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ABSTRACT

This paper addresses the novel task of detecting chorus
sections in English and Japanese lyrics text. Although
chorus-section detection using audio signals has been stud-
ied, whether chorus sections can be detected from text-only
lyrics is an open issue. Another open issue is whether pat-
terns of repeating lyric lines such as those appearing in cho-
rus sections depend on language. To investigate these issues,
we propose a neural network-based model for sequence
labeling. It can learn phrase repetition and linguistic fea-
tures to detect chorus sections in lyrics text. It is, however,
difficult to train this model since there was no dataset of
lyrics with chorus-section annotations as there was no prior
work on this task. We therefore generate a large amount
of training data with such annotations by leveraging pairs
of musical audio signals and their corresponding manually
time-aligned lyrics; we first automatically detect chorus
sections from the audio signals and then use their temporal
positions to transfer them to the line-level chorus-section
annotations for the lyrics. Experimental results show that
the proposed model with the generated data contributes to
detecting the chorus sections, that the model trained on
Japanese lyrics can detect chorus sections surprisingly well
in English lyrics and that patterns of repeating lyric lines
are language-independent.

1. INTRODUCTION

The digitization of lyrics collections has opened various
areas of lyrics-based research in the Music Information
Retrieval (MIR) community, such as research on lyrics
browsing [1–3], lyrics genre classification [4–6] and lyrics-
to-audio synchronization [7–17]. Lyrics are usually plain
text without any annotations, and some researchers have
analyzed their structure, such as paragraph structure and
topic transitions between paragraphs [18–22]. For example,
Fell et al. [18] and Watanabe et al. [19] estimated section
boundaries in lyrics text without empty lines but were not
able to assign a section label such as verse or chorus to each
estimated section. Chorus sections were not detected in
lyrics text.

The goal of this paper is to achieve automatic chorus-
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section detection for lyrics text. This task has not been
studied, though chorus-section detection, as well as music
structure analysis, for audio signals has been a popular topic
of research in the MIR community [23–41]. Since whether
chorus sections can be detected from text-only lyrics is an
open issue, it is worth investigating this issue from academic
viewpoints. Moreover, a chorus-section detection method
for lyrics text has potential applications. For example, when
listeners want to find lyrics with a chorus section having
a particular phrase such as “I love you” for the purpose of
singing, reusing its chorus section in a short video clip, etc.,
it is necessary for a lyrics search system to automatically de-
tect which lines of the lyrics are included in chorus sections.
The detected lyric lines of chorus sections could be used
in a lyrics viewing function of music services displaying
lyrics with those lines highlighted by a different color or
typeface. Automatic lyric video generation technologies
could give those lines more vivid animations.

Chorus sections are the most repeated and memorable
portions of a song [39]. Since it is not easy to explore
heuristic rules to find such sections, most existing chorus-
section detection methods for audio signals have leveraged
repetitive patterns of those sections within a song. In this
paper, we propose a supervised model that can detect cho-
rus sections in English and Japanese lyrics. Our model uses
both structural features that represent patterns of repeating
lyric lines and linguistic features that are calculated from
word2vec [42] and context2vec [43]. To detect chorus sec-
tions using only plain text without any labels or even empty
lines (i.e., section boundaries), we investigate a model and
features effective for chorus-section detection. Experimen-
tal results show that our proposed model outperforms alter-
native baseline models and that combining structural and
linguistic features contributes to better performance.

Although such a supervised model needs a large dataset
of lyrics with line-level chorus-section annotations for its
training, there was no such dataset as there was no prior
work on chorus sections in lyrics text. To address this
issue of lacking training data, we generated a dataset con-
sisting of 9,313 English and 91,459 Japanese lyrics with
chorus-section annotations by utilizing pairs of musical au-
dio signals and their corresponding manually time-aligned
lyrics. We first automatically detected chorus sections in
audio signals of a song [39]. Then, since each lyric line
had the corresponding start time within the song, we could
find lyric lines that temporally correspond to the duration
of each detected chorus section. We thus obtained the an-
notated dataset by assigning a chorus label to those lyric
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Self-similarity Matrix
1: ooo I wanna kiss you
2: loving you is my dream tonight
3: ooo hold me tenderly
4: loving me with all your heart
5: boy you never tell me that you love me
6: I'm going crazy wondering about you baby
7: do you really know boy how much I care
8: could you really show me how deep is your love ?
9: just close you eyes and hear my heart

10: the sweet sweet beat of my love
11: can't you tell I'm hungry baby
12: for only you can make me smile
13: ooo I wanna kiss you
14: loving you is my dream tonight
15: ooo hold me tenderly
16: loving me with all your heart
17: can't you understand me my point of view
18: do you really love me beyond all words
19: I just need to hear now from your sweet lips
20: I'm the only girl you ever want to kiss
21: just close your eyes and hear my heart
22: the sweet sweet beat of my love
23: can't you tell I'm hungry baby
24: for only you can make me smile
25: just close your eyes and hear my heart
26: the sweet sweet beat of my love
27: can't you tell I'm hungry baby
28: for only you can make me smile
29: ooo I wanna kiss you
30: loving you is my dream tonight
31: ooo hold me tenderly
32: loving me with all your heart

Text (a sequence of lines 𝑥" in lyrics)
chorus (1)
chorus (1)
chorus (1)
chorus (1)

not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)

chorus (1)
chorus (1)
chorus (1)
chorus (1)

not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)
not-chorus (0)

chorus (1)
chorus (1)
chorus (1)
chorus (1)

Label 𝑦"

1 322 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 1. Example of lyrics with chorus-section annotations and corresponding self-similarity matrix in which each cell
represents the similarity between two lyric lines. These lyrics are from “How Deep Is Your Love?” (RWC-MDB-P-2001 No.
81 in the RWC Music Database [44]).

lines and a not-chorus label to the other lines. Experi-
mental results show that the model trained with this large
automatically generated dataset performs better than the
model trained with a smaller manually annotated dataset
and that the model trained on Japanese lyrics can detect
chorus sections surprisingly well in English lyrics.

2. LYRICS CHORUS-SECTION DETECTION
TASK

The left side of Figure 1 shows an example of lyrics with
chorus-section annotations (labels). The lyrics of a song
are a sequence of lyric lines, each line having a sentence or
phrase. In this example there are three highlighted chorus
sections that have exactly the same four lines, though in
other songs, lyrics of chorus sections are repeated with some
modifications. To maximize the applicability, as shown in
this example, we assume that the input text of lyrics does
not have any section boundaries. Even though some lyrics
contain empty lines at those boundaries, those lines are
deleted in advance. We also assume that the input text does
not have explicit chorus labels such as “(chorus)” at the
beginnings of chorus sections. Even though some lyrics
contain those labels, they are deleted as well. When lyrics
contain a repetition label such as “(* repeat)”, it is manually
replaced with the corresponding lyric lines.

We formulate this chorus-section detection task as a
sequence labeling problem: predicting the chorus or
not-chorus status for each lyric line. Let Xs be the
lyrics of a song s composed of T lines of text: Xs =
{x1, ..., xt, ..., xT }. Each lyric line xt has a binary label yt.
If yt = 1, xt is in a chorus section. If yt = 0, xt is not in a
chorus section. Ys denotes a sequence of labels correspond-

ing to Xs: Ys = {y1, ..., yt, ..., yT }. In the training step,
the model learns the conditional probability P (Ys|Xs). In
the validation/testing step, the trained model has to predict
labels Ys for given lyric lines Xs.

Chorus sections cannot be detected by simply extracting
repeated lines since those lines often correspond to non-
chorus sections. For example, lyric lines 9–12 and 21–24
in Figure 1 are exactly repeated, but those lines are not in
chorus sections. It is also difficult to manually define a
set of rules to find various chorus sections. We therefore
prepare various features that could be useful for machine
learning to deal with various types of chorus sections.

3. COMPUTATIONAL MODELING OF CHORUS
SECTIONS IN LYRICS

We propose a neural network-based model for sequence
labeling by using structural features that are self-similarity
matrix (SSM) representations. SSM representations are
widely used in computational music structure analysis, but
we use different representations for lyrics. In addition to
structural features, our model utilizes linguistic features
such as word vectors and sentence vectors calculated from
word2vec [42] and context2vec [43], which are widely used
in natural language processing.

In the following sections, we first describe nine SSMs
for capturing patterns of repeating lyric lines and explain
how to encode the SSMs for neural networks (Section 3.1).
We then describe the linguistic features obtained by vec-
torizing the semantic/syntactic information of lines using
word2vec and context2vec (Section 3.2). Finally, we de-
scribe a neural-network-based sequence labeling model
with these structural and linguistic features (Section 3.3).
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3.1 Structural Features

Most previous work on music structure analysis for audio
signals [23–41] identifies repeated musical sections by us-
ing a SSM like that shown in Figure 1. Repeated sections
lead to high values in diagonals of the matrix, and those
patterns are used to identify the structure. To capture re-
peated lyric lines that often appear in chorus sections, we
also compute the SSM from lyrics text, but the design of
the similarity measure to compute each cell of the SSM
is important. We propose to use the following nine varia-
tions of similarity measures simm, where m denotes the
variation. Some of the similarities are based on previous
studies [18, 19].
String similarity (simstr): a normalized Levenshtein edit
distance [45] between the characters of two lyric lines.
Head similarity (simhead): a normalized Levenshtein edit
distance between the characters of the first two words of
two lyric lines.
Tail similarity (simtail): a normalized Levenshtein edit
distance between the characters of the last two words of
two lyric lines.
Phonetic similarity (simphone): To capture rhymes in the
lyrics, we calculate a normalized Levenshtein edit distance
between the phonetic transcriptions of two lyric lines. We
use the CMU pronunciation dictionary 1 to extract the pho-
netic transcription. For example, the phonetic transcription
of “I love you” is [AY1, L, AH1, V, Y, UW1].
Part-of-speech similarity (simpos): To capture similari-
ties in grammatical structure, we calculate a normalized
Levenshtein edit distance between the part-of-speech (POS)
sequences of two lines. We use the default POS tagger in
the NLTK package [46].
Word vector similarity (simw2v): To capture the seman-
tic similarity between two lyric lines, we simply average
vectors of the words of each lyric line by using pre-trained
word2vec [42] and compute their cosine similarity. This
“bag of words” representation does not differentiate “dog
bites person” from “person bites dog”.
Context vector similarity (simc2v): To consider the word
order, we vectorize the lyric lines using pre-trained con-
text2vec [43], an extension of word2vec, which encodes
a sequence of words by using Long Short-Term Memory
(LSTM) networks [47]. We then compute their cosine simi-
larity to obtain simc2v .
Word syllable count similarity (simsyW ): Since repeated
phrases sometimes have the same number of syllables even
if their words are different, we use a sequence of word
syllable counts on each lyric line. For example, the word
syllable counts of the two lyric lines “Sometimes you lost
yourself away” and “Everytime you just close your eyes” 2

are {2, 1, 1, 2, 1} and {2, 1, 1, 1, 1, 1}, respectively. When
successive lyric lines have similar syllable count sequences,
they are likely to correspond to the repetition of sections.
We use dynamic time warping (DTW) [48] to calculate the
similarity between syllable count sequences.

1 http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2 This lyrics are taken from the RWC Music Database (RWC-MDB-P-

2001 No.92) [44].
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for identifying the type of similarity measure.
String similarity (simstr): a normalized Levenshtein edit
distance between the characters of two lines.
Prefix similarity (simpre): a normalized Levenshtein edit
distance between the characters of the first two words of
two lines.
Suffix similarity (simsuf ): a normalized Levenshtein edit
distance between the characters of the last two words of
two lines.
Phonetic similarity (simphone): To capture rhymes in the
lyrics, we calculate a normalized Levenshtein edit distance
between the phonetic transcription of two lines. In this
study, we used the CMU pronunciation dictionary to extract
the phonetic transcription of lines. For example the phonetic
transcription of the line “I love you” is [AY1, L, AH1, V, Y,
UW1].
Part-of-speech similarity (simpos): To capture similari-
ties in grammatical structure, we calculate a normalized
Levenshtein edit distance between the sequence of part-of-
speech of two lines.
Word vector similarity (simw2v): To capture the semantic
similarity between two lines, we simply average words’
vectors of each line using pre-trained word2vec embeddings
and compute its cosine similarity.
Context vector similarity (simc2v): The average of word
vector by word2vec assumes a “bag of words” (i.e., the
difference between “dog bites person” and “person bites
dog” cannot be captured in this assumption). To consider
word order, we vectorize the lines using pre-trained con-
text2vec, an extension of word2vec, which encodes lines
using LSTM. We compute similarity simc2v using cosine
similarity.
Word syllable count similarity (simsyW ): As a clue for
detecting chorus sections, we use the sequence of word
syllable counts on each line. For example, word syllable
counts of two lines “Sometimes you lost yourself away”
and “Everytime you just close your eyes” are {2, 1, 1, 2, 1}
and {2, 1, 1, 1, 1, 1} respectively 1 ; lines that have a similar
syllable count sequence are likely to be the same section
in the song. In this study, we use Dynamic Time Warping
(DTW) to calculate the similarity between sequences of
different lengths, such as syllable count sequences.
Line syllable count similarity (simsyL): We can also use
the sum of the syllable counts of all words in each line.
For example, in the lyrics of Figure 1, the total syllable
count of the first line in the chorus section is all six, but
the total syllable count in the second line is eight. For-
mally, we calculated the similarity of the total syllable
count of each line in the following procedure. (1) We shift
a window of four lines over lyrics and extract four lines
Lt = {xt, xt+1, xt+2, xt+3}. (2) The similarity between
the line xt and xt0 is calculated by the DTW of Lt and Lt0 .

We calculated nine self-similarity matrices SSMm 2
RT⇥T , where each cell is a similarity measure as described
above. Then, to calculate feature vectors from the above
nine SSMs, we exploit the Convolutional Neural Network

1 The song is from the RWC Music Database (RWC-MDB-P-2001
No.92) [3].

Figure 3. Convolutional Neural Network to vectorize
SMMs.

(CNN) architecture, as the same as Fell et al, which allows
the neural network to extract translation, scaling, and rota-
tion invariant features anywhere on the input image. Our
study shares the same motivation to capture chorus sections
from various SSM patterns, regardless of SSM location and
relative size.

This CNN structure is illustrated in Figure 3. After the
SSMs are calculated, we extract fixed window sub-matrices
centered on the target line:

St
m = SSMm[t�w +1, ..., t+w] 2 R2w⇥T , where w

is a fixed window size. The input of the CNN is nine sub-
matrices {St

str, ..., S
t
syL} 2 R2w⇥T ⇥9, where the number

of SSMs indicate the number of channels. The kernel size
of the first convolutional layer is (w + 1)⇥ (w + 1) so that
each feature can capture a prospective chorus section. In
this network, all convolutional layers employ batch normal-
ization and the ReLU activation function. Each resulting
tensor is downsampled by max-pooling with w ⇥ w kernel
size. After max pooling, we use a dropout layer (p = 0.1)
for regularization. Then, we apply the 1D convolutional
layer with a kernel size of w and downsample by the vector
of each channel in the last max-pooling layer. We perform
the above procedure independently for each line xt and
obtain the CNN-based feature vector vt.

3.2 Linguistic Features

Some linguistic expressions tend to appear in chorus rela-
tionships. For example, analyzing lyric data with chorus
markup, we found that phrases about the future such as

“I’ll”, “Let’s” and “I wanna” tend to appear in the chorus
section, while phrases about the past such as “have been”
and “didn’t” tend to appear less in the chorus section. To
exploit such a linguistic expression of the chorus section,
we propose two linguistic features.
Average of word vectors (wordave): We use average of
the word vectors of a given line as features. In this study,
the average of word vectors using pre-trained word2vec,
skipping out-of-vocabulary words.
Vector representations for word sequences (wordseq):
Word order cannot be modeled by the average of word
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(CNN) architecture, as the same as Fell et al, which allows
the neural network to extract translation, scaling, and rota-
tion invariant features anywhere on the input image. Our
study shares the same motivation to capture chorus sections
from various SSM patterns, regardless of SSM location and
relative size.

This CNN structure is illustrated in Figure 3. After the
SSMs are calculated, we extract fixed window sub-matrices
centered on the target line:
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ization and the ReLU activation function. Each resulting
tensor is downsampled by max-pooling with w ⇥ w kernel
size. After max pooling, we use a dropout layer (p = 0.1)
for regularization. Then, we apply the 1D convolutional
layer with a kernel size of w and downsample by the vector
of each channel in the last max-pooling layer. We perform
the above procedure independently for each line xt and
obtain the CNN-based feature vector vt.
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tionships. For example, analyzing lyric data with chorus
markup, we found that phrases about the future such as

“I’ll”, “Let’s” and “I wanna” tend to appear in the chorus
section, while phrases about the past such as “have been”
and “didn’t” tend to appear less in the chorus section. To
exploit such a linguistic expression of the chorus section,
we propose two linguistic features.
Average of word vectors (wordave): We use average of
the word vectors of a given line as features. In this study,
the average of word vectors using pre-trained word2vec,
skipping out-of-vocabulary words.
Vector representations for word sequences (wordseq):
Word order cannot be modeled by the average of word

Kernel size:

Kernel size

Self-similarity matrices

extract fixed
window sub-matrix 

Figure 2. Convolutional neural network for SSMs.

Lyric Line syllable count similarity (simsyL): We can
also use the total syllable count of all words in each lyric
line. For example, in all the chorus sections shown in Fig-
ure 1, the total syllable count of the first lyric line is 6 and
that of the second line is 8. We calculate the similarity of
such total syllable counts of each pair of lyric lines by using
the following procedure. (1) We extract a window of four
lyric lines Lt = {xt, xt+1, xt+2, xt+3} and shift it over the
entire lyrics of a song. (2) The similarity between the lyric
lines xt and xt′ is calculated by DTW of Lt and Lt′ .

We thus calculated nine SSMs Am ∈ RT×T , where each
cell is a simm explained above. Then, to calculate feature
vectors from the above nine SSMs, we exploit a convolu-
tional neural network (CNN) architecture to detect textual
macro structures from various patterns in SSMs regardless
of their locations and relative sizes in SSMs. Except for
network parameters, this CNN architecture is the same as
that of Fell et al. [18], as we share the same motivation: to
extract translation, scaling and rotation invariant features
from the input image (in our case, nine SSMs).

Figure 2 illustrates the CNN structure. After calcu-
lating the nine SSMs, we extract fixed-size elongated-
rectangle sub-matrices centered on the target lyric line:
atm = Am[t−w + 1, ..., t+w; 1, ..., T ] ∈ R2w×T , where
w is a fixed window size. The input of the CNN is nine sub-
matrices {atstr, ...,atsyL} ∈ R2w×T×9, where the number
of channels corresponds to the number of SSMs. The kernel
size of the first 2D-convolutional layer is (w+1)× (w+1)
so that each feature can capture a prospective chorus section.
Each resulting tensor is downsampled by max-pooling with
w × w kernel size. We then apply the 1D-convolutional
layer with a kernel size of w and the last max-pooling layer
downsamples the resulting vector to a scalar. In this net-
work, all convolutional layers employ the ReLU function.
We can perform the above procedure independently for each
lyric line xt and obtain the CNN-based feature vector vt.

3.2 Linguistic Features

Some expressions tend to appear in chorus sections. To
quantify this tendency, we calculate the difference between
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Tri-gram Pc − Pn Tri-gram Pn − Pc

I’m 0.12% there’s 0.04%
don’t 0.11% I’ve 0.03%

oh oh oh 0.05% ’s a 0.03%
I’ll 0.05% I’d 0.02%

we’re 0.04% but I’ 0.02%
you’re 0.04% ’s not 0.01%
’ll be 0.04% what’s 0.01%
I don’ 0.04% na na na 0.01%
Let’s 0.03% yeah yeah yeah 0.01%

you got ta 0.03% ’ve been 0.01%
I can’ 0.03% ’t take 0.01%
can’t 0.03% didn’t 0.01%

Table 1. Frequent word tri-grams in chorus and non-chorus
sections. An apostrophe is regarded as a word.

word tri-gram probabilities in the chorus and non-chorus
sections. Table 1 shows the word tri-grams that frequently
appear in both of the sections. Here, Pc and Pn denote
word tri-gram probabilities in the chorus and non-chorus
sections, respectively. As shown in this table, we found that
phrases about the future (e.g., “I’ll” and “Let’s”) tend to
appear in chorus sections more often than do phrases about
the past (e.g., “have been” and “didn’t”). To exploit such
tendencies, we propose two linguistic features.
Average of word vectors (lingave): We use the average of
word vectors of a given lyric line as a feature. The word
vectors are obtained using pre-trained word2vec [42], skip-
ping out-of-vocabulary words.
Vector representations for word sequences (lingseq): To
consider the word order that cannot be modeled by lingave,
we use pre-trained context2vec [43] that enables vectoriza-
tion of a lyric line by putting a sequence of word vectors
into the LSTM.

We calculate the above linguistic feature vectors for each
lyric line xt and obtain their concatenated vector ut.

3.3 Neural Network-based Sequence Labeling Model

To solve the sequence labeling problem, we use the stan-
dard Bidirectional Long Short-Term Memory (Bi-LSTM)
networks [49] to compute the conditional probability
P (Ys|Xs). The neural network structure is illustrated in
Figure 3.

The input to the Bi-LSTM layer at each time step t (lyric
line) is a concatenation of two different types of feature
vectors: (1) structural feature vectors vt encoded from
nine variations of SSMs in Section 3.1 and (2) linguistic
feature vectors vt encoded in Section 3.2. Formally, the
conditional probability P (Ys|Xs) is calculated by using a
softmax function:

P (Ys|Xs) =
exp(Score(Xs,Ys))∑
Y ′
s
exp(Score(Xs,Y ′

s ))
. (1)

The Score() is defined as

Score(Xs, Ys) =
∑
t

BN(ht[yt]), (2)

where ht[yt] is the output of the Bi-LSTM for each time
step t and BN() denotes batch normalization [50]. In the
model training step, we use a binary cross-entropy loss.
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Figure 3. Neural-network-based sequence labeling model
for chorus-section detection.

4. EXPERIMENT

Inspired by audio-based chorus-section detection [39], we
evaluated the proposed method by using the F-measure (F )
that is a harmonic mean of precision (P ) and recall (R),
F = (2 ·R · P )/(R+ P ), where

P = # of lyric lines in correctly detected chorus sections
# of lyric lines in detected chorus sections .

R = # of lyric lines in correctly detected chorus sections
# of lyric lines in correct (annotated) chorus sections .

We also used the pair-wise F-measure (p-F ), normalized
conditional entropy F-measure (n-F ) and V-measure (V )
that are provided by the Python module mir_eval and
commonly used to evaluate computational music structure
analysis [51].

4.1 Methods Compared

To confirm the effectiveness of our Bi-LSTM method based
on the Bi-LSTM model that can learn dependencies be-
tween adjacent lyric lines, we compared its performance
with that of with two baseline methods:
(1) Heuristic: We implemented the heuristic that “if lines
at the end of the lyrics are repeated with small modifica-
tions, all those repeated lines are chorus sections” by the
following procedure: (i) From the SSM that is the average
of the nine SSMs, we extracted diagonals whose cells had
values higher than a threshold λ, which was tuned on a
development set to be λ = 0.62. (ii) From the extracted di-
agonals, we selected the shortest diagonal among diagonals
placed at the bottom of the SSM (e.g., the diagonal starting
at the cell SSM[29; 1] in Figure 1). (iii) Successive lines
corresponding to the rows where the selected diagonal was
located (e.g., lyric lines 29–32 in Figure 1) were assigned
the label chorus. (iv) Other successive lines that were
similar to the chorus lines (e.g., lyric lines 1–4 and 13–16
in Figure 1) were also assigned chorus labels.
(2) Multi-Layer Perceptron (MLP): Like the Bi-LSTM
method, but with the Bi-LSTM model replaced by a stan-
dard MLP model. This method ignores transitions between
adjacent lyric lines and predicts yt from xt only.
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We chose the number of kernels for the first and second
CNNs to be 200 and 400, respectively. We used w = 3
for the window size. In the MLP and Bi-LSTM methods,
we chose the dimension of the hidden state to be 600. The
word2vec [42] and context2vec [43] were pre-trained on
lyrics and were not updated in the model training step of our
method. The dimension of their output vectors was 300. We
used AdamW for parameter optimization [52]. The initial
learning rate was 0.001 with an exponential decay. We used
a mini-batch size of 64. Training was run for 100 epochs,
and the model used for testing was the one that achieved
the best F-measure on the development set.

4.2 Dataset

To train our computational model that predicts whether the
label of each lyric line is chorus or not-chorus, we
needed a large amount of lyrics data with line-level chorus-
section annotations like those illustrated in Figure 1. Since
there was no dataset for this, we generated a large amount
of such lyrics data by the following procedure:
(1) We prepared 100,772 pairs of musical audio signals
and their corresponding manually time-aligned (temporally
synchronized) lyrics 3 . To avoid unreliable lyrics, we con-
firmed that all lyrics had more than eight lines and less than
120 lines.
(2) We detected chorus sections of every song automatically
by using its audio signals. In our experiments, we used the
RefraiD method [39] to obtain the start and end times of
each chorus section, but other methods could also be used.
(3) If the start time of a lyric line was within any cho-
rus section detected in audio signals, that line was labeled
chorus; otherwise, it was labeled not-chorus.
Of course, not all generated annotations were correct, but
by using over 100,000 training data, the model could be ro-
bustly trained without being influenced by errors or outliers.
The generated training data consisted of 9,313 English and
91,459 Japanese songs, and we called them EN_auto and
JA_auto, respectively. 4

Furthermore, we manually annotated three sets of lyrics
data with more reliable line-level chorus-section annota-
tions for three different purposes:
(a) For training comparison: We annotated 1,103
Japanese lyrics and called them JA_man 5 . By comparing
the performance of the model trained on JA_auto with that
of the model trained on JA_man, we could confirm that our
generated data is reliable enough for training purposes.
(b) For tuning model parameters: We annotated the
lyrics of 21 English and 79 Japanese songs from RWC-
MDB-P-2001 and called them EN_RWC and JA_RWC,

3 In our experiments, English and Japanese lyrics text as well as the start
time of every lyric line were provided by a lyrics distribution company.
Automatic lyrics-to-audio synchronization [7–17] could also be used to
estimate such start times.

4 The main genres are Rock (33%), Pop (25%) and Alternative (12%)
for EN_auto, and J-Pop (53%), Rock (20%) and Anime (9%) for JA_auto.

5 To investigate the accuracy of the automatic annotation method we
used for generating EN_auto and JA_auto, we applied the same method to
the songs (audio signals and corresponding manually time-aligned lyrics)
in JA_man. The accuracy of the generated annotations was F = 68.0%,
thus the automatic annotation method seems to work decently well.

Training data / Testing data
EN_auto / EN_test JA_auto / JA_test

Method F p-F n-F V F p-F n-F V

Heuristic 57.8 73.8 43.0 35.8 57.1 73.2 43.6 36.3
MLP 74.2 76.8 47.7 43.0 80.6 82.8 62.6 59.1

Bi-LSTM 78.1 77.7 50.8 47.3 83.4 83.5 64.9 61.4

Table 2. Experimental result: Comparison of different
methods (the unit is %).

Training data / Testing data
EN_auto / EN_test JA_auto / JA_test

Feature F p-F n-F V F p-F n-F V

simall 77.9 76.1 48.6 45.5 81.2 82.7 63.6 59.6
lingall 57.4 59.9 16.5 6.9 55.2 61.8 22.1 16.7
both 78.1 77.7 50.8 47.3 83.4 83.5 64.9 61.4

Table 3. Experimental result: Importance of using both
structural and linguistic features.

respectively. These were used to tune model parameters.
(c) For testing: We annotated the lyrics of 118 other En-
glish songs and 128 other Japanese songs and called them
EN_test and JA_test, respectively 6 . These were used to
test the chorus-section detection methods.

4.3 Comparison of Different Methods

Table 2 summarizes the evaluated performances of Heuris-
tic, MLP and the proposed Bi-LSTM. We found that MLP
and Bi-LSTM performed better than Heuristic. This indi-
cates that methods based on supervised learning are better
than a rule-based method. We also found that Bi-LSTM
was better than MLP and thus confirmed the importance
of learning dependencies between adjacent lines. Since we
concluded from these results that the proposed Bi-LSTM is
the best for the chorus-section detection task, in the subse-
quent experiments reported here we used only Bi-LSTM.

4.4 Importance of Using Both Structural and
Linguistic Features

To investigate the effectiveness of structural and linguistic
features, we compared their use individually and in com-
bination. Table 3 summarizes the results. We found that
the model with only the structural features simall greatly
outperformed the model with only the linguistic features
lingall. Using both kinds of features further improved the
performance. This not only confirms the importance of us-
ing SSMs, as had been shown for the audio-based detection
of chorus sections, but also confirms that the additional use
of linguistic features is helpful for detecting chorus sections,
which has not been shown before.

4.5 Reliability of Generated Annotations

As stated in Section 4.2, we used JA_man for the proposed
training comparison. Table 4 clearly shows that the model
trained using JA_auto, automatically generated data the
amount of which can be large, outperformed the model
trained using JA_man, manually annotated data, the amount

6 The chorus and not-chorus labels were annotated only on the
lyrics. No audio signal is available for these test data.
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355



Training data F p-F n-F V

JA_auto (91,459 songs) 83.4 83.5 64.9 61.4
JA_man (1,103 songs) 80.3 77.3 53.3 50.4

Table 4. Experimental result: Reliability of automatically
generated annotations.

Training data Testing data F p-F n-F V

EN_auto (9,313 songs) EN_test 77.9 76.1 48.6 45.5
JA_auto (91,459 songs) EN_test 80.3 80.6 58.1 54.4

EJ_auto (100,772 songs) EN_test 81.0 82.3 60.7 57.4

Table 5. Experimental result: Can the Japanese model
detect English chorus sections?

of which is usually very limited because of the laborious
manual effort its creation requires. The results also confirm
that even if annotations generated automatically are not
perfect they are reliable enough for training the model.

4.6 Training Data Size and Language Dependency

Tables 2 and 3 also show that the performances for English
lyrics were worse than those for Japanese lyrics. Since the
amount of Japanese training data was about 10 times than
that of English training data, we think that the amount of
training data greatly affects the performance of the proposed
model. We are thus interested in answering the question
“Can a model trained on a large amount of Japanese data
detect English chorus sections?” In fact, although linguistic
features are language dependent and the process of comput-
ing SSMs is also language dependent, structural features
based on the resulting SSMs can be language independent
because our SSMs simply represent patterns of repeating
lyric lines, which could be universal in music.

As shown in the upper half of Table 5, which shows
results obtained without using linguistic features, we found
that the structural-feature-based model trained on Japanese
data JA_auto succeeded in detecting English chorus sec-
tions in EN_test and its performance was better than that
of the model trained on the smaller dataset EN_auto. This
result indicates that the SSM-based model trained on a large
amount of data can detect chorus sections regardless of the
language of the test set. Moreover, this result is further
evidence that Japanese and English SSMs (i.e., patterns of
repeating lyric lines) have similar structures.

Obviously, the above result raises another question:
“Can a model trained on both EN_auto and JA_auto per-
form better than one trained on only EN_auto or JA_auto?”
To answer this question, we created training data EJ_auto
by including both EN_auto and JA_auto and constructed
yet another structural-feature-based model with EJ_auto.
As shown in the lower half of Table 5, we found that the
model trained on both languages performed better than the
model trained on only one.

These results confirm that chorus sections can be de-
tected by a model trained on data in another language, that
patterns of repeating lyric lines are language-independent
and that mixing different language data allows the model to
learn the general structure of chorus sections and thereby

perform better. This could have an impact on low-resource
languages because large-scale training data can be created
by mixing other available language resources.

5. RELATED WORK

Previous work in the MIR community has addressed musi-
cal structure analysis and chorus-section detection based on
repeated patterns in musical audio signals [23–41]. Studies
in the chorus-section detection for audio signals typically
used SSMs to capture repeated structures, and we share this
motivation. Our approach differs from those audio-based
approaches in that it exploits multiple lyrics-based SSMs
and linguistic features within chorus sections.

On the other hand, recent work in the NLP community
has tackled lyrics segmentation and summarization tasks by
exploiting SSMs. Fell et al. and Watanabe et al. proposed
a neural network model and logistic regression model for
segmenting paragraphs (sections) without labeling them
by using SSMs as features [18, 19]. Those tasks, however,
are essentially different from detecting all chorus sections
that are the most representative sections in lyrics text. Ad-
dressing a task similar to chorus-section detection, Fell
et al. [53] proposed a method of summarizing lyrics by
combining general document summarization methods with
audio thumbnailing methods. They focus on extracting in-
dividual informative lines as a summary from lyrics text,
not redundant repeated lines. On the other hand, the focus
of our paper is to detect chorus sections whose successive
lines are often repeated in lyrics text.

6. CONCLUSION

This paper has addressed the novel task of detecting chorus
sections in English and Japanese lyrics. We proposed a
neural-network-based sequence labeling model that learns
structural (i.e., phrase-repetition) and linguistic features to
detect lyric lines of chorus sections. We also generated over
100,000 training data with chorus-section annotations. No
previous work has ever conducted chorus-section detection
for text-only lyrics with this much data.

The contributions of this study are summarized as fol-
lows: (1) We designed a variety of features to capture struc-
tural and linguistic properties of chorus sections. (2) We
proposed a sequence labeling model that can detect chorus
sections in lyrics. (3) We showed how to generate a large
training dataset of lyrics with chorus-section annotations.
(4) We demonstrated that our Bi-LSTM-based method out-
performs alternative baseline methods. (5) We thoroughly
investigated this detection task and the nature of chorus
sections of lyrics from different perspectives such as the
importance of features, the amount of training data, and
language dependency.

We plan to extend our method to detect other sections,
such as verse and bridge sections. Future work will also
develop MIR applications using our method, such as those
discussed in Section 1.
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357



Proceedings of the 8th International Workshop on Se-
mantic and Social Media Adaptation and Personaliza-
tion (SMAP 2013), 2013, pp. 73–79.

[21] J. P. G. Mahedero, A. Martinez, P. Cano, M. Koppen-
berger, and F. Gouyon, “Natural language processing of
lyrics,” in Proceedings of the 13th ACM International
Conference on Multimedia (ACM Multimedia), 2005,
pp. 475–478.

[22] K. Watanabe, Y. Matsubayashi, K. Inui, S. Fukayama,
T. Nakano, and M. Goto, “Modeling storylines in lyrics,”
IEICE Transactions on Information and Systems, vol.
101-D, no. 4, pp. 1167–1179, 2018.

[23] G. Shibata, R. Nishikimi, E. Nakamura, and K. Yoshii,
“Statistical music structure analysis based on a
homogeneity-, repetitiveness-, and regularity-aware hi-
erarchical hidden semi-markov model,” in Proceedings
of the 20th International Society for Music Information
Retrieval Conference (ISMIR 2019), 2019, pp. 268–275.

[24] A. Maezawa, “Music boundary detection based on a
hybrid deep model of novelty, homogeneity, repetition
and duration,” in Proceedings of the 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (IEEE ICASSP 2019), 2019, pp. 206–210.

[25] G. Sargent, F. Bimbot, and E. Vincent, “Estimating
the structural segmentation of popular music pieces
under regularity constraints,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25,
no. 2, pp. 344–358, 2017.

[26] T. Cheng, J. B. L. Smith, and M. Goto, “Music structure
boundary detection and labelling by a deconvolution of
path-enhanced self-similarity matrix,” in Proceedings of
the 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (IEEE ICASSP 2018),
2018, pp. 106–110.

[27] J. B. L. Smith and M. Goto, “Using priors to improve
estimates of music structure,” in Proceedings of the 17th
International Society for Music Information Retrieval
Conference (ISMIR 2016), 2016, pp. 554–560.

[28] T. Grill and J. Schlüter, “Music boundary detection us-
ing neural networks on combined features and two-level
annotations,” in Proceedings of the 16th International
Society for Music Information Retrieval Conference (IS-
MIR 2015), 2015, pp. 531–537.

[29] B. McFee and D. Ellis, “Analyzing song structure with
spectral clustering,” in Proceedings of the 15th Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR 2014), 2014, pp. 405–410.

[30] G. Peeters and V. Bisot, “Improving music structure seg-
mentation using lag-priors,” in Proceedings of the 15th
International Society for Music Information Retrieval
Conference (ISMIR 2014), 2014, pp. 337–342.

[31] H. Grohganz, M. Clausen, N. Jiang, and M. Müller,
“Converting path structures into block structures using
eigenvalue decompositions of self-similarity matrices,”
in Proceedings of the 14th International Society for
Music Information Retrieval Conference (ISMIR 2013),
2013, pp. 209–214.

[32] O. Nieto and T. Jehan, “Convex non-negative matrix
factorization for automatic music structure identifica-
tion,” in Proceedings of the 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing
(IEEE ICASSP 2013), 2013, pp. 236–240.

[33] F. Kaiser and G. Peeters, “A simple fusion method of
state and sequence segmentation for music structure
discovery,” in Proceedings of the 14th International
Society for Music Information Retrieval Conference
(ISMIR 2013), 2013, pp. 257–262.

[34] J. Serrà, M. Müller, P. Grosche, and J. L. Arcos, “Unsu-
pervised detection of music boundaries by time series
structure features,” in Proceedings of the 26th AAAI
Conference on Artificial Intelligence, 2012.

[35] M. Müller, P. Grosche, and N. Jiang, “A segment-based
fitness measure for capturing repetitive structures of mu-
sic recordings,” in Proceedings of the 12th International
Society for Music Information Retrieval Conference (IS-
MIR 2011), 2011, pp. 615–620.

[36] J. Paulus, M. Müller, and A. Klapuri, “State of the
art report: Audio-based music structure analysis,” in
Proceedings of the 11th International Society for Music
Information Retrieval Conference (ISMIR 2010), 2010,
pp. 625–636.

[37] J. Paulus and A. Klapuri, “Music structure analysis
using a probabilistic fitness measure and a greedy search
algorithm,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 17, no. 6, pp. 1159–1170,
2009.

[38] M. Müller and S. Ewert, “Joint structure analysis with
applications to music annotation and synchronization,”
in Proceedings of the 9th International Conference on
Music Information Retrieval (ISMIR 2008), 2008, pp.
389–394.

[39] M. Goto, “A chorus section detection method for musi-
cal audio signals and its application to a music listening
station,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 14, no. 5, pp. 1783–1794, 2006.

[40] M. Cooper and J. Foote, “Summarizing popular music
via structural similarity analysis,” in Proceedings of
the 2003 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (WASPAA 2003),
2003, pp. 127–130.

[41] J. Foote, “Automatic audio segmentation using a mea-
sure of audio novelty,” in Proceedings of the 2000
IEEE International Conference on Multimedia and
Expo (IEEE ICME 2000), 2000, p. 452.

Proceedings of the 21st ISMIR Conference, Montréal, Canada, October 11-16, 2020
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