SEs. One could
possibly try to leverage techniques from SE forecasting to perform CE forecasting. At every timepoint, we could try
to estimate the most probable sequence of future SEs, then perform recognition on this future stream of SEs and check
whether any future CEs are detected. We have experimentally observed that such an approach yields extremely sub-
optimal results. It almost always fails to detect any future CEs. This behavior is due to the fact that CEs are rare. As a
result, projecting the input stream into the future fails to include the “paths” that lead to a CE detection. Because of this
serious under-performance of this method, we do not present detailed experimental results. We will, however, present
results showing that, if a method has a higher accuracy in terms of SE forecasting, this does not necessarily imply that
it will also have better results in terms of CE forecasting.

Sequence prediction (compression). Another related field is that of prediction of discrete sequences over finite alphabets
and is closely related to the field of compression, as any compression algorithm can be used for prediction and vice
versa. The relevant literature is extensive. Here we focus on a sub-field with high importance for our work, as we
have borrowed ideas from it. It is the field of sequence prediction via variable-order Markov models [23, 26, 127,
126, 33, 149]. As the name suggests, the goal is to perform prediction by using a high-order Markov model. Doing
so in a straightforward manner, by constructing a high-order Markov chain with all its possible states, is prohibitively
expensive due to the combinatorial explosion of the number of states. Variable-order Markov models address this issue
by retaining only those states that are “informative” enough. In Section 7.4.2, we discuss the relevant literature in more
details. The main limitation of previous methods for sequence prediction is that they focus exclusively on next symbol
prediction, i.e., they try to forecast the next symbol(s) in a stream/string of discrete symbols. As already discussed,
this is a serious limitation for CER. An additional limitation is that they work on single-variable discrete sequences
of symbols, whereas CER systems consume streams of events, i.e., streams of tuples with multiple variables, both
numerical and categorical. Notwithstanding these limitations, we show that variable-order models can be combined
with symbolic automata in order to overcome their restrictions and perform CEF.

Temporal mining. Forecasting methods have also appeared in the field of temporal pattern mining [145, 89, 153, 31]. A
common assumption in these methods is that patterns are usually defined either as association rules [5] or as frequent
episodes [98]. In [145] the goal is to identify sets of event types that frequently precede a rare, target event within a
temporal window, using a framework similar to that of association rule mining. In [89], a forecasting model is presented,
based on a combination of standard frequent episode discovery algorithms, Hidden Markov Models and mixture models.
The goal is to calculate the probability of the immediately next event in the stream. In [153] a method is presented for
batch, online mining of sequential patterns. The learned patterns are used to test whether a prefix matches the last events
seen in the stream and therefore make a forecast. The method proposed in [31] starts with a given episode rule (as a
Directed Acyclic Graph) and detects the minimal occurrences of the antecedent of a rule defining a complex event, i.e.,
those “clusters” of antecedent events that are closer together in time. From the perspective of CER, the disadvantage of
these methods is that they usually target simple patterns, defined either as strictly sequential or as sets of input events.
Moreover, the input stream is composed of symbols from a finite alphabet, as is the case with the compression methods
mentioned previously.

Process mining. Compared to the previous categories for forecasting, the field of process mining is more closely related
to CER [142]. Processes are typically defined as transition systems (e.g., automata or Petri nets) and are used to monitor
a system, e.g., for conformance testing. Process mining attempts to automatically learn a process from a set of traces,
i.e., a set of activity logs. Since 2010, a significant body of work has appeared, targeting process prediction, where the
goal is to forecast if and when a process is expected to be completed (for surveys, see [99, 53]). According to [99],
until 2018, 39 papers in total have been published dealing with process prediction. At a first glance, process prediction

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

76 of 134

seems very similar to CEF. At a closer look though, some important differences emerge. An important difference is that
processes are usually given directly as transition systems, whereas CER patterns are defined in a declarative manner.
The transition systems defining processes are usually composed of long sequences of events. On the other hand, CER
patterns are shorter, may involve Kleene-star, iteration operators (usually not present in processes) and may even be
instantaneous. Consider, for example, a pattern for our running example, trying to detect speed violations by simply
checking whether a vessel’s speed exceeds some threshold. This pattern could be expanded to detect more violations
by adding more disjuncts, e.g., for checking whether a vessel is sailing within a restricted area, all of which might be
instantaneous. A CEF system cannot always rely on the memory implicitly encoded in a transition system and has
to be able to learn the sequences of events that lead to a (possibly instantaneous) CE. Another important difference
is that process prediction focuses on traces, which are complete, full matches, whereas CER focuses on continuously
evolving streams which may contain many irrelevant events. A learning method has to take into account the presence of
these irrelevant events. In addition to that, since CEs are rare events, the datasets are highly imbalanced, with the vast
majority of “labels” being negative (i.e., most forecasts should report that no CE is expected to occur, with very few
being positive). A CEF has to strike a fine balance between the positive and negative forecasts it produces in order to
avoid drowning the positives in the flood of all the negatives and, at the same time, avoid over-producing positives that
lead to false alarms. This is also an important issue for process prediction, but becomes critical for a CEF system, due to
the imbalanced nature of the datasets. In Section 7.5, we have included one method from the field of process prediction
to our empirical evaluation. This “unfair” comparison (in the sense that it is applied on datasets more suitable for CER)
shows that this method consistently under-performs with respect to other methods from the field of CEF.

Complex event forecasting. Contrary to process prediction, forecasting has not received much attention in the field
of CER, although some conceptual proposals have acknowledged the need for CEF [55, 50, 32]. To the best of our
knowledge, the first concrete attempt at CEF was presented in [110]. A variant of regular expressions is used to define
CE patterns, which are then compiled into automata. These automata are then translated to Markov chains through a
direct mapping, where each automaton state is mapped to a Markov chain state. Frequency counters on the transitions
are then used to estimate the Markov chain’s transition matrix. This Markov chain is finally used to estimate if a CE
is expected to occur within some future window. As we explain in Section 7.4.2, in the worst case, such an approach
assumes that all SEs are independent and is thus unable to encode higher order dependencies. Another example of event
forecasting is presented in [6]. Using Support Vector Regression, the proposed method is able to predict the next input
event(s) within some future window. This technique is more similar to time-series forecasting, as it mainly targets the
prediction of the (numerical) values of the attributes of the input events (specifically, traffic speed and intensity from
a traffic monitoring system). Strictly speaking, it cannot therefore be considered a CE forecasting method, but a SE
forecasting one. The idea is put forward that these future SEs may be used by a CER engine to detect future CEs. As we
have already mentioned though, in our experiments, this idea has yielded poor results. In [113], Hidden Markov Models
(HMM) are used to construct a probabilistic model for the behavior of a transition system. The observation variable
of the HMM corresponds to the states of the transition system, i.e., an observation sequence of length l for the HMM
consists of the sequence of states visited by the system after consuming l SEs. In principle, HMMs are more powerful
than Markov chains. In practice, however, HMMs are hard to train and require elaborate domain knowledge, since
mapping a CE pattern to a HMM is not straightforward (see Section 7.4.2 for more details). Our approach is able to
seamlessly construct a probabilistic model from a given CE pattern (declaratively defined), without requiring extensive
domain knowledge. Automata and Markov chains are again used in [8, 9]. The main difference of these methods
compared to [110] is that they can accommodate higher order dependencies by creating extra states for the automaton
of a pattern and its Markov chain. As far as [8] is concerned, it has two important limitations: first, it works only on
discrete sequences of finite alphabets; second, although theoretically possible, it is practically infeasible to increase the
order of the Markov chain beyond a certain point, since the number of states required to encode long-term dependencies
grows exponentially. The first issue was addressed in [9], where symbolic automata are used that can handle infinite
alphabets. However, the problem of the exponential growth of the number of states still remains. We show how this

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

77 of 134

problem can be addressed by using variable-order Markov models.

7.3 Complex Event Recognition with Symbolic Automata

Before presenting our proposed approach for CEF, we begin by first presenting a formal framework for CER. For
surveys of CER, please see [37, 11, 62]. As can be deduced from these surveys, there is an abundance of CER systems
and languages. One issue, however, is that there is still no consensus about which operators must be supported be a CER
language and what their semantics should be. In our work, we follow [62] and [65] which have established some core
operators that are most often used. In a spirit similar to [65], we use automata as our computational model and define
a CER language whose expressions can readily be converted to automata. Instead of choosing one of the automaton
models already proposed in the CER literature, we employ symbolic regular expressions and automata [39, 38, 144].
The rationale behind our choice is that, contrary to other automata-based CER models, symbolic expressions and
automata have nice closure properties and clear, compositional semantics (see [65] for a similar line of work, based
on symbolic transducers).

7.3.1 Symbolic Expressions and Automata

The main idea behind symbolic automata is that each transition, instead of being labeled with a symbol from an alphabet,
is equipped with a unary formula from an effective Boolean algebra. A symbolic automaton can then read strings of
elements and, upon reading an element while in a given state, can apply the predicates of this state’s outgoing transitions
to that element. The transitions whose predicates evaluate to TRUE are said to be “enabled” and the automaton moves
to their target states.

The formal definition for an effective boolean algebra is the following:

Definition 5 (Effective boolean algebra [39]). An effective Boolean algebra is a tuple (D , Ψ, J K, ⊥, >, ∨, ∧, ¬) where

• D is a set of domain elements;

• Ψ is a set of predicates closed under the Boolean connectives;

• ⊥,> ∈Ψ ;

• the component J K : Ψ→ 2D is a denotation function such that

– J⊥K = /0

– J>K = D

– and ∀φ ,ψ ∈Ψ:

∗ Jφ ∨ψK = JφK∪ JψK

∗ Jφ ∧ψK = JφK∩ JψK

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

78 of 134

∗ J¬φK = D \ JφK

It is also required that checking satisfiability of φ , i.e., whether JφK 6= /0, is decidable and that the operations of ∨, ∧
and ¬ are effectively computable.

Using our running example, such an algebra could be one consisting of two predicates about the speed level of a
vessel, e.g., speed < 5 and speed > 20, along with their combinations constructed from the Boolean connectives, e.g.,
¬(speed < 5)∧¬(speed > 20).

Elements of D are called characters and finite sequences of characters are called strings. A set of strings L constructed
from elements of D (L ⊆D∗, where ∗ denotes Kleene-star) is called a language over D .

As with classical regular expressions [69], we can use symbolic regular expressions to represent a class of languages
over D .

Definition 6 (Symbolic regular expression). A symbolic regular expression (SRE) over an effective Boolean algebra
(D , Ψ, J K, ⊥, >, ∨, ∧, ¬) is recursively defined as follows:

• The constants ε and /0 are symbolic regular expressions with L (ε) = {ε} and L (/0) = { /0};

• If ψ ∈Ψ, then R := ψ is a symbolic regular expression, with L (ψ) = JψK, i.e., the language of ψ is the subset
of D for which ψ evaluates to TRUE;

• If R1 and R2 are symbolic regular expressions, then R := R1 +R2 is also a symbolic regular expression, with
L (R) = L (R1)∪L (R2);

• If R1 and R2 are symbolic regular expressions, then R := R1 · R2 is also a symbolic regular expression, with
L (R) = L (R1) ·L (R2), where · denotes concatenation. L (R) is then the set of all strings constructed from
concatenating each element of L (R1) with each element of L (R2);

• If R is a symbolic regular expression, then R′ := R∗ is a symbolic regular expression, with L(R∗) = (L(R))∗, where
L∗ =

⋃
i≥0

Li and Li is the concatenation of L with itself i times.

As an example, if we want to detect instances of a vessel accelerating suddenly, we could write the expression R :=
(speed < 5) · (speed > 20). The third and fourth events of the stream of Table 9 would then belong to the language of
R.

Given a Boolean algebra, we can also define symbolic automata. The formal definition for a symbolic automaton is the
following:

Definition 7 (Symbolic automaton [39]). A symbolic finite automaton (SFA) is a tuple M =(A , Q, qs, F, ∆), where

• A is an effective Boolean algebra;

• Q is a finite set of states;

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

79 of 134

1start 2 3
speed < 5 speed > 20

(a) SFA corresponding to the SRE R := (speed < 5) · (speed > 20).

qsstart qsR · · · qfR

>

ε · · · · · ·

MR

(b) Streaming SFA corresponding to a SRE R. The SFA MR corresponds to R and an extra
state with a self-loop is added to make the SFA streaming.

0start 1 2 3

>

ε speed < 5 speed > 20

(c) Streaming SFA corresponding to the SRE R := (speed < 5) · (speed > 20).

Figure 23: Examples of symbolic automata and streaming symbolic automata.

• qs ∈ Q is the initial state;

• Q f ⊆ Q is the set of final states;

• ∆⊆ Q×ΨA ×Q is a finite set of transitions.

A string w = a1a2a · · ·ak is accepted by a SFA M iff, for 1 ≤ i ≤ k, there exist transitions qi−1
ai→ qi such that q0 = qs

and qk ∈ Q f . We refer to the set of strings accepted by M as the language of M, denoted by L (M) [39]. Figure 23a
shows a SFA that can detect the expression of sudden acceleration for our running example.

As with classical regular expressions and automata, we can prove that every symbolic regular expression can be trans-
lated to an equivalent (i.e., with the same language) symbolic automaton.

Proposition 2. For every symbolic regular expression R there exists a symbolic finite automaton M such that L (R) =
L (M).

Proof. The proof is essentially the same as that for classical expressions and automata [69]. It is a constructive proof
starting from the base case of an expression that is a single predicate (instead of a symbol, as in classical expressions)
and then proceeds in a manner identical to that of the classical case.

7.3.2 Streaming Expressions and Automata

Our discussion thus far has focused on how SRE and SFA can be applied to strings that are known in their totality
before recognition. However, in CER we need to handle continuously updated streams of events and detect instances

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

80 of 134

of SRE satisfaction as soon as they appear in a stream. In order to accommodate this scenario, slight modifications are
required so that SRE and SFA may work in a streaming setting. First, we note that events come in the form of tuples
with both numerical and categorical values. Using database terminology we can speak of tuples from relations of a
database schema [65]. These tuples constitute the set of domain elements D . A stream S then has the form of an infinite
sequence S = t1, t2, · · · , where each ti is a tuple (ti ∈D). Our goal is to report the indexes i at which a CE is detected.

More precisely, if S1..k = · · · , tk−1, tk is the prefix of S up to the index k, we say that an instance of a SRE R is detected
at k iff there exists a suffix Sm..k of S1..k such that Sm..k ∈L (R). In order to detect CEs of a SRE R on a stream, we use
a streaming version of SRE and SFA.

Definition 8 (Streaming SRE and SFA). If R is a SRE, then Rs =>∗ ·R is called the streaming SRE (sSRE) correspond-
ing to R. A SFA MRs constructed from Rs is called a streaming SFA (sSFA) corresponding to R.

Using Rs we can detect CEs of R while consuming a stream S, since a stream segment Sm..k is recognized by R iff the
prefix S1..k is recognized by Rs. The prefix >∗ lets us skip any number of events from the stream and start recognition
at any index m,1 ≤ m ≤ k. Note that sSRE and sSFA are just special cases of SRE and SFA respectively. Therefore,
every result that holds for SRE and SFA also holds for sSRE and sSFA as well. Figure 23b shows how a sSFA can be
constructed from a SRE R and Figure 23c shows a concrete sSFA for R := (speed < 5) · (speed > 20).

Proposition 3. If S = t1, t2, · · · is a stream of domain elements from an effective Boolean algebra (D , Ψ, J K, ⊥, >,
∨, ∧, ¬) (ti ∈ D) and R is a symbolic regular expression over the same algebra, then, for every Sm..k, Sm..k ∈L (R) iff
S1..k ∈L (Rs) (and S1..k ∈L (MRs)).

Proof. The proof is trivial. First, assume that Sm..k ∈ L (R) for some m,1 ≤ m ≤ k (we set S1..0 = ε). Then, for
S1..k = S1..(m−1) · Sm..k, S1..(m−1) ∈ L (>∗), since >∗ accepts every string (sub-stream), including ε . We know that
Sm..k ∈L (R), thus S1..k ∈L (>∗) ·L (R) = L (>∗ ·R) = L (Rs). Conversely, assume that S1..k ∈L (Rs). Therefore,
S1..k ∈L (>∗ ·R) =L (>∗) ·L (R). As a result, S1..k may be split as S1..k = S1..(m−1) ·Sm..k such that S1..(m−1) ∈L (>∗)
and Sm..k ∈L (R). Note that S1..(m−1) = ε is also possible, in which case the result still holds, since ε ∈L (>∗).

As an example, if R := (speed < 5) · (speed > 20) is the pattern for sudden acceleration, then its sSRE would be R′ :=
>∗ · (speed < 5) · (speed > 20). Then, after consuming the fourth event of the stream of Table 9, S1..4 would belong to
the language of L (R) and S3..4 to the language of L (R′). Note that sSRE and sSFA are just special cases of SRE and SFA
respectively. Therefore, every result that holds for SRE and SFA also holds for sSRE and sSFA as well. Figure 23b shows
how a sSFA can be constructed from a SRE R and Figure 23c shows a concrete sSFA for R := (speed < 5) ·(speed > 20).

The streaming behavior of a sSFA as it consumes a stream S can be formally described through the notion of configura-
tion:

Definition 9 (Configuration of sSFA). Assume S = t1, t2, · · · is a stream of domain elements from an effective Boolean
algebra, R a symbolic regular expression over the same algebra and MRs a sSFA corresponding to R. A configuration c
of MRs is a tuple [i,q], where i is the current position of the stream (the index of the next event to be consumed) and q
the current state of MRs . We say that c′ = [i′,q′] a successor of c iff:

• ∃δ ∈MRs .∆ : δ = (q,ψ,q′)∧ (ti ∈ JψK∨ψ = ε);

• i = i′ if δ = ε . Otherwise, i′ = i+1.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

81 of 134

We denote a succession by [i,q] δ→ [i′,q′].

For the initial configuration cs, before consuming any events, we have that i = 1 and cs.q = MRs .q
s, i.e. the state of

the first configuration is the initial state of MRs . In other words, for every index i, we move from our current state q to
another state q′ if there is an outgoing transition from q to q′ and the predicate on this transition evaluates to TRUE for
ti. We then increase the reading position by 1. Alternatively, if the transition is an ε-transition, we move to q′ without
increasing the reading position.

The actual behavior of a sSFA upon reading a stream is captured by the notion of the run:

Definition 10 (Run of sSFA over stream). A run ρ of a sSFA M over a stream S1..k is a sequence of successor configu-

rations [1,q1 = M.qs]
δ1→ [2,q2]

δ2→ ··· δk→ [k+1,qk+1]. A run is called accepting iff qk+1 ∈M.Q f .

It is easy to see that a run ρ of a sSFA MRs over a stream S1..k is accepting iff S1..k ∈L (Rs), since MRs , after reading
S1..k, must have reached a final state. Therefore, for a sSFA that consumes a stream, the existence of an accepting run
with configuration index k+1 implies that a CE for the SRE R has been detected at the stream index k.

We conclude this section with some remarks about the expressive power of SRE and SFA and how it meets the re-
quirements of a CER system. As discussed in [62, 65], besides the three operators of regular expressions that we have
presented and implemented, there exist some extra operators which should be supported by a CER system. Negation
is one them. If we use ! to denote the negation operator, then R′ :=!R defines a language which is the complement of
the language of R. Since SFA are closed under complement [39], negation is an operator that can be supported by our
framework. The same is true for the operator of conjunction. If we use ∧ to denote conjunction, then R := R1 ∧R2

is an expression whose language consists of concatenated elements of L (R1) and L (R2), regardless of their order,
i.e., L (R) = L (R1) ·L (R2)∪L (R2) ·L (R1). This operator can thus be equivalently expressed using the already
available operators of concatenation (·) and disjunction (+). Another important notion in CER is that of selection poli-
cies. An expression like R := R1 ·R2 typically implies that an instance of R2 must immediately follow an instance of
R1. As a result, for the stream of Table 9 and R := (speed < 5) · (speed > 20), only one match will be detected at
timestamp = 4. With selection policies, we can relax the requirement for contiguous instances. For example, with the
so-called skip-till-any-match policy, any number of events are allowed to occur between R1 and R2. If we apply this policy
on R := (speed < 5) · (speed > 20), we would detect six CEs, since the first three events of Table 9 can be matched
with the two events at timestamp = 4 and at timestamp = 6, if we ignore all intermediate events. Selection policies can
also be accommodated by our framework. For a proof, using symbolic transducers, see [65]. Notice, for example, that
an expression R := R1 ·R2 can be evaluated with skip-till-any-match by being rewritten as R′ := R1 ·>∗ ·R2, so that any
number of events may occur between R1 and R2. Support for hierarchies, i.e., the ability to define patterns in terms of
other patterns, is yet another important feature in many CER systems. Since SRE and SFA are compositional by nature,
hierarchies are supported by default in our framework. Although we do not treat these operators and functionalities
explicitly, their incorporation is possible within the expressive limits of SRE and SFA and the results that we present in
the next sections would still hold.

However, there is one functionality that we do not currently support and whose incorporation would require us to move
to a more advanced automaton model. This is the functionality of applying n-ary (with n > 1) predicates to two or more
sub-expressions of an expression, instead of only unary predicates, as is allowed in symbolic automata. As an example,
consider the pattern R := x · y WHERE y.speed > x.speed, detecting an increase in the speed of a vessel, where we now
need to use the variables x and y. Such patterns cannot be captured with SFA since they would require a memory
structure to store some of the past events of a stream, as is possible with extended symbolic automata [38]. We intend
to present in future work an automaton model which can support patterns with memory, suitable for CER. Finally, it is

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

82 of 134

often the case that, in addition to detecting when a CE occurs, we also need to know which of the input events take part
into a detected CE. This functonality would require the use of symbolic transducers in order to mark the input events
according to whether they belong to a match or not [65]. We do not pay particular attention to this requirement in our
work, since our goal is to forecast the occurrence of CEs, without needing to report the input events that lead to a CE
occurrence.

7.4 Complex Event Forecasting with Prediction Suffix Trees

The main idea behind our forecasting method is the following: Given a pattern R in the form of a SRE, we first construct
a sSFA as described in the previous section. For event recognition, this would already be enough and this sSFA could be
used to perform recognition. In order to be able to perform event forecasting, we use this sSFAto construct an equivalent
deterministic SFA (DSFA). This DSFA can then be converted to a Markov chain that encodes dependencies among the
events in an input stream. The Markov chain is learned from a portion of the input stream which acts as a training
dataset and it is then used to derive probabilistic forecasts about when the DSFA is expected to reach a final state or,
equivalently, about when a CE defined by R is expected to occur. The issue that we address is how to build a Markov
chain which retains only meaningful long-term dependencies.

7.4.1 Preliminary definitions and results

The definition of DSFA is similar to that for classical deterministic automata. Intuitively, we require that, for every state
and every tuple/character, the SFA can move to at most one next state upon reading that tuple/character. It is important to
note though that it is not enough to require that all outgoing transitions from a state have different predicates as guards,
since two predicates may be different but still both evaluate to TRUE for the same tuple. Therefore, the formal definition
for DSFA must take this into account:

Definition 11 (Deterministic SFA [39]). A SFA M is deterministic if, for all transitions (q,ψ1,q1),(q,ψ2,q2) ∈M.∆, if
q1 6= q2 then Jψ1∧ψ2K = /0.

Using this definition for DSFA it can be proven that SFA are indeed closed under determinization [39]. The determiniza-
tion process first needs to create the minterms of the predicates of a SFA M (the set of maximal satisfiable Boolean
combinations of such predicates), denoted by Minterms(Predicates(M)), and then use these minterms as guards for the
DSFA [39].

Note that there are then two factors that can lead to a combinatorial explosion of the number of states of the resulting
DSFA: first, the fact that the powerset of the states of the original SFA must be constructed (similarly to classical
automata); second, the fact that the number of minterms (and, thus, outgoing transitions from each DSFA state) is an
exponential function of the number of the original SFA predicates. In order to mitigate this doubly exponential cost, we
follow two simple optimization techniques. As is typically done with classical automata as well, instead of constructing
the powerset of states of the SFA and then adding transitions, we construct the states of the DSFA incrementally, starting
from its initial state, without adding states that will be inaccessible in the final DSFA. We can also reduce the number
of minterms by taking advantage of some previous knowledge about some of the predicates that we might have. In
cases where we know that some of the predicates are mutually exclusive, i.e., at most one of them can evaluate to TRUE,
then we can both discard some minterms and simplify some others. This is a very common case in CER where we
typically know that each event may have only one event type. For example, if we have two predicates, ψA := speed < 5

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

83 of 134

Table 10: The set of simplified minterms for the predicates ψA := speed < 5 and ψB := speed > 20.

Original Simplified Reason

ψA∧ψB discard unsatisfiable

ψA∧¬ψB ψA ψA � ¬ψB

¬ψA∧ψB ψB ψB � ¬ψB

¬ψA∧¬ψB ¬ψA∧¬ψB for events whose speed is between 5 and 20

and ψB := speed > 20, then we also know that ψA and ψB are mutually exclusive. As a result, we can simplify the
minterms, as shown in Table 10.

Before moving to the discussion about how a DSFA can be converted to a Markov chain, we provide a lemma that
will help in simplifying our notation. First note that Minterms(Predicates(M)) induces a finite set of equivalence
classes on the (possibly infinite) set of domain elements of M [39]. For example, if Predicates(M) = {ψ1,ψ2}, then
Minterms(Predicates(M)) = {ψ1∧ψ2,ψ1∧¬ψ2,¬ψ1∧ψ2,¬ψ1∧¬ψ2} and we can map each domain element, which,
in our case, is a tuple, to exactly one of these 4 minterms: the one that evaluates to TRUE when applied to the element.
Similarly, the set of minterms induces a set of equivalence classes on the set strings (event streams in our case). For
example, if S=t1, · · · , tk is an event stream, then it could be mapped to S′=a, · · · ,b, with a corresponding to ψ1∧¬ψ2 if
ψ1(t1)∧¬ψ2(t1) = TRUE, b to ψ1∧ψ2, etc.

Definition 12 (Stream induced by the minterms of a DSFA). If S is a stream from the domain elements of the algebra
of a DSFA M and T = Minterms(Predicates(M)), then we say that S′ is the stream induced by applying T on S, i.e., it
is the equivalence class of S induced by T .

We can now prove a useful lemma, which states that for every DSFA there exists an “equivalent” classical deterministic
automaton.

Lemma 1. For every deterministic symbolic automaton Ms there exists a deterministic classical automaton Mc such
that L (Mc) is the set of strings induced by applying T = Minterms(Predicates(Ms)) to L (Ms).

Proof. From an algebraic point of view, the set T = Minterms(Predicates(M)) may be treated as a generator of the
monoid T ∗, with concatenation as the operation. If the cardinality of T is k, then we can always find a set Σ =

{a1, · · · ,ak} of k distinct symbols and then a morphism (in fact, an isomorphism) φ : T ∗→ Σ∗ that maps each minterm
to exactly one, unique ai. A classical deterministic automaton Mc can then be constructed by relabeling the DSFA Ms

under φ , i.e., by copying/renaming the states and transitions of the original DSFA Ms and by replacing the label of each
transition of Ms by the image of this label under φ . Then, the behavior of Mc (the language it accepts) is the image
under φ of the behavior of Ms [129]. Or, equivalently, the language of Mc is the set of strings induced by applying
T = Minterms(Predicates(Ms)) to L (Ms).

A direct consequence drawn from the proof of the above lemma is that, for every run ρ = [1,q1]
δ1→ [2,q2]

δ2→ ··· δk→
[k+1,qk+1] followed by Ms by consuming a symbolic string (stream of tuples) S, the run that Mc follows by consuming

the induced string S′ is also ρ ′ = [1,q1]
δ1→ [2,q2]

δ2→ ·· · δk→ [k+1,qk+1], i.e., it follows the same copied/renamed states
and the same copied/relabeled transitions.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

84 of 134

0start 1 2 3

b, c

a

a

c

b

c

a

b a

b, c

Figure 24: A classical automaton for the expression R := a · c·. State 1 can always remember the last symbol seen, since
it can be reached only with a, whereas state 0 can be reached either with a b or a c.

This direct relationship between DSFA and classical DFA allows us to transfer techniques developed for classical DFA
to the study of DSFA. Moreover, we can simplify our notation by employing the terminology of symbols/characters and
strings/words that is typical for classical automata. From now on, we will be using symbols and strings as in classical
theories of automata and strings (simple lowercase letters to denote symbols), but the reader should bear in mind that,
in our case, each symbol always corresponds to a predicate and, more precisely, to a minterm of a DSFA.

7.4.2 Variable-order Markov Models

Assuming that we have a deterministic automaton, the next question is how we can build a Markov chain that describes
its (probabilistic) behavior so that we can then make inferences about this behavior. A straightforward approach would
be to simply map each state of the automaton to a state of a Markov chain, then feed a training stream of symbols
to the automaton, count the number of transitions from each state to every other target states and use these counts to
calculate the transition probabilities. This is the approach followed in [110]. One important question with respect to
this approach concerns the order of the states of the Markov chain, i.e., how deep into the past a state can look when
calculating its transition probabilities. The answer is that this order essentially depends on the structure of the pattern
and not on the training data. As an example, consider a state of an automaton whose incoming transitions all have a as
a symbol/guard. Due to this fact, this state implicitly encodes the fact that the last symbol consumed is always a. The
transition probabilities from this state are thus conditional on a and the order of the state can be said to be 1. In Figure
24, state 1 is such a state, since all its incoming transitions are labeled with a. If, however, there exists at least one other
incoming transition whose symbol is not a, then the state can no longer implicitly remember the last seen symbol and
its order collapses to 0. This is the case of state 0 in Figure 24, which we can reach by seeing either a b or a c symbol.
As a result, with this approach, there is no guarantee that dependencies may be captured. In the worst case, the order
can be 0 for all states, thus essentially assuming that the stream is composed of i.i.d. events.

An alternative approach, followed in [9, 8], is to first set a maximum order m that we need to capture and then iteratively
split each state of the original automaton into as many states as required so that each new state can remember the past
m symbols that have led to it. The new automaton that results from this splitting process is equivalent to the original,
in the sense that they recognize the same language, but can always remember the last m symbols of the stream. With
this approach, it is indeed possible to guarantee that m-order dependencies can be captured. As expected though, higher
values of m can quickly lead to an exponential growth of the number of states and the approach may be practical only
for low values of m.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

85 of 134

Our proposed approach uses a variable-order Markov model (VMM) to mitigate the high cost of increasing the order
m [23, 26, 127, 126, 33, 149]. As a result, we can increase m to values not possible with the previous approaches and
thus capture longer-term dependencies, which can lead to a better accuracy. Additionally, even when the accuracy of
a VMM-based method is comparable to that of a full-order Markov model, we can show that VMM-based methods
typically have better training times and throughput performance (when used in a streaming setting, as in our case). An
alternative would be to use hidden Markov models (HMMs) [121], which are generally more expressive than bounded-
order (either full or variable) Markov models, since they can encode the whole past of a sequence. However, HMMs
ofter require large training datasets [23, 3]. Another problem is that it is not always obvious how a domain can be
modelled through HMMs and a deep understanding of the domain may be required [23]. Consider, for example, our
case of automata-based CER. Even with the previous approaches mentioned above, there is a natural way to map an
automaton to a Markov chain, whereas the relation between an automaton and the observed state of a HMM is not
straightforward.

Various Markov models of variable order have been proposed in the past, such as Prediction by Partial Matching (PPM)
[33], Context Tree Weighting (CTW) [149] and Prediction Suffix Trees (PST) [127, 126]. Event the famous LZ-78
compression algorithm [156] and its variants may be viewed as belonging to the class of VMMs. For a nice compar-
ative study, see [23]. Compression is the main goal of these methods, but they can also be used for prediction, since
compression and prediction are the two sides of the same coin. Every compression algorithm can be used as a prediction
algorithm as well and vice versa. The general idea behind all these approaches is to derive a predictor P̂ from the training
data such that the average log-loss with respect to a test sequence S1..k, given by l(P̂,S1..k)=− 1

T ∑
k
i=1 logP̂(ti | t1 · · · ti−1),

is minimized. This is equivalent to maximizing the likelihood P̂(S1..k) = ∏
k
i=1 P̂(ti | t1 . . . ti−1). The average log-loss

may also be viewed as a measure of the average compression rate of the test sequence [23]. The mean log-loss
(−EP{logP̂(S1..k)}) is minimized if the derived predictor P̂ is indeed the actual distribution P of the source emitting
sequences.

Let Σ denote an alphabet, σ ∈ Σ a symbol from that alphabet and s ∈ Σm a string from that alphabet of length m.
For full-order Markov models, the predictor P̂ is derived through learning conditional distributions P̂(σ | s), where m
is constant and equal to the assumed order of the Markov model. VMMs, on the other hand, learn such conditional
distributions by relaxing the assumption of m being fixed. The length of the context s (as is usually called) may vary,
up to a maximum order mmax, according to the statistics of the training dataset. By looking deeper into the past only
when it is statistically meaningful, VMMs can capture both short- and long-term dependencies. The learning process
can be broken down into three main components [23]: counting, where we count how many times a symbol σ appears
after a context s and derive conditional probabilities; smoothing, where we take into account symbols that belong to the
alphabet but never appear in the training dataset; and modeling itself, which may follow various directions, e.g., either
pre-determining mmax or let it be decided by the data.

7.4.3 Prediction Suffix Trees

We use Prediction Suffix Trees (PST), as described in [127, 126], as our VMM of choice. The reason is that, after a PST
has been learned, it can be readily converted to a probabilistic automaton, which, as we will show, can then be combined
with a symbolic automaton. More precisely, we learn a probabilistic suffix automaton (PSA), whose states correspond
to contexts of variable length and the outgoing transitions from each state encode the conditional distribution of seeing a
symbol given the context of that state. This PSA is then embedded into each state of the DSFA of a sSRE R, which then
allows us to infer when the DSFA will reach one of its final states, taking into account at the same time the statistical
properties of the stream, as encoded into the PSA.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

86 of 134

The formal definition of a PST is the following:

Definition 13 (Prediction Suffix Tree [127]). Let Σ be an alphabet. A PST T over Σ is a tree whose edges are labeled
by symbols σ ∈ Σ and each internal node has exactly one edge for every σ ∈ Σ (hence, the degree is | Σ |). Each node is
labeled by a pair (s,γs), where s is the string associated with the walk starting from that node and ending in the root, and
γs : Σ→ [0,1] is the next symbol probability function related with s. For every string s labeling a node, ∑σ∈Σ γs(σ) = 1.

Figure 25b shows an example of a PST . Note that a PST whose leaves are all of equal depth m corresponds to a full-
order Markov model of order m, as its paths from the root to the leaves correspond to every possible context of length m.
The goal is to incrementally learn a PST T̂ by adding new nodes only when it is necessary and then use T̂ to construct
a PSA M̂ that would be close enough to the actual PSA M that has generated the training data. The learning algorithm
in [127] starts with a tree having only a single node, corresponding to the empty string ε . Then, it decides whether to
add a new context/node s by checking two conditions that must hold:

• first, there must exist σ ∈ Σ such that P̂(σ | s)> θ1 must hold, i.e., σ must appear “often enough” after s;

• second, P̂(σ |s)
P̂(σ |su f f ix(s))

> θ2 must hold, i.e., it is “meaningful enough” to expand to s because there is a significant
difference in the conditional probability of σ given s with respect to the same probability given the shorter context
su f f ix(s).

The thresholds θ1 and θ2 depend, among others, on an approximation parameter ε , measuring how close we want the
estimated PSA M̂ to be compared to M, on n, denoting the maximum number of states that we allow M̂ to have and on
mmax, denoting the maximum order/length of the dependencies we want to capture. For more details, see [127].

After a PST T̂ has been learned, we can convert it to a PSA M̂. The formal definition for PSA is the following:

Definition 14 (Probabilistic Suffix Automaton [127]). A Probabilistic Suffix Automaton M is a tuple (Q,Σ,τ,γ,π),
where:

• Q is a finite set of states;

• Σ is a finite alphabet;

• τ : Q×Σ→ Q is the transition function;

• γ : Q×Σ→ [0,1] is the next symbol probability function;

• π : Q→ [0,1] is the initial probability distribution over the starting states;

The following conditions must hold:

• For every q ∈ Q, it must hold that ∑σ∈Σ γ(q,σ) = 1 and ∑q∈Q π(q) = 1;

• Each q ∈ Q is labeled by a string s ∈ Σ∗ and the set of labels is suffix free, i.e., no label s is a suffix of another
label s′;

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

87 of 134

• For every two states q1,q2 ∈ Q and for every symbol σ ∈ Σ, if τ(q1,σ) = q2 and q1 is labeled by s1, then q2 is
labeled by s2, such that s2 is a suffix of s1 ·σ ;

• For every s labeling some state q, and every symbol σ for which γ(q,σ)> 0, there exists a label which is a suffix
of s ·σ ;

• Finally, the graph of M is strongly connected.

Figure 25c shows an example of a PSA. Note that a PSA does not act as an acceptor (there are no final states), but can
act as a generator of strings. It can use π , its initial distribution on states, to select an initial state and generate its label
as a first string and then continuously use γ to generate a symbol, move to a next state and repeat the same process.
At every time, the label of its state is always a suffix of the string generated thus far. It is also clear that a PSA is a
Markov chain as well. τ and γ can be combined into a single function, ignoring the symbols, and this function, together
with the first condition, would define a transition matrix of a Markov chain. The last condition about M being strongly
connected also ensures that the Markov chain is composed of a single recurrent class of states.

A PSA may also be used to read a string or stream of symbols. In this mode, the state of the PSA at every moment
corresponds again to a suffix of the stream and the PSA can be used to calculate the probability of seeing any given
string in the future, given the label of its current state. Our intention is to use this derived PSA to process streams of
symbols, so that, while consuming a stream S1..k, we can know what its meaningful suffix and use that suffix for any
inferences.

However, there is a subtle technical issue about the convertibility of a PST to a PSA. Not every PST can be converted
to a PSA (but every PST can be converted to a larger class of so-call probabilistic automata). This is achievable under a
certain condition. If this condition does not hold, then the PST can be converted to an automaton that is composed of
a PSA as usual, with the addition of some extra states. These states, viewed as states of a Markov chain, are transient.
This means that the automaton will move through these states for some transitions, but it will finally end into the states
of the PSA, stay in that class and never return to any of the transient states. In fact, if the automaton starts in any of the
transient states, then it will enter the single, recurrent class of the PSA in at most mmax transitions. Given the fact that
in our work we deal with streams of infinite length, it is certain that, while reading a stream, the automaton will have
entered the PSA after at most mmax symbols. Thus, instead of checking this condition, we prefer to simply construct
only the PSA and wait (for at most mmax symbols) until the first m ≤ mmax symbols of a stream have been consumed
and are equal to a label of the PSA. At this point, we set the current state of the PSA to the state with that label and start
processing.

7.4.4 Embedding of a PSA in a DSFA

Our final goal is to use the statistical properties of a stream, as encoded in a PSA, in order to be able to infer when a
CE of a given SRE R will be detected. Equivalently, we are interested in inferring when the SFA of R will have reached
one of its final states. To achieve this goal, we work in the following way. We are initially given a SRE R along with a
training stream S. We first use R to construct an equivalent sSFA and then determinize this sSFA into a DSFA MR. MR

can be used to perform recognition on any given stream, but cannot be used for any probabilistic inferences. Our next
step is to use the minterms of MR (acting as “symbols”, see Lemma 1) and the training stream S to learn a PSA MS which
encodes the statistical properties of S, but has no knowledge of the structure of R (it only knows its minterms), is not
an acceptor and cannot be used for recognition. At this point, we have two different automata, MR for recognition, and

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

88 of 134

MS, describing the properties of the training dataset. We can then combine MR and MS into a single automaton M that
has the power of both MR and MS and can be used both for recognition and for inferring, according to the properties of
S, when a CE of R will be detected. We call M the embedding of MS in MR. Its formal definition is given below, where,
in order to simplify notation, we use Lemma 1 so that a DSFA is represented as a classical deterministic automaton.

Definition 15 (Embedding of a PSA in a DSFA). Let MR be a DSFA (its mapping to a classical automaton) and MS a
PSA with the same alphabet. An embedding of MS in MR is a tuple M = (Q,Qs,Q f ,Σ,∆,Γ), where:

• Q is a finite set of states;

• Qs ⊆ Q is the set of initial states;

• Q f ⊆ Q is the set of final states;

• Σ is a finite alphabet;

• ∆ : Q×Σ→ Q is the transition function;

• Γ : Q×Σ→ [0,1] is the next symbol probability function;

• π : Q→ [0,1] is the initial probability distribution.

The language L (M) of M is defined, as usual, as the set of strings that lead M to a final state. The following conditions
must hold:

• Σ = MR.Σ = MS.Σ;

• L (M) = L (MR);

• For every string/stream S1..k, PM(S1..k) = PMS(S1..k), where PM denotes the probability of a string calculated by
M (through Γ) and PMS the probability calculated by MS (through γ).

The first condition ensures that all automata have the same alphabet. The second condition ensures that M is equivalent
to MR by having the same language. The third condition ensures that M is also equivalent to MS, since both automata
return the same probability for every string.

It can be shown that such an equivalent embedding can indeed be constructed for every DSFA and PSA.

Theorem 3. For every DSFA MR and PSA MS learned with the minterms of MR, there exists an embedding of MS in MR

that is equivalent to both MR and MS.

Proof. Construct an embedding in the following straightforward manner: First let its states be the product MR.Q×MS.Q,
i.e., for every q ∈ Q, q = (r,s) and r ∈MR.Q, s ∈MS.Q. Set the initial states of M as follows: for every q = (r,s) such
that r = MR.qs, set q ∈ Qs. Similarly, for the final states, for every q = (r,s) such that r ∈MR.Q f , set q ∈ Q f . Then let

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

89 of 134

0start 1 2

b, c

a

a

b

c a

b, c

(a) DSFA MR for R := a ·b and Σ=

{a,b,c}.

ε,(0.33,0.33,0.33)

a,(0.9,0.05,0.05) b,(0.05,0.9,0.05) c,(0.05,0.05,0.9)

(b) Example PST T for Σ = {a,b,c}.

a

bc

a/0.9

b/0.05

c/0.05 b/0.9

c/0.05

a/0.05

c/0.9

a/0.05

b/0.05

(c) Example PSA MS constructed
from T .

(0, a)

start

(0, b) start

(0, c)

start

(1, a)

(1, b)

(1, c)

(2, a)

(2, b)

(2, c)

a/0.9

b/0.05
c/0.05

a/0.05

b/0.9

c/0.05

a/0.05

b/0.05

c/0.9

a/0.9

b/0.05

c/0.05

a/0.05

b/0.9

c/0.05

a/0.05

b/0.9

c/0.05

a/0.05
b/0.05

c/0.9

a/0.9

b/0.05

c/0.05

a/0.05

b/0.05

c/0.9

(d) Embedding of MS in MR.

Figure 25: Embedding example.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

90 of 134

the transitions of M be defined as follows: A transition δ ((r,s),σ) = (r
′
,s
′
) is added to M if there exists a transition

δR(r,σ) = r
′

in MR and a transition τ(s,σ) = s
′

in MS. Let also Γ be defined as follows: Γ((r,s),σ) = γ(s,σ). Finally,
for the initial state distribution, we set:

π((r,s)) =

{
MS.π(s) if r = MR.qs

0 otherwise

Proving that L (M) = L (MR) is done with induction on the length of strings. The inductive hypothesis is that, for
strings S1..k = t1 · · · tk of length k, if q = (r,s) is the state reached by M and qR the state reached by MR, then r = qR.
Note that both MR and M are deterministic and complete automata and thus only one state is reached for every string
(only one run exists). If a new element tk+1 is read, M will move to a new state q

′
= (r

′
,s
′
) and MR to q

′
R. From the

construction of the transitions of M, we see that r
′
= q

′
R. Thus, the induction hypothesis holds for S1..k+1 as well. It also

holds for k = 0, since, for every q = (r,s) ∈ Qs, r = MR.qs. Therefore, it holds for all k. As a result, if M reaches a final
state (r,s), r is reached by MR. Since r ∈MR.Q f , MR also reaches a final state.

For proving probabilistic equivalence, first note that the probability of a string given by a predictor P is P(S1..k) =

∏
k
i=1 P(ti | t1 . . . ti−1). Assume now that a PSA MS reads a string S1..k and follows a run ρ = [l,ql]

tl→ [l + 1,ql+1]
tl+1→

·· · tk→ [k+1,qk+1]. We define a run in a manner similar to that for runs of a DSFA. The difference is that a run of a PSA
may begin at an index l > 1, since it may have to wait for l symbols before it can find a state ql whose label is equal to
S1..l . We also treat the PSA as a reader (not a generator) of strings for which we need to calculate their probability. The
probability of S1..k is then given by PMS(S1..k) = MS.π(ql) ·∏k

i=l MS.γ(qi, ti). Similarly, for the embedding M, assume

it follows the run ρ
′
= [l,q

′
l]

tl→ [l + 1,q
′
l+1]

tl+1→ ·· · tk→ [k+ 1,q
′
k+1]. Then, PM(S1..k) = M.π(q

′
l) ·∏k

i=l M.Γ(q
′
i, ti). Now

note that M has the same initial state distribution as MS, i.e., the number of the initial states of M is equal to the number
of states of MS and they have the same distribution. With an inductive proof, as above, we can prove that whenever M
reaches a state q = (r,s) and MS reaches qS, s = qS. As a result, for the initial states of M and MS, M.π(q

′
l) = MS.π(ql).

From the construction of the embedding, we also know that MS.γ(s,σ) = M.Γ(q,σ) for every σ ∈ Σ. Therefore,
MS.γ(qi, ti) = M.Γ(q

′
i, ti) for every i and PM(S1..k) = PMS(S1..k).

As an example, consider the DSFA MR of Figure 25a for the expression R = a · b with Σ = {a,b,c}. We present it as
a classical automaton, but we remind readers that symbols correspond to minterms. Thus, Σ is the set of minterms.
For example, a could correspond to the minterm ψA, b to ψB and c to ¬ψA ∧¬ψB of Table 10. Figure 25b depicts a
possible PST T that could be learned from a training stream composed of symbols from Σ. Figure 25c shows the PSA
MS constructed from T . For simplicity reasons, we assume that the stream is simple enough so that all labels/contexts
are of length 1. Figure 25d shows the embedding M that would be created, following the construction procedure of the
proof of Theorem 3. Notice, however, that this embedding has some redundant states and transitions. The red states
have no incoming transitions and are thus inaccessible. The reason is that some states of MR in Figure 25a have a
“memory” imbued to them from the structure of the automaton itself. Note that all incoming transitions to state 1 of
MR have a as their symbol. Similarly, state 2 has only one transition with b as its symbol. Therefore, there is no point
in merging state 1 of MR with all the states of MS, but only with state b. If we follow a straightforward construction, as
described above, the result will be the automaton depicted in Figure 25d, including the redundant red states. To avoid
the inclusion of such states, we can merge MR and MS in an incremental fashion (see Algorithm 11). The resulting
automaton would then consist only in the black states and transitions of Figure 25d.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

91 of 134

ALGORITHM 11: Embedding of a PSA in a DSFA (incremental).
Input: A DSFA MR and a PSA MS learnt with the minterms of MR

Output: An embedding M of MS in MR equivalent to both MR and MS

/* First create the initial states of the merged automaton by combining the initial state of MR with all the

states of MS. */

1 Qs← /0;
2 foreach s ∈MS.Q do
3 q← CreateNewState(MR.qs,s);

/* q is a tuple (r,s) */

4 Qs← Qs∪{q};
/* A frontier of states is created, including states of M that have no outgoing transitions yet. First

frontier consists of the initial states of M */

5 Frontier← Qs; Checked← /0; ∆← /0; Γ← /0;
6 while Frontier 6= /0 do
7 q← pick an element from Frontier;
8 foreach σ ∈MS.Σ do
9 snext ←MS.τ(q.s,σ); rnext ←MR.δ (q.r,σ);

10 if (rnext ,snext) /∈ Checked then
11 qnext ← CreateNewState(rnext ,snext);
12 Frontier← Frontier∪qnext ;
13 else
14 qnext ← (rnext ,snext);

/* Both the symbol σ and its probability are added to the transition. */

15 δ ← CreateNewTransition(q,σ ,qnext);
16 γ ← CreateNewProbability(q,σ ,MS.γ(q.s,σ));
17 ∆← ∆∪δ ; Γ← Γ∪ γ;

18 Checked← Checked∪{q}; Frontier← Frontier \{q};
19 Q← Checked;

/* Create the final states of M by gathering all states of M whose second element is a final state of MR.

*/

20 Q f ← /0;
21 foreach q ∈ Q do
22 if q.qR ∈MR.Q f then
23 Q f ← Q f ∪{q};
24 Σ←MS.Σ;
25 return M = (Q,Qs,Q f ,Σ,∆,Γ);

7.4.5 Emitting forecasts

After constructing an embedding M from a DSFA MR and a PSA MS, we can use M to perform forecasting on a test
stream. Since M is equivalent to MR, it can also consume a stream and detect the same instances of the initial expression
R as those of MR. Our goal is to forecast, after every event, when M will reach one of its final states. More precisely,
we want to estimate the number of transitions from any state M might be in until it reaches for the first time one of its
final states. Towards this goal, we can use the theory of Markov chains. Let N denote the set of non-final states of M

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

92 of 134

and F the set of its final states. We can organize the transition matrix of M in the following way (we use bold symbols
to refer to matrices and vectors):

Π =

(
N NF

FN F

)
(29)

where N is the sub-matrix containing the probabilities of transitions from non-final to non-final states, F the probabilities
from final to final states, FN the probabilities from final to non-final states and NF the probabilities from non-final to
final states. By partitioning the states of a Markov chain in two sets, such as N and F , the following theorem can then
be used to estimate the probability of reaching a state in F starting from a state in N:

Theorem 4 ([54]). Let Π be the transition probability matrix of a homogeneous Markov chain Yt in the form of Equation
(29) and ξ init its initial state distribution. The probability for the time index n when the system first enters the set of
states F, starting from a state in N, can be obtained from

P(Yn ∈ F,Yn−1 /∈ F, ...,Y1 /∈ F | ξinit) = ξN
T Nn−1(I−N)1 (30)

where ξN is the vector consisting of the elements of ξinit corresponding to the states of N.

In our case, the sets N and F have the meaning of being the non-final and final states of M. The above theorem then
gives us the desired probability of reaching a final state.

However, notice that this theorem assumes that we start in a non-final state (Y1 /∈ F). A similar result can be given if we
assume that we start in a final state.

Theorem 5. Let Π be the transition probability matrix of a homogeneous Markov chain Yt in the form of Equation (29)
and ξ init its initial state distribution. The probability for the time index n when the system first enters the set of states
F, starting from a state in F, can be obtained from

P(Yn ∈ F,Yn−1 /∈ F, · · · ,Y1 ∈ F | ξinit) =

{
ξF

T F1 if n = 2

ξF
T FNNn−2(I−N)1 otherwise

(31)

where ξF is the vector consisting of the elements of ξinit corresponding to the states of F.

Proof. Case where n = 2.
In this case, we are in a state i ∈ F and we take a transition that leads us back to F again. Therefore, P(Y2 ∈ F,Y1 = i ∈
F | ξinit) = ξ (i)∑ j∈F πi j, i.e., we first take the probability of starting in i and multiply it by the sum of all transitions
from i that lead us back to F . This result folds for a certain state i ∈ F . If we start in any state of F , P(Y2 ∈ F,Y1 ∈ F |
ξinit) = ∑i∈F ξ (i)∑ j∈F πi j. In matrix notation, this is equivalent to P(Y2 ∈ F,Y1 ∈ F | ξinit) = ξF

T F1.

Case where n > 2.
In this case, we must necessarily first take a transition from i ∈ F to j ∈ N, then, for multiple transitions we remain in
N and we finally take a last transition from N to F . We can write

P(Yn ∈ F,Yn−1 /∈ F, ...,Y1 ∈ F | ξinit) =P(Yn ∈ F,Yn−1 /∈ F, ...,Y2 /∈ F | ξ ′N)
=P(Yn−1 ∈ F,Yn−2 /∈ F, ...,Y1 /∈ F | ξ ′N)

(32)

where ξ
′
N is the state distribution (on states of N) after having taken the first transition from F to N. This is given by

ξ
′
N = ξF

T FN . By using this as an initial state distribution in 30 and running the index n from 1 to n−1, as in 32, we get

P(Yn ∈ F,Yn−1 /∈ F, ...,Y1 ∈ F | ξinit) = ξF
T FNNn−2(I−N)1

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

93 of 134

0start 1 2 3 4
a b b b

a

a

a

b

b a

(a) DFA.

1 2 3 4 5 6 7 8 9 10 11 12

Number of future events

0

0.2

0.4

0.6

0.8

1

C
o
m

p
le

ti
o
n
 P

ro
b
a
b
ili

ty

state:0
state:1
interval:3,8
state:2
state:3

(b) Waiting-time distributions and smallest interval exceeding θ f c =

50% for state 1.

Figure 26: Automaton and waiting-time distributions for R = a ·b ·b ·b, Σ = {a,b}.

Using Theorems 4 and 5, we can calculate the so-called waiting-time distributions for any state q of the automaton, i.e.,
the distribution of the index n, given by the waiting-time variable Wq = in f{n : Y0,Y1, ...,Yn,Y0 = q,q ∈ Q\F,Yn ∈ F}.
Note, however, that Theorems 4 and 5 provide us with a way to calculate the probability of reaching a final state, given
an initial state distribution ξinit . In our case, where we have an automaton moving through its various states, ξinit has
a special form. As the automaton consumes a stream, it always finds itself (with certainty) in a specific state q. As a
result, for each state q that the automaton might find itself in, ξinit is a vector with all of its elements being equal to 0,
except for the element corresponding to the current state of the automaton, which is equal to 1.

Figure 26 shows an example of an automaton (its exact nature is not important, as long as it can also be described as
a Markov chain), along with the waiting-time distributions for its non-final states. For this example, if the automaton
is in state 2, then the probability of reaching the final state 4 for the first time in 2 transitions is ≈ 50% but 0% for 3
transitions (the automaton has no path of length 3 from state 2 to state 4).

The actual forecast from a state q has the form of an interval whose calculation is based on the waiting-time distribution
of q. The meaning of such a forecast interval I = (start,end) is the following: given that we are in a state q, we forecast
that the automaton, with confidence at least θ f c, will have reached its final state(s) in n transitions from now, where
start ≤ n ≤ end. The confidence threshold θ f c is a parameter set by the user. Since multiple intervals exceeding θ f c

might exist, we choose the one with the smallest spread, where spread = end− start. Figure 26b shows the forecast
interval produced for state 1 of the automaton of Figure 26a, with θ f c = 50%.

7.4.6 Avoiding the construction of the Markov chain

The reason for constructing an embedding, as described above, is that it is based on a variable-order model and the
expectation is that it will thus consist of much fewer states than a full-order model. In practice, however, we have
observed that the gains from creating an embedding are not as significant as we would expect. As we will also show
in Section 7.5, although the number of states of an embedding may indeed be smaller (even up to 50%), it is often still
in the same order of magnitude as that of a full-order model. A reduction in the number of states that can reach up to
50% might seem significant, but the fact that the order of magnitude remains the same means that such a reduction is of
little use for our purposes. For example, if a full-order model requires 1 million states and is thus impossible to build,
reducing this number to 500.000 states makes no difference, since we will still be unable to handle so many states.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

94 of 134

Upon closer inspection, we identified one specific step in the process of creating an embedding that acts as the main
bottleneck: the step of converting a PST to a PSA. The difference between the number of nodes of a PST and the number
of states of the PSA constructed from that PST has a range that covers several orders of magnitude. Motivated by this
observation, we devised a way to estimate the required waiting-time distributions without actually constructing the
embedding. Instead, we make direct use of the PST . Given a DSFA MR and its PST T , we can estimate the probability
for MR to reach for the first time one of its final states, without using Theorems 4 and 5, in the following manner.

As we consume events from the input stream, besides feeding them to MR, we also feed them to a buffer that always
holds the last m events from the stream, where m is equal to the maximum order of T . After consuming an event
and feeding it to this buffer, we traverse T according to its contents. This traversal leads us to a leaf l of T . We are
thus in a position to estimate the probability of any future sequence of events. If S1..k = · · · , tk−1, tk is the stream that
we have seen, then the next symbol probability for tk+1 can be directly retrieved from the distribution of the leaf l
(P(tk+1 | tk−m+1, · · · , tk)). If we want to look further into the future, e.g., into tk+1, tk+2, we can iterate this process as
many times as necessary. The probability for tk+2, P(tk+2 | tk−m+2, · · · , tk+1), can again be retrieved from T , by finding
the leaf l

′
that is reached with tk+1, · · · , tk−m+2. We can thus find the probability of any future sequence of events. As

a result, we can also find the probability of any future sequence of states of the DSFA MR, since we can simply feed
these future event sequences to MR and let it perform “forward” recognition with these projected events. Finally, since
we can estimate the probability for any future sequence of states of MR, we can use the definition of the waiting-time
variable (Wq = in f{n : Y0,Y1, ...,Yn,Y0 = q,q ∈ Q\F,Yn ∈ F}) to calculate the waiting-time distributions.

Figure 27 shows an example of this process. Figure 27a shows an example DSFA MR and Figure 27b an example PST
T . One remark should be made at this point in order to showcase how an attempt to convert T to a PSA could lead
to a blow-up in the number of states. The basic step in such a conversion is to take the leaves of T and use them as
states for the PSA. If this were the only step, the resulting PSA would always have fewer states than the PST . As this
example shows, this is not the case. Imagine that our states are just the leaves of T and that we are in the right-most
state/node, b,(0.5,0.5). What will happen if an a event arrives? We would be unable to find a proper next state. The state
aa,(0.75,0.25) is obviously not the correct one, whereas states aba,(0.9,0.1) and bba,(0.1,0.9) are both “correct”, in
the sense that ba is a suffix of both aba and bba. In order to overcome this ambiguity regarding the correct next state,
we would have to first expand node b,(0.5,0.5) of T and then use the children of this node as states of the PSA. In this
simple example, this expansion of a single problematic node would not have serious consequences. But for deep trees
and large alphabets, the number of states caused by such expansions far outweigh the number of the original leaves. As
a result, the size of the PSA is far greater than that of the original, unexpanded PST .

Figure 27c shows how we can estimate the probability for any future sequence of states of MR, using the distributions of
T . We assume that, after consuming the last event, MR is in state 1 and T has reached its left-most node, aa,(0.75,0.25).
This is shown as the left-most node in Figure 27c. Each node in this figure has two elements: the first one is the state
of MR and the second the node of T , starting with {1,aa} as our current “configuration”. Each node has two outgoing
edges, one for a and one for b, indicating what might happen next and with what probability. For example, from the
initial node, we know that, according to T , we might see a with probability 0.75 and b with probability 0.25. If we
do encounter b, then MR will move to state 2 and T will reach leaf b,(0.5,0.5). This is shown in Figure 27c as the
node {2,b}. This node has a double border to indicate that MR has reached a final state. In a similar manner, we can
keep expanding this tree into the future. How can we use it to estimate the waiting-time distribution for our initial node
{1,aa}? The estimation is actually simple. If we want to estimate the probability of reaching a final state for the first
time in k transitions, we first find all the paths starting from the original node, having length k, ending in a final state and
without another final state at a level below k. In our example of Figure 27c, if k = 1, then the path from {1,aa} to {2,b}
is such a path and its probability is 0.25. Thus, P(W{1,aa} = 1) = 0.25. For k = 2, the red nodes show the path the leads
to a final state after 2 transitions. Its probability is 0.75∗0.25 = 0.1875, since we just need to multiply the probabilities

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

95 of 134

0start

1

2

b

a

a

b a

b

(a) Automaton.

ε,(0.6,0.4)

a,(0.7,0.3)

aa,(0.75,0.25) ba,(0.8,0.2)

aba,(0.9,0.1) bba,(0.1,0.9)

b,(0.5,0.5)

(b) Prediction suffix tree.

{1,aa}

{1,aa}

{2,b}

{1,aa}

{2,b}

{1,aba}

{0,b}

· · ·

· · ·

a,0.75

b,0.25

a,0.75

b,0.25

a,0.5

b,0.5

a,0.75

b,0.25

a,0.5

b,0.5

a,0.9

b,0.1

a,0.5

b,0.5

(c) Future states visited.

Figure 27: Example of estimating a waiting-time distribution without a Markov chain.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

96 of 134

of the edges. If there were more such paths, we would have to add all their probabilities. Thus, P(W{1,aa} = 2) = 0.1875.

It is obvious that this tree grows exponentially as we try to look deeper into the future. This cost can be significantly
reduced by employing some simple optimizations. First, note in Figure 27c, that the paths starting from the {2,b} nodes
are grayed out. This indicates that these nodes need not be expanded, since they correspond to final states and any paths
starting from them will not be used again. We are only interested in the first time MR reaches a final state and not in the
second, third, etc. As a result, paths with more than one final states in Figure 27c are not useful. With this optimization,
we can still do an exact estimation of the waiting-time distribution. Another optimization that we have found to be very
useful tries to prune paths that should normally be expanded (no final state is involved). The intuition is that a path
with a very low probability will not contribute significantly to the probabilities of our waiting-time distribution, even if
we do expand it. We can thus prune such paths, accepting the risk that we will have an approximate estimation of the
waiting-time distribution. Although this is an ad hoc optimization, we have found it to be very efficient while having
a negligible impact on the distribution for a wide range of cut-off thresholds. In the future, we intend to explore more
rigorous ways for performing such an approximate estimation of our waiting-time distributions.

7.4.7 Complexity analysis

We have thus far described how an embedding of a PSA MS in a DSFA MS can be constructed and how we can estimate
the forecast intervals for this embedding. We have also presented an optimization that bypasses the construction of a
PSA and can estimate forecasts directly via a PST . In this section, we give some results about the complexity of each
of the steps involved. Before doing so, we need to describe one more step that is required. In [127], it is assumed that,
before learning a PST , the empirical probabilities of symbols given various contexts are available. The suggestion in
[127] is that these empirical probabilities can be calculated either by repeatedly scanning the training stream or by using
a more time-efficient algorithm that keeps pointers to all occurrences of a given context in the stream. We opt for a
variant of the latter choice. First, note that the empirical probabilities are given by the following formulas [127]:

P̂(s) =
1

k−m

k−1

∑
j=m

χ j(s) (33)

P̂(σ | s) = ∑
k−1
j=m χ j+1(s ·σ)

∑
k−1
j=m χ j(s)

(34)

where k is the length of the training stream S1..k, m is the maximum length of the strings that will be considered
(maximum order of the PSA to be constructed) and

χ j(s) =

{
1 if S j−|s|+1.. j = s

0 otherwise
(35)

In other words, we need to count the number of occurrences of the various candidate strings s in S1..k.

In order to estimate these counters, we can use a tree data structure which allows us to scan the training stream only
once. We call this structure a Counter Suffix Tree (CST). Each node in a CST is a tuple (σ ,c) where σ is a symbol from
the alphabet (or ε only for the root node) and c a counter. The counter of every node is equal to the sum of the counters
of its children. By following a path from the root to a node, we get a string s = σ0 ·σ1 · · ·σn, where σ0 = ε corresponds
to the root node and σn to the symbol of the node that is reached. The property that we maintain as we build a CST
from a stream S1..k is that the counter of the node that is reached with s gives us the number of occurrences of the string
σn ·σn−1 · · ·σ1 (the reversed version of s) in S1..k. As an example, see Figure 28, which depicts the CST of maximum

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

97 of 134

(ε,9)

(a,7)

(a,5) (b,2)

(b,2)

(a,2)

Figure 28: Example of a Counter Suffix Tree with m = 2 and S = aaabaabaaa.

depth 2 for S = aaabaabaaa. If we want to retrieve the number of occurrences of the string b ·a in S, we can first take
the left child of the root node and then the right child of (a,7). We thus reach (b,2) and indeed b ·a occurs twice in S. A
CST can be incrementally constructed by maintaining a buffer of size m that always holds the last m elements of S. The
contents of the buffer are fed into the CST after every new element is read. The CST starts following a path according
to the string provided by the buffer. For every node that already exists, its counter is incremented by 1. If a node does
not exist, it is created and its counter set to 1. After the CST has read the training stream, it can be used to retrieve the
necessary counters, as per Equation 35, and estimate the empirical probabilities of Equations 33 and 34.

With the addition of this step for constructing a CST , we have a total of four steps required for building an embedding
from an initial DSFA MR and a training stream S. We additionally have two more steps in order to derive the final
forecast intervals. Figure 29 depicts these steps as a process, along with the input required for each of them. The first
step takes as input the minterms of a DSFA, the maximum order m of dependencies to be captured and a training stream.
Its output is a CST of maximum depth m. In the next step, the CST is converted to a PST , using an approximation
parameter ε and a parameter n for the maximum number of states for the PSA to be constructed in the next step. The
third step converts the PST to a PSA, by using the leaves of the PST as states of the PSA. This PSA is then merged with
the initial DSFA to create the embedding of the PSA in the DSFA. From the embedding we can calculate the waiting-
time distributions and these can be used to derive the forecast intervals, using the confidence threshold θ f c provided
by the user. Figure 29 also shows the alternative option of bypassing the construction of the PSA, by estimating the
waiting-time distributions directly from the PST .

The learning algorithm of the second step, as presented in [127], is polynomial in m, n, 1
ε

and the size of the alphabet
(number of minterms in our case). The complexity of estimating the waiting-time distributions depends highly on the
library used for matrix calculations and especially on the complexity of raising a matrix to the powers of n− 1 and
n−2 in Equations 30 and 31. A straightforward way to multiply a matrix N by itself would require N multiplications
and N−1 additions for each element of the final matrix, where N×N is the number of elements of N. Thus, a total of
N3(N− 1) operations would be required for one matrix multiplication. For raising N to the power of n− 1, a total of
(n−2)N3(N−1) operations would be required, assuming that Nk is calculated by multiplying N by Nk−1, estimated at a
previous step. However, efficient libraries can reduce this cost significantly, especially for sparse matrices, as would be
typical for the matrix of an embedding. Below, we give complexity results for the four remaining steps of the main route
to estimating the forecast intervals (steps 1,3,4 and 6 in Figure 29). We also give complexity results for the alternative
option that bypasses the PSA (step 3′).

Proposition 4 (Step 1 in Figure 29). Let S1..k be a stream and m the maximum depth of the Counter Suffix Tree T to be
constructed from S1..k. The complexity of constructing T is O(m(k−m)).

Proof. There are three operations that affect the cost: incrementing the counter of a node by 1, with constant cost
i; inserting a new node, with constant cost n; visiting an existing node with constant cost v; We assume that n > v.
For every Sl−m+1..l , m ≤ l ≤ k of length m, there will be m increment operations and m nodes will be “touched”,

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

98 of 134

1.Counter Suffix Tree

O(m(k −m))

INPUT

INPUT

2.Counter Suffix Tree to
Prediction Suffix Tree

(polynomial in m, n, 1
ε , t)

INPUT

3.Prediction Suffix Tree to
Probabilistic Suffix Automaton

O(tm+1 ·m)

3′.Prediction Suffix Tree to

waiting-time distributions

O((m+ 3) t−t
h+1

1−t)

4.Probabilistic Suffix Automaton to Embedding
O(t · |MR.Q×MS .Q|)

5.Embedding to

waiting-time distributions

(library-dependent complexity)

6.Waiting-time distributions

to intervals

O(h)
INPUT

INPUT

OUTPUT

Deterministic
Symbolic

Finite
Automaton

(t minterms)

m, training
stream S1..k

m,ε,n

θfc, h

h

Counter
Suffix
Tree

Prediction
Suffix Tree

Prediction
Suffix Tree

Probabilistic
Suffix Au-

tomaton MS

EmbeddingWaiting-time
distributions

Waiting-time
distributions Deterministic Symbolic

Finite Automaton MR

(t minterms)

Forecast
intervals

Figure 29: Steps for calculating the forecast intervals of a DSFA. m is the maximum assumed order, ε the approximation
parameter, n the maximum number of states for the PSA and θ f c the confidence threhold of the intervals. Red blocks
indicate steps described in [127]. Green blocks indicate steps described here.

i.e., either visited if already existing or created. Therefore, the total number of increment operations is (k−m+1)m =

km−m2+m=m(k−m)+m. The same result applies for the number of node “touches”. It is always true that m< k and
typically m� k. Therefore, the cost of increments is O(m(k−m)) and the cost of visits/creations is also O(m(k−m)).
Thus, the total cost is O(m(k−m))+O(m(k−m)) = O(m(k−m)). In fact, the worst case is when all Sl−m+1..l are
different and have no common suffixes. In this case, there are no visits to existing nodes, but only insertions, which are
more expensive than visits. Their cost would again be O(nm(k−m)) = O(m(k−m)), ignoring the constant n.

Proposition 5 (Step 3 in Figure 29). Let T be a PST of maximum depth m, learned with the t minterms of a DSFA MR.
The complexity of constructing a PSA MS from T is O(tm+1 ·m).

Proof. We assume that the cost of creating new states and transitions for MS is constant. In the worst case, all possible
suffixes of length m have to be added to T as leaves. T will thus have tm leaves. The main idea of the algorithm for
converting a PST T to a PSA MS is to use the leaves of T as states of MS and for every symbol (minterm) σ find the next
state/leaf and set the transition probability to be equal to the probability of σ from the source leaf. If we assume that
the cost of accessing a leaf is constant (e.g., by keeping separate pointers to the leaves), the cost for constructing MS is
dominated by the cost of constructing the km states of MS and the t transitions from each such state. For each transition,
finding the next state requires traversing a path of length m in T . The total cost is thus O(tm · t ·m) = O(tm+1 ·m).

Proposition 6 (Step 4 in Figure 29). Let MR be a DSFA with t minterms and MS a PSA learned with the minterms of
MR. The complexity of constructing an embedding M of MS in MS is O(t · |MR.Q×MS.Q|).

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

99 of 134

Proof. We assume that the cost of constructing new states and transitions for M is constant. We also assume that the
cost of finding a given state in both MR and MS is constant, e.g., by using a linked data structure for representing the
automaton with a hash table on its states (or an array), and the cost of finding the next state from a given state is also
constant. In the worst case, even with an incremental algorithm, we would need to create the full Cartesian product
MR.Q×MS.Q to get the states of M. For each of these states, we would need to find the states of MR and MS from
which it will be composed and to create t outgoing transitions. Therefore, the complexity of creating M would be
O(t · |MR.Q×MS.Q|).

Notice that the cost of learning a PSA might be exponential in m. In the worst case, all permutations of the t minterms
of length m need to be added to the PST and the PSA. This may happen if the statistical properties of the training
stream are such that all these permutations are deemed as important. In this case, the final embedding in the DSFA
MR might have up to tm · |MR.Q|. This is also the upper bound of the number of states of the automaton the would be
created using the method of [8], where every state of an initial automaton is split into at most tm sub-states, regardless
of the properties of the stream. Thus, in the worst case, our approach would create an automaton of size similar to an
automaton encoding a full-order Markov chain. Our approach provides an advantage when the statistical properties of
the training stream allow us to retain only some of the dependencies of order up to m.

A naive way to estimate the forecast interval from a waiting-time distribution whose domain is [1,h] (we call h, the
maximum index of the distribution, its horizon) is to first enumerate all possible intervals (start,end), such that 1 ≤
start,end ≤ h and start ≤ end, and then calculate each interval’s probability by summing the probabilities of all of its
points. The complexity of such an exhaustive algorithm is O(h3). To prove this, first note that the algorithm would have
to check 1 interval of length h, 2 intervals of length h− 1, etc., and h intervals of length 1. Assuming that the cost of
estimating the probability of an interval is proportional to its length l (l points need to be retrieved and l−1 additions
be performed), the total cost would thus be

1h+2(h−1)+3(h−2)+ · · ·+h1 =
h

∑
i=1

i(h− (i−1))

=
h

∑
i=1

(ih− i2 + i)

=h
h

∑
i=1

i−
h

∑
i=1

i2 +
h

∑
i=1

i

=h
h(h+1)

2
− h(h+1)(2h+1)

6
+

h(h+1)
2

= · · ·

=
1
6

h(h+1)(h+2)

=O(h3)

Note that this is just the cost of estimating the probabilities of the intervals, ignoring the costs of actually creating them
first and then searching for the best one, after the step of probability estimation.

We can find the best forecast interval with a more efficient algorithm that has a complexity linear in h (see Algorithm
12). We keep two pointers i, j that we initially set them equal to the first index of the distribution. We then repeatedly
move i, j in the following manner: We first move j to the right by incrementing it by 1 until P(i, j) exceeds θ f c, where
each P(i, j) is estimated incrementally by repeatedly adding P(j) to an accumulator. We then move i to the right by 1
until P(i, j) drops below θ f c, where P(i, j) is estimated by incremental subtractions. If the new interval (i, j) is smaller

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

100 of 134

ALGORITHM 12: Estimating a forecast interval from a waiting-time distribution.
Input: A waiting-time distribution P with horizon h and a threshold θ f c < 1.0
Output: The smallest interval I = (s,e) such that 1≤ s,e≤ h, s≤ e and P(I)≥ θ f c

1 s←−1; e←−1; i← 1; j← 1; p← P(1);
2 while j 6= h do

/* Loop invariant: (s,e) is the smallest interval with P((s,e))> θ f c among all intervals with e≤ j (or

s = e =−1 in the first iteration). */

3 /* Expansion phase. */

4 while (p < θ f c)∧ (j < h) do
5 j← j+1;
6 p← p+P(j);

/* Shrinking phase. */

7 while p≥ θ f c do
8 i← i+1;
9 p← p−P(i);

10 i← i−1;
/* s =−1 indicates that no interval has been found yet, i.e., that this is the first iteration. */

11 if (spread((i, j))< spread((s,e)))∨ (s =−1) then
12 s← i;
13 e← j;

14 return (s,e);

than the smallest interval exceeding θ f c thus far, we discard the old smallest interval and keep this new one. This
wave-like movement of i, j stops when j = h. This algorithm is more efficient by avoiding intervals that cannot possibly
exceed θ f c.

We first present a correctness proof for this algorithm:

Proof of correctness for Algorithm 12. We only need to prove the loop invariant. Assume that after the kth iteration of
the outer while loop i = ik and j = jk and that after the (k+1)th iteration i = ik+1 and j = jk+1. If the invariant holds
after the kth iteration, then all intervals with e ≤ jk have been checked and we know that (s,e) is the best interval up
to jk. It can be shown that, during the (k+ 1)th iteration, the intervals up to jk+1 that are not explicitly checked are
intervals which cannot possibly exceed θ f c or cannot be better than the currently held best interval (s,e). There are
three such sets of unchecked intervals (see also Figure 30):

• All intervals (i′, j′) such that i′ < ik and jk ≤ j′ ≤ jk+1, i.e., we ignore all intervals that start before ik. Even if
these intervals exceed θ f c, they cannot possibly be smaller than (s,e), since we know that (s,e) = (ik, jk) or that
(s,e) is even smaller than (ik, jk).

• All intervals (i′, j′) such that i′ > ik+1 and jk ≤ j′ ≤ jk+1, i.e., we ignore all intervals that start after ik+1. These
intervals cannot possibly exceed θ f c, since (ik+1 + 1, jk+1) is below θ f c and all these intervals are sub-intervals
of (ik+1 +1, jk+1).

• We are thus left with intervals (i′, j′) such that ik ≤ i′ ≤ ik+1 and jk ≤ j′ ≤ jk+1. Out of all the interval that can

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

101 of 134

horizon

(i, j) after kth iteration

(i, j) after (k + 1)th iteration

intervals checked during expansion

intervals checked during shrinking

i′ < ik, ignored since greater than (ik, jk)

i′ > ik+1, ignored since it cannot exceed θfc

ik < i′ ≤ ik+1, ignored since it cannot exceed θfc

ik jk

ik+1 jk+1

Figure 30: One iteration of Algorithm 12. After the kth iteration, (i, j) is either the smallest interval or there already
exists a smaller one. In the (k+ 1)th iteration, we need to check intervals for which jk < j′ ≤ jk+1, .i.e., whose right
limit is greater than jk and smaller (but including) jk+1. Out of those intervals, the ones that start before ik need not be
checked because they are greater than (ik, jk). The ones that start after ik+1 are also ignored, since we already know,
from the shrinking phase, that their super-interval (ik+1 +1, jk+1) does not exceed θ f c. Finally, we can also ignore the
intervals that start between ik and ik+1 (not including ik) and end before jk+1 (not including jk+1), because they cannot
exceed θ f c. If such an interval actually existed, then the expansion phase would have stopped before jk+1.

be constructed from combining these i′ and j′, the algorithm checks the intervals (i′ = ik, j′) and (i′, j′ = jk+1).
The intervals that are thus left unchecked are the intervals (i′, j′) such that ik < i′ ≤ ik+1 and jk ≤ j′ < jk+1. The
question is: is it possible for such an interval to exceed θ f c. The answer is negative. Assume that there is such
an interval (i′, j′). If this were the case, then the algorithm, during its expansion phase, would have stopped at j′,
because (ik, j′) would exceed θ f c. Therefore, these intervals cannot exceed θ f c.

A similar reasoning allows us to show that the loop invariant holds after the first iteration. It thus holds after every
iteration.

Proposition 7 (Step 6 in Figure 29). For a waiting-time distribution with a horizon of length h, the complexity of finding

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

102 of 134

the smallest interval that exceeds a confidence threshold θ f c is O(h).

Proof. Indexes i and j of Algorithm 12 scan the distribution only once. The cost for j is the cost of h points of the
distribution that need to be accessed plus h− 1 additions. Similarly, the cost for i is the cost of (at most) h accessed
points plus the cost of (at most) h−1 subtractions. Thus the total cost is O(h).

Proposition 8 (Step 3′ in Figure 29). Let T be a PST of maximum depth m, learned with the t minterms of a DSFA
MR. The complexity of estimating the waiting-time distribution for a state of MR and a horizon of length h is O((m+

3) t−th+1

1−t).

Proof. After every new event arrival, we first have to construct the tree of future states, as shown in Figure 27c. In
the worst case, no paths can be pruned and the tree has to be expanded until level h. The total number of nodes that
have to be created is thus a geometric progress: t + t2 + · · ·+ th = ∑

h
i=1 t i = t−th+1

1−t . Assuming that it takes constant
time to create a new node, this formula gives the cost of creating the nodes of the trees. Another cost that is involved
concerns the time required to find the proper leaf of the PST T before the creation of each new node. In the worst
case, all leaves will be at level m. The cost of each search will thus be m. The total search cost for all nodes will
be mt + mt2 + · · ·+ mth = ∑

h
i=1 mt i = m t−th+1

1−t . The total cost (node creation and search) for constructing the tree

is t−th+1

1−t +m t−th+1

1−t = (m+ 1) t−th+1

1−t . With the tree of future states at hand, we can now estimate the waiting-time
distribution. In the worst case, the tree will be fully expanded and we will have to access all its paths until level
h. We will first have to visit the t nodes of level 1, then the t2 nodes of level 2, etc. The access cost will thus be
t + t2+ · · ·+ th = ∑

h
i=1 t i = t−th+1

1−t . We also need to take into account the cost of estimating the probability of each node.
For each node, one multiplication is required, assuming that we store partial products and do not have to traverse the
whole path to a node to estimate its probability. As a result, the number of multiplications will also be t−th+1

1−t . The total

cost (path traversal and multiplications) will thus be 2 t−th+1

1−t , where we ignore the cost of summing the probabilities of

final states, assuming it is constant. By adding the cost of constructing the tree ((m+1) t−th+1

1−t) and the cost of estimating

the distribution (2 t−th+1

1−t), we get a complexity of O((m+3) t−th+1

1−t).

7.5 Empirical Evaluation

We now present experimental results on both synthetic and real-world datasets. As described in Section 7.4.5, the output
of our system consists of forecast intervals, estimated from the waiting-time distributions of our automaton. These
waiting-time distributions are estimated in turn either from a (full- or variable-order) Markov chain corresponding to
our automaton or directly from a prediction suffix tree, when the optimization of Section 7.4.6 is employed. This is
how we envision a forecasting engine working in practice. However, for experimental testing we proceed with a more
thorough evaluation, conducting three different types of experiments: a) SE forecasting, where our goal is to forecast
the next SE in the input stream; b) regression CE forecasting, where our goal is to forecast when a CE will occur; c)
classification CE forecasting, where our goal is to forecast whether or not a CE will occur within a short future window.

7.5.1 SE Forecasting

Although our main focus is on forecasting occurrences of CEs, we start with some simple experiments, targeting SEs.
This will not only allow us to establish a baseline with some more easily interpretable results, but it will also enable

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

103 of 134

us to show the differences between SE and CE forecasting. As we will show, CE forecasting is more challenging
than SE forecasting, in terms of the feasibility of looking deep into the past. Another reason for running experiments
for SE forecasting is to find the best values for the hyperparameters used for learning a prediction suffix tree. Since
it is much faster to run this type of experiments, compared to CE forecasting experiments, we use a hypergrid of
hyperparameter values and for each hypergrid point we run SE forecasting. We show the best results and we also keep
the hyperparameter values that give us these best results for the later experiments with CE forecasting.

In this type of experiments, our goal is to investigate how well our proposed framework can forecast the next SE
to appear in the stream, given that we know the last m SEs. This task is the equivalent of next symbol prediction
in the terminology of the compression community [23]. As explained in Section 7.4.2, the metric that we use to
estimate the quality of a predictor P̂ is the average log-loss with respect to a test sequence S1..k = t1, t2, · · · , tk, given
by l(P̂,S1..k) = − 1

T ∑
k
i=1 logP̂(ti | t1 · · · ti−1). The lower the average log-loss, the better the predictor is assumed to be.

The predictors that we test are the following: a) full-order Markov models for various values of the order m, as is done
in previous forecasting studies [8, 9]; b) variable-order Markov models for various values of the maximum order m,
in the form of prediction suffix trees, as described in [127, 126] and Section 7.4.3. As a final note, we remind that
the “symbols” which we try to predict in these experiments are essentially the minterms of our DSFA in our case. In
other words, we do not try to predict exactly what the next SE will be, but which minterm the next SE will satisfy. For
example, if we have the minterms of Table 10, then our task is to predict whether the next SE will satisfy ψA (i.e., the
speed of the vessel will be below 5 knots), ψB (i.e., the speed will be above 20 knots) or ¬ψA∧¬ψB (i.e., the speed will
be between 5 and 20 knots).

7.5.2 Regression CE Forecasting

After SE forecasting, we move on to regression experiments on CE forecasting. Our goal in this type of experiments is
to forecast when a CE will occur. We call them regression experiments due to the fact that the forecasts are “continuous”
values, in the form of forecast intervals/points. This is in contrast to the next type of experiments, where each forecast
is a binary value, indicating whether a CE will occur or not and are thus called classification experiments.

One important difference between SE and CE forecasting (both regression and classification) is that, in SE forecasting,
a forecast is emitted after every new SE is consumed. On the other hand, in CE forecasting, emitting a forecast after
every new SE is feasible in principle, but not very useful and can also produce results that are misleading. By their very
nature, CEs are relatively rare within a stream of input SEs. As a result, if we emit a forecast after every new SE, some
of these forecasts (possibly even the vast majority) will have a significant temporal distance from the CE to which they
refer. As an example, consider a pattern from the maritime domain which detects the entrance of a vessel in the port of
Barcelona. We can also try to use this pattern for forecasting, with the goal of predicting when the vessel will arrive at
the port of Barcelona. However, the majority of the vessel’s messages may lie in areas so distant from the port (e.g., in
the Pacific ocean) that it would be practically useless to emit forecasts when the vessel is in these areas. Moreover, if
we do emit forecasts from these distant areas, the scores and metrics that we use to evaluate the quality of the forecasts
will be dominated by these, necessarily low-quality, distant forecasts.

For these reasons, before running a regression experiment, we first go through a preprocessing step. The goal is to find
the timepoints within a stream where it is “meaningful” to emit forecasts. We call these timepoints the checkpoints of
the stream. To do so, we first perform recognition on the stream to find the timepoints where CEs are detected. We then
set a required distance d that we want to separate a forecast from its CE, in the sense that we require each forecast to be
emitted d events before the CE. After finding all the CEs in a stream and setting a value for d, we set as checkpoints all
the SEs which occur d events before the CEs. This typically means that we end up with as many checkpoints as CEs

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

104 of 134

for a given value of d (unless the distance between two consecutive CEs is smaller than d, in which case no checkpoint
for the second CE exists). We show results for various values of d, starting from the smallest possible value of 1 (i.e.,
emitting forecasts from the immediately previous SE before the CE).

At each checkpoint, a forecast is produced as per Section 7.4.5. We do impose, however, an extra constraint, requiring
that the maximum spread of each forecast is 0, i.e., we produce point (instead of interval) forecasts. The reason for this
is that some of the metrics we use to assess the quality of the forecasts assume that forecasts are in the form of points.
Such point metrics are the following: the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) (the
latter is less sensitive than RMSE to outliers). If we denote by C the set of all checkpoints, by yc the actual distance (in
number of events) between a checkpoint c and its CE (which is always d) and by ŷc our forecast, than the definitions
for RMSE and MAE are as follows:

RMSE =

√
1
|C| ∑c∈C

|ŷc− yc|2 (36)

MAE =
1
|C| ∑c∈C

|ŷc− yc| (37)

Besides these points metrics, we also use an interval metric, the so-called negatively oriented interval score [64]. If
ŷc = (lc,uc) is an interval forecast produced with confidence b = 1−a and yc the actual observation (distance), then the
negatively oriented interval score (NOIS) for this forecast is given by:

NOISc = (uc− lc)+
2
a
(lc− yc)Ix<lc +

2
a
(yc−uc)Ix>uc (38)

We estimate the average negatively oriented interval score (ANOIS) as follows:

ANOIS =
1
|C| ∑c∈C

NOISc (39)

The best possible value for ANOIS is 0 and is achieved only when all forecasts are point forecasts (so that uc− lc is
always 0) and all are also correct (so that the last two terms in Eq. 38 are always 0). In every other case, a forecast is
penalized if its interval is long (so that focused intervals are promoted), regardless of whether it is correct. If it is indeed
correct, no other penalty is added. If it is not correct, then an extra penalty is added, which is essentially the deviation
of the forecast from the actual observation, weighted by a factor that grows with the confidence of the forecast. For
example, if the confidence is 100%, then b = 1.0, a = 0.0 and the extra penalty, according to Eq. 38, grows to infinity.
Incorrect forecasts produced with high confidence are thus severely penalized. Note that if we emit only point forecasts
(ŷc = lc = uc), as in our regression experiments, then NOIS and ANOIS could be written as follows:

NOISc =
2
a
|ŷc− yc| (40)

ANOIS =
1
|C| ∑c∈C

2
a
|ŷc− yc| (41)

ANOIS then becomes a weighted version of MAE.

7.5.3 Classification CE Forecasting

The last type of experiments is the most challenging. In contrast to regression experiments, where we emit forecasts
only at a specified distance before each CE, in classification experiments we emit forecasts regardless of whether a CE

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

105 of 134

occurs or not. The goal is to predict the occurrence of CEs within a short future window or provide a “negative” forecast
if our model predicts that no CE is likely to occur within this window.

One issue with classification experiments is that it is not so straightforward to establish checkpoints in the stream. In
regression experiments, CEs provide a natural point of reference. In classification experiments, we do not have such
reference points, since we are also required to predict the absence of CEs. As a result, instead of using the stream to
find checkpoints, we use the structure of the automaton itself. We may not know the actual distance to a CE, but the
automaton can provide us with an “expected” or “possible” distance, with the following reasoning. For an automaton
that is in a final state, it can be said that the distance to a CE is 0. More conveniently, we can say that the “process”
which it describes has been completed or, equivalently, that there remains 0% of the process until completion. For an
automaton that is in a non-final state but separated from a final state by 1 transition, it can be said that the “expected”
distance is 1. We use the term “expected” because we are not interested in whether the automaton will actually take the
transition to a final state. We want to establish checkpoints both for the presence and the absence of CEs. When the
automaton fails to take the transition to a final state (and we thus have an absence of a CE), this “expected” distance
is not an actual distance, but a “possible” one that failed to materialize. We also note that there might also exist other
walks from this non-final state to a final one whose length could be greater than 1 (in fact, there might exist walks
with “infinite length”, in case of loops). In order to estimate the “expected” distance of a non-final state, we only use
the shortest walk to a final state. After estimating the “expected” distances of all states, we can then express them as
percentages be dividing them by the greatest among them. A 0% distance will thus refer to final states, whereas a 100%
distance to the state(s) that are the most distant to a final state, i.e., the automaton has to take the most transitions to
reach a final state. These are the start states. We can then determine our checkpoints by specifying the states in which
the automaton is permitted to emit forecasts, according to their “expected” distance. For example, we may establish
checkpoints by allowing only states with a distance between 40% and 60% to emit forecasts. The intuition here is that,
by increasing the allowed distance, we make the forecasting task more difficult.

The task itself consists in the following steps. At the arrival of every new input event, we first check whether the distance
of the new automaton state falls within the range of allowed distances, as explained above. If the new state is allowed to
emit a forecast, we use its waiting-time distribution to produce the forecast, albeit in a manner slightly different than the
one described in Section 7.4.5. Two parameters are taken into account: the length of the future window w within which
we want to know whether a CE will occur and the confidence threshold θ f c. If the probability of the first w points of
the distribution exceeds the threshold θ f c, we emit a positive forecast, essentially affirming that a CE will occur within
the next w events; otherwise, we emit a negative forecast, essentially rejecting the hypothesis that a CE will occur. We
thus have a binary classification task.

As far as the metrics are concerned, we use the standard ones used in classification tasks, like precision and recall. Each
forecast is evaluated: a) as a true positive (TP) if the forecast is positive and the CE does indeed occur within the next
w events from the forecast; b) as a false positive (FP) if the forecast is positive and the CE does not occur; c) as a true
negative (TN) if the forecast is negative and the CE does not occur and d) as a false negative (FN) if the forecast is
negative and the CE does occur; Precision is then defined as Precision = T P

T P+FP and recall (also called sensitivity or
true positive rate) as Recall = T P

T P+FN . As already mentioned, CEs are relatively rare in a stream. It is thus important
for a forecasting engine to be as specific as possible in identifying the true negatives. For this reason, besides precision
and recall, we also use specificity (also called true negative rate), defined as Specificity = T N

T N+FP .

A classification experiment is performed as follows. For various values of the “expected” distance and the confidence
threshold θ f c, we estimate precision, recall and specificity on a test dataset. For a given distance, θ f c acts as a cut-off
parameter. This means that, for each distance, we plot precision-recall and ROC curves, using the points we obtain from
the values of θ f c. For each distance, we can then estimate the area under curve (AUC) for both the precision-recall and

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

106 of 134

ROC curves. The higher the AUC value, the better the model is assumed to be.

7.5.4 Models Tested

In the experiments that we present, we test six different models for event forecasting in total. Two of them are variable-
order Markov models that we have presented: one that is based on the embedding of a PSA in a DSFA, as presented in
Section 7.4.4, and one that employs the optimization of Section 7.4.6 and bypasses the construction of a Markov chain,
using directly the PST learned from a stream. The remaining four models that we have implemented have been inspired
by models previously proposed in the literature.

The first, described in [8, 9], is similar in its general outline to our proposed method. It is also based on automata and
Markov chains, the main difference being that it attempts to construct full-order Markov models of order m, thus being
typically restricted to low values for m.

The second model is presented in [110], where automata and Markov chains are used once again. However, the pattern
automata are directly mapped to Markov chains and no attempt is made to ensure that the Markov chain is of a certain
order. Thus, in the worst case, this model essentially makes the assumption that SEs are i.i.d. and m = 0.

As a third alternative, we test a model that is based on Hidden Markov Models (HMM), similar to the work presented
in [113]. This work uses the Esper event processing engine [1] and attempts to model a business process as a HMM.
For our purposes, we use a HMM to describe the behavior of an automaton, constructed from a given pattern. The
observation variable of the HMM corresponds to the states of the pattern automaton, i.e., an observation sequence of
length l for the HMM consists of the sequence of states visited by the automaton after consuming l SEs. We can train
a HMM for an automaton with the Baum-Welch algorithm, using the automaton to generate a training observation
sequence from the original training stream. We can then use this learned HMM to produce forecasts on a test dataset.
We produce forecasts in an online manner as follows: as the stream is consumed, we use a buffer to store the last l states
visited by the pattern automaton. After every new event, we “unroll” the HMM using the contents of the buffer as the
observation sequence and the transition and emission matrices learned during the training phase. We can then estimate
the probability of all possible future observation sequences (up to some length), which, in our case, correspond to future
states visited by the automaton. Knowing the probability of every future sequence of states allows us to estimate the
waiting-time distribution for the current state of the automaton and thus build a forecast interval, as already described.
Note that, contrary to the previous approaches, the estimation of the waiting-time distribution via a HMM must be
performed online. We cannot pre-compute the waiting-time distributions and store the forecasts in a look-up table, due
to the possibly large number of entries. For example, assume that l = 5 and the size of the “alphabet” of our automaton is
10. For each state of the automaton, we would have to pre-compute 105 entries. In other words, as with Markov chains,
we still have a problem of combinatorial explosion. The upside with using HMMs is that we can at least estimate the
waiting-time distribution, even if this is possible only in an online manner.

Our last model is inspired by the work presented in [143]. This method comes from the process mining community
and has not been previously applied to complex event forecasting. However, due to its simplicity, we use it here as
a baseline method. We again use a training dataset to learn the model. In the training phase, every time the pattern
automaton reaches a certain state q, we simply count how long (how many transitions) we have to wait until it reaches
a final state. After the training dataset has been consumed, we end up with a set of such “waiting times” for every state.
The forecast to be produced by each state is then estimated simply by calculating the mean “waiting time”.

All of the above mentioned models are tested in the experiments targeting CE forecasting. For the experiments that

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

107 of 134

focus on SE forecasting, we exclude the last two methods (HMMs and mean “waiting times”) because they have been
developed only for CE forecasting and are not capable of performing “next symbol prediction”, at least as originally
conceived. As far as our proposed methods are concerned, for SE forecasting, we use directly the PST learned from the
stream. Since there is no actual pattern in this case, there is no point in converting the PST to an automaton and then
creating an embedding. We can perform SE forecasting directly with the PST .

7.5.5 Hardware and Software Settings

All experiments were run on a simple machine with Intel Core i7-6500U @ 2.50GHz x 4 processors and 8 GB of
memory. Our framework was implemented in Scala 2.12.10. We used Java 1.8, using the default values for the heap
size. For the HMM models, we relied on the Smile machine learning library [2]. All other models were developed by
us. No attempt at parallelization was made. All experiments were run in a centralized setting.

7.5.6 Credit Card Fraud Management

The first dataset against which we test our method is a synthetic one, inspired by the domain of credit card fraud
management [15]. We start with a synthetically generated dataset in order to investigate how our method performs
under conditions that are more easily controlled and that produce results more readily interpretable. In this dataset, each
event is supposed to be a credit card transaction, accompanied by several arguments, such as the time of the transaction,
the card ID, the amount of money spent, the country where the transaction tool place, etc. In the real world, a small
amount of such transactions are fraudulent and the goal of a CER system would be to detect, with very low latency,
fraud instances. To do so, a set of fraud patterns must be provided to the engine. For typical cases of such patterns
in a simplified form, see [15]. In our experiments, we use one such pattern, consisting of a sequence of consecutive
transactions where the amount spent at each transaction is greater than that of the previous transaction. Such a trend of
steadily increasing amounts constitutes a typical fraud pattern. The goal in our forecasting experiments is to predict if
and when such a pattern will be completed, even before it is detected by the engine (if in fact a fraud instance occurs),
so as to possibly provide a wider margin for action to an analyst.

We generated a dataset consisting of 1.000.000 transactions in total from 100 different cards. Most of them are genuine
transactions, with ≈ 20% being fraudulent. We inject seven different types of fraudulent patterns in the dataset, with
the pattern for the increasing trend being one of them (a decreasing trend is another such pattern). Each fraudulent
sequence for the increasing trend consists of eight consecutive transactions with increasing amounts, where the amount
is increased each time by 100 or more units. We additionally inject similar sequences of transactions with increasing
amounts, which, however, do not lead to a fraud and completion of the pattern. We randomly interrupt the sequence
before it reaches the eighth transaction. In these cases of genuine sequences, the amount is increased each time by 0
or more units. With this setting, we want to test the effect of long-term dependencies on the quality of the forecasts.
For example, a sequence of six transactions with increasing amounts, where all increases are 100 or more units is very
likely to lead to a fraud detection. On the other hand, a sequence of just two transactions with the same characteristics,
could still possibly lead to a detection, but with a significantly reduced probability. We thus expect that models with
deeper memories will perform better.

Formally, the symbolic regular expression that we use to capture the pattern of an increasing trend in the amount spent

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

108 of 134

F1 F2 F3 V1 V2 V3 V4 V5 V6 V7 V8

Model

1.02

1.04

1.06

1.08

1.1

A
v
e

ra
g

e
 l
o

g
-l
o

s
s

(a) Average log-loss.

F1 F2 F3 V1 V2 V3 V4 V5 V6 V7 V8

Model

0

500

1000

1500

2000

2500

N
u

m
b

e
r

o
f

s
ta

te
s
/n

o
d

e
s

(b) Number of states/nodes.

Figure 31: Results for SE forecasting from the domain of credit card fraud management. Fx stands for a Full-order
Markov Model of order x. Vx stands for a Variable-order Markov Model (a prediction suffix tree) of maximum order x.

is the following:

R := (amountDiff > 0) · (amountDiff > 0) · (amountDiff > 0) · (amountDiff > 0)·
(amountDiff > 0) · (amountDiff > 0) · (amountDiff > 0)

(42)

amountDiff is an extra attribute with which we enrich each event and is equal to the difference between the amount
spent by the current transaction and that spent by the immediately previous transaction from the same card. The
expression consists of seven terminal sub-expressions, in order to capture eight consecutive events (the first terminal
subexpression captures an increasing amount between the first two events in a fraudulent pattern). If we attempted
to perform forecasting based solely on Expression 42, then the only minterms that would be created would be based
only on the predicate amountDiff > 0: this predicate itself, along with its negation ¬(amountDiff > 0). As expected,
such an approach does not yield optimal results, since, even with high orders, the learned conditional probabilities
would involve just these two minterms. In order to address this issue of expressions that, in their definitions, do not
have informative (for forecasting purposes) predicates, we have incorporated a mechanism in our system that allows
us to incorporate extra predicates when building a probabilistic model, without affecting the semantics of the initial
expression (exactly the same matches are detected). For Expression 42, we have decided to include the following extra
predicate: amountDiff > 100. The expectation is that, by including this predicate, we will be able to differentiate more
easily between sequences involving genuine transactions (where the difference in the amount can by any value above
0) and fraudulent sequences (where the difference in the amount is always above 100 units).

We now present results for SE forecasting. As already mentioned in Section 7.5.4, for this type of experiments we do not
use the automaton created by Expression 42. We instead use only its minterms which will constitute our “alphabet”. In
our case, there are four minterms: a) amountDiff > 0∧amountDiff > 100; b) amountDiff > 0∧¬(amountDiff > 100);
c) ¬(amountDiff > 0)∧amountDiff > 100; d) ¬(amountDiff > 0)∧¬(amountDiff > 100). Thus, the goal is to predict,
as the stream is consumed, which one of these minterms will be satisfied. Notice that, for every possible event, exactly
one minterm is satisfied (the third one, ¬(amountDiff > 0)∧amountDiff > 100, is actually unsatisfiable). We use 75%
of the original dataset (which amounts to 750.000 transactions) for training and the rest (250.000) for testing. We do
not employ cross-validation, as the dataset is synthetic and the statistical properties of its folds would not differ.

Figure 31a shows the average log-loss obtained for various models and orders m and Figure 31b shows the number
of states for the full-order models or nodes for the variable-order models, which are prediction suffix trees. The best
result is achieved with a variable-order Markov model of maximum order 7. The full-order Markov models are slightly
better than their equivalent (same order) variable-order models. This is an expected behavior, since the variable-order

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

109 of 134

models are essentially approximations of the full-order ones. We increase the order of the full-order models until
m = 3, in which case the Markov chain has ≈ 750 states. We avoid increasing the order any further, because Markov
chains with more than 1000 states become significantly difficult to manage in terms of memory usage (and in terms of
the computational cost of estimating the waiting-time distributions for the experiments of CE forecasting that follow).
Note that a Markov chain with 1000 states would require a transition matrix with 10002 entries. On the contrary, we
can increase the maximum order of the variable-order model until we find the best one, i.e., the order after which the
average log-loss starts increasing again. The size of the prediction suffix tree can be allowed to increase to more than
1000 nodes, since we are not required to build a transition matrix.

Figure 32a shows results from regression experiments on CE forecasting, as described in Sections 7.5.2, using Expres-
sion 42 and the metric of ANOIS (we avoid showing results for RMSE since they are very similar). The results are
grouped by the distance (in number of events) between the detection of the complex event and the time the forecast was
produced. Due to the significant differences in the scores, the y axes are on a logarithmic scale. Except for the MEAN
method, which consistently performs poorly, all other methods have an ANOIS score that is close or below 1. Markov
models seem to be able to achieve better scores than MEAN and HMM. Interestingly though, this is mostly true for
low-order Markov models. Increasing the order typically leads to worse scores for variable-order models.

In order to explain this behavior, we will use as an example the automaton of Figure 33. This is a simplified version of
the automaton that would be constructed from Expression 42. It only has two minterms and five states, corresponding
to a fraud pattern with four transactions. For m = 0, the Markov model for this automaton would have exactly the same
structure as the automaton itself and the transition probabilities would be the probabilities of encountering an event that
satisfies a minterm, regardless of what has occurred in the past. Now, imagine that, at some point we are in state 2
and we attempt to emit a regression forecast about when the automaton is expected to reach state 4. Regardless of the
exact transition probabilities, the most probable walk that the automaton can follow to reach state 4 is by first going
to state 3 and then to state 4. All other walks leading to state 4 (e.g., by first going to state 0) are longer and contain
this shortest walk. Hence, this shortest walk has the highest probability and the regression forecast would always be
2, which is correct. By increasing the order of the variable-order models, we essentially create more walks of variable
length to state 4. As a result, walks that are longer than 2 transitions but with higher probability could be created and
the regression forecast could be different than 2 in some cases. The distribution smoothing that is also performed with
the variable-order models can also affect the choice of the most probable walk to a final state, if multiple such walks
exist with similar probabilities.

We now move on to the classification experiments. Figure 32 shows the ROC curves that we obtain by running classi-
fication experiments with the variable-order model that directly uses a prediction suffix tree. We show results for two
different “expected” distance ranges: for minDist = 0.2 and maxDist = 0.4 in Figure 32b and for minDist = 0.4 and
maxDist = 0.6 in Figure 32c. The more area a ROC curve covers, the better the corresponding model is assumed to
be. Contrary to the regression experiments, we see here that increasing the maximum order does indeed lead to better
results. Notice, however, that in Figure 32c, where the distance is greater, increasing the order from 4 to 5 yields only
marginally better results. This implies that, the more the distance increases, the less important it is to increase the order.
Figure 32d gathers results for ROC for all distances and models. The first observation is that the MEAN and HMM
methods consistently underperform compared to the Markov models. With respect to the Markov models, as expected,
the task becomes more challenging and both the ROC scores decrease, as the distance increases. We can also see that it
is indeed important to be able to increase the order of the model. The advantage of increasing the order becomes less
pronounced (or even non-existent for high orders) as the distance increases.

We finally show throughput and training time results in Figure 34. Figure 34b, which shows training times, is a stacked,
bar plot. For each model, the total training time is broken down into 4 different components, each corresponding to a

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

110 of 134

1 2 3 4 5

Distance

10
-2

10
0

10
2

10
4

A
N

O
IS

MEAN HMM F0 F1 F2 F3 V1 V2 V3 T1 T2 T3 T4 T5

(a) Results for regression CE forecasting from the domain of credit card
fraud management. The scale of the y axes is logarithmic.

0 0.2 0.4 0.6 0.8 1

1 - Specificity

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

minDist=0.2maxDist=0.4

m=1
m=2
m=3
m=4
m=5

(b) ROC curves for the variable-order model using the pre-
diction suffix tree for various values of the maximum or-
der. minDist = 0.2 and maxDist = 0.4.

0 0.2 0.4 0.6 0.8 1

1 - Specificity

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

minDist=0.4maxDist=0.6

m=1
m=2
m=3
m=4
m=5

(c) ROC curves for the variable-order model using the pre-
diction suffix tree for various values of the maximum or-
der. minDist = 0.4 and maxDist = 0.6.

0.2 0.4 0.6 0.8 1

Distance

0

0.2

0.4

0.6

0.8

1

A
U

C

MEAN HMM F0 F1 F2 F3 V1 V2 V3 T1 T2 T3 T4 T5

(d) AUC for ROC curves for all models.

Figure 32: Results for CE forecasting from the domain of credit card fraud management. Fx stands for a Full-order
Markov Model of order x. Vx stands for a Variable-order Markov Model of maximum order x using an embedding. Tx
stands for a Variable-order Markov Model of maximum order x using a prediction suffix tree. MEAN stands for the
method of estimating the mean of “waiting-times”. HMM stands for Hidden Markov Model.

0start 1 2 3 4

¬amountDiff > 0

amountDiff > 0 amountDiff > 0 amountDiff > 0 amountDiff > 0

¬amountDiff > 0

¬amountDiff > 0

¬amountDiff > 0

¬amountDiff > 0

Figure 33: Example DSFA for the increasing trend patterns with 4 consecutive increases.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

111 of 134

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

Distance (%)

0

1

2

3

T
h

ro
u

g
h

p
u

t
(e

v
e

n
ts

/s
e

c
)

×10
5

MEAN HMM F0 F1 F2 F3 V1 V2 V3 T1 T2 T3 T4 T5

(a) Throughput.

M
EAN

H
M

M F0 F1 F2 F3
V1 V2 V3 T1 T2 T3 T4 T5

0

10

20

30

T
ra

in
in

g
 t
im

e
 (

s
e
c
) modelTime

wtTime

inTime

extraTime

(b) Training time.

Figure 34: Throughput and training time results for classification CE forecasting from the domain of credit card fraud
management. modelTime = time to construct the model. wtTime = time to estimate the waiting-time distributions for
all states. inTime = time to estimate the forecast interval of all states from their waiting-time distributions. extraTime =
time to determinize an automaton (+ disambiguation time for full-order models).

different phase of the forecast building process. modelTime is the time required to actually construct the model from the
training dataset. wtTime is the time required to estimate the waiting-time distributions, after the model has been con-
structed. inTime measures the time required to estimate the forecast interval of each waiting-time distribution. Finally,
extraTime measures the time required to determinize the automaton of our initial pattern. For the full-order Markov
models, it also includes the time required to convert the deterministic automaton into its equivalent, disambiguated
automaton. These results demonstrate the trade-off between the better results we can obtain with high order models and
the performance penalty that these models incur. The models based on the direct use of prediction suffix trees have a
throughput figure that is almost half that for the full-order models, while their training time is also significantly higher
than the other models. This is due to the fact that these tree models, in order to emit a forecast, need to traverse a tree
after every new event arrives at the system, as described in Section 7.4.6. The automata-based models (either full- or
variable-order), on the contrary, only need to evaluate the minterms on the outgoing transitions of their current state and
simply jump to the next state. By far the worst, however, are the HMM models. The reason is that the waiting-time
distributions and forecasts are always estimated online, as explained in Section 7.5.4 (this is why they have low training
times). It would be possible to improve these figures by using caching techniques, so that we can reuse some of the
previously estimated forecasts, but we reserve such optimizations for future work.

7.5.7 Maritime Monitoring

The second dataset that we used for our experiments is a real–world dataset coming from the field of maritime moni-
toring. Is is composed of a set of trajectories from ships sailing at sea, emitting AIS messages that relay information
about their position, heading, speed, etc., as described in the running example of Section 7.1.1. These trajectories can
be analyzed, using the techniques of CER, in order to detect interesting patterns in the behavior of vessels [117]. The
dataset that we used is publicly available, contains AIS kinematic messages from vessels sailing in the Atlantic Ocean
around the port of Brest, France, and spans a period from 1 October 2015 to 31 March 2016 [123]. Due to the fact that
AIS messages are noisy, we used a derivative dataset that contains clean and compressed trajectories, consisting only
of critical points [114]. Critical points are the important points of a trajectory that indicate a significant change in the
behavior of a vessel but allow for an accurate reconstruction of the original trajectory [117]. We further processed the
dataset by interpolating between the critical points in order to produce trajectories where two consecutive points have a
temporal distance of exactly 60 seconds. The reason for this pre-processing step is that AIS messages typically arrive

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

112 of 134

at unspecified time intervals. These intervals can exhibit a very wide variation, depending on a lot of factors (e.g., hu-
man operators may turn on/off the AIS equipment), without any clear pattern that could be encoded by our probabilistic
model. Consequently, running our experiments directly on the raw or compressed dataset may yield sub-optimal results.

Figure 35: Trajectories of the vessel with the most matches for Pattern 43 around the port of Brest. Green points denote
ports. Red, shaded circles show the areas covered by each port. They are centered around each port and have a radius
of 5 km.

The pattern that we used is a movement pattern in which a vessel approaches the main port of Brest. The goal is to
forecast when a vessel will enter the port. The symbolic regular expression for this pattern is the following:

R := (¬InsidePort(Brest))∗ · (¬InsidePort(Brest))·
(¬InsidePort(Brest)) · (InsidePort(Brest))

(43)

The intention is to detect the entrance of a vessel in the port of Brest. The predicate InsidePort(Brest) evaluates to TRUE

whenever a vessel has a distance of less than 5 km from the port of Brest. The predicate is generic and any port can
be passed to it as an argument. In this case, we use the Brest port and this is the reason why Brest is the argument to
InsidePort. In fact, we pass the longitude and latitude of a point as attributes, but we show here a simplified version
for readability reasons. The pattern then defines the entrance to the port as a sequence of at least 3 consecutive events.
The last event must always indicate that the vessel is inside the port. It could be argued that we could use just this
last event as our pattern (i.e., a single event with the InsidePort(Brest) predicate), but doing so would prevent us from
differentiating between entrances and exits. In order to detect an entrance, we must first ensure that the previous event(s)
indicated that the vessel was outside the port. For this reason, we require that, before the last event, there must have
occurred at least 2 events where the vessel was outside the port. We use the Boolean operator of negation (¬), applied
to the predicate InsidePort(Brest), in order to determine whether a vessel is outside the port. We require 2 or more such
events to have occurred (instead of just one) in order to avoid detecting any “noisy” entrances, by making sure that the
vessel was consistently outside the port before finally entering it.

As was the case with the experiments on credit card data, we also try to incorporate some extra predicates during the
construction of our probabilistic models for Pattern 43. For our initial experiments, we included 5 extra predicates

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

113 of 134

providing information about the distance of a vessel from a port when it is outside the port. Each of these predicates
evaluates to TRUE when a vessel lies within a specified range of distances from the port. The first returns TRUE when a
vessel has a distance between 5 and 6 km from the port, the second when the distance is between 6 and 7 km and the
other three similarly cover the remaining “rings” with a 1 km width until 10 km. We will later investigate the sensitivity
of our models to the presence or absence of various extra predicates.

For all experimental results that follow, we always employ 4-fold cross validation. We first show results by analyzing
the trajectories of a single vessel. Results with multiple, selected vessels will be shown later. There are two issues that
we try to address by separating our experiments into single-vessel and multiple-vessel experiments and by excluding
some vessels. First, we need to make sure that we have enough data for training. For this reason, we only retain vessels
for which we can detect a significant number of matches for Pattern 43. Second, we have experimentally observed that
building a global model from multiple vessels tends to produce sub-optimal results (this was not the case with credit
card data because the dataset was synthetic and all cards exhibited the same behavior). This is why we first focus on
a single vessel. We first used Pattern 43 to perform recognition on the whole dataset in order to find the number of
matches detected for each vessel. The vessel with the most matches was then isolated and we retained only the events
emitted from this vessel. In total, we detected 368 matches for this vessel and the number of events corresponding to it
is ≈ 30.000. Figure 35 shows the isolated trajectories for this vessel.

F1 F2 F3 V1 V2 V3 V4 V5 V6 V7 V8 V9V10

Model

0.55

0.6

0.65

0.7

A
v
e
ra

g
e
 l
o
g
-l
o
s
s

(a) Average log-loss.

F1 F2 F3 V1 V2 V3 V4 V5 V6 V7 V8 V9V10

Model

0

100

200

300

400

500

N
u

m
b

e
r

o
f

s
ta

te
s
/n

o
d

e
s

(b) Number of states/nodes.

Figure 36: Results for SE forecasting from the domain of maritime monitoring. Fx stands for a Full-order Markov Model
of order x. Vx stands for a Variable-order Markov Model (a prediction suffix tree) of maximum order x.

Figure 36 shows results for SE forecasting. The best average log-loss is achieved with a full-order Markov model, with
m = 3, and is ≈ 0.51. For the best hyper-parameter values out of those that we tested for the variable-order model,
with m = 10, we can achieve an average log-loss that is ≈ 0.57. Contrary to the case of credit card data, increasing the
order of the variable-order model does not allow us to achieve a better log-loss score than the best one achieved with a
full-oder model. However, as we will show, this does not imply that the same is true for CE forecasting.

Figure 37a shows results for regression CE forecasting for 3 different distances. Except for MEAN, which is consistently
worse than the others, the rest typically achieve low scores, below 1. We can again observe that increasing the order
usually incurs a slight penalty (for an explanation, see the similar results for the dataset of credit card transaction in
Section 7.5.6).

We now show results for classification CE forecasting in Figures 37b, 37c, 37d and 38. We can observe here the
importance of being able to increase the order of our models for distances smaller than 50%. For distances greater than
50%, the area under curve is ≈ 0.5 for all models. This implies that they cannot effectively differentiate between true
positives and true negatives. Their forecasts are either all positive, where we have Recall = 100% and Specificity = 0%,

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

114 of 134

1 2 3

Distance

10
-1

10
0

10
1

10
2

A
N

O
IS

MEAN HMM F0 F1 F2 V1 V2 T1 T2 T3 T4 T5 T6

(a) Results for regression CE forecasting from the domain of maritime
monitoring. The scale of the y axes is logarithmic.

0 0.2 0.4 0.6 0.8 1

1 - Specificity

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

minDist=0maxDist=0.5

m=1

m=2

m=3

m=4

m=5

m=6

(b) ROC curves for the variable-order model using the pre-
diction suffix tree for various values of the maximum or-
der. minDist = 0.0 and maxDist = 0.5.

0 0.2 0.4 0.6 0.8 1

1 - Specificity

0

0.2

0.4

0.6

0.8

1

R
e

c
a

ll

minDist=0.5maxDist=1

m=1

m=2

m=3

m=4

m=5

m=6

(c) ROC curves for the variable-order model using the
prediction suffix tree for various values of the maximum
order.minDist = 0.5 and maxDist = 1.0.

0-0.5 0.5-1

Distance (%)

0

0.2

0.4

0.6

0.8

1
A

U
C

MEAN HMM F0 F1 F2 V1 V2 T1 T2 T3 T4 T5 T6

(d) AUC for ROC curves for all models.

Figure 37: Results for CE forecasting from the domain of maritime monitoring. Fx stands for a Full-order Markov
Model of order x. Vx stands for a Variable-order Markov Model of maximum order x using an embedding. Tx stands
for a Variable-order Markov Model of maximum order x using a prediction suffix tree. MEAN stands for the method of
estimating the mean of “waiting-times”. HMM stands for Hidden Markov Model.

or all negative, where we have Recall = 0% and Specificity = 100% (see Figure 37c). Achieving higher scores with
higher-order models comes at a cost though. The training time for variable-order tends to increase as we increase the
order. This increase may be tolerated, given that the total training time is always less than 14 seconds and that training
is an offline process. The effect on throughput is also significant for the tree-based variable-order models. The reason
behind this reduced performance is the fact that, upon each new event, these models need to traverse the tree structure
that they maintain.

Finally, we test our proposed method in two more scenarios. First, we want to intvestigate how our approach behaves
with different extra features (or none at all). Figures 39a, 39b and 39c show the relevant results for classification CE
forecasting. Figure 39a shows results when no extra features are included in the construction of the probabilistic model,
i.e., when only the predicate InsidePort(Brest) and its negation, present in the pattern itself, are taken into account.
Without any extra predicates, the model cannot produce any meaningful forecasts. Figure 39b shows results when the
extra predicates referring to the distance of a vessel from the port are modified so that each “ring” around the port has
a width of 3 km. With these extra features, increasing the order does indeed make an important difference, but the best

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

115 of 134

0-0.5 0.5-1

Distance (%)

0

2

4

6

8

T
h
ro

u
g
h
p
u
t
(e

v
e
n
ts

/s
e
c
)

×10
4

MEAN HMM F0 F1 F2 V1 V2 T1 T2 T3 T4 T5 T6

(a) Throughput.

M
EAN

H
M

M F0 F1 F2
V1 V2 T1 T2 T3 T4 T5 T6

0

5

10

15

T
ra

in
in

g
 t
im

e
 (

s
e
c
) modelTime

wtTime

inTime

extraTime

(b) Training time.

Figure 38: Throughput and training time results for classification CE forecasting from the domain of maritime monitor-
ing. modelTime = time to construct the model. wtTime = time to estimate the waiting-time distributions for all states.
inTime = time to estimate the forecast interval of all states from their waiting-time distributions. extraTime = time to
determinize an automaton (+ disambiguation time for full-order models).

0-0.5 0.5-1

Distance (%)

0

0.2

0.4

0.6

0.8

1

A
U

C

MEAN HMM F0 F1 F2 V1 V2 T1 T2 T3 T4 T5 T6

(a) AUC for ROC curves. Extra features included: none.
Single vessel.

0-0.5 0.5-1

Distance (%)

0

0.2

0.4

0.6

0.8

1
A

U
C

MEAN HMM F0 F1 F2 V1 V2 T1 T2 T3 T4 T5 T6

(b) AUC for ROC curves. Extra features included: concen-
tric rings around the port every 3 km. Single vessel.

0-0.5 0.5-1

Distance (%)

0

0.2

0.4

0.6

0.8

1

A
U

C

MEAN HMM F0 F1 V1 V2 T1 T2 T3 T4 T5 T6

(c) AUC for ROC curves. Extra features included: concen-
tric rings around the port every 1 km and heading. Single
vessel.

0-0.5 0.5-1

Distance (%)

0

0.2

0.4

0.6

0.8

1

A
U

C

MEAN HMM F0 F1 F2 V1 V2 T1 T2 T3 T4 T5 T6

(d) AUC for ROC curves. Extra features included: concen-
tric rings around the port every 1 km. Model constructed for
the 9 vessels that have more than 100 matches.

Figure 39: Results for classification CE forecasting from the domain of maritime monitoring for various sets of extra
features and for multiple vessels.

score achieved is still lower than the best score achieved with “rings” of 1 km (Figure 37d). “Rings” of 1 km are thus
more appropriate as predictive features. Figure 39c shows results from yet another variation. We keep the features of
1 km “rings” but we also add one more feature which checks whether the heading of a vessel points towards the port
(more precisely, we use the vessel’s speed and heading to project its location 1 hour ahead in the future and then check
whether this projected segment and the circle around the port intersect). The intuition for adding this feature is that the

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

116 of 134

knowledge of whether a vessel is heading towards the port predictive value. As observed, the best score we can achieve
with this set of features is not in fact higher than the best score without the feature of heading towards the port (Figure
37d). However, it is interesting to notice that this set of features allows us to achieve high scores even with low orders,
reached even with full-order models. The heading feature is thus indeed important. On the other hand, the high-order
models without this feature seem to be able to “infer” whether the vessel is heading towards the port, even without this
feature being explicitly included.

In the second scenario that we tested, we used more than one vessel. Instead of isolating the single vessel with the most
matches, we isolated all vessels which had more than 100 matches. There are in total 9 such vessels. The resulting
dataset has ≈ 222.000 events. Out of the 9 retained vessels, we construct a global probabilistic model and produce
forecasts according to this model. Note that the another option would be to build a single model for each vessel (as we
previously did with the vessel having the most matches), but in this scenario we wanted to test the robustness of our
aprroach when a global model is built from multiple entities. Figure 39d shows the relevant classification results. The
scores are very similar to the scores of the single-vessel model (Figure 37d). The main difference is that, as expected,
the scores for the multi-vessel models are slightly lower, due to the different behavioral patterns that different vessels
follow.

7.6 Summary & Future Work

We have presented a framework for Complex Event Forecasting, based on a variable-order Markov model, which
allows us to delve deeper into the past and capture long-term dependencies, not feasible with full-order models. Our
empirical evaluation on two different datasets has shown the advantage of being able to use high-order models. Another
important feature of our proposed framework is that it requires minimal intervention by the user. A given CE pattern
is declaratively defined and it is subsequently automatically translated to an automaton and then to a Markov model,
without requiring extensive domain knowledge that should guide the modeling process.

The weak point of our framework, with respect to user involvement, is its inability to automatically select the features
that are the most informative. Currently, the user has to manually provide these features, but we intend to explore ways
to automate this process in the future. The user also has to manually set the maximum order allowed by the probabilistic
model. Automatically estimating the optimal order could thus be another possible direction for future work. We have
also started investigating ways to handle concept drift by continuously training and updating the probabilistic model of
a pattern. Another research avenue that we are currently following concerns the extension of the expressive power of
symbolic automata in order to allow n-ary predicates to be used in CE patterns. Some results towards this direction may
be found in [10]. Finally, our framework could conceivably be used for a task that is not directly related to Complex
Event Forecasting. Since forecasting/prediction and compression are the two sides of the same coin, our framework
could be used for pattern-driven lossless compression in order to minimize the communication cost, which could be
a severe bottleneck for geo-distributed CER. The probabilistic model that we construct with our approach could be
pushed down to the event sources in order to compress each individual stream and then these compressed stream could
be transmitted to a centralized CER engine to perform recognition.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

117 of 134

8 Distributed Parameter Estimation for Online Forecasting

In this section we describe our efforts, so far, to make the aforementioned architecture distributed and fully online. First,
we talk about online learning and then move to the distribution of both the training and the forecasting phase. We use
query based parallelization [62], but aim to implement more distribution techniques in the future (e.g., partition based).
Then we move on to evaluate our implementation with a simple maritime example. Finally, we discuss integration to
the INFORE platform.

8.1 Online Training

So far, the training of the Markov Chain (MC) was done in an offline manner (Figure 40). A portion of the input stream
was used as a training dataset for the MC. When the training was complete the MC could be used to derive probabilistic
forecasts from the events of the stream as they arrived (i.e., online).

1. DeterminizePattern(s)

Full or
variable

order

2.1 Disambiguate

3.1 MLE matrix
estimation

2.2 Prediction
Suffix Tree

3.2 PST-based
matrix estimation

4. Waiting-time distributions
+ forecast intervals

5. Runtime forecasts

Training dataset

Test dataset Online

Offline

(a) Original

1. DeterminizePattern(s)

Full
order

2 Disambiguate

3 MLE matrix
estimation

4. Waiting-time distributions
+ forecast intervals

5. Runtime forecasts

dataset

Online

(b) Online Training

Figure 40: Original and new workflow of the CEF module

When there are multiple patterns to forecast, multiple MCs are also created - one for each pattern. With the method
described above, one MC needs to train on the whole stream, then the next MC on the whole stream and so on. This

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

118 of 134

imposes difficulties for our cause, as in online training one does not have the whole stream beforehand to train one MC
at a time.

To overcome this issue, we change the iteration from model based to event based. That is, each event in the dataset is
processed by all MCs before moving to the next event. This is necessary to implement online learning. The algorithms
in Listings 1 and 2 highlight this basic difference between the two approaches.

f o r (model i n models) {
model . t r a i n (s t r e a m)

}

Listing 1: model iteration

f o r (e v e n t i n s t r e a m) {
models . t r a i n (e v e n t)

}

Listing 2: event iteration

For our next step, we set a fixed number of events k (e.g., 100K). For each k events that are fed into the training process
we produce a fully functional MC ready to make forecasts (i.e., the MC is updated every k events).

This training process is chained to a forecasting process. Every event that is used to train a MC is then forwarded to
the forecasting process to make forecasts. Whenever a new MC is produced the forecasting process receives it and uses
this one instead. This means that for the first k events no forecasting is produced.

Finally, note that in Figure 40b only MLE matrix estimation is depicted as PST-based matrix estimation is not supported
yet.

8.2 Flink Distribution

We use Apache’s streaming platform Flink [27] to make our implementation distributed, in accordance to the imple-
mentation of the other components of the INFORE architecture.

Our first approach uses the query-based parallelization technique [62]. In this technique each query is assigned to a
different processing unit and executed in parallel. In our case, queries are essentially patterns transformed to automata.

Figure 41 shows our pattern(query) based implementation. We use online learning described in the previous section.
The difference here is that the number of patterns to forecast is equally divided to the number of available processing
units, unlike before that there was a single process for forecasting and another one for training.

The flinkSource, which is either a Kafka topic or a file, creates a datastream of events. This stream is broadcast to
all parallel instances of the training operator, since all the patterns work for the same stream. The training operator is
essentially a RichMap function which contains the training process described before. Every parallel instance initializes
the training process when it is created and processes the events for training as they arrive. It then forwards them to the
next operator. Whenever k events are processed it also forwards the updated MC.

The next operator is the forecasting process and is another RichMap function. Each parallel instance receives the events
and processes them for forecasting. Periodically, it also receives the updated MC and re-initializes the forecasting
process. Again, we have to note that for the first k events no forecasting takes place. The resulting forecasts can be
written back to a Kafka topic or locally to a log file. Finally, one implementation detail is that each forecasting instance
also receives part of the patterns. This is not necessary as it could receive both the MC and the DFSA from the training

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

119 of 134

operator. However, to reduce data transferring, the necessary information to create the DFSA is passed to the CEF
process through the initialization of the Map function.

flinkSource
...

Training Process

Training Process

Training Process

...

CEF Process

CEF Process

CEF Process

part1

part2

partX

Figure 41: distributed forecasting and training

8.3 Evaluation

We have conducted two experiments to evaluate the efficiency of the distribution. We have conducted experiments on
the maritime domain to evaluate the efficiency of the distribution. We have used a simple pattern of determining when
a vessel is approaching the Brest port. That is, a match is detected when a vessel is more than 5km away from Brest for
at least three events and then is less than 5km away for the following event. We have multiplied this pattern 48 times to
test the execution time in a distributed environment.

We have used a single machine with 24 cores (2 threads per core), 264GB of memory and model name Intel(R) Xeon(R)
CPU E5-2630 v2 @ 2.60GHz. The stream is a subset of the Brest dataset and features 3,371,919 events. The experiment
has been conducted a number of times with the parallelism set to one of 1, 2, 4, 8 and 16 each time. The patterns per
worker node are 48, 24, 12, 6 and 3 respectively. Figure 43 showcases the results.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

120 of 134

Figure 42: Execution time per workers used over the Brest dataset. There are 48 same patterns distributed among the
worker nodes

Figure 43: Throughput per workers used over the Brest dataset.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

121 of 134

The Figure showcases great speed up from 1 to 16 cores (86% approximately). The speedup between 8 and 16 cores is
insignificant (127 seconds). This could be attributed to either the replication of data (as the stream is broadcast to all
workers) or to the small difference to the number of patterns per worker. That is, for 8 cores each node only has to deal
with 3 patterns more.

For the second experiment we have used the same pattern multiplied 16 times. The dataset, this time, is taken from
MarineTraffic and has undergone compression [116] retaining salient movement features only. It consists of 14,791,573
events, which is about 5 times the previous one in size.

Figure 44: Execution time per workers used over the MarineTraffic dataset. There are 16 same patterns distributed
among the worker nodes

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

122 of 134

Figure 45: Throughput per workers used over the MarineTraffic dataset.

Similar results to the previous experiment are showcased in figure 45 with the speedup from 1 to 16 cores being
approximately 81%. Again, we notice that the more cores we use the less gain we get. This notion is highlighted by
the difference between 8 and 16 cores which is almost nonexistent. This makes sense, as with 16 cores each core has to
work with 1 pattern, while with 8 cores with 2 patterns. That is, the difference in workload is very small.

One important detail is that execution times and throughput presented here are not calculated only for the forecasting
phase. They also include time needed for training, producing the models every k events plus whatever extra overhead
Flink asserts into the system. That is we just check how long a Flink job took to execute. We look to improve this in the
future.

8.4 Integration with the INFORE Architecture

We mentioned earlier how the input and output of our module can either be local files or Kafka topics. For the purpose
of integration to the Infore architecture we opt to use the Kafka topics. More specifically we use the ”DataTopic” and
”Forecast” as the input and output topics respectively, which are handled by the respective consumers and producers.
The Kafka consumer is inside the Flink library as a FlinkKafkaConsumer flinkSource is used. For the producer, we
used pure Kafka instead as it required less tweaking in the original code. That is, whenever a forecast is made, it is
directly forwarded to the topic by a producer initialized inside the forecasting process.

The final topic is responsible for handling forecasting requests and is named ”ConfigTopic”. A consumer inside a loop
is set up to listen to that topic and handles messages like the one shown in Figure 46. The value of the threshold,
maxSpread and horizon for some forecast can be specified (e.g., −−threshold:<value>). The domainSpecificStream
attribute specifies the type of the stream and is necessary for proper parsing of the data input messages.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

123 of 134

Figure 46: Example of a forecasting request received from Kafka

Whenever a new request arrives it is parsed and then a forecasting module is fired asynchronously as a new process. The
server then goes on to handle new incoming requests (if any). If a message arrives that is equal to ”terminateServer” the
loop is broken and the consumer is closed, terminating the server process.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

124 of 134

9 Progress Achieved Towards the INFORE objectives

The main objective that this deliverable addresses is the development of algorithms for real-time, interactive machine
learning from massive, distributed data streams, as well as of techniques for complex event forecasting. Towards this
objective, we have moved along the following directions:

• In Section 2, we presented an on-line interval-based probabilistic composite event recognition system. We have
tested the proposed system on a surrogate dataset for human activity surveillance as a proof of concept for future
use on maritime datasets.

• In Section 3 we presented an Answer Set Programming-based approach to online structure and weight learning
of complex event patterns, that significantly improves previous work based on Markov Logic, both in terms
of efficiency and of predictive performance. The latter is validated via experiments on the tasks of activity
recognition, maritime surveillance and vehicle fleet management.

• In Section 4 we presented an improved approach to online semi-supervised learning of event rules, along experi-
mental results on the maritime domain.

• In Section 5 we presented the OMLDM component of the INFORE platform, a high-performance engine for
extreme scale mining of massive streams. We proposed an architecture following the parameter server pattern,
which is easy to use and also easy to extend with new learning and mining algorithms. We discussed the current
state of the implementation, focusing primarily on the algorithmic aspects, and described some of the implemen-
tation choices we made in developing it on top of Apache Flink.

• In Section 6 we presented two methods for exploring the parameter space of cancer simulations, one based on
genetic algorithms and one based on random forests. In addition, towards learning patterns for complex event
forecasting (as presented in Section 7), we introduce an approach for time-series discretization in order to create
symbolic example sequences.

• In Section 7 we presented a complete theoretical framework for complex event forecasting. We additionally
presented an initial implementation of this framework, along with experimental results from two domains.

• In Section 8 we made this initial implementation distributed and made its training phase online. We also made
it capable of reading/writing from/to Kafka, as a first step towards its integration with the INFORE architecture.
We showcased experiment results on the maritime domain regarding the efficiency of the distribution.

More concretely, WP6 has promised to deliver a fully expressive forecasting module that can accommodate any regular
expression and has formal, probabilistic semantics. The work that we presented in Section 7 represents a significant
step towards this direction. In Section 8 we have further expanded this framework by employing distribution techniques
in order to be able to handle high-volume and high-velocity event streams. Besides the tasks of recognition and fore-
casting, we also showed the training/learning task of parameter estimation may be executed in a distributed manner.
We intend to build upon this first step towards distributed complex event forecasting in order to develop a forecasting
module that will be able to handle the data volumes of the INFORE use cases. With respect to Task 6.2 (Interactive,
Online Learning and Data Mining), we presented a method for online structure and weight learning of complex event
patterns that significantly improves previous work both in terms of efficiency and of predictive performance. We ad-
ditionally presented an improved methods to online semi-supervised learning of event rules. Finally, we described a
high-performance engine for extreme scale mining of massive streams, based on the parameter server. These methods
will act as building blocks for the development of distributed learning methods in the remainder of the project.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

125 of 134

References

[1] Esper. http://www.espertech.com/esper. [Online; accessed 16-January-2020].

[2] Smile - statistical machine intelligence and learning engine. http://haifengl.github.io/. [Online; ac-
cessed 16-January-2020].

[3] Naoki Abe and Manfred K. Warmuth. On the computational complexity of approximating distributions by
probabilistic automata. Machine Learning, 9:205–260, 1992.

[4] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In ACM
Special Interest Group on Management of Data, pages 147–160, 2008.

[5] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between sets of items in
large databases. In SIGMOD Conference, pages 207–216. ACM Press, 1993.

[6] Adnan Akbar, François Carrez, Klaus Moessner, and Ahmed Zoha. Predicting complex events for pro-active iot
applications. In WF-IoT, pages 327–332. IEEE Computer Society, 2015.

[7] Massimiliano Albanese, Rama Chellappa, Naresh Cuntoor, Vincenzo Moscato, Antonio Picariello, V. S. Sub-
rahmanian, and Octavian Udrea. PADS: A Probabilistic Activity Detection Framework for Video Data. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(12):2246–2261, 2010.

[8] Elias Alevizos, Alexander Artikis, and George Paliouras. Event forecasting with pattern markov chains. In
DEBS, pages 146–157. ACM, 2017.

[9] Elias Alevizos, Alexander Artikis, and George Paliouras. Wayeb: a tool for complex event forecasting. In LPAR,
volume 57 of EPiC Series in Computing, pages 26–35. EasyChair, 2018.

[10] Elias Alevizos, Alexander Artikis, and Georgios Paliouras. Symbolic automata with memory: a computational
model for complex event processing. CoRR, abs/1804.09999, 2018.

[11] Elias Alevizos, Anastasios Skarlatidis, Alexander Artikis, and Georgios Paliouras. Probabilistic complex event
recognition: A survey. ACM Comput. Surv., 50(5):71:1–71:31, 2017.

[12] James F. Allen. Maintaining knowledge about temporal intervals. Communication of the ACM, 26(11):832–843,
1983.

[13] A. Artikis, C. Baber, Pedro Bizarro, C. Canudas-de-Wit, O. Etzion, F. Fournier, P. Goulart, A. Howes, J. Lygeros,
G. Paliouras, A. Schuster, and I. Sharfman. Scalable proactive event-driven decision making. IEEE Technol. Soc.
Mag., 33(3):35–41, 2014.

[14] A. Artikis, M. Weidlich, A. Gal, V. Kalogeraki, and D. Gunopulos. Self-adaptive event recognition for intelligent
transport management. In Proceedings of Big Data, pages 319–325. IEEE, 2013.

[15] Alexander Artikis, Nikos Katzouris, Ivo Correia, Chris Baber, Natan Morar, Inna Skarbovsky, Fabiana Fournier,
and Georgios Paliouras. A prototype for credit card fraud management: Industry paper. In DEBS, pages 249–260.
ACM, 2017.

[16] Alexander Artikis, Evangelos Makris, and Georgios Paliouras. A probabilistic interval-based event calculus for
activity recognition. Annals of Mathematics and Artificial Intelligence, Aug 2019. https://doi.org/10.

1007/s10472-019-09664-4.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

126 of 134

http://www.espertech.com/esper
http://haifengl.github.io/
https://doi.org/10.1007/s10472-019-09664-4
https://doi.org/10.1007/s10472-019-09664-4

[17] Alexander Artikis, Marek Sergot, and Georgios Paliouras. An event calculus for event recognition. Knowledge
and Data Engineering, IEEE Transactions on, 27(4):895–908, 2015.

[18] Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. An event calculus for event recognition. IEEE
Transactions on Knowledge and Data Engineering, 27(4):895–908, 2015.

[19] Alexander Artikis, Anastasios Skarlatidis, François Portet, and Georgios Paliouras. Logic-based event recogni-
tion. The Knowledge Engineering Review, 27(04):469–506, 2012.

[20] Alexander Artikis, Anastasios Skarlatidis, François Portet, and Georgios Paliouras. Logic-based event recogni-
tion. Knowledge Engineering Review, 27(4):469–506, 2012.

[21] Duangtida Athakravi, Domenico Corapi, Krysia Broda, and Alessandra Russo. Learning through hypothesis
refinement using answer set programming. In Inductive Logic Programming, pages 31–46. Springer, 2013.

[22] Ezio Bartocci and Radu Grosu. Monitoring with uncertainty. Electronic Proceedings in Theoretical Computer
Science, 124, 08 2013.

[23] Ron Begleiter, Ran El-Yaniv, and Golan Yona. On prediction using variable order markov models. J. Artif. Intell.
Res., 22:385–421, 2004.

[24] Albert Bifet, Ricard Gavaldà, Geoff Holmes, and Bernhard Pfahringer. Machine learning for data streams: with
practical examples in MOA. MIT Press, 2018.

[25] William Brendel, Alan Fern, and Sinisa Todorovic. Probabilistic event logic for interval-based event recognition.
In Proceedings of CVPR, pages 3329–3336, 2011.

[26] Peter Bühlmann, Abraham J Wyner, et al. Variable length markov chains. The Annals of Statistics, 27(2):480–
513, 1999.

[27] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink™: Stream and batch processing in a single engine. IEEE Data Eng. Bull., 38(4):28–38, 2015.

[28] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised Learning. MIT Press, 2006.

[29] Bo Chen, Hongwei Liu, Jing Chai, and Zheng Bao. Large margin feature weighting method via linear program-
ming. IEEE Trans. Knowl. Data Eng., 21(10):1475–1488, 2009.

[30] Cheng Siong Chin and Xi Ji. Adaptive online sequential extreme learning machine for frequency-dependent
noise data on offshore oil rig. Engineering Applications of Artificial Intelligence, 74:226–241, September 2018.

[31] Chung-Wen Cho, Yi-Hung Wu, Show-Jane Yen, Ying Zheng, and Arbee L. P. Chen. On-line rule matching for
event prediction. VLDB J., 20(3):303–334, 2011.

[32] Maximilian Christ, Julian Krumeich, and Andreas W. Kempa-Liehr. Integrating predictive analytics into complex
event processing by using conditional density estimations. In EDOC Workshops, pages 1–8. IEEE Computer
Society, 2016.

[33] John G. Cleary and Ian H. Witten. Data compression using adaptive coding and partial string matching. IEEE
Trans. Communications, 32(4):396–402, 1984.

[34] J. Cooley, P. Lewis, and P. Welch. The finite fourier transform. IEEE Transactions on Audio and Electroacoustics,
17:77–85, 6 1969.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

127 of 134

[35] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online Passive-Aggressive
Algorithms. 7:551–585, 2006.

[36] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream to complex event
processing. ACM Computing Surveys (CSUR), 44(3):15, 2012.

[37] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data stream to complex event
processing. ACM Comput. Surv., 44(3):15:1–15:62, 2012.

[38] Loris D’Antoni and Margus Veanes. Extended symbolic finite automata and transducers. Formal Methods in
System Design, 47(1):93–119, 2015.

[39] Loris D’Antoni and Margus Veanes. The power of symbolic automata and transducers. In CAV (1), volume
10426 of Lecture Notes in Computer Science, pages 47–67. Springer, 2017.

[40] Fabio Aurelio D’Asaro, Antonis Bikakis, Luke Dickens, and Rob Miller. Foundations for a probabilistic event
calculus. In Proceedings of LPNMR, pages 57–63, 2017.

[41] Ingrid Daubechies. Orthonormal bases of compactly supported wavelets. Communications on pure and applied
mathematics, pages 909–996, 10 1988.

[42] L. De Raedt, K. Kersting, S. Natarajan, and D. Poole. Statistical relational artificial intelligence: Logic, proba-
bility, and computation. Synthesis Lectures on Artificial Intelligence and Machine Learning, 10(2):1–189, 2016.

[43] Luc De Raedt. Logical and relational learning. Springer Science & Business Media, 2008.

[44] Pedro Domingos and Geoff Hulten. Mining High-Speed Data Streams. In Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’00, pages 71–80, Boston, Mas-
sachusetts, USA, 2000. Association for Computing Machinery.

[45] Pedro M. Domingos and Geoff Hulten. Mining high-speed data streams. In ACM SIGKDD, pages 71–80, 2000.

[46] Florian Dörfler and Francesco Bullo. Kron reduction of graphs with applications to electrical networks. IEEE
Trans. on Circuits and Systems, 60-I(1):150–163, 2013.

[47] C. Dousson and P. Le Maigat. Chronicle recognition improvement using temporal focusing and hierarchisation.
In Proceedings of IJCAI, pages 324–329, 2007.

[48] Anton Dries and Luc De Raedt. Towards clausal discovery for stream mining. In Proceedings of the 19th
International Conference on Inductive Logic Programming (ILP), pages 9–16, 2009.

[49] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[50] Yagil Engel and Opher Etzion. Towards proactive event-driven computing. In DEBS, pages 125–136. ACM,
2011.

[51] Opher Etzion and Peter Niblett. Event Processing in Action. Manning Publications Company, 2010.

[52] R. Fagin, J. Halpern, and M. Vardi. What can machines know? On the properties of knowledge in distributed
systems. Journal of the ACM, 39(2):328–376, 1992.

[53] Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria Maggi, and Fredrik Milani. Predictive process
monitoring methods: Which one suits me best? In BPM, volume 11080 of Lecture Notes in Computer Science,
pages 462–479. Springer, 2018.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

128 of 134

[54] James C Fu and WY Wendy Lou. Distribution theory of runs and patterns and its applications: a finite Markov
chain imbedding approach. World Scientific, 2003.

[55] Lajos Jeno Fülöp, Árpád Beszédes, Gabriella Toth, Hunor Demeter, László Vidács, and Lóránt Farkas. Predictive
complex event processing: a conceptual framework for combining complex event processing and predictive
analytics. In BCI, pages 26–31. ACM, 2012.

[56] Avigdor Gal and Nicolo Rivetti. Uncertainty in streams. In Encyclopedia of Big Data Technologies. 2019.

[57] João Gama. Knowledge Discovery from Data Streams. Chapman and Hall / CRC Data Mining and Knowledge
Discovery Series. CRC Press, 2010.

[58] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. On evaluating stream learning algorithms. Machine
Learning, 90(3):317–346, March 2013.

[59] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2012.

[60] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning. MIT Press, 2007.

[61] Ahmadreza Ghaffarizadeh, Randy Heiland, Samuel H. Friedman, Shannon M. Mumenthaler, and Paul Macklin.
Physicell: An open source physics-based cell simulator for 3-d multicellular systems. In PLoS Computational
Biology, 2018.

[62] Nikos Giatrakos, Elias Alevizos, Alexander Artikis, Antonios Deligiannakis, and Minos N. Garofalakis. Complex
event recognition in the big data era: a survey. VLDB J., 29(1):313–352, 2020.

[63] Matthew L. Ginsberg. Multivalued logics: a uniform approach to reasoning in artificial intelligence. Computa-
tional Intelligence, 4:265–316, 1988.

[64] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the
American Statistical Association, 102(477):359–378, 2007.

[65] Alejandro Grez, Cristian Riveros, and Martı́n Ugarte. A formal framework for complex event processing. In
ICDT, volume 127 of LIPIcs, pages 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

[66] Victor Guimarães, Aline Paes, and Gerson Zaverucha. Online probabilistic theory revision from examples with
proppr. Mach. Learn., 108(7):1165–1189, 2019.

[67] Ulrich Hedtstück. Complex event processing: Verarbeitung von Ereignismustern in Datenströmen. Springer
Vieweg, Berlin, 2017.

[68] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis
and Recognition, pages 278–282, Montreal, Quebec, Canada, 1995. IEEE.

[69] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, languages, and
computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007.

[70] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: Theory and applications.
Neurocomputing, 70(1):489–501, December 2006.

[71] Tuyen N Huynh and Raymond J Mooney. Max-margin weight learning for markov logic networks. In ECML-
2009, pages 564–579. Springer, 2009.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

129 of 134

[72] Tuyen N Huynh and Raymond J Mooney. Online max-margin weight learning for markov logic networks. In
SDM, pages 642–651. SIAM, 2011.

[73] Koray Inki, Ismail Ari, and Hasan Sözer. Runtime verification of iot systems using complex event processing.
Proceedings of ICNSC, pages 625–630, 2017.

[74] Yogi Joshi, Guy Martin Tchamgoue, and Sebastian Fischmeister. Runtime verification of ltl on lossy traces. In
Proceedings of SAC, page 13791386. ACM, 2017.

[75] Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht, Tim Wirtz, and Stefan Wrobel.
Efficient decentralized deep learning by dynamic model averaging. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 393–409. Springer, 2018.

[76] Michael Kamp, Mario Boley, Daniel Keren, Assaf Schuster, and Izchak Sharfman. Communication-efficient
distributed online prediction by dynamic model synchronization. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 623–639. Springer, 2014.

[77] Michael Kamp, Mario Boley, Olana Missura, and Thomas Gärtner. Effective parallelisation for machine learning.
In Advances in Neural Information Processing Systems, pages 6477–6488, 2017.

[78] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event definitions with
inductive logic programming. Machine Learning, 100(2-3):555–585, 2015.

[79] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Online learning of event definitions. TPLP, 16(5-
6):817–833, 2016.

[80] Nikos Katzouris, Evangelos Michelioudakis, Alexander Artikis, and Georgios Paliouras. Online learning of
weighted relational rules for complex event recognition. In ECML-PKDD 2018, pages 396–413, 2018.

[81] Nikos Katzouris, Evangelos Michelioudakis, Alexander Artikis, and Georgios Paliouras. Online learning of
weighted relational rules for complex event recognition. In Proceedings of European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 396–413, 2018.

[82] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. Dimensionality reduction for fast
similarity search in large time series databases. Knowledge and Information Systems, 3, 01 2002.

[83] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On
large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836,
2016.

[84] A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha. On the implementation of the probabilistic
logic programming language ProbLog. Theory and Practice of Logic Programming, 11:235–262, 2011.

[85] Nicolas Kourtellis, Gianmarco De Francisci Morales, and Albert Bifet. Large-Scale Learning from Data Streams
with Apache SAMOA. In Moamar Sayed-Mouchaweh, editor, Learning from Data Streams in Evolving Envi-
ronments: Methods and Applications, Studies in Big Data, pages 177–207. Springer International Publishing,
Cham, 2019.

[86] Robert A. Kowalski and Marek J. Sergot. A logic-based calculus of events. New Generation Comput., 4(1):67–
95, 1986.

[87] Harold W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics Quarterly,
2:83–97, 1955.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

130 of 134

[88] Mark Law, Alessandra Russo, and Krysia Broda. Inductive learning of answer set programs from noisy examples.
Advances in Cognitive Systems, 2018.

[89] Srivatsan Laxman, Vikram Tankasali, and Ryen W. White. Stream prediction using a generative model based on
frequent episodes in event sequences. In KDD, pages 453–461. ACM, 2008.

[90] Joohyung Lee, Samidh Talsania, and Yi Wang. Computing LPMLN using ASP and MLN solvers. Theory Pract.
Log. Program., 17(5-6):942–960, 2017.

[91] Joohyung Lee and Yi Wang. Weighted rules under the stable model semantics. In Principles of Knowledge
Representation and Reasoning: Proceedings of the Fifteenth International Conference, KR, pages 145–154.
AAAI Press, 2016.

[92] Gaelle Letort, Arnau Montagud, Gautier Stoll, Randy Heiland, Emmanuel Barillot, Paul Macklin, Andrei Zi-
novyev, and Laurence Calzone. Physiboss: a multi-scale agent-based modelling framework integrating physical
dimension and cell signalling. Bioinformatics, pages 1188–1196, 04 2019.

[93] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter server. In OSDI,
pages 583–598. USENIX Association, 2014.

[94] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax: A novel symbolic representation
of time series. Data Min. Knowl. Discov., 15:107–144, 08 2007.

[95] T. List, J. Bins, J. Vazquez, and R. B. Fisher. Performance evaluating the evaluator. In Proceedings of In-
ternational Conference on Computer Communications and Networks, pages 129–136. IEEE Computer Society,
2005.

[96] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM), pages 413–422, 2008.

[97] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley, 2001.

[98] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes in event sequences.
Data Min. Knowl. Discov., 1(3):259–289, 1997.

[99] Alfonso Eduardo Márquez-Chamorro, Manuel Resinas, and Antonio Ruiz-Cortés. Predictive monitoring of
business processes: A survey. IEEE Trans. Services Computing, 11(6):962–977, 2018.

[100] E. Michelioudakis, A. Skarlatidis, G. Paliouras, and A. Artikis. Online structure learning using background
knowledge axiomatization. In Proceedings of European Conference on Machine Learning and Knowledge Dis-
covery in Databases, volume 1, pages 242–237, 2016.

[101] E. Michelioudakis, A. Skarlatidis, G. Paliouras, and A. Artikis. Osla: Online structure learning using background
knowledge axiomatization. In ECML, pages 232–247. Springer, 2016.

[102] Evangelos Michelioudakis, Alexander Artikis, and Georgios Paliouras. Semi-supervised online structure learning
for composite event recognition. Machine Learning, 108(7):1085–1110, 2019.

[103] Evangelos Michelioudakis, Alexander Artikis, and Georgios Paliouras. Semi-supervised online structure learning
for composite event recognition. Machine Learning, 108(7):1085–1110, 2019.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

131 of 134

[104] Evangelos Michelioudakis, Anastasios Skarlatidis, Georgios Paliouras, and Alexander Artikis. OSLα: Online
structure learning using background knowledge axiomatization. In Proceedings of ECML-PKDD, pages 232–
247, 2016.

[105] Douglas C Montgomery, Cheryl L Jennings, and Murat Kulahci. Introduction to time series analysis and fore-
casting. John Wiley & Sons, 2015.

[106] Vlad I. Morariu and Larry S. Davis. Multi-agent event recognition in structured scenarios. In Proceedings of
CVPR, pages 3289–3296, 2011.

[107] E. Mueller. Event calculus and temporal action logics compared. Artificial Intelligence, 170(11):1017–1029,
2006.

[108] Erik T. Mueller. Commonsense Reasoning. Morgan Kaufmann, 2006.

[109] Erik T Mueller. Commonsense reasoning: an event calculus based approach. Morgan Kaufmann, 2014.

[110] Vinod Muthusamy, Haifeng Liu, and Hans-Arno Jacobsen. Predictive publish/subscribe matching. In DEBS,
pages 14–25. ACM, 2010.

[111] Shan-Hwei Nienhuys-Cheng. Distance Between Herbrand Interpretations: A Measure for Approximations to
a Target Concept. In Proceedings of the 7th International Workshop on Inductive Logic Programming, pages
213–226. Springer-Verlag, 1997.

[112] J. Ozik, Nicholson Collier, Randy Heiland, Gary An, and Paul Macklin. Learning-accelerated discovery of
immune-tumour interactions. Molecular Systems Design and Engineering, 4:747–760, 08 2019.

[113] Suraj Pandey, Surya Nepal, and Shiping Chen. A test-bed for the evaluation of business process prediction
techniques. In CollaborateCom, pages 382–391. ICST / IEEE, 2011.

[114] K Patroumpas, D Spirelis, E Chondrodima, H Georgiou, Petrou P, Tampakis P, Sideridis S, Pelekis N, and
Theodoridis Y. Final dataset of Trajectory Synopses over AIS kinematic messages in Brest area (ver. 0.8) [Data
set], 10.5281/zenodo.2563256, 2018.

[115] Kostas Patroumpas, Elias Alevizos, Alexander Artikis, Marios Vodas, Nikos Pelekis, and Yannis Theodoridis.
Online event recognition from moving vessel trajectories. GeoInformatica, 21(2):389–427, 2017.

[116] Kostas Patroumpas, Elias Alevizos, Alexander Artikis, Marios Vodas, Nikos Pelekis, and Yannis Theodoridis.
Online event recognition from moving vessel trajectories. GeoInformatica, 21(2):389–427, 2017.

[117] Kostas Patroumpas, Elias Alevizos, Alexander Artikis, Marios Vodas, Nikos Pelekis, and Yannis Theodoridis.
Online event recognition from moving vessel trajectories. GeoInformatica, 21(2):389–427, 2017.

[118] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[119] Manolis Pitsikalis, Alexander Artikis, Richard Dreo, Cyril Ray, Elena Camossi, and Anne-Laure Jousselme.
Composite event recognition for maritime monitoring. In Proceedings of DEBS, pages 163–174, 2019.

[120] Gordon D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edinburgh University, 1971.

[121] Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 1989.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

132 of 134

[122] Luc De Raedt. Logical and Relational Learning: From ILP to MRDM (Cognitive Technologies). Springer, 2008.

[123] Cyril RAY, Richard DRO, Elena CAMOSSI, and Anne-Laure JOUSSELME. Heterogeneous Integrated Dataset
for Maritime Intelligence, Surveillance, and Reconnaissance, February 2018.

[124] Oliver Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3):329–340, 2009.

[125] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1–2):107–136, 2006.

[126] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia. In NIPS, pages 176–183. Morgan Kauf-
mann, 1993.

[127] Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning probabilistic automata with
variable memory length. Machine Learning, 25(2-3):117–149, 1996.

[128] Adam Sadilek and Henry A. Kautz. Location-Based Reasoning about Complex Multi-Agent Behavior. Journal
of Artificial Intelligence Research (JAIR), 43:87–133, 2012.

[129] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

[130] Vasilis Samoladas and Minos Garofalakis. Functional Geometric Monitoring for Distributed Streams. In
EDBT2019, Lisbon, Portugal.

[131] Joseph Selman, Mohamed R. Amer, Alan Fern, and Sinisa Todorovic. PEL-CNF: Probabilistic event logic
conjunctive normal form for video interpretation. In Proceedings of ICCVW, pages 680–687. IEEE, 2011.

[132] Vinay D. Shet, Jan Neumann, Visvanathan Ramesh, and Larry S. Davis. Bilattice-based logical reasoning for
human detection. Proceedings of CVPR, pages 1–8, 2007.

[133] Jeffrey Mark Siskind. Grounding the lexical semantics of verbs in visual perception using force dynamics and
event logic. The Journal of Artificial Intelligence Research (JAIR), 15:31–90, 2001.

[134] Anastasios Skarlatidis, Alexander Artikis, Jason Filipou, and Georgios Paliouras. A probabilistic logic program-
ming event calculus. Theory and Practice of Logic Programming, 15(2):213–245, 2015.

[135] Anastasios Skarlatidis and Evangelos Michelioudakis. Logical Markov Random Fields (LoMRF): an open-source
implementation of Markov Logic Networks, 2014.

[136] Anastasios Skarlatidis, Georgios Paliouras, Alexander Artikis, and George A. Vouros. Probabilistic event calcu-
lus for event recognition. ACM Transactions on Computational Logic, 16(2), 2015.

[137] Anastasios Skarlatidis, Georgios Paliouras, Alexander Artikis, and George A Vouros. Probabilistic event calculus
for event recognition. ACM Transactions on Computational Logic (TOCL), 16(2):11, 2015.

[138] Ashwin Srinivasan and Michael Bain. An empirical study of on-line models for relational data streams. Machine
Learning, 106(2):243–276, 2017.

[139] Gautier Stoll, Barthelemy Caron, Eric Viara, Aurelien Dugourd, Andrei Zinovyev, Aurlien Naldi, Guido Kroe-
mer, Emmanuel Barillot, and Laurence Calzone. Maboss 2.0: an environment for stochastic boolean modeling.
Bioinformatics, 1-3, 03 2017.

[140] Kai Ming Ting, Guang-Tong Zhou, Fei Tony Liu, and Swee Chuan Tan. Mass estimation. Machine Learning,
90(1):127–160, 2013.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

133 of 134

[141] Kai Ming Ting, Ye Zhu, Mark J. Carman, Yue Zhu, Takashi Washio, and Zhi-Hua Zhou. Lowest probability
mass neighbour algorithms: relaxing the metric constraint in distance-based neighbourhood algorithms. Machine
Learning, 108(2):331–376, 2019.

[142] Wil Van Der Aalst. Process mining: discovery, conformance and enhancement of business processes. Springer,
2011.

[143] Wil M. P. van der Aalst, M. H. Schonenberg, and Minseok Song. Time prediction based on process mining. Inf.
Syst., 36(2):450–475, 2011.

[144] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic regular expression explorer. In ICST,
pages 498–507. IEEE Computer Society, 2010.

[145] Ricardo Vilalta and Sheng Ma. Predicting rare events in temporal domains. In ICDM, pages 474–481. IEEE
Computer Society, 2002.

[146] Tal Wagner, Sudipto Guha, Shiva Prasad Kasiviswanathan, and Nina Mishra. Semi-supervised learning on data
streams via temporal label propagation. In Proceedings of the 35th International Conference on Machine Learn-
ing (ICML), pages 5082–5091, 2018.

[147] Jue Wang and Pedro Domingos. Hybrid Markov Logic Networks. In Proceedings of AAAI, pages 1106–1111.
AAAI Press, 2008.

[148] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large margin nearest neighbor classi-
fication. J. Mach. Learn. Res., 10:207–244, 2009.

[149] Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J. Tjalkens. The context-tree weighting method: basic
properties. IEEE Trans. Information Theory, 41(3):653–664, 1995.

[150] Fuzhen Zhang. The Schur Complement and Its Applications. Springer, 2005.

[151] Haopeng Zhang, Yanlei Diao, and Neil Immerman. Recognizing patterns in streams with imprecise timestamps.
Proceedings of VLDB, 3(1-2):244–255, 2010.

[152] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: A New Data Clustering Algorithm and Its Appli-
cations. Data Mining and Knowledge Discovery, 1(2):141–182, June 1997.

[153] Cheng Zhou, Boris Cule, and Bart Goethals. A pattern based predictor for event streams. Expert Syst. Appl.,
42(23):9294–9306, 2015.

[154] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised learning using gaussian fields and
harmonic functions. In Proceedings of the 20th International Conference on Machine Learning, pages 912–919.
AAAI Press, 2003.

[155] Xiaojin Zhu, Andrew B. Goldberg, Ronald Brachman, and Thomas Dietterich. Introduction to Semi-Supervised
Learning. Morgan and Claypool Publishers, 2009.

[156] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate coding. IEEE Trans.
Information Theory, 24(5):530–536, 1978.

Project supported by the
European Commision
Contract no. 825070

WP6 T6.2, T6.3
Deliverable D6.2

Doc.nr.: WP6 D6.2
Rev.: 1.0
Date: 30/04/2020
Class: Public

134 of 134

	Introduction
	Purpose and Scope
	Relation to other Deliverables
	Structure of the Deliverable

	Probabilistic Complex Event Recognition
	Introduction
	Related Work
	Background
	Online PIEC
	Bounded Support Set
	Experimental Evaluation on a Benchmark Activity Recognition Dataset
	Summary and Further Research

	Online Structure & Weight Learning of Complex Event Patterns
	Introduction
	Related Work
	Background
	Structure & Weight Learning in ASP
	Generating the Inferred State
	Weight Learning
	Updating CE patterns' Structure

	Learning New CE patterns
	Experimental Evaluation
	Datasets Used
	Scalability of Inference
	Online Structure & Weight Learning Performance

	Online Semi-supervised Learning of Event Rules
	Background
	Online Semi-Supervised Learning for Composite Event Recognition
	Large-Margin Nearest Neighbour
	Mass-based Dissimilarity

	Temporal Label Propagation
	Robust Supervision Completion
	Large Margin Feature Selection for Logical Structures
	Mass Dissimilarity for Logical Structures

	Robust Graph Construction and Labelling
	Empirical Evaluation
	Experimental Setup
	Experimental Results

	Online Machine Learning and Data Mining Component
	Overview of the OMLDM component and previous art
	Architecture of the OMLDM component
	Training pipelines
	Prediction pipelines
	Implementing Machine Learning and Data Mining algorithms
	Algorithms supported

	Distributed coordination for training pipelines
	Functional Dynamic Averaging
	Implementation of the OMLDM component
	Pipeline implementation issues

	Future directions

	Forecasting for the Cancer Simulations of the Life Sciences Use Case
	Cancer Simulations
	Methods for Exploring the Parameter Space of Biological Simulations
	Genetic Algorithm
	Random Forest

	Discretization

	Complex Event Forecasting
	Introduction
	Running example
	Structure of the Section

	Related Work
	Complex Event Recognition with Symbolic Automata
	Symbolic Expressions and Automata
	Streaming Expressions and Automata

	Complex Event Forecasting with Prediction Suffix Trees
	Preliminary definitions and results
	Variable-order Markov Models
	Prediction Suffix Trees
	Embedding of a PSA in a DSFA
	Emitting forecasts
	Avoiding the construction of the Markov chain
	Complexity analysis

	Empirical Evaluation
	SE Forecasting
	Regression CE Forecasting
	Classification CE Forecasting
	Models Tested
	Hardware and Software Settings
	Credit Card Fraud Management
	Maritime Monitoring

	Summary & Future Work

	Distributed Parameter Estimation for Online Forecasting
	Online Training
	Flink Distribution
	Evaluation
	Integration with the INFORE Architecture

	Progress Achieved Towards the INFORE objectives

