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Abstract

A way to model properties of nanomaterials consists of applying well-established approaches based on

a macroscopic view of matter, therefore ignoring any peculiar features due to the smallness of these

materials. In this work, we inspect the capability of a simple micromechanical model, the inverse

rule of mixtures, to predict the elastic modulus of multi-component composites, e.g. cellulose nano

fibrils, when load is perpendicular to the stratified structure, by implementing molecular dynamics

simulations. The results show that the inverse rule of mixtures can predict the tensile modulus of

the modelled cellulose nano fibrils in the fibril direction. These findings could be further generalized

in computing the mechanical properties of multi-phase nanocomposites, in case the constituents are

loaded in series, as well as, to approximate the degree of crystallinity of single cellulose nano fibrils.
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1. Introduction

Describing the laws of nature has for centuries been based on a continuum view of matter leading,

to list a very few, to the very well-known Newton’s, Hooke’s, or Navier-Stoke’s equations. On the other

hand, the emergence of quantum mechanics and nanotechnology during the 20th century gave rise to

other fundamentally different views. If it is established that quantum effects cannot be described by

a classical mechanical approach, the length scale at which a continuum description of matter becomes

valid remains subject of a vivid debate. Indeed, at the nanoscale, peculiar behaviour like friction-

less flow in carbon nanotubes [1], very high heat conduction in graphene [2, 3], and the existence

of a dynamic contact angle [4] have been observed and characterized based on a discrete description

of matter. In parallel and at the same scale, well-established laws and phenomena derived from a
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macroscopic, i.e. continuum approach, have also been validated like Young’s equation for contact angle

[5], the presence of a Poiseuille flow in a nano-capillary [6], the Wilhelmy equation [7, 8], Amontons’ law

[9], Kirchhoff’s superposition law in carbon atomic wires [10], and the Bruggeman approximation for

thermal properties [11]. On the other hand, certain universal laws such as Fourier’s law are claimed

to be invalid for the low dimensional structures [12], while the thermal conductivity of small-scale

systems has been a topic of discussion for years [13, 14]. Mechanical properties of nano-composites are

also described by popular composite theories at the macroscale [15]. How the inverse rule of mixtures

(IROM) is applicable to define the wear mechanism of nano-composites has been evaluated [16]. The

same rule is shown to be valid to define the tensile modulus of ternary nano-composites, with some

modifications [17]. However, the applicability of the rule was evaluated for nano-composites in the

form of a matrix with reinforcing phase. Attempts to introduce modifications to the micromechanical

models predicting the tensile properties of nano-composites have also been made [18]. In this work, we

investigate a novel application of the IROM, to describe the composite elastic modulus at nanoscale.

The rule is valid for configurations where the loading direction is perpendicular to a stratified composite

structure of two or more phases. It gives an exact solution in those cases where there is a perfect series

connection of the constituents.

Basically, composites consisting of two or more phases can be divided into two categories. Mixtures

of a reinforcing material and matrix, where the applied load would not equally be distributed in the

two phases. This category is the case for the majority of the nano-reinforced composites. The second

category however is referring to nano-composites where components are placed in series, in the direction

of the applied load. The latter category will experience an isostress situation, if the Poisson effect is

not present or can be neglected. The strain in each section of the composite in this case will be

a function of the elastic modulus of the individual components. Such an exemplary structure is a

cellulose nanofibril (CNF), a nano-composite of crystalline and dislocated cellulose, under longitudinal

load.

For a two phase composite (c and d), stretching of two springs connected in series can be expressed

as the summation of elongations in the two springs

∆ltot = ∆lc + ∆ld , (1)

where ∆ltot is the total elongation and ∆lc and ∆ld are the elongations in the two individual
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springs. Having that ∆l = εl, being ε the strain and l [m] the length, we get

εtotltot = εclc + εdld , (2)

substituting Hooke’s law σ = Eε, having that σ [ N
m2 ] and E [ N

m2 ] are the stress and the elastic

modulus, respectively, we obtain

σtotltot
Etot

=
σclc
Ec

+
σdld
Ed

. (3)

Assuming now that the forces in each segment are equal (series of springs) and the cross sections

are equal (i.e. neglecting density differences) we can justify the isostress assumption σtot = σc = σd,

and cancelling these terms leads to

ltot
Etot

=
lc
Ec

+
ld
Ed

. (4)

Again considering a constant cross section A (i.e. neglecting density differences) we find the volume

in each element V = lA and thus the IROM:

1

Etot
=
vc
Ec

+
vd
Ed

. (5)

Where Etot is the equivalent elastic modulus, Ec and Ed are the elastic moduli, and vc and vd are

the volume fractions of the two segments. Following the ideas developed above it is straightforward to

see that the IROM can also describe the elastic modulus of multi-phase composites with n components

loaded in series, having volumetric ratios of v1, v2, ..., vn, and corresponding elastic moduli of E1, E2,

..., En, as follows

1

Etot
=
v1
E1

+
v2
E2

+ ...+
vn
En

. (6)

CNFs are components of the plant cell wall, consisting of two phases of crystalline and dislocated

regions. While crystalline segments are highly ordered, showing high values of elastic moduli, dislocated

regions, having a lower number of hydrogen bonds, intrinsically exhibit an elastic modulus of almost

half of that of the crystals [19]. Although there is controversy in literature, dislocated segments of the

CNF are believed to be located in series with the cellulose crystals, impacting the overall mechanical

properties [20]. The structure of the CNFs can hence be schematized and modelled as springs loaded
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Figure 1: The schematic of a CNF, and its equivalent spring structure. The blue and red sections represent the crystalline
and dislocated segments, respectively. Consequently, Ec and Ed represent the elastic moduli, and vc and vd denote the
volume fractions of the crystalline and dislocated segments, respectively.

in series, as illustrated in Fig.1.

In this paper, we compare the simple relationship of the IROM to predict the longitudinal Young’s

modulus, with results of molecular dynamics simulations, for a composite cellulose nanofibril made of

crystalline and dislocated segments. The aim is thus to verify the validity of IROM, being a continuum

model, when applied at the nanoscale. It is shown how the tensile properties of the CNFs are affected

by the presence of dislocated segments. The results could potentially shed light on defining the degree

of polymerization of CNFs, and the content of the dislocated segments by reverse engineering the

tensile modulus of the fibrils.

2. Methods

2.1. Molecular dynamics simulations

Molecular Dynamics simulations are performed by the Groningen Machine for Chemical Simulations

(GROMACS), 2018.7 version [21]. The GLYCAM06 force field specified for modelling carbohydrates

is used [22]. The parameter sets are then converted to GROMACS format using the AnteChamber

Python Parser interface (ACPYPE) python code [23] from the source Amber package [24]. A quadratic

polynomial is used to model the bonded interactions including stretching and angle potential, whereas

torsional potentials are modelled with a three-term Fourier expansion series. Van der Waals interac-

tions are treated with a 6-12th power Lennard-Jones potential, and Coulombic potential is used to treat

the electrostatic interactions. The steepest decent algorithm is employed to minimize the structure’s

energies. Newton’s equations of motion are solved with a leap-frog algorithm in the canonical ensem-

ble (constant Number of atoms, constant Volume, and constant Temperature), and production runs.

Bonded hydrogens are constrained through the LINCS algorithm. Neighbour searching is performed

with a Verlet scheme, having a cut-off for both the van der Waals and short-range electrostatic inter-

actions of 1.2 nm. Electrostatics are treated with particle-mesh Ewald (PME). A velocity rescaling

thermostat is used to control the temperature of different sections of the fibrils [25]. The time-step
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of the simulations is set to 2 fs. Pulling is performed by applying a force at specific positions on the

fibrils.

2.2. Models

The 6 × 6 crystal structure is modelled in Materials Studio [26] using the crystallographic data

for Iβ cellulose reported in the literature [27]. The simulated 36-chain structure with a degree of

polymerization of 119 (DP 119) has a length of 63.5 nm. To model the dislocations in the middle of

the fibrils, a previously reported procedure was applied [19]. The specified residues are tempered to

750, 900, and 1020 K for 1 ns at each step. The resulting structure is then quenched down to 300 K for

another 1 ns. The cross-sectional area of the fibrils is computed by multiplying the distances between

the side chains, considering the cross-section to be a rectangle. The chain distances are multiplied by

correction factors to reach the correct approximate cross-section of 10.5 nm2, as the true chain distance

is slightly more than the center of mass to center of mass of the chains. The final area is the average

of 8 computed cross-sections over the length of the fibrils.

The IROM can be investigated in models with different sizes of dislocations providing different

volume fractions. Fig.2a shows the 63.5 nm 6×6 Iβ cellulose nano crystal (CNC), used to accommodate

dislocated segments in the middle. To vary volume fractions, dislocated segments with different sizes

were modelled, but at higher levels of dislocated materials, fibrils were bent at the dislocated segment

making it difficult to measure the elastic modulus. This is because the pulling force applied at the

two ends of the fibril is used to simultaneously unbend and stretch it (see Fig.2c). The most stable

model was then chosen to investigate the IROM, having 10 glucose units dislocated in the middle, as

depicted in Fig.2b.

To mimic various volume fractions of the dislocated segment, forces were applied at different po-

sitions on the CNF, e.g. if forces are applied at the two ends of the dislocated segment, a model

containing 100% dislocation is achieved. If the force is applied at two positions being 50 glucose units

apart, this gives 20% of dislocation volume fraction and so forth (see Fig.3). The same procedure was

applied to obtain 13 points, including 13 different elastic moduli and dislocated segment content.

3. Results and discussion

Results of the computed elastic moduli through the simulations and by IROM are depicted in Fig.4.

To calculate the elastic moduli by the IROM, the elastic modulus of the crystalline and dislocated
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(a)

(b)

(c)

Figure 2: (a) The fully crystalline model, (b) CNF including 10 glucose units of dislocated segments in the middle,
(c) CNF including 25 glucose units of dislocated segments in the middle. The last model bent during the production,
making it difficult to measure the elastic modulus.

Figure 3: Points at which the force is applied can be varied to change the volume fraction of the dislocated segments.
For example applying the forces at the blue sections is equal to have a CNF with 14% of dislocated segment, whereas
the two ends are loose and play no role.

6



Figure 4: Results of the elastic moduli versus the percentage of the dislocations in the CNF. The blue circles represent
the simulation results, whereas the red squares show the IROM. Results of IROM show very good agreement with the
simulations. The inset shows the deviation error of the simulation results from that of the IROM.

segments were computed in the simulations and are 146.7 GPa and 74.8 GPa, respectively (for 5% of

strain). As can be seen, there is a complete agreement between the theoretical and numerical results

up to 32% of dislocation content. Errors start to increase when the percentage of crystalline units

becomes so small that the discretization leads to deviations from the continuous expression of the

IROM. This inherently increases the errors in cross-sectional area calculation, as the segments where

the dislocation is present are not as ordered as the crystalline sections. Thus, the increasing error

for the last three points is associated with the cross-sectional area calculation. Moreover, including

more points in between 62% and 100% is simulation-wise not possible. This is because, considering 10

glucose units of dislocation, including only three glucose units of crystalline segments at the two ends

of the dislocated segment already drops the dislocation percentage to 60%.

4. Conclusions

In this work, we investigated the applicability of the inverse rule of mixtures to predict the modulus

of elasticity for nano-composites, by demonstrating it for cellulose nanofibrils. A model including a

5.3 nm dislocated segment in the middle of a 63.5 nm cellulose fibril was simulated, while forces were

applied at different positions along the length of the fibril, mimicking different volume fractions. The
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elastic modulus versus the percentage of dislocated segments in the fibril was then compared with

that of the inverse rule of mixtures. Results completely confirm that the elastic modulus of cellulose

nanofibrils can be estimated by the IROM, knowing the volumetric fraction of the dislocated segments

in the medium. As a side application, the results can be utilized in future studies, where experimental

testing of single CNFs is possible. The inverse rule of mixtures can be used to estimate the crystallinity

index of the fibrils, in case data on the elastic modulus of individual fibrils is available. On a more

general level we have validated the IROM for a two-phase composite where the phases are mechanically

loaded in series (i.e. a 2-phase stratified composite where the loading direction is perpendicular to its

layers). This work can bridge the nanoscale to higher scales by providing a formula for the mechanical

properties of certain multicomponent composites, which are often difficult to test directly.
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Highlights: 

 Validity of the inverse rule of mixtures is inspected at the nanoscale 

 A previously model for cellulose nanofibrils is assessed as a two-component 

composite 

 13 volume fractions in between 0-100 are taken to investigate the inverse rule of 

mixtures  

 Inverse rule of mixtures can be applied to estimate elastic modulus of multi-

component nanocomposites when they are loaded in series 
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