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ABSTRACT 

 

Automation combined with the increasing market penetration of on-line communication, navigation, and 

advanced driver assistance systems will ultimately result in Intelligent Vehicle Highway Systems. Advanced 

Vehicle Control Systems (AVCS) is a key technology for Intelligent Transportation System (ITS) and 

Intelligent Vehicle Control System (IVCS). The unmanned control of the steering wheel is one of the most 

important challenges faced by the researchers. This paper proposes 1D sensor calibration algorithm which 

makes the vehicle to identify the track independent of various lighting conditions. Pre-processing algorithm 

helps in finding the position and orientation of the vehicle in the track. A novel control architecture for 

automatic steering, acceleration and braking control of a self guided vehicle has been proposed which 

consists of cascaded Kalman filter with PID steer control algorithm. It provides smooth tracking over the 

entire track. Adaptive speed control based on speed difference and acceleration control algorithm based on 

steer error are used. These algorithms make the vehicle to optimally manoeuvre the track. The 

experimental results show that the combination of Kalman filter with PID for lateral control reduces 

trajectory error to a minimum level and adaptive speed control algorithm for longitudinal control provides 

smooth speed over the entire track.  
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1. INTRODUCTION 

 
Due to increasing traffic demand, modern societies with well-planned road management systems 
and sufficient infrastructures for transportation still face the problem of traffic congestion. This 
results in loss of travel time, and huge economic cost. Constructing new roads will be one of the 
solutions for handling the traffic congestion problem but it is often less feasible because of 
political and environmental concerns.  
 
The projected ITS infrastructure benefits over the duration from 1996 to 2015 are savings in cost 
due to accidents up to 44%, time savings of 41%, emissions/fuel can be reduced by 6%, operating 
cost savings of 5%, cost savings to agencies contributing a factor of 4% and others providing less 
than 1% (Beverly Kuhn, Presentation). Congestion costs in the United States are estimated to be 
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$100 billion annually, traffic accidents caused by congestion drains away another $70 billion per 
year. At the same time, new pavement construction is no longer in itself a complete solution to 
address the transportation needs [6]. 
 
In technology perspective six major categories of ITS are reviewed[17]; Advanced Traffic 
Management Systems (ATMS), Advanced Traveller Information Systems (ATIS), Advanced 
Public Transportation Systems (APTS), Fleet Management and Control Systems (FMCS), 
Advanced Rural Transportation systems and Advanced Vehicle Control Systems (AVCS).  The 
components of AVCS in ITS hierarchy [6] are shown in the figure 1. AVCS integrates sensors, 
computers and control systems to assist and alert drivers or to take a part of vehicle driving. The 
main purposes of these systems are to increase safety, to decrease congestions on roads and 
highways, and to improve road systems productivity [21]. AVCS also includes advanced cruise 
control, automated steering control for lane keeping and autonomous behaviour, including 
automated stopping and lane changes in reaction to other vehicles [6]. 
 
There are two ways to design steering controllers: imitating human drivers and using dynamic 
models of the car and control methods based on linear theory. Controllers for lateral and 
longitudinal control have been developed based on classical geometric control Global Positioning 
System (GPS) and inter-vehicle communications [19], using fuzzy logic   techniques   to address 
both challenges and incorporate human procedural knowledge into the vehicle control algorithms 
[16]. Image processing techniques are used to guide the autonomous vehicles from losing the 
track when the guide line is missing [10] and to identify obstacles and to traverse them 
accordingly. Artificial vision systems and the neural network based rapidly adapting lateral 
position handler (RALPH) were used in Navlab vehicle series [7]. 
 
 

 

 

 

 

 

 

 

 
Figure 1   AVCS in ITS Hierarchy 

 
This paper is organized as follows: Section 2 presents the vehicle instrumentation of the 
autonomous self guided vehicle covering the hardware organization. Section 3 describes about the 
line scanning camera to identify black line from white surface. Since these values are 
unpredictable without camera calibration, a novel calibration algorithm is proposed. Section 4 
deals with a pre-processing technique for effective identification of the vehicle in the track and it 
covers the lateral control algorithm and its organization which is based upon Kalman filter and 
PID controller for steering control. Section 5 describes about the longitudinal control organization 
which covers the adaptive speed control and acceleration control of the vehicle and finally section 
6 addresses the simulation and experimentation results. 
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2. HARDWARE MODULE OF VEHICLE 

 
The proposed prototype vehicle  is a 1/17 scale down version of the on-road vehicle which is 
battery driven. Its vision system is 128 X 1 linear sensor array (line-scan camera) with an 
amplifier. Servo motor with front axle for front wheel steer mechanism and two DC motors 
attached to rear axle with final drive gear arrangement are used in the prototype vehicle. The 
vehicle is controlled by Freescale 5604B microcontroller. The self guided vehicle and its block 
diagram are shown in figure 2 and 3 respectively. The hardware specifications of the vehicle are 
as shown in table 1.  
 

3. TRACK SCANNING METHODOLOGIES 

 
The use of line-scanning cameras for the measurement in the areas such as automotive industry is 
increasing. In many applications line-scanning cameras are replacing 2-D cameras because of the 
increased efficiency and the accuracy. The 1-D data that line scanning camera provide is easier 
and faster to process than 2-D images. The amount of light reflected depends on the smoothness 
of the surface, smoother surface reflects better than the rougher. The amount absorbed also 
depends on the color of the surface, dark colors absorb better than light. Flat black absorbs best of 
all and the white surface. 
 

 

 
Figure 2   Self Guided Vehicle    Figure 3   Block Diagram of the Vehicle  
 

Table 1   Hardware Specification 
 

Length 28.5 cm Min. Right turn radius 17.5 cm 

Width 16 cm Min left turn radius  17 cm 

Height 9 cm Centre duty cycle 1500 

Wheel circumference 18 cm Extreme left duty cycle 1150 

Max. Right turn  angle 35 ⁰ Extreme right duty cycle 1860 

Max. Left turn angle 38.6 ⁰ PWM duty per degree turn 9.65 

 
Also, the angle at which the light strikes the object has an effect on the amount absorbed and/or 
reflected.  
 
The camera is positioned at an elevation of 4.8 cm to obtain better view of the track that lay 
ahead. The forward scanning distance ahead of the vehicle is set to be 11 cm and the scanning 
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span of 7 cm width. Each pixel value is equal to the intensity value of    0.547 mm space in the 
track. The angle of depression of the camera and its view point is 23.5 degrees. The test track has 
a black track of 2.5 cm in the white background. The intensity level of the measured 7 cm scan 
area is plotted in Figure 4,5 & 6. Sensor voltages representing white are relatively large which 
helps us to differentiate the black line from the white background. Around 48 pixels corresponds 
to the black line in the track gives a dip in the output voltage. 
 
The output obtained from the sensors for various positions of the track is shown in figures 6, 7 
and 8. 
 

                                  

 
Figure 4  (a) Black Line in the Center    (b) Equivalent Line-Scan Camera Output 

 

                                                          
 
      Figure 5    (a) Black line in the Right      (b) Equivalent Line-Scan Camera Output   
 

                                 
 

Figure 6   (a) Black Line in the Left   (b) Equivalent Line-Scan Camera Output 
 

The integration time of the line scanning camera is the period during which light is sampled and 
charge accumulates on each pixel’s integrating capacitor. By changing the integration time, a 
desired output voltage can be obtained on the output pin while avoiding saturation for a wide 
range of light levels. The minimum time needed to guarantee the sampling capacitor for pixel ‘n’ 
will charge to the voltage level of the integrating capacitor is the charge transfer time of 20 µs. 
Therefore, after n + 1 clocks, an extra 20 µs wait must occur before the next SI pulse to start a 
new integration and output cycle. The minimum integration time for any given array is 
determined by time required to clock out all the pixels in the array and the time to discharge the 
pixels.  The minimum integration time can be calculated from the equation, where, n is the 
number of pixels. 
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3.1 Sensor Calibration Algorithm 

  
Integration time is one of the important factors deciding the accuracy and the reliability of the 
input obtained from the sensor array. It plays a crucial role in fixing the optimal value that ought 
to be fixed for maximized performance. It cannot be made too large, since it will take much time 
to read the individual values and the overall sampling rate decreases. Thereby making vulnerable 
to miss the necessary corrections and thus making undesired deviations from the track. It can 
neither be made too low as it becomes much difficult to distinguish between white background 
and black line which are already contaminated with the light noise when the difference that marks 
their difference is very small. Thus, the integration time plays a key role in deciding the tracking 
efficiency and hence in the algorithm used, the integration time is varied dynamically so as to 
adjust for the unpredicted light intensity variations and fluctuations. The sensor analog values 
before and after calibration are shown in figure 7 and 8. The plot describing the adaptive variation 
of the integration time with respect to the sensed values of black and white and is also made to 
increase/decrease on each iteration as the condition remains.  
 
 

 

 

 

 
Figure 7 (a)Track under 1000 lux  (b) Equivalent Output   (c) After Adaptive Calibration 

 
 
 
 
 
 
 
 

Figure 8 (a)Track  under 10 lux   (b)Equivalent Output    (c) After Adaptive Calibration 

 
Our proposed adaptive sensor calibration algorithm suitably calibrates the camera to get reliable 
results. The sensor calibration algorithm varies the integration time with respect to the difference 
in the recognizable black and the white values, which are plotted as shown in figure 9. 
 
From figure 9 it is clear that when the difference between the black and white values is in the 
optimal range of 20 to 30 the integration time remains same. Due to light intensity variation if the 
difference between the black and white values is decreased, the integration time is increased to 
adapt to the current intensity level and vice versa. This process is iteratively repeated as shown in 
figure 9. From the experimental analysis as shown in figure 10 it is evident that adaptive sensor 
calibration technique adapts to the various light intensity conditions and facilitates the 
identification of black line from the white background at any intensity level between 10 lux – 
1000 lux. 
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Figure 9   Adaptive Calibration Plot 
     

 
 

Figure 10  Plot of Dynamic Integration Time Vs Light Intensity 
 

4. POSITION IDENTIFICATION AND LATERAL CONTROL ORGANIZATION 

 
After sensor calibration the sensor values are used to identify the position and orientation of the 
vehicle. Based on the position and orientation the control action is applied by the control 
algorithm for servo steer correction. The analog output obtained from the camera after calibration 
is given to the on-chip ADC for pre-processing (position identification) followed by a two layer 
cascaded control structure which makes the overall lateral control of the vehicle as shown in 
figure 11. After sensor calibration the sensor values are used to identify the position and 
orientation of the vehicle. Based on the position and orientation the control action is applied by 
the control algorithm for servo steer correction.  
 

 
 

Figure 11   Lateral Control Methodology 
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4.1 Pre – Processing Techniques 

 
The process of detecting the position of the vehicle in the test bed track from the centre black line 
is done by obtaining the values from the sensor using the pre processing techniques which are as 
in figure 11 and 12. Due to the high sensitive nature of the sensor, the readings will not be crisp 
as it is more likely to be affected by random noise. In order to remove it and linear out the sensor 
readings, Kalman filter is used. Kalman filter is an adaptive filter. It is mainly used where the 
measurements observed over time contains, noise and other inaccuracies. It computes a weighted 
average between the predicted value and the measured value. Kalman filter works recursively and 
requires only the last "best guess" to calculate a new state. 
 
The equations of Kalman filter are given from equations 2 through 6, [22] 
 

tt1- t|1-tt1- t|t u B   xF   x +=       -----------(2) 

 Q F P F   P tt1- t|1-tt1- t|t +=
T       -----------(3) 

 )y ( K    x x 1|tt1- t|t t|t −
−+= ttt xH      -----------(4) 

1- 

1|t

T

t1- t|tt )H ( H P  K t

T

ttt RHP +=
−

    -----------(5) 

1- t|tt t|t P )K - 1 (   P tH=       -----------(6) 

 

The readings from the sensor is sent to the Kalman filter which will remove the deviations from 
the readings, for this the system is modeled as, 
 

t1 t   x x =
+            -----------(7) 

 
The next state of the system is same as the present state so that filter will be insensitive to the 
small deviations thus removing their effect. Kalman filter parameters for the proposed model are 
Error of Estimation P=10,Error Due to process Q=0.007 and Error from measurements R=0.05. 
 
The deviation of the vehicle from the centre of the black line is considered to be the error. In 
order to detect the position of the vehicle from the sensor readings various image processing 
algorithms like first difference, second difference, Prewitt operator and Sobel operators have been 
considered and the mask similar to that of the Sobel operator is being used and satisfactory results 
have been obtained through it. 
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Figure 12   Pre – processing 

 
The Sobel operator is used in image processing algorithms, particularly for edge detection. It is a 
discrete differentiation operator which computes the gradient of the image intensity function. An 
edge detecting operator similar to the Sobel operator’s mask is used for the edge detection. The 
operator calculates the gradient of the image intensity at each point, giving the direction of the 
largest possible increase from light to dark and the rate of change in that direction. The result 
therefore shows how "abruptly" or "smoothly" the image changes at the point, and therefore how 
likely it is that part of the image represents an edge, as well as how that edge is likely to be 
oriented. 
 
A one dimensional mask similar to the 2D Sobel operator has been employed. The result of this 
operator will give the position, where there is a sudden or smooth change in readings. Operator 
used here is, 
 

Edge detection mask = [-1    2    -1]  ------------(8) 

 
The figure 13 shows the MATLAB simulation results of the proposed algorithm. Figure 13(a) 
shows the plot of the sensor values which undergoes edge detection(figure 13(b)) followed by 
smoothening (figure 13(c)) and finally the line identification by hard thresholding (figure 13(d)). 
After pre-processing steps the position of the vehicle in the track is identified. Figure 14 (a) and 
(b) shows the line detection and position estimation made by the algorithm for insufficient light 
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condition and in the absence of track respectively. Index value =63 from figure 14 (a) denotes the 
mid-point of the black line is at the 63rd pixel position out of 128 pixels, which shows the vehicle 
is in the center of the track. The start point and the end point identified by the algorithm gives the 
beginning and the end of the track position in the sensor’s field of view. Since the black track 
occupies about 46 pixel width justifies the position of the black line in the scan area. Hence all 
white flag is set to zero. 

 
 

 
 
 
 
 
   
  

(a)                           (b) 
 

 

  

 

 

 

 

            (c)                                      (d) 
  

Figure 13   Pre-processing steps 

 
In figure 14 (b) the algorithm calculates the index value as 41, starting and endpoints index are 40 
and 42 which justifies there is no black line in the track hence the vehicle is in out of track then 
all white flag is set to 1 which shows the anomalies ( all white condition). The control action is 
made accordingly to trace back the track as shown in figure 12. 

 

        

(a)                                                                   (b) 
 

index val  = 63             indexval   = 41 
startpoint = 40             startpoint = 40 
endpoint  = 86             endpoint   = 42 
all white  flag = 0            all white  flag  = 1 

 
Figure 14   Pre-Processing of Sensor Values with Anomaly 
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4.2 Lateral Control Algorithm 

 
Two layer control architecture is proposed to manage the steer of the vehicle. The high level layer 
consists of Kalman filter which is used to act upon the Pre-processed sensor inputs and to 
generate the necessary steer value [5]. The low level layer is composed of PID controller that 
receives the high level layer’s command and controls the servo motor. This two level architecture 
has been organized on the basis of the cascade controlled architecture. Kalman filter, as in section 
2 is an adaptive filter and is mainly used where the measurements observed over time contains 
noise and other inaccuracies.  

 
As depicted in the figure 15, for  better steering control,  the index value of the black line is 
obtained from pre-processing techniques and the pre-processed error is then given to the high 
level control architecture (i.e.) Kalman filter. It eliminates the effect of noise and other 
disturbances in the input error values and provides with the necessary steer that has to be made 
for smooth response. The high level architecture’s output is then fed to the low level architecture 
which has PID controller. 
 
PID controller consists of three separate modules namely the Proportional, Derivative and the 
Integral controller. PID controllers are widely used in feedback control of industrial processes.  
PID advantages include simplicity, robustness and their familiarity in the field of control 
applications. The process of selecting the various coefficient values to make a PID controller 
perform correctly is called PID Tuning [11]. 
 
 

 
 

Figure 15   Lateral Control Flow 
 

In figure 15  Ei denote the present error and Ei-1 denote the error of previous iteration. If the 
absolute value of Ei is greater than the absolute value of Ei-1, the vehicle is deviating away from 
the track else the vehicle is retracing back to the track. PID controller enhances the steer as done 
by PI controller when the vehicle is deviating away from the track and diminishes the steer as in 
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PD controller in-order to make a smooth retrace back to the track once the vehicle is aligned with 
the track. This filtered and controlled value is the correction that has to be accumulated with the 
centre PWM value in order to obtain the steer of desired angle. Hence the correction value added 
with the centre value is given as the PWM duty value for the servo motor thus giving us the 
required steering action throughout the track with greater accuracy. 
 
The presence of Kalman filter also protects the steering action from external disturbances such as 
varying lighting conditions, sudden flashes and sensor misreading which if otherwise may cause 
instability to the vehicle and thereby making it to relinquish tracing the track. Thus the two level 
architecture of Kalman Filter and PID controller manages the lateral control of the autonomous 
self guided vehicle effectively. 
 

5 LONGITUDINAL CONTROL ORGANIZATION 

 
The longitudinal control of a vehicle includes various aspects regarding the speed of the vehicle. 
It covers adaptive speed control, adaptive cruise control, platooning and various other techniques. 
Due to various inescapable reasons the speed of the vehicle might get varied than the expected 
value for a given input duty cycle of the dc motor. Some major instance that vary the speed of the 
vehicle is the effect of changes in the power supplied by the battery, variation in the friction 
produced between the wheels and the track as the vehicle takes a turn, etc. This effect worsens if 
the vehicle takes a sharp turn. Presence of turns in the track is unavoidable and hence a suitable 
alternate algorithm has to be developed and employed to overcome this impediment. Thus 
adaptive speed control becomes mandatory in the automated self guided vehicle. 
 

 
 

Figure 16   Current Feedback 
 

The information about the speed of the vehicle during the run is obtained by the current feedback. 
The current drawn by the dc motor after converting it into digital values using on-chip ADC for 
various speed levels are as plotted in figure 16.  Table 2 and 3 shows the DC motor PWM value 
under no-load condition and full-load condition for the differential drive DC  motors. The present 
speed of the vehicle is calculated from the feedback current value and compared with the base 
speed. If the present speed is slower than the base speed PWM is increased iteratively to get the 
desired speed and vice versa. The proposed adaptive speed control algorithm is shown in figure 
17. 
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Table 2   DC Motors drive current 
 

 

 

 

 

 

 

 

 

 
Table 3   Feedback from DC motors 

 
CURRENT FEED BACK VALUES (FROM ADC ( AS HEXA DECIMAL) ) 

 NO LOAD 
CONDITION 

CONDITION ON THE 
TRACK 

LEFT MOTOR ONLY 38 9B 

RIGHT MOTOR ONLY 3A A4 

DUAL DRIVE (LEFT, 
RIGHT) 

(39, 3C) (9D, A0) 

 

5.1 Adaptive Speed Control Algorithm 

 
The speed of the motors vary involuntarily while making curves due to various reasons such as 
friction, centripetal force etc. and to compensate the above effect and to make the vehicle be in 
steady speed during turns, a boosting algorithm is employed as shown in figure 17.  
 

                                                 

 
Figure 17   Adaptive Speed Algorithm 
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Table 4   Speed Boost Vs Iteration Table 
 

Boost\ 

PWM Increment 
for Iteration 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

0 BS BS BS BS BS BS 

1 BS+5 BS+10 BS+15 BS+20 BS+25 BS+30 

2 BS+10 BS+20 BS+30 BS+40 BS+50 BS+60 

      3     BS+15 BS+30 BS+45 BS+60 BS+75 BS+90 

4 BS+20 BS+40 BS+60 BS+80 BS+100 BS+120 

5 BS+25 BS+50 BS+75 BS+100 BS+125 BS+150 

 
The table 4 shows how the dc motor’s PWM is varied in order to maintain the constant speed. In 
the table ‘BS’ denotes the base speed and ‘TS’ the true speed of the vehicle. The ‘Boost’ is 
computed as the difference between the base speed and the true speed and depending upon the 
boost value the duty cycle is increased/decreased for every iterations in order to compensate the 
increase/reduction in speed as in table 4. 

 
Boost = BS – TS 
 
New Speed = BS + (Boost * No. of Iterations) 
 
The result of employing the boost algorithm rectifies the speed reduction problem. The 
performance of the above algorithm is shown in the figure 18. 
 

 
 

5.2 Adaptive acceleration control algorithm 
 

In order to have efficient performance from the vehicle the acceleration of the vehicle is varied 
according to the steer error value. The algorithm is similar to adaptive delta algorithm where the 
delta change is made adaptive to the input signal.  
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Figure 19   Adaptive Acceleration Control Plot 
 

When the correlation between the previous steer values and the present steer value is high and 
also the error is minimum, then the vehicle is accelerated so as to optimize the speed. Conversely 
when the correlation among the previous and the present error values is low or the deviation from 
the track is high, then the vehicle is decelerated to as to optimize the control. Thus both speed and 
steer control of the vehicle is optimized by the use of adaptive acceleration control algorithm. The 
graph plotted between the acceleration and the error values is shown in the figure 19. 
 

6. RESULTS 

 
This section deals about the Matlab simulations results of the Kalman filter model as mentioned 
in the lateral control architecture under noisy conditions. Comparison results with other methods 
like PID controller and about the results of dynamic integration time variation of the line scanning 
camera are analysed. The experimental results with the test bed vehicle in the test track are also 
plotted. The overall block schematic of the self guided vehicle is shown in figure 20 and the test 
bed track with three different radius of curves is shown in figure 21.  
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Figure 20   Block Schematic of  Self Guided Vehicle 

 
 

Figure 21   Test Bed Track 
 

Figure 22 shows the Kalman filtered output for small and relatively large curves in the track 
which is simulated using matlab for the proposed model. For smaller curves the sensor value 
changes is small and the system is smoothly aligned and reaches its zero error position. The same 
is applicable for sharper curves.   
 

 
 

Figure 22 Simulation Results of Kalman Filter for Lateral Error Correction 

 
Thus the Kalman filter smoothens out the sensor values and gives us relatively smooth response 
for controlling the servo motor which in turn steers the car.    
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Figure 23  Simulation Plot of Kalman Filter Response to Noisy Sensor Values 

Figure 23 clearly shows that though the sensor gives noisy values frequently, the filtered response 
is still maintained as smooth as possible thus preventing the oscillations of the vehicle due to 
sensor misreading. 
 
When compared to method [11], the proposed algorithm proves to be more efficient in terms of 
execution speed and the vehicle speed. The comparison is made on table 5. 
 
Table 5   Comparison between Julio E. Normey’s method and the proposed method 
 

Julio E. Normey’s method Proposed method 

Speed = 0.4 m/s  Speed = 0.83 m/s 

Sampling time = 0.2s Sampling time = 0.01s 

 
An analysis is made on the time taken by the autonomous vehicle to align itself with the track 
during a turn and from the MATLAB simulations it is clear that the vehicle consistently takes a 
constant time despite the turn degree as shown in figure 24. 
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Figure 24   Number of Iterations to Settle vs. Degree Turn 
Unlike [11], where the turning time varies with respect to the turn angle, the proposed algorithm 
maintains almost constant time to turn all kinds of curves however sharp or blunt they might be as 
shown from figure 24. The time required to turn is given by the number of iterations required to 
settle multiplied by the time taken for one iteration and in this case the time taken to align with 
any kind of curve is always nearly 0.5 seconds. This proves that, the proposed method will be of 
great advantage when a track with multiple sharp curves is encountered. 
 
Various tracking methods such as Kalman filter, PID Controller and the proposed method are 
implemented and their results are compared. The lap completion time is plotted against the duty 
cycle and the graph is obtained as shown in figure 25.  Where  * denotes the point from which the 
car becomes unstable. It is clear from the graph that PID and Kalman becomes unstable as the 
speed of the car is increased and the proposed model remains stable even at higher speeds. 
 

 
 

Figure 25   Results of the Experiment taken in Test Bed Track using Test Vehicle 
 

From the experimental results it has been seen that the proposed method is more stable than other 
algorithms and it works well even at high speeds where all the other algorithms failed. In Kalman 
filter based design, the parameter P plays a vital role as it gives the error in the estimation of the 
state [12]. The value of  P should be maintained as low as possible towards 0. Lower the P value 
towards 0, more accurate the estimated state of the system is, in the proposed model the value of 
P is around 0.003 which is obtained from test results and it justifies that the proposed model is 
more accurate.  
 

7. CONCLUSION 

 
Thus from the proposed model, the adaptive sensor calibration technique, adapts to the various 
light intensity conditions and facilitating the identification of black line from the white 
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background at any intensity level (10 lux – 1000 lux). Pre processing algorithm helps to identify 
the position and orientation of the vehicle in the track. Kalman filter helps to reduce the 
environmental noise. PID controller reduces the oscillations and makes the vehicle to track 
smoothly. The proposed speed control algorithm makes the vehicle to maintain the speed over the 
entire track. Finally the adaptive acceleration control algorithm optimizes the vehicle speed in 
straight line and in the curves appropriately. The combination of proposed sensor calibration 
algorithm, pre-processing algorithm, cascaded Kalman and PID steer control algorithm, adaptive 
speed and acceleration control algorithm together makes the test bed vehicle to complete the test 
bed track in a shortest time. The proposed models and algorithms can be extended to real time 
vehicles by making suitable modifications.    
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