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Abstract—In this paper, a general framework for enhancing
the physical layer security (PLS) in Internet of Things (IoT)
systems via channel feedback is established. To be specific,
first, we study the compound wiretap channel with feedback,
which can be viewed as an ideal model for enhancing the PLS
in the down-link transmission of IoT systems via feedback. A
novel feedback strategy is proposed and a corresponding lower
bound on the secrecy capacity is constructed for this ideal
model. Next, we generalize the ideal model (i.e., the compound
wiretap channel with feedback) by considering channel states and
feedback delay, and this generalized model is called the finite
state compound wiretap channel with delayed feedback. Lower
bounds on the secrecy capacities of this generalized model with
or without delayed channel output feedback are provided, and
they are constructed according to variations of the previously
proposed feedback scheme for the ideal model. Finally, from
a Gaussian fading example, we show that the delayed channel
output feedback enhances the achievable secrecy rate of the
finite state compound wiretap channel with only delayed state
feedback, which implies that feedback helps to enhance the PLS
in the down-link transmission of IoT systems.

Index Terms—Compound channel, feedback, secrecy capacity,
wiretap channel.
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I. INTRODUCTION

INTERNET of Things (IoT) is taking the centre-stage of
the upcoming 5G as the devices are expected to be a

major component of 5G network. Due to the broadcasting
nature of wireless communication, signals in the IoT systems
are more vulnerable to eavesdropping, and hence the secure
communication over the IoT systems is one of the most
pressing problems needed to be solved. The study of the secure
transmission over communication systems started from Wyner
in his groundbreaking work on the wiretap channel (WTC)
[1], where a transmitter broadcasts its message W over N
channel uses to a legitimate receiver and an eavesdropper via
a degraded broadcast channel (BC), and the perfect secrecy
is guaranteed if the information leakage rate 1

N I(W ;ZN ),
where ZN denotes the received signal at the eavesdropper,
vanishes as the codeword length N tends to infinity. 1 The
secrecy capacity, defined as the channel capacity with perfect
secrecy constraint, was established in [1]. Subsequently, [3]
generalized the model studied in [1] by considering a general
(not degraded) BC and the transmission of a common message
which can be decoded by both the legitimate receiver and
the eavesdropper. The follow-up studies of [1]-[3] include the
Gaussian wiretap channel [4], the BC with two secret messages
[5]-[6], and one transmitter broadcasts a secret message to
multiple legitimate receivers and one eavesdropper (wiretap
broadcast channel) [7]-[8].

Here note that in [1], Wyner further pointed out that the
secrecy capacity is positive if the legitimate receiver’s channel
is less noisy than the eavesdropper’s. Then it is natural to ask
the following two questions:
• 1) How to achieve positive secrecy capacity when the

eavesdropper’s channel is less noisy than the legitimate
receiver’s?

• 2) When the legitimate receiver’s channel is less noisy
than the eavesdropper’s, how to further enhance the
secrecy capacity?

The answer to both questions is artificial noise (AN) [9]-
[16] and channel feedback (CF). However, we should notice
that since the IoT devices (e.g., sensors and actuators) have
significant energy constraint [17]-[18], AN may not be suitable
for IoT systems, and hence CF is of particular interest for
enhancing the physical layer security (PLS) in IoT systems.

1Here the perfect secrecy defined in [1] is in fact weak perfect secrecy.
Another definition of the perfect secrecy is strong perfect secrecy [2], which
is defined as the information leakage I(W ;ZN ) at the eavesdropper vanishes
as N tends to infinity.
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The study of the effect of CF on the PLS of communication
channels started from [19], where the pioneering work [1] has
been re-visited by considering the situation that the legitimate
receiver’s received channel output is sent back to the transmit-
ter through an additional noiseless feedback channel which is
not known by the eavesdropper. Since the legitimate receiver’s
channel output is perfectly known by the transmitter and
completely not known by the eavesdropper, we can generate
secret key from it, and this key helps to protect the transmitted
message. Combining the above idea of generating secret key
from the CF with the random binning scheme for the WTC [1],
[19] proposed a coding scheme which splits the transmitted
message into two parts, where one sub-message is encoded
in the same way as that of the WTC [1], and the other
is encrypted by the secret key. Compared with the secrecy
capacity of the WTC [1], it is easy to see that encrypting part
of the message by the key leads to the fact that the channel
output feedback enhances the secrecy capacity of the WTC.

Here note that in [19], the feedback channel is only used
to send the legitimate receiver’s channel output, and what
happens when the feedback channel can transmit anything as
the legal receiver wishes? [20] studied this case and pointed
out that for the legal receiver, the best way is to transmit
randomly generated sequences (served as secret keys) over
the feedback channel. Assume that the transmission rate of
the feedback channel is up to Rf , using a coding scheme
in the same way as that in [19], [20] showed that sending
pure secret key is better than sending legal receiver’s channel
output if Rf is larger than the key rate in [19], and vice
versa. The work of [19] and [20] indicates that there is
no difference between sending pure secret key and sending
legitimate receiver’s channel output, and the main purpose
of the feedback is to allow the legitimate receiver and the
transmitter to share the secret key. In recent years, the above
secret key based feedback coding scheme has been widely
used in communication systems with feedback channel. To be
specific, for the communication channels with legal receiv-
er’s channel output feedback, [23]-[24] studied PLS of the
channels with memory or memoryless states and legitimate
receiver’s channel output feedback, and proposed variations
of the secret key based feedback coding scheme in [19]. For
the communication systems with feedback channels directly
transmitting pure secret keys, [21] extended the work of [20]
to a broadcast situation, where two legitimate receivers of the
broadcast channel independently send their secret keys to the
transmitter via two noiseless feedback channels, and these
keys help to increase the achievable secrecy rate region of
the broadcast wiretap channel [7]. [22] introduced memoryless
channel state into the work of [20], and showed that the
transmitted message can be protected by two keys, where
one is from the feedback channel, and the other is generated
by the channel state. Very recently, [25] showed that for the
general WTC with CF, a better choice of the transmitter is
to produce not only secret key but also auxiliary message
from CF, where the auxiliary message is used to improve the
legal receiver’s decoding performance. [25] proved that for
the wiretap channel with channel output feedback, this new
feedback scheme performs better than the widely used secret

key based feedback scheme. Moreover, [26] and [27] showed
that the classical Schalkwijk-Kailath (SK) feedback scheme
for the Gaussian channel [28] achieves the secrecy capacity of
the Gaussian wiretap channel with channel output feedback,
and it equals the capacity of the same channel model without
the secrecy constraint. However, we should notice that the
results of [26] and [27] only work in the Gaussian case.

In IoT systems, the up-link transmission is from sensors to
controllers, and the down-link transmission is from controllers
to actuators. A classical scenario for the PLS in the down-
link transmission of the IoT systems is depicted in Figure 1,
where a controller tries to send a secret message to several
actuators in the presence of an eavesdropper. An ideal model
characterizing this classical scenario is called the compound
wiretap channel, where the channels for all actuators and
the eavesdropper are independent of one another. Achievable
secrecy rates (lower bounds on the secrecy capacities) of
various compound wiretap channels were provided in [29]-
[31], and it is shown that if the eavesdropper’s channel is less
noisy than all actuators’ (legitimate receivers’) channels, the
achievable secrecy rate equals zero. As we mentioned before,
AN is not suitable for the scenario in Figure 1. Moreover, we
should notice that the already existing feedback schemes in
[19]-[25] can not be applied to the communication scenario
in Figure 1 due to the reason that each actuator does not know
others’ CF, and hence the feedback of all channels cannot be
used to generate a common secret key shared between the
transmitter and all the actuators.

In this paper, we try to answer the following two funda-
mental questions:
• 1) How to increase the achievable secrecy rate of the

compound wiretap channel model by using CF?
• 2) Is there a more practical model for the scenario shown

in Figure 1? If so, can we apply the feedback scheme of
1) to this more practical model?

This paper provides the comprehensive answers to the afore-
mentioned questions. Our main contributions are summarized
as follows:
• 1) We study the compound wiretap channel with feed-

back, see Figure 2. An achievable secrecy rate, which
is constructed according to a novel feedback strategy, is
provided for the model of Figure 2.

• 2) A more practical model for the scenario in Figure 1 is
provided (see Figure 3), and an achievable secrecy rate
for this new model is obtained according to a modified
feedback scheme of the model of Figure 2. From a
Gaussian fading example, we show that the achievable
secrecy rate of the new model is larger than that of
the same model without channel output feedback, which
implies that the proposed feedback scheme enhances the
PLS in the down-link transmission of the IoT systems.

In the remainder of this paper, random variable (RV), value
and alphabet are denoted by uppercase letter, lowercase letter
and calligraphic letter, respectively. The random vector and its
value are written in a similar way. For example, suppose that
X1 is a RV, and x1 is a real value in the alphabet X1. Similarly,
Suppose that XN

1,1 is a random vector (X1,1, ..., X1,N ), and
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xN1,1 = (x1,1, ..., x1,N ) is a vector value in XN1 (the N -
th Cartesian power of X1). Moreover, for simplicity, the
probability Pr{X = x} is denoted by P (x), and in the
remainder of this paper, the base of the log function is 2.

The outline of this paper is organized as follows. Section
II investigates the compound wiretap channel with feedback
(see Figure 2), and provides bounds on the secrecy capacity
of this ideal model. Section III studies a generalized version
of the model of Figure 2, called the finite state compound
wiretap channel with delayed feedback (see Figure 3), and also
provides bounds on the secrecy capacity of this generalized
model. In Section IV, the capacity results on the model of
Figure 3 are further illustrated by a Gaussian fading example.
Final conclusion is given in Section V.

Fig. 1: The PLS in the down-link transmission of the IoT
systems

Fig. 2: The compound wiretap channel with feedback

II. THE COMPOUND WIRETAP CHANNEL WITH FEEDBACK

The discrete memoryless compound wiretap channel with
feedback is shown in Figure 2, where a transmitter wishes to
broadcast his/her secret message to L legitimate receivers and
an eavesdropper attempts to eavesdrop this secret message via

Fig. 3: The finite state compound wiretap channel with delayed
feedback

a wiretap channel. The overall channel transition probability
of the model of Figure 2 is given by

P (yN1,1, y
N
2,1, ..., y

N
L,1, z

N |xN )

= P (zN |xN )

L∏
j=1

P (yNj,1|xN )

=

N∏
i=1

P (zi|xi)
L∏
j=1

P (yj,i|xi)

 , (1)

where xi ∈ X , yj,i ∈ Yj and zi ∈ Z . Here note that zN (xN )
is an abbreviation of zN1 (xN1 ), and a similar convention is
applied to ZN1 (XN

1 ).
The transmitted message W is uniformly distributed over

W = {1, 2, ..., |W|}. Since all legitimate receivers send their
received channel outputs back to the transmitter via feedback
channels, the i-th (i ∈ {1, 2, ..., N}) channel input Xi is given
by

Xi = fi(W,Y
i−1
1,1 , Y i−12,1 , ..., Y i−1L,1 ), (2)

where fi is a stochastic encoding function, and Y i−1j,1 (j ∈
{1, 2, ..., L}) is the j-th legitimate receiver’s channel output
feedback at time i.

For the j-th (j ∈ {1, 2, ..., L}) legitimate receiver, after
receiving Y Nj,1, he/she produces an estimation Ŵ (j) = ψj(Y

N
j,1)

(ψj is the j-th legitimate receiver’s decoding function), and the
average decoding error probability equals

Pe,j =
1

|W|
∑
i∈W

Pr{ψj(yNj,1) 6= i|i sent}. (3)

The secrecy level of the transmitted message W at the eaves-
dropper is formulated as

∆ =
1

N
H(W |ZN ). (4)

Given a non-negative number R, if for any ε > 0, there exist
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encoder and decoders such that

log |W|
N

≥ R− ε, ∆ ≥ R− ε,

Pe,j ≤ ε for all j ∈ {1, 2, ..., L}, (5)

R is achievable under weak perfect secrecy constraint. The
secrecy capacity Cfs is composed of all such achievable R
defined in (5), and bounds on Cfs are given in the remainder
of this section.

Theorem 1: Lower bound on Cfs : Cfs ≥ Rfs , where

Rfs = max min
j

min{[I(Vj ;Yj , Uj)− I(Vj ;Z)]+,

I(Vj ;Yj)}, (6)

[a]+ = a for a ≥ 0, [a]+ = 0 for a < 0, and the joint
probability is defined as

P (z, y1, ..., yL, x, v1, ..., vL, u1, ..., uL)

= P (z|x)P (u1, ..., uL|v1, ..., vL, y1, ..., yL) ·
P (y1, ..., yL|x)P (x|v1, ..., vL)P (v1, ..., vL)

= P (z|x)P (x|v1, ..., vL)P (v1, ..., vL) ·
L∏
j=1

P (uj |vj , yj)P (yj |x). (7)

Proof sketch:
The lower bound Rfs is constructed according to a block

Markov coding scheme, and the encoding-decoding procedure
of each block is briefly explained by the following Figure
4. From Figure 4, we see that in each block, after receiving
the channel feedback of Receiver j (j ∈ {1, 2, ..., L}), the
transmitter encodes the transmitted message of current block
and the feedback of Receiver j as a codeword vNj,1, and the
channel input of current block is generated via an auxiliary
discrete memoryless channel with inputs vN1,1,...,vNL,1, and
output xN . For Receiver j, after receiving the channel outputs
of all blocks, he/she uses the backward and jointly typical
decoding scheme to decode the transmitted vNj,1 for all blocks.
If vNj,1 is decoded without error, the messages of all blocks can
be obtained by Receiver j. The details about the encoding-
decoding scheme of Theorem 1 are in Appendix A.

Fig. 4: A feedback scheme for the compound wiretap channel

Remark 1: 1) In [29, Theorem 1], it has been shown that
a lower bound Rs on the secrecy capacity Cs of the
compound wiretap channel is given by

Cs ≥ Rs = max min
j

[I(U ;Yj)− I(U ;Z)]+, (8)

where the joint distribution is denoted by

P (z, y1, ..., yL, x, u)

= P (z|x)P (y1, ..., yL|x)P (x|u)P (u)

= P (z|x)P (x|u)P (u)

L∏
j=1

P (yj |x). (9)

In general, we do not know whether Rfs is larger than Rs
or not. In Section IV, from a Gaussian fading example,
we show that Rfs is larger than Rs, which indicates
that CF may increase the achievable secrecy rate of the
compound wiretap channel.

2) For the compound wiretap channel with noiseless feed-
back, it is natural to ask: why not directly using the
noiseless feedback channels for secure communication,
is the total secrecy rate of the original compound wiretap
channel and the noiseless feedback channels larger than
Rfs given in Theorem 1? To answer this question, a
binary symmetric case of the model of Figure 2 is
investigated (see Figure 5), and we show that for this
special case, directly using noiseless feedback channels
for secure communication may not always be the best
choice.

Fig. 5: A binary symmetric case of the compound wiretap
channel with noiseless feedback

In Figure 5, one transmitter wishes to send a message W
to two legitimate receivers via two BSCs with crossover
probabilities p1 and p2, respectively, and an eavesdrop-
per tries to eavesdrop W via another BSC with crossover
probability q. In addition, the legitimate receivers send
their received signals back to the transmitter via two
noiseless feedback channels. From Theorem 1, we see
that an achievable secrecy rate Rfs for the model of
Figure 5 is given by

Rfs = max min
j=1,2

min{[I(Vj ;Yj , Uj)− I(Vj ;Z)]+,

I(Vj ;Yj)}. (10)

Then defining P (V1 = 0) = α, P (V1 = 1) = 1 − α,
P (V2 = 0) = β, P (V2 = 1) = 1− β, V1 is independent
of V2, and letting X = V1 + V2, U1 = V1 + Y1, U2 =
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V2 + Y2, we have

Rfs

= max
α,β

min


min{[H(α)−H(α ? β ? q)
+H(β ? q)]+,
H(α ? β ? p1)−H(β ? p1)},
min{[H(β)−H(α ? β ? q)
+H(α ? q)]+,
H(α ? β ? p2)−H(α ? p2)}


(11)

where H(a) = −a log(a)−(1−a) log(1−a) and a?b =
a(1− b) + (1− a)b.
Next, if the noiseless feedback channels of Figure 5
are used for direct transmission, the model of Figure
5 should be revised as the model in the following
Figure 6. In Figure 6, two messages W1 and W2 are
transmitted, where W1 is transmitted through the binary
symmetric compound wiretap channel in the model
of Figure 5 without feedback, and W2 is transmitted
through the noiseless feedback channels and due to the
broadcast nature of wireless communication, W2 can
also be eavesdropped by the eavesdropper via a binary
symmetric wiretap channel with crossover probability q.
From [29, Theorem 1], an achievable secrecy rate R∗1 of
W1 is given by

R∗1 = max
P (x)

min
j=1,2

[I(X;Yj)− I(X;Z)]+

(a)
= min{[H(q)−H(p1)]+, [H(q)−H(p2)]+},

(12)

where (a) is from defining P (X = 0) = α, P (X = 1) =
1−α, and using the fact that the maximum is achieved
when α = 1

2 . Analogously, an achievable secrecy rate
R∗2 of W2 is given by

R∗2 = max
P (x′ )

min
j=1,2

[I(X
′
;Y
′

j )− I(X
′
;Z
′
)]+

(b)
= H(q), (13)

where (b) follows from substituting p1 = p2 = 0 into
(12). Hence the total secrecy rate R∗ = R∗1+R∗2 is given
by

R∗ = min{[H(q)−H(p1)]+, [H(q)−H(p2)]+}
+H(q). (14)

The following Figure 7 plots the achievable secrecy rate
Rfs of the model of Figure 5 and the total secrecy
rate R∗ of the model of Figure 6 for p1 = 0.0001,
p2 = 0.5 and several values of q. From this figure,
we see that the feedback scheme proposed in Theorem
1 performs no better than directly using the feedback
channels for secure transmission when one legitimate
receiver’s channel is completely noisy (i.e., p2 = 0.5).
The following Figure 8 plots Rfs and R∗ for p1 =
0.0001, p2 = 0.3 and several values of q. From this
figure, we see that the feedback scheme proposed in

Fig. 6: The binary symmetric compound wiretap channel
model with noiseless feedback channels for direct transmission

Fig. 7: Comparison of the secrecy rates Rfs and R∗ for p1 =
0.0001, p2 = 0.5 and several values of q

Theorem 1 performs better than directly using the feed-
back channel for secure transmission when q is very
small.
From the above figures, we see that directly using
the feedback channels for secure transmission may not
always be the best choice, and sometimes the feedback
scheme of Theorem 1 may perform better.

Theorem 2: Upper bound on Cfs : Cfs ≤ Cf−outs , where

Cf−outs = min
j

max
P (x)

I(X;Yj), (15)

and the joint probability is defined as

P (z, y1, ..., yL, x) = P (z|x)

L∏
i=1

P (yi|x). (16)

Proof: This outer bound can be directly obtained by using
the fact that the secrecy capacity can not exceed the capacity
of each channel and feedback does not increase the capacity of
a discrete memoryless channel. Hence the secrecy capacity Cfs
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Fig. 8: Comparison of the secrecy rates Rfs and R∗ for p1 =
0.0001, p2 = 0.3 and several values of q

is upper bounded by the minimum of each channel’s capacity
(here note that the capacity of channel j is maxP (x) I(X;Yj)),
and the proof is completed.

Here note that the compound wiretap channel with feedback
investigated in this section is only an ideal model for the
PLS in the down-link transmission of the IoT system. In the
next section, we will study a more practical model, which we
call the finite state compound wiretap channel with delayed
feedback. The lower bound on the secrecy capacity of this
more practical model is constructed according to a variation
of the feedback strategy in Theorem 1, see the remainder of
this paper.

III. THE FINITE STATE COMPOUND WIRETAP CHANNEL
WITH DELAYED FEEDBACK

The practical IoT systems often consist of time-varying and
fading channels, and the states of these channels are often
obtained by the transmitter via receivers’s delayed feedback.
In [33], the time-varying fading channel in the presence of
one transmitter, one legitimate receiver, one eavesdropper and
delayed channel feedback is modeled as the finite state Markov
wiretap channel (FSM-WTC) with delayed feedback. In this
section, we extend the FSM-WTC with delayed feedback to
a more general case, i.e., the finite state compound wire-
tap channel with delayed feedback, see Figure 3. In Figure
3, the channel consists of multiple legitimate receivers and
one eavesdropper, and each legitimate receiver sends his/her
received signal back to the transmitter via a corresponding
feedback channel with different delayed feedback time. In the
remainder of this section, we first give formal definition of the
model of Figure 3, and then we show bounds on the secrecy
capacity of this new model.

Model formulation:
• The overall channel transition probability of the model

of Figure 3 is given by

P (yN1,1, y
N
2,1, ..., y

N
L,1, z

N |xN , sN1,1, ..., sNL,1, sNe,1)

= P (zN |xN , sNe,1)

L∏
j=1

P (yNj,1|xN , sNj,1)

=

N∏
i=1

P (zi|xi, se,i)
L∏
j=1

P (yj,i|xi, sj,i)

 , (17)

where xi ∈ X , yj,i ∈ Yj , zi ∈ Z , se,i ∈ Se and sj,i ∈ Sj .
• The finite state processes {Se,i} and {Sj,i} (j ∈
{1, 2, ..., L}) are supposed to be stationary irreducible
aperiodic ergodic Markov chains. The state processes are
independent of one another, and they are independent
of the transmitted message. Moreover, the state process
{Sj,i} is independent of the channel input and outputs
given the previous states, i.e.,

P (sj,i|xi, yi1,1, ..., yiL,1, s
i−dj
j,1 ) = P (sj,i|sj,i−dj ), (18)

where 1 ≤ dj ≤ i − 1. The state process {Se,i} is
independent of the channel input and the eavesdropper’s
channel output given the previous states, i.e.,

P (se,i|xi, zi, si−1e,1 ) = P (se,i|se,i−1). (19)

Define the one-step transition probability matrix of the
state process {Sj,i} as Kj . Denote the steady state prob-
abilities of {Sj,i} and {Se,i} by πj and πe, respectively.
Note that

Pr{Sj,i = sm, Sj,i−dj = sl} = πj(sl)K
dj
j (sl, sm),

(20)
where sm, sl ∈ Sj , sm is the m-th element of Sj , sl
is the l-th element of Sj , K

dj
j (sl, sm) is the (l,m)-th

element of the dj-step transition probability matrix Kdj
j

of the Markov process.
• The transmitted message W is uniformly distributed over
W = {1, 2, ..., |W|}, and it is independent of the state
processes {Se,i} and {Sj,i} (j ∈ {1, 2, ..., L}). Receiver
j ∈ {1, 2, ..., L} sends his/her received signal back to the
transmitter via a feedback channel after a delay time dj .
Without loss of generality (W.L.O.G.), assume that 1 ≤
d1 ≤ d2 ≤ ... ≤ dL ≤ N . For the case that all legitimate
receivers only send their received channel states back to
the transmitter via feedback channels with delay times
d1,...,dL, the i-th (i ∈ {1, 2, ..., N}) channel input Xi is
given by

Xi =



fi(W ), 1 ≤ i ≤ d1,
fi(W,S

i−d1
1,1 ), d1 ≤ i ≤ d2,

......, ......,

fi(W,S
i−d1
1,1 , ..., S

i−dL−1

L−1,1 ), dL−1 ≤ i ≤ dL,
fi(W,S

i−d1
1,1 , ..., Si−dLL,1 ), dL ≤ i ≤ N.

(21)
For the case that all legitimate receivers send their
received channel outputs and channel states back to
the transmitter via feedback channels with delay times
d1,...,dL, the i-th (i ∈ {1, 2, ..., N}) channel input Xi is
given by

Xi =



fi(W ), 1 ≤ i ≤ d1,
fi(W,S

i−d1
1,1 , Y i−d11,1 ), d1 ≤ i ≤ d2,

......, ......,

fi

(
W,Si−d11,1 , Y i−d11,1 ,

..., Si−dLL,1 , Y i−dLL,1

)
, dL ≤ i ≤ N.

(22)
Here note that fi in (21) and (22) is a stochastic encoding
function.
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• For Receiver j (j ∈ {1, 2, ..., L}), after receiving
Y Nj,1 and SNj,1, he/she produces an estimation Ŵ (j) =
ψj(Y

N
j,1, S

N
j,1), and his/her average decoding error proba-

bility is defined as

Pe,j =
1

|W|
∑
i∈W

Pr{ψj(yNj,1, sNj,1) 6= i|i sent}. (23)

The secrecy level of the transmitted message W at the
eavesdropper is formulated as

∆ =
1

N
H(W |ZN , SNe,1). (24)

The definition of a non-negative number R achieving
weak perfect secrecy is the same as that in (5).

The secrecy capacity of the model of Figure 3 with delayed
channel output feedback is denoted by Cf−dys , and without
delayed channel output feedback is denoted by Cf−ds . Bounds
on Cf−dys and Cf−ds are given in the following theorems.

Theorem 3: Lower bound on Cf−dys : Cf−dys ≥ Rf−dys ,
where

Rf−dys = max min
j

min{[I(Vj ;Yj , Uj |Sj , S̃j)

−I(Vj ;Z|Se)]+, I(Vj ;Yj |Sj , S̃j)}, (25)

the auxiliary random variable S̃j represents Sj,i−dL , Sj rep-
resents Sj,i, and the joint probability is defined as

P (z, y1, ..., yL, x, v1, ..., vL, u1, ..., uL, s1, ..., sL,

s̃1, ..., s̃L, se)

= P (z|x, se)P (x|v1, ..., vL)P (se) ·
L∏
j=1

(P (yj |x, sj)P (uj |vj , yj , s̃j)P (vj |s̃j) ·

P (s̃j)K
dL
j (s̃j , sj)). (26)

Fig. 9: A feedback scheme for the finite state compound wire-
tap channel with delayed states and channel output feedback

Proof sketch:

The lower bound Rf−dys is constructed by combining the
coding scheme of Theorem 1 with the multiplexing encoding-
decoding scheme for the finite state Markov wiretap channel
with delayed feedback [33], and the encoding-decoding proce-
dure is briefly explained by the following Figure 9. From Fig-
ure 9, we see that in block i (i ∈ {1, 2, ..., N}), the transmitted
message Wi for Receiver j (j ∈ {1, 2, ..., L}) is further divid-
ed into kj sub-messages (Wi = (Wi,1,Wi,2, ...,Wi,kj )), where
kj is the size of the alphabet Sj , i.e., kj = |Sj |. Moreover, in
block i, after receiving the delayed feedback channel output
and state of Receiver j, the transmitter encodes each sub-
message Wi,l (l ∈ {1, 2, ..., kj}) and the delayed feedback as a
sub-codeword vNlj,i,1 (similar to the coding scheme in the proof
of Theorem 1, see Appendix A), where Nl is the sub-codeword
length for Wi,l, and

∑kj
l=1Nl = N . Hence the total codeword

vNj,i,1 for Wi is the multiplexing of all sub-codewords vNlj,i,1 for

l ∈ {1, 2, ..., kj}, i.e., vNj,i,1 = (vN1
j,i,1, v

N2
j,i,1, ..., v

Nkj
j,i,1). Similar

to the coding scheme of Theorem 1, the channel input of block
i is generated via an auxiliary discrete memoryless channel
with inputs vN1,i,1,...,vNL,i,1, and output xN .

In the decoding procedure, for Receiver j, after receiving the
channel outputs and states of all blocks, he/she uses the back-
ward, de-multiplexing and jointly typical decoding scheme to
decode the transmitted vnj,1 = (vNj,1,1, v

N
j,2,1, ..., v

N
j,n,1) of all

blocks. If vnj,1 is decoded without error, the messages for all
blocks can be obtained by Receiver j. The details about the
encoding-decoding scheme of Theorem 3 are in Appendix B.

Theorem 4: Lower bound on Cf−ds : Cf−ds ≥ Rf−ds , where

Rf−ds = max min
j

[I(Vj ;Yj |Sj , S̃j)− I(Vj ;Z|Se)]+,

(27)

the auxiliary random variable S̃j represents Sj,i−dL , Sj rep-
resents Sj,i, and the joint probability is defined as

P (z, y1, ..., yL, x, v1, ..., vL, s1, ..., sL, s̃1, ..., s̃L, se)

= P (z|x, se)P (x|v1, ..., vL)P (se) ·
L∏
j=1

(P (yj |x, sj)P (vj |s̃j)P (s̃j)K
dL
j (s̃j , sj)). (28)

Proof: First, recall that in the proof of Theorems 1 and
3, the auxiliary random variable U1,...,UL are generated by
the channel output feedback and they are used to improve the
legitimate receivers’ decoding performance. Then, note that
in Theorem 4, there is no channel output feedback, which
indicates that U1,...,UL are useless. Finally, substituting U1 =
U2 = ... = UL = const into Rf−dys , and along the lines of
the proof of Theorem 3, the lower bound Rf−ds is obtained.
The proof of Theorem 4 is completed.

The following Theorem 5 provides an upper bound for both
Cf−dys and Cf−ds , see the followings.

Theorem 5: Upper bound on both Cf−dys and Cf−ds :
Cf−dys ≤ Cf−outs and Cf−ds ≤ Cf−outs , where

Cf−outs = min
j

max
P (x|s̃∗j )

I(X;Yj |Sj , S̃∗j ), (29)
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the auxiliary random variable S̃∗j represents Sj,i−dj , Sj rep-
resents Sj,i,

P (yj , x, sj , s̃
∗
j )

= P (yj |x, sj)P (x|s̃∗j )P (s̃∗j )K
dj
j (s̃∗j , sj), (30)

for all j ∈ {1, 2, ..., L}.
Proof: This outer bound can be directly obtained by

using the fact that the secrecy capacities Cf−dys and Cf−ds

can not exceed the capacity of each channel without secrecy
constraint. To be specific, first, note that in the model of Figure
3, the channel j (j ∈ {1, 2, ..., L}) with delayed feedback and
without eavesdropper has already been investigated by [34]. It
has been shown in [34] that the capacity Cf−d of each channel
with only delayed state feedback equals the capacity Cf−dy of
the same channel with delayed both state and channel output
feedback, and they are given by

Cf−d = Cf−dy = max
P (x|s̃∗j )

I(X;Yj |Sj , S̃∗j ). (31)

Then, using the fact that Cf−dys and Cf−ds can not exceed (31)
for all j ∈ {1, 2, ..., L}, the upper bound Cf−outs is obtained.
The proof is completed.

IV. A GAUSSIAN FADING EXAMPLE OF THE FINITE STATE
COMPOUND WIRETAP CHANNEL WITH DELAYED

FEEDBACK

In this section, we compute the capacity bounds in Section
III via a Gaussian fading example, and we would like to know
how the delayed feedback time affects the capacity bounds.
The remainder of this section is organized as follows. In
Subsection IV-A, we show bounds on the secrecy capacities
of the Gaussian fading case of the model of Figure 3 with
or without delayed channel output feedback. In Subsection
IV-B, the bounds in Subsection IV-A are further explained via
numerical results.

A. Gaussian fading case of the model of Figure 3

For the Gaussian fading case of the model of Figure 3, at
time i (1 ≤ i ≤ N ), the channel inputs and outputs are given
by

Yj,i = hj(sj,i)Xi +Nsj,i , Zi = g(se,i)Xi +Nse,i , (32)

where j ∈ {1, 2, ..., L}, and sj,i, hj(sj,i), se,i, g(se,i), Nsj,i
and Nse,i are defined as follows.
• sj,i is the i-th time state of the channel for Receiver j,

and hj(sj,i) is the fading coefficient of the channel from
the transmitter to Receiver j and it depends on the i-th
time state sj,i.

• g(se,i) is the fading coefficient of the channel from the
transmitter to the eavesdropper and it depends on the i-th
time state se,i.

• Nsj,i ∼ N (0, σ2
sj,i) is the noise of the channel from the

transmitter to Receiver j and it is Gaussian distributed
with zero mean and variance σ2

sj,i which depends on the
i-th time state sj,i.

• Nse,i ∼ N (0, σ2
se,i) is the noise of the channel from

the transmitter to the eavesdropper and it is Gaussian

distributed with zero mean and variance σ2
se,i which

depends on the i-th time state se,i.
Let P be the transmitter’s power constraint satisfying

E[X2] ≤ P. (33)

At the i-th time, Receiver j ∈ {1, 2, ..., L} obtains Sj,i and
the channel output Yj,i, and then he/she transmits Sj,i (or Sj,i
and Yj,i) back to the transmitter via a feedback channel after
a delay time dj (W.L.O.G., assume that 1 ≤ d1 ≤ d2 ≤ ... ≤
dL ≤ N ). The following Corollary 1 shows the lower bound
Rf−dy∗s on the secrecy capacity Cf−dy∗s of the Gaussian fading
case of the model of Figure 3 with delayed states and channel
output feedback. Corollary 2 shows the lower bound Rf−d∗s on
the secrecy capacity Cf−d∗s of the Gaussian fading case of the
model of Figure 3 with only delayed state feedback. Corollary
3 shows an upper bound for both Cf−dy∗s and Cf−d∗s .

Corollary 1: A lower bound Rf−dy∗s on Cf−dy∗s is given
by

Rf−dy∗s = max
P(s̃1), ...,P(s̃L), α1, ..., αL :∑

s̃1
π1(s̃1)P(s̃1) ≤ P

......∑
s̃L

πL(s̃L)P(s̃L) ≤ P
α1 + ... + αL = 1, α1, ..., αL ≥ 0

min
j

min


∑
s̃j

∑
sj

πj(s̃j)K
dL
j (s̃j , sj)

1

2
log(2πeαjP(s̃j))

−
∑
se

πe(se)
1

2
log

g2(se)P + σ2
se

g2(se)P(1− αj) + σ2
se

]+
,∑

s̃j

∑
sj

πj(s̃j)K
dL
j (s̃j , sj)·

1

2
log

h2j (sj)P(s̃j) + σ2
sj

h2j (sj)P(s̃j)(1− αj) + σ2
sj

}
,

(34)

where [x]+ = x for x ≥ 0, [x]+ = 0 for x < 0, and P(s̃j)
(j ∈ {1, 2, ..., L}) is the transmitter’s power allocated to the
state s̃j .

Proof: First, for j ∈ {1, 2, ..., L}, define

X =

L∑
j=1

Vj , (35)

where Vj ∼ N (0,Pj), Pj ≤ αjP , αj ≥ 0 and
∑L
j=1 αj = 1.

Here note that V1,...,VL are independent of one another. From
the definition (35), it is easy to check that the power constraint
(33) holds. Next, define

E[X2|s̃j ] = P(s̃j), (36)

where P(s̃j) is the transmitter’s power allocated to the state
s̃j , and it satisfies∑

s̃j

πj(s̃j)P(s̃j)

=
∑
s̃j

πj(s̃j)E[X2|s̃j ] = E[X2] ≤ P. (37)
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Further define

E[V 2
j |s̃j ] = αjP(s̃j). (38)

From (37) and (38), it is easy to check that

Pj = E[V 2
j ] =

∑
s̃j

πj(s̃j)E[V 2
j |s̃j ]

=
∑
s̃j

πj(s̃j)αjP(s̃j) = αj
∑
s̃j

πj(s̃j)P(s̃j)

≤ αjP. (39)

Finally, note that for j ∈ {1, 2, ..., L}, Uj is generated from
the feedback Yj and the transmitted codeword Vj , define

Uj = Vj + Yj . (40)

Now substituting the above definitions (35), (36), (38), (40)
and (32) into Theorem 3, Rf−dy∗s is obtained. The proof of
Corollary 1 is completed.

Corollary 2: A lower bound Rf−d∗s on Cf−d∗s is given by

Rf−d∗s = max
P(s̃1), ...,P(s̃L), α1, ..., αL :∑

s̃1
π1(s̃1)P(s̃1) ≤ P

......∑
s̃L

πL(s̃L)P(s̃L) ≤ P
α1 + ... + αL = 1, α1, ..., αL ≥ 0

min
j

∑
s̃j

∑
sj

πj(s̃j)K
dL
j (s̃j , sj)

1

2
log

h2j (sj)P(s̃j) + σ2
sj

h2j (sj)P(s̃j)(1− αj) + σ2
sj

−
∑
se

πe(se)
1

2
log

g2(se)P + σ2
se

g2(se)P(1− αj) + σ2
se

]+
,

(41)

where [x]+ = x for x ≥ 0, [x]+ = 0 for x < 0, and P(s̃j)
(j ∈ {1, 2, ..., L}) is the transmitter’s power allocated to the
state s̃j .

Proof: Substituting the definitions (35), (36), (38) and
(32) into Theorem 4, Rf−dy∗s is obtained. The proof of
Corollary 2 is completed.

The following Corollary 3 provides an upper bound for both
Cf−dy∗s and Cf−d∗s , see the followings.

Corollary 3: An upper bound Cf−out∗s on both Cf−dy∗s and
Cf−d∗s is given by

Cf−out∗s = min
j

max
P(s̃j):∑

s̃j
πj(s̃j)P(s̃j) ≤ P

∑
s̃j

∑
sj

πj(s̃j)K
dj
j (s̃j , sj)

·1
2

log
h2j (sj)P(s̃j) + σ2

sj

σ2
sj

. (42)

Proof: Substituting the definitions (36) and (32) into
Theorem 5, Cf−out∗s is obtained. The proof of Corollary 3
is completed.

B. Numerical results
In this subsection, we investigate a two-state example, i.e.,

for j ∈ {1, 2, ..., L}, Sj consists of two elements Gj (good
state) and Bj (bad state), and Se also consists of two elements
Ge and Be. The state process of {Sj} is given by

P (Gj |Gj) = 1− bj , P (Bj |Gj) = bj ,

P (Bj |Bj) = 1− gj , P (Gj |Bj) = gj , (43)

and the steady probabilities of Gj and Bj are given by

πj(Gj) =
gj

gj + bj
, πj(Bj) =

bj
gj + bj

. (44)

In addition, the state process of {Se} is given by

P (Ge|Ge) = 1− be, P (Be|Ge) = be,

P (Be|Be) = 1− ge, P (Ge|Be) = ge, (45)

and the steady probabilities of Ge and Be are given by

πe(Ge) =
ge

ge + be
, πe(Be) =

be
ge + be

. (46)

For the noise Nsj of the channel from the transmitter to
Receiver j, its variance σ2

sj in state Gj is σ2
Gj

, and in state
Bj is σ2

Bj
. Similarly, the noise Nse of the channel from the

transmitter to the eavesdropper, its variance σ2
se in state Ge is

σ2
Ge

, and in state Be is σ2
Be

.
For L = 3, which indicates that there are 3 legitimate

receivers in the model of Figure 3, the following Figure 10
plots the lower and upper bounds on the secrecy capacities
of the Gaussian fading case of the model of Figure 3 with
delayed state feedback, and with or without delayed channel
output feedback for σ2

G1
= 0.1, σ2

B1
= 1, σ2

G2
= 0.3,

σ2
B2

= 0.66, σ2
G3

= 1, σ2
B3

= 2, σ2
Ge

= 2000, σ2
Be

= 6000,
g1 = 0.05, b1 = 0.05, g2 = 0.1, b2 = 0.08, g3 = 0.2,
b3 = 0.08, ge = 0.3, be = 0.5, h1(G1) = 1, h1(B1) = 0.5,
h2(G2) = 0.9, h2(B2) = 0.6, h3(G3) = 0.8, h3(B3) = 0.4,
g(Ge) = 0.8, g(Be) = 0.7, d1 = 1, d2 = 2, d3 = 3 and sever-
al values of P . As depicted in this figure, if the eavesdropper’s
channel noise variance (σ2

Ge
= 2000, σ2

Be
= 6000) is large, the

lower bound Rf−dy∗s meets the upper bound Cf−out∗s , which
indicates that the secrecy capacity of the Gaussian fading case
of the model of Figure 3 with delayed both states and channel
output feedback is determined. Moreover, we see that channel
output feedback helps to enhance the achievable secrecy rate
of the Gaussian fading case of the model of Figure 3 with
only delayed state feedback.

Fig. 10: Comparison of the bounds in Theorems 1-3 for σ2
G1

=
0.1, σ2

B1
= 1, σ2

G2
= 0.3, σ2

B2
= 0.66, σ2

G3
= 1, σ2

B3
= 2,

σ2
Ge

= 2000, σ2
Be

= 6000, g1 = 0.05, b1 = 0.05, g2 =
0.1, b2 = 0.08, g3 = 0.2, b3 = 0.08, ge = 0.3, be = 0.5,
h1(G1) = 1, h1(B1) = 0.5, h2(G2) = 0.9, h2(B2) = 0.6,
h3(G3) = 0.8, h3(B3) = 0.4, g(Ge) = 0.8, g(Be) = 0.7,
d1 = 1, d2 = 2, d3 = 3 and several values of P

Figure 11 plots the bounds for the same values of the
parameters given in Figure 10 except that σ2

Ge
= 1 and
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σ2
Be

= 2.5. As depicted in this figure, if the eavesdropper’s
channel noise variance (σ2

Ge
= 1, σ2

Be
= 2.5) is decreasing,

the gap between the lower and upper bounds on Cf−dy∗s is
increasing. In addition, we see that channel output feedback
still helps to enhance the achievable secrecy rate Rf−d∗s of
the Gaussian fading case of the model of Figure 3 with only
delayed state feedback.

Fig. 11: Comparison of the bounds in Theorems 1-3 for the
same values of the parameters in Figure 10 except that σ2

Ge
=

1 and σ2
Be

= 2.5

Figure 12 plots the bounds for the same values of the
parameters given in Figure 10 except that σ2

Ge
= 0.03 and

σ2
Be

= 0.05. As depicted in this figure, if the eavesdrop-
per’s channel noise variance (σ2

Ge
= 0.03, σ2

Be
= 0.05) is

sufficiently small, the achievable secrecy rate Rf−d∗s of the
Gaussian fading case of the model of Figure 3 with only
delayed state feedback equals 0, which implies that the perfect
secrecy can not be guaranteed for this case. Using the channel
output feedback, the positive achievable secrecy rate Rf−dy∗s

is derived, and hence the PLS of the Gaussian fading case
of the model of Figure 3 with only delayed state feedback is
enhanced. In addition, we should notice that there still exists
a huge gap between the lower and upper bounds on Cf−dy∗s .

Fig. 12: Comparison of the bounds in Theorems 1-3 for the
same values of the parameters in Figure 10 except that σ2

Ge
=

0.03 and σ2
Be

= 0.05

To investigate how the delayed feedback time dj (j ∈
{1, 2, ..., L}) affects the secrecy rates of the model of Figure
3, the following Figure 13 plots the lower bounds in Theorems
1 and 2 for the case that L = 3 (three legitimate receivers) and
d1 = d2 = d3 = d, which implies that the delayed feedback
times of the three legitimate receivers are the same and equal
d. As depicted in this figure, the achievable secrecy rates of

the Gaussian fading case of the model of Figure 3 with or
without delayed channel output feedback are decreasing while
the delay time d is increasing. However, we should notice
that both Rf−dy∗s and Rf−d∗s are approaching their infinite
asymptotes while d is sufficiently large.

Fig. 13: Comparison of the lower bounds in Theorems 1 and
2 for P = 20, σ2

G1
= 0.1, σ2

B1
= 1, σ2

G2
= 0.3, σ2

B2
=

0.66, σ2
G3

= 1, σ2
B3

= 2, σ2
Ge

= 1, σ2
Be

= 2.5, g1 = 0.05,
b1 = 0.05, g2 = 0.1, b2 = 0.08, g3 = 0.2, b3 = 0.08, ge =
0.3, be = 0.5, h1(G1) = 1, h1(B1) = 0.5, h2(G2) = 0.9,
h2(B2) = 0.6, h3(G3) = 0.8, h3(B3) = 0.4, g(Ge) = 0.8,
g(Be) = 0.7 and several values of d (d1 = d2 = d3 = d)

The following Figure 14 plots the lower bounds in Theorems
1 and 2 for the case that L = 3 (three legitimate receivers)
and d1 = 0, d2 = d, d3 = 2d, which implies that the delayed
feedback times of the three legitimate receivers are different.
Similar to Figure 13, Rf−dy∗s and Rf−d∗s are monotonic
decreasing functions of d, and both of them approach their
infinite asymptotes when d is sufficiently large.

Fig. 14: Comparison of the lower bounds in Theorems 1 and
2 for P = 20, σ2

G1
= 0.1, σ2

B1
= 1, σ2

G2
= 0.3, σ2

B2
=

0.66, σ2
G3

= 1, σ2
B3

= 2, σ2
Ge

= 1, σ2
Be

= 2.5, g1 = 0.05,
b1 = 0.05, g2 = 0.1, b2 = 0.08, g3 = 0.2, b3 = 0.08, ge =
0.3, be = 0.5, h1(G1) = 1, h1(B1) = 0.5, h2(G2) = 0.9,
h2(B2) = 0.6, h3(G3) = 0.8, h3(B3) = 0.4, g(Ge) = 0.8,
g(Be) = 0.7 and several values of d (d1 = 0, d2 = d, d3 = 2d)

V. CONCLUSION

This paper establishes a general framework for enhanc-
ing the PLS in the down-link transmission of IoT systems
via feedback. Two models including the compound wiretap
channel with feedback and the finite state compound wiretap
channel with delayed feedback are studied, and bounds on
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the secrecy capacities of the two models are given. From a
Gaussian fading example, we see that the delayed channel
output feedback enhances the lower bound on the secrecy
capacity of the finite state compound wiretap channel with
only delayed state feedback, and the corresponding feedback
strategy may achieve the secrecy capacity if the eavesdropper’s
channel noise variance is sufficiently large. Moreover, numer-
ical results indicate that the secrecy rates are decreasing while
the feedback delay time is increasing, and the secrecy rates are
approaching their infinite asymptotes while the feedback delay
time is sufficiently large. However, we should notice that all
the capacity results given in this paper only work well under
the perfect weak secrecy condition, and how to design the
corresponding encoding-decoding schemes under the strong
perfect secrecy condition is of further interest to us.

APPENDIX A
PROOF OF THEOREM 1

The messages are conveyed to the receivers via n blocks.
The blocklength of block i ∈ {1, 2, ..., n − 1} is N , and for
block n (the last block), its blocklength is γN , where γ is a
positive real number and will be determined later. In block
i (i ∈ {1, 2, ..., n − 1}), the random sequences XN , ZN ,
Y N1,1, Y N2,1,...,Y NL,1, UN1,1, UN2,1,...,UNL,1, V N1,1, V N2,1,...,V NL,1, are
denoted by X̄i, Z̄i, Ȳ1,i, Ȳ2,i,...,ȲL,i, Ū1,i, Ū2,i,...,ŪL,i, V̄1,i,
V̄2,i,...,V̄L,i, respectively. Similarly, in block n, the random se-
quences XγN , ZγN , Y γN1,1 , Y γN2,1 ,...,Y γNL,1 , V γN1,1 , V γN2,1 ,...,V γNL,1 ,
are denoted by X̄n, Z̄n, Ȳ1,n, Ȳ2,n,...,ȲL,n, V̄1,n, V̄2,n,...,V̄L,n,
respectively. In addition, the value of the random vector is
written in lower case letter.

Code-book construction:
• The message W is sent to all legitimate receivers via
n blocks, i.e., the message W is composed of n com-
ponents (W = (W1, ...,Wn)), and each component Wi

(i ∈ {1, 2, ..., n}) is the message for block i. Here Wi

takes values in the set {1, ..., 2NR}.
• The dummy message W

′
, which is used to confuse the

eavesdropper, is composed of n components (W
′

=
(W

′

1, ...,W
′

n)), and the component W
′

i (i ∈ {1, 2, ..., n})
is transmitted in block i. Here note that W

′

i is randomly
chosen from the set {1, ..., 2NR

′

}, i.e., Pr{W ′

i = l} =

2−NR
′

, where l ∈ {1, ..., 2NR
′

}.
• The auxiliary message W ∗j , where j ∈ {1, 2, ..., L}, is

used to improve Receiver j’s decoding performance. Here
note that W ∗j is composed of n− 1 components (W ∗j =
(W ∗j,1, ...,W

∗
j,n−1)), where W ∗j,i (i ∈ {1, 2, ..., n − 1})

takes values in the set {1, ..., 2NR
∗
j }.

• In block i (1 ≤ i ≤ n), randomly generate 2N(R+R
′
+R∗)

independent identically distributed (i.i.d.) sequences v̄j,i
(j ∈ {1, 2, ..., L}) according to the probability P (vj),
and label them as v̄j,i(wi, w

′

i, w
∗
j,i−1), where wi ∈

{1, 2, ..., 2NR}, w′i ∈ {1, 2, ..., 2NR
′

} and w∗j,i−1 ∈
{1, 2, ..., 2NR

∗
j }.

• In block i (1 ≤ i ≤ n − 1), for each pos-
sible value of v̄j,i(wi, w

′

i, w
∗
j,i−1) and ȳj,i, random-

ly generate 2NR̃j i.i.d. codewords ūj,i according to

the probability P (uj |vj , yj). Then label these ūj,i as
ūj,i(w

∗
j,i, w

∗∗
j,i), where w∗j,i ∈ {1, 2, ..., 2NR

∗
j } and w∗∗j,i ∈

{1, 2, ..., 2N(R̃j−R∗j )}.
• In block i (1 ≤ i ≤ n), for given v̄1,i,...,v̄L,i, the channel

input x̄i is i.i.d. generated according to P (x|v1, ..., vL).
For convenience, the following Figure 15 provides some
important notations in the proof of Theorem 1.

Fig. 15: Some important notations in the proof of Theorem 1

Encoding procedure:
• At block 1, the transmitter selects v̄j,1(w1, w

′

1, 1) (j ∈
{1, 2, ..., L}). Here notice that w

′

1 is randomly chosen
from the set {1, 2, ..., 2NR

′

}.
• At block i (i ∈ {2, 3, ..., n − 1}), once the transmitter

receives ȳj,i−1 (j ∈ {1, 2, ..., L}), he seeks a ūj,i−1 such
that the triplet (ūj,i−1, v̄j,i−1, ȳj,i−1) is jointly typical.
If there exist multiple ūj,i−1, randomly choose one, and
if no such ūj,i−1 exists, an error occurs. Based on the
covering Lemma [32], if

R̃j ≥ I(Uj ;Vj , Yj), (A1)

this encoding error vanishes as N tends to infinity. Once
the transmitter decodes such a ūj,i−1(w∗j,i−1, w

∗∗
j,i−1), he

chooses v̄j,i(wi, w
′

i, w
∗
j,i−1) for transmission.

• At block n, once the transmitter receives the feedback
ȳj,n−1 (j ∈ {1, 2, ..., L}), he seeks a ūj,n−1 such that
the triplet (ūj,n−1, v̄j,n−1, ȳj,n−1) is jointly typical, and
the corresponding encoding error vanishes as N tends
to infinity if (A1) is guaranteed. Once the transmit-
ter decodes such a ūj,n−1(w∗j,n−1, w

∗∗
j,n−1), he chooses

v̄j,n(1, 1, w∗j,n−1) for transmission.
Decoding procedure:
Receiver j’s (j ∈ {1, 2, ..., L}) decoding scheme begins

from the last block. At block n, first, note that due to the
reason that the blocklength is γN , the actual rate of W ∗j,n−1
is given by

H(W ∗j,n−1)

γN
=
NR∗j
γN

=
R∗j
γ
. (A2)

Next, Receiver j selects a unique v̄j,n such that (v̄j,n, ȳj,n)
are joint typical. If multiple or no such v̄j,n exists, an error
occurs. From the packing lemma [32], this error vanishes if

R∗j
γ
≤ I(Vj ;Yj). (A3)

Since I(Vj ;Yj) of (A3) is finite, for any given R∗j , we can
choose a sufficiently large γ such that (A3) is guaranteed.
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After decoding v̄j,n, Receiver j picks out w∗j,n−1 from it.
Then he/she tries to choose a unique ūj,n−1 such that given
w∗j,n−1, ūj,n−1 and ȳj,n−1 are jointly typical. If multiple or no
such ūj,n−1 exists, an error occurs. From the packing lemma
[32], this error vanishes if

R̃j −R∗j ≤ I(Uj ;Yj). (A4)

Once such unique ūj,n−1 is obtained, Receiver j seeks a
unique v̄j,n−1 such that (v̄j,n−1, ȳj,n−1, ūj,n−1) are jointly
typical. From the packing lemma [32], this error vanishes if

R+R
′
+R∗j ≤ I(Vj ;Uj , Yj). (A5)

After decoding v̄j,n−1, Receiver j picks out wn−1, and
w∗j,n−2 from it. Repeating the above decoding procedure,
the messages of all blocks are decoded by Receiver j. The
decoding procedure is completed. The following Figures 16
and 17 illustrate the encoding-decoding procedure for Receiver
j (j ∈ {1, 2, ..., L}).

Fig. 16: The encoding procedure for j ∈ {1, 2, ..., L}

Equivocation Analysis:
The eavesdropper’s equivocation ∆, defined as ∆ =

1
(n−1)N+γNH(W |Z̄1, ..., Z̄n) (the overall length of all blocks
is (n− 1)N + γN ), follows that

∆ =
1

(n− 1)N + γN
H(W |Z̄1, ..., Z̄n)

(a)
=

1

(n− 1)N + γN

n−1∑
i=1

H(Wi|W1, ...,Wi−1, Z̄1, ..., Z̄n)

(b)
=

1

(n− 1)N + γN

n−1∑
i=1

H(Wi|Z̄i)

=
1

(n− 1)N + γN

n−1∑
i=1

(H(Wi, Z̄i)−H(Z̄i))

=
1

(n− 1)N + γN

n−1∑
i=1

(H(Wi, Z̄i, V̄j,i)

−H(V̄j,i|Wi, Z̄i)−H(Z̄i))

(c)
=

1

(n− 1)N + γN

n−1∑
i=1

(H(Z̄i|V̄j,i) +H(V̄j,i)

Fig. 17: The decoding procedure for Receiver j (j ∈
{1, 2, ..., L})

−H(V̄j,i|Wi, Z̄i)−H(Z̄i))

=
1

(n− 1)N + γN

n−1∑
i=1

(H(V̄j,i)− I(V̄j,i; Z̄i)

−H(V̄j,i|Wi, Z̄i))

=
1

(n− 1)N + γN
(

n−1∑
i=1

H(V̄j,i)−
n−1∑
i=1

I(V̄j,i; Z̄i)

−
n−1∑
i=1

H(V̄j,i|Wi, Z̄i))

(d)

≥ 1

(n− 1)N + γN
(

n−1∑
i=1

H(V̄j,i)

−(n− 1)N(I(Vj ;Z) + ε1)−
n−1∑
i=1

H(V̄j,i|Wi, Z̄i))

=
1

(n− 1)N + γN
(H(V̄j,1) +

n−1∑
i=2

H(V̄j,i)

−(n− 1)N(I(Vj ;Z) + ε1)

−H(V̄j,1|W1, Z̄1)−
n−1∑
i=2

H(V̄j,i|Wi, Z̄i))

(e)

≥ 1

(n− 1)N + γN
(N(R+R

′
− ε2)

+(n− 2)N(R+R
′
+R∗j − ε3)

−(n− 1)N(I(Vj ;Z) + ε1)
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−H(V̄j,1|W1, Z̄1)−
n−1∑
i=2

H(V̄j,i|Wi, Z̄i))

(f)

≥ 1

(n− 1)N + γN
(N(R+R

′
− ε2)

+(n− 2)N(R+R
′
+R∗j − ε3)

−(n− 1)N(I(Vj ;Z) + ε1)−Nε4 − (n− 2)Nε5)

=
R+R

′ − ε2
(n− 1) + γ

+
(n− 2)(R+R

′
+R∗j − ε3)

(n− 1) + γ

− (n− 1)(I(Vj ;Z) + ε1)

(n− 1) + γ
− ε4 + (n− 2)ε5

(n− 1) + γ
, (A6)

where (a) follows from the fact that W = (W1, ...,Wn)
and Wn is constant, (b) follows from the fact that given
Z̄i, the message Wi of block i is independent of other
blocks’ (Z̄1, ..., Z̄i−1, Z̄i+1, ..., Z̄n) and previous blocks’ mes-
sages (W1, ...,Wi−1), i.e., the Markov chain Wi → Z̄i →
(W1, ...,Wi−1, Z̄1, ..., Z̄i−1, Z̄i+1, ..., Z̄n) holds, (c) follows
from the fact that H(Wi|V̄j,i) = 0, (d) follows from a similar
argument in [5, Lemma 3], i.e., I(V̄j,i; Z̄i) ≤ N(I(Vj ;Z) +
ε1), where ε1 → 0 as N → ∞, (e) follows from the
construction of V̄j,i and a similar argument in [3, equations
(16) and (23)], i.e., H(V̄j,1) ≥ N(R + R

′ − ε2), H(V̄j,i) ≥
N(R + R

′
+ R∗j − ε3), where ε2, ε3 → 0 as N → ∞, (f)

follows from that given w1, z̄1, the eavesdropper attempts to
find a unique v̄j,1 jointly typical with his/her received z̄1, and
from the packing lemma [32], this decoding error vanishes if

R
′
≤ I(Vj ;Z), (A7)

then applying Fano’s lemma, H(V̄j,1|W1, Z̄1) ≤ Nε4 is
obtained, where ε4 → 0 while N → ∞, and analogously,
for i ∈ {2, ..., n− 1} given wi, z̄i, the eavesdropper attempts
to find a unique v̄j,i jointly typical with his/her received z̄i,
and from the packing lemma [32], this decoding error vanishes
if

R
′
+R∗j ≤ I(Vj ;Z), (A8)

then applying Fano’s lemma, H(V̄j,i|Wi, Z̄i) ≤ Nε5 is ob-
tained, where ε5 → 0 while N → ∞. Here note that (A7) is
included in (A8), and thus we only need to use (A8) to derive
the final region.

The bound (A6) implies that if

R
′
+R∗j ≥ I(Vj ;Z), (A9)

∆ ≥ R − ε is satisfied by choosing sufficiently large n and
N .

Now it remains to use the above conditions (A1), (A4),
(A5), (A8) and (A9) to derive the lower bound in Theorem 1,
see the followings.

First, note that from (A1) and (A4), we have

R∗j ≥ I(Uj ;Vj , Yj)− I(Uj ;Yj)

= I(Uj ;Vj |Yj). (A10)

Next, substituting (A10) into (A5), we get

R ≤ R+R
′
≤ I(Vj ;Uj , Yj)− I(Uj ;Vj |Yj)

= I(Vj ;Yj). (A11)

Then, note that from (A8) and (A9), we can conclude that

R
′
+R∗j = I(Vj ;Z). (A12)

Now substituting (A12) into (A5), we have

R ≤ I(Vj ;Uj , Yj)− I(Vj ;Z). (A13)

From the above (A11) and (A13), we have

R ≤ min{I(Vj ;Uj , Yj)− I(Vj ;Z), I(Vj ;Yj)}.
(A14)

Next, note that if I(Vj ;Uj , Yj) ≤ I(Vj ;Z), from (A5), we
have

R+R
′
+R∗j ≤ I(Vj ;Uj , Yj) ≤ I(Vj ;Z). (A15)

Combining (A15) with (A12), and observing that R ≥ 0, we
can conclude that R = 0 if I(Vj ;Uj , Yj) ≤ I(Vj ;Z). Hence
(A14) should be re-written as

R ≤ min{[I(Vj ;Uj , Yj)− I(Vj ;Z)]+, I(Vj ;Yj)}.
(A16)

Note that (A16) should be satisfied for all j ∈ {1, 2, ..., L},
hence we have

R ≤ min
j

min{[I(Vj ;Uj , Yj)− I(Vj ;Z)]+, I(Vj ;Yj)}.

(A17)

Finally, note that the effective transmission rate is

H(W )

(n− 1)N + γN
=

∑n−1
i=1 H(Wi)

(n− 1)N + γN

=
(n− 1)NR

(n− 1)N + γN
=

n− 1

n− 1 + γ
R, (A18)

which indicates that the effective transmission rate approaches
R as the number of blocks n → ∞, then maximizing the
bound in (A17), Theorem 1 is proved, and the proof is
completed.

APPENDIX B
PROOF OF THEOREM 3

The encoding-decoding scheme of Theorem 3 combines
that of Theorem 1 with the multiplexing encoding-decoding
scheme for the finite state Markov channel with delayed
feedback [34]. The detail about the coding scheme is given
below.

Definition:
Similar to the definitions in the proof of Theorem 1, the

messages are transmitted via n blocks. Since 0 ≤ d1 ≤
d2 ≤ ... ≤ dL ≤ N , define the blocklength of block
i ∈ {1, 2, ..., n−dL} is N , and for block i ∈ {n−dL+1, ..., n},
its blocklength is N

′
= γN . For j ∈ {1, 2, ..., L}, de-

fine the alphabet Sj as Sj = {1, 2, ..., kj} and the steady
probability πj(l) > 0 for any l ∈ Sj . Moreover, in block
i ∈ {1, 2, ..., n− dL}, define Ns̃j (s̃j ∈ {1, 2, ..., kj}) as

Ns̃j = Nπj(s̃j). (A19)
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Similarly, in block i ∈ {n− dL + 1, ..., n}, define N
′

s̃j
(s̃j ∈

{1, 2, ..., kj}) as

N
′

s̃j = γNs̃j = γNπj(s̃j). (A20)

The random sequence XN of block i ∈ {1, 2, ..., n− dL} and
XγN of block i ∈ {n−dL + 1, ..., n} are denoted by X̄i, and
similar convention is applied to other random sequences. In
addition, for block i ∈ {1, 2, ..., n−dL}, the random sequence
XNs̃j is denoted by X̄

Ns̃j
i , and for block i ∈ {n − dL +

1, ..., n}, the random sequence X
N
′
s̃j is denoted by X̄

N
′
s̃j

i .
Similar convention is applied to other random sequences, and
the values of the random sequences are written in lower case
letter.

The message W is composed of n components (W =
(W1, ...,Wn)), and the component Wi (i ∈ {1, 2, ..., n})
is the message for block i. Here Wi takes values in
the set {1, ..., 2NR}. For j ∈ {1, 2, ..., L} and given s̃j
(s̃j ∈ {1, 2, ..., kj}), further divide Wi into kj sub-messages,
i.e., Wi = (Wi,1, ...,Wi,kj ), where Wi,s̃j takes values in
{1, 2, ..., 2Ns̃jR(s̃j)}. Here note that

kj∑
s̃j=1

πj(s̃j)R(s̃j) = R. (A21)

The dummy message W
′

also consists of n components
(W

′
= (W

′

1, ...,W
′

n)), and W
′

i (i ∈ {1, 2, ..., n}) is for
block i. Here note that W

′

i is uniformly drawn from the
set {1, ..., 2NR

′

}, i.e., Pr{W ′

i = l} = 2−NR
′

, where
l ∈ {1, ..., 2NR

′

}. Similarly, for j ∈ {1, 2, ..., L} and given
s̃j (s̃j ∈ {1, 2, ..., kj}), further divide W

′

i into kj sub-
messages, i.e., W

′

i = (W
′

i,1, ...,W
′

i,kj
) and W

′

i,s̃j
takes values

in {1, 2, ..., 2Ns̃jR
′
(s̃j)}. Here note that

kj∑
s̃j=1

πj(s̃j)R
′
(s̃j) = R

′
. (A22)

The auxiliary message W ∗j (j ∈ {1, 2, ..., L}) is composed
of n components (W ∗j = (W ∗j,1, ...,W

∗
j,n)), where W ∗j,i (i ∈

{1, 2, ..., n}) takes values in {1, ..., 2NR
∗
j }. Similarly, given s̃j

(s̃j ∈ {1, 2, ..., kj}), further divide W ∗j,i into kj sub-messages,
i.e., W ∗j,i = (W ∗j,i,1, ...,W

∗
j,i,kj

) and W ∗j,i,s̃j takes values in
{1, 2, ..., 2Ns̃jR

∗
j (s̃j)}. Here note that

kj∑
s̃j=1

πj(s̃j)R
∗
j (s̃j) = R∗j . (A23)

For convenience, the following Figure 18 provides some
important notations in the proof of Theorem 3.

Code-book construction:
• In block i ∈ {1, 2, ..., n − dL}, for j ∈ {1, 2, ..., L}

and given s̃j ∈ {1, 2, ..., kj}, randomly produce

2Ns̃j (R(s̃j)+R
′
(s̃j)+R

∗(s̃j)) i.i.d. sequences v̄
Ns̃j
j,i

according to the probability P (vj |s̃j), and label
them as v̄

Ns̃j
j,i (wi,s̃j , w

′

i,s̃j
, w∗j,i−dL,s̃j ), where wi,s̃j ∈

{1, 2, ..., 2Ns̃jR(s̃j)}, w
′

i,s̃j
∈ {1, 2, ..., 2Ns̃jR

′
(s̃j)}

Fig. 18: Some important notations in the proof of Theorem 3

and w∗j,i−dL,s̃j ∈ {1, 2, ..., 2Ns̃jR
∗
j (s̃j)}. In block

i ∈ {n − dL + 1, ..., n}, given s̃j , randomly

produce 2Ns̃j (R(s̃j)+R
′
(s̃j)+R

∗(s̃j)) i.i.d. sequences

v̄
N
′
s̃j

j,i according to the probability P (vj |s̃j), and label

them as v̄
N
′
s̃j

j,i (wi,s̃j , w
′

i,s̃j
, w∗j,i−dL,s̃j ), where wi,s̃j ∈

{1, 2, ..., 2Ns̃jR(s̃j)}, w′i,s̃j ∈ {1, 2, ..., 2
Ns̃jR

′
(s̃j)} and

w∗j,i−dL,s̃j ∈ {1, 2, ..., 2
Ns̃jR

∗
j (s̃j)}.

• In block i ∈ {1, 2, ..., n − dL}, for j ∈ {1, 2, ..., L},
s̃j ∈ {1, 2, ..., kj}, and each possible value of
v̄
Ns̃j
j,i (wi,s̃j , w

′

i,s̃j
, w∗j,i−dL,s̃j ) and ȳ

Ns̃j
j,i , randomly

generate 2Ns̃j R̃j(s̃j) i.i.d. codewords ū
Ns̃j
j,i

according to the probability P (uj |vj , yj , s̃j).
Then label these ū

Ns̃j
j,i as ū

Ns̃j
j,i (w∗j,i,s̃j , w

∗∗
j,i,s̃j

),
where w∗j,i,s̃j ∈ {1, 2, ..., 2Ns̃jR

∗
j (s̃j)} and

w∗∗j,i,s̃j ∈ {1, 2, ..., 2Ns̃j (R̃j(s̃j)−R
∗
j (s̃j))}. Here note

that
kj∑
s̃j=1

πj(s̃j)R̃j(s̃j) = R̃j . (A24)

• In block i ∈ {1, 2, ..., n − dL}, v̄j,i (j ∈ {1, 2, ..., L}) is
generated by multiplexing different sub-sequences v̄

Ns̃j
j,i

for all s̃j ∈ {1, 2, ..., kj}, i.e., v̄j,i = (v̄N1
j,i , ..., v̄

Nkj
j,i ).

In block i ∈ {n − dL + 1, ..., n}, v̄j,i is generated

by multiplexing different sub-sequences v̄
N
′
s̃j

j,i for all

s̃j ∈ {1, 2, ..., kj}, i.e., v̄j,i = (v̄
N
′
1

j,i , ..., v̄
N
′
kj

j,i ). Then for
given v̄1,i,...,v̄L,i, the channel input x̄i is i.i.d. generated
according to P (x|v1, ..., vL).

Encoding procedure:
• At block i ∈ {1, ..., 2dL}, for each s̃j ∈ {1, 2, ..., kj},

the transmitter selects v̄
Ns̃j
j,i (1, 1, 1) for transmission.

• At block i ∈ {2dL + 1, ..., n − dL}, for each s̃j ∈
{1, 2, ..., kj} and j ∈ {1, 2, ..., L}, the delayed feed-
back state sequences s̄

Ns̃j
j,i−2dL , s̄

Ns̃j
j,i−dL , the delayed feed-
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back channel output ȳj,i−dL and the previous trans-
mitted sequence v̄

Ns̃j
j,i−dL have already been known by

the transmitter. Here note that s̄
Ns̃j
j,i−2dL is the de-

layed feedback state de-multiplexing the delayed feed-
back channel output ȳj,i−dL into ȳN1

j,i−dL , ..., ȳ
Nkj
j,i−dL .

Given s̃j , the transmitter seeks a ū
Ns̃j
j,i−dL such that

(ū
Ns̃j
j,i−dL , v̄

Ns̃j
j,i−dL , ȳ

Ns̃j
j,i−dL , s̄

Ns̃j
j,i−dL) are jointly typical. If

there exist multiple ū
Ns̃j
j,i−dL , randomly pick out one; if

no such ū
Ns̃j
j,i−dL exists, an error occurs. Based on the

covering Lemma [32], if

R̃j(s̃j) ≥ I(Uj ;Vj , Yj |Sj , S̃j = s̃j), (A25)

this encoding error vanishes as N tends to
infinity. Once the transmitter decodes such
a ū

Ns̃j
j,i−dL(w∗j,i−dL,s̃j , w

∗∗
j,i−dL,s̃j ), he chooses

v̄
Ns̃j
j,i (wi,s̃j , w

′

i,s̃j
, w∗j,i−dL,s̃j ) for transmission.

• At block i ∈ {n − dL + 1, ..., n}, using the previous
encoding scheme for i ∈ {2dL + 1, ..., n − dL}, the
transmitter decodes ū

Ns̃j
j,i−dL(w∗j,i−dL,s̃j , w

∗∗
j,i−dL,s̃j ) and

chooses v̄
N
′
s̃j

j,i (wi,s̃j = 1, w
′

i,s̃j
= 1, w∗j,i−dL,s̃j ) for

transmission.

Decoding procedure:
Once Receiver j ∈ {1, 2, ..., L} obtains all n blocks

ȳj,1,...,ȳj,n and s̄j,1,...,s̄j,n, he/she demultiplexes them into
sub-sequences according to s̃j ∈ {1, 2, ..., kj}. Receiver j
does backward decoding, i.e., the decoding procedure starts
from block i ∈ {n− dL + 1, ..., n}. Given s̃j ∈ {1, 2, ..., kj},

Receiver j selects a unique v̄
N
′
s̃j

j,i such that (v̄
N
′
s̃j

j,i , ȳ
N
′
s̃j

j,i , s̄
N
′
s̃j

j,i )

are joint typical. If multiple or no such v̄
N
′
s̃j

j,i exists, an error
occurs. From the packing lemma [32], this error vanishes if

H(W ∗j,i−dL,s̃j )

N
′
s̃j

=
H(W ∗j,i−dL,s̃j )

γNs̃j
=
Ns̃jR

∗
j (s̃j)

γNs̃j

=
R∗j (s̃j)

γ
≤ I(Vj ;Yj |Sj , S̃j = s̃j). (A26)

Since I(Vj ;Yj |Sj , S̃j = s̃j) of (A26) is finite, for any given
R∗j (s̃j), we can choose a sufficiently large γ such that (A26)
is guaranteed.

After decoding v̄
N
′
s̃j

j,i for block i ∈ {n − dL + 1, ..., n},
Receiver j picks out w∗j,i−dL,s̃j from it. Then given s̃j , he/she

tries to choose a unique ū
Ns̃j
j,i−dL such that given w∗j,i−dL,s̃j ,

ū
Ns̃j
j,i−dL , s̄

Ns̃j
j,i−dL and ȳ

Ns̃j
j,i−dL are jointly typical. If multiple

or no such ū
Ns̃j
j,i−dL exists, an error occurs. From the packing

lemma [32], this error vanishes if

R̃j(s̃j)−R∗j (s̃j) ≤ I(Uj ;Yj |Sj , S̃j = s̃j). (A27)

Once such unique ū
Ns̃j
j,i−dL is decoded, given s̃j ,

Receiver j seeks a unique v̄
Ns̃j
j,i−dL such that

(v̄
Ns̃j
j,i−dL , s̄

Ns̃j
j,i−dL , ȳ

Ns̃j
j,i−dL , ū

Ns̃j
j,i−dL) are jointly typical. From

the packing lemma [32], this error vanishes if

R(s̃j) +R
′
(s̃j) +R∗j (s̃j) ≤ I(Vj ;Uj , Yj |Sj , S̃j = s̃j).

(A28)

After decoding v̄
Ns̃j
j,i−dL , Receiver j picks out wi−dL,s̃j and

w∗j,i−dL,s̃j from it. Repeating the above decoding procedure,
the messages of all blocks are decoded by Receiver j. The
decoding procedure is completed.

Equivocation Analysis:
The eavesdropper’s equivocation ∆, defined as ∆ =

1
(n−dL)N+dLγN

H(W |Z̄1, ..., Z̄n, S̄e,1, ..., S̄e,n) (the overal-
l length of all blocks is (n− dL)N + dLγN ), follows that

∆ =
1

(n− dL)N + dLγN
H(W |Z̄1, ..., Z̄n, S̄e,1, ..., S̄e,n)

(a)
=

1

(n− dL)N + dLγN

n−dL∑
i=2dL+1

H(Wi|W2dL+1, ...,

Wi−1, Z̄1, ..., Z̄n, S̄e,1, ..., S̄e,n)

(b)
=

1

(n− dL)N + dLγN

n−dL∑
i=2dL+1

H(Wi|Z̄i, S̄e,i), (A29)

where (a) follows from the fact that Wi is constant for
block i ∈ {1, ..., 2dL} and i ∈ {n − dL + 1, ..., n}, and
(b) follows from the fact that given Z̄i and S̄e,i, the
message Wi of block i is independent of other blocks’
(Z̄1, ..., Z̄i−1, Z̄i+1, ..., Z̄n), (S̄e,1, ..., S̄e,i−1, S̄e,i+1, ..., S̄e,n)
and previous blocks’ messages (W2dL+1, ...,Wi−1),
i.e., the Markov chain Wi → (Z̄i, S̄e,i) →
(W2dL+1, ...,Wi−1, Z̄1, ..., Z̄i−1, Z̄i+1, ..., Z̄n, S̄e,1, ..., S̄e,i−1,
S̄e,i+1, ..., S̄e,n) holds.

The term H(Wi|Z̄i, S̄e,i) in (A29) is further bounded by

H(Wi|Z̄i, S̄e,i)
= H(Wi, Z̄i, S̄e,i)−H(Z̄i, S̄e,i)

= H(Wi, Z̄i, S̄e,i, V̄j,i)−H(V̄j,i|Wi, Z̄i, S̄e,i)

−H(Z̄i, S̄e,i)
(c)
= H(Z̄i|S̄e,i, V̄j,i) +H(S̄e,i, V̄j,i)−H(V̄j,i|Wi, Z̄i, S̄e,i)

−H(Z̄i, S̄e,i)
(d)
= H(Z̄i|S̄e,i, V̄j,i) +H(S̄e,i) +H(V̄j,i)

−H(V̄j,i|Wi, Z̄i, S̄e,i)−H(Z̄i, S̄e,i)

= H(V̄j,i)− I(V̄j,i; Z̄i|S̄e,i)−H(V̄j,i|Wi, Z̄i, S̄e,i)
(e)

≥ N(R+R
′
+R∗j − ε1)− I(V̄j,i; Z̄i|S̄e,i)

−H(V̄j,i|Wi, Z̄i, S̄e,i)
(f)

≥ N(R+R
′
+R∗j − ε1)−N(I(Vj ;Z|Se) + ε2)

−H(V̄j,i|Wi, Z̄i, S̄e,i)
(g)

≥ N(R+R
′
+R∗j − ε1)−N(I(Vj ;Z|Se) + ε2)

−Nε3, (A30)

where (c) follows from the fact that H(Wi|V̄j,i) = 0, (d) fol-
lows from the fact that S̄e,i is independent of V̄j,i, (e) follows
from the construction of V̄j,i and a similar argument in [3,
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equations (16) and (23)], i.e., H(V̄j,i) ≥ N(R+R
′
+R∗j−ε1),

where ε1 → 0 as N →∞, (f) follows from a similar argument
in [5, Lemma 3], i.e., I(V̄j,i; Z̄i|S̄e,i) ≤ N(I(Vj ;Z|Se) + ε2),
where ε2 → 0 as N → ∞, and (g) follows from that given
wi, z̄i, the eavesdropper attempts to find a unique v̄j,i jointly
typical with his/her received z̄i, and from the packing lemma
[32], this error vanishes if

R
′
+R∗j ≤ I(Vj ;Z|Se), (A31)

then applying Fano’s lemma, H(V̄j,i|Wi, Z̄i, S̄e,i) ≤ Nε3 is
obtained, where ε3 → 0 while N →∞.

Substituting (A30) into (A29), we have

∆ =
n− 3dL

n− dL + dLγ
(R+R

′
+R∗j − I(Vj ;Z|Se)

−ε1 − ε2 − ε3). (A32)

The bound (A32) implies that if

R
′
+R∗j ≥ I(Vj ;Z|Se), (A33)

∆ ≥ R − ε is satisfied by choosing sufficiently large n and
N .

Now it remains to use the above conditions (A25), (A27),
(A28), (A31) and (A33) to derive the lower bound in Theorem
3, see the followings.

First, note that from (A24) and (A25), we have

R̃j ≥ I(Uj ;Vj , Yj |Sj , S̃j). (A34)

Analogously, from (A23), (A24) and (A27), we have

R̃j −R∗j ≤ I(Uj ;Yj |Sj , S̃j). (A35)

From (A21), (A22), (A23) and (A28), we have

R+R
′
+R∗j ≤ I(Vj ;Uj , Yj |Sj , S̃j). (A36)

Next, from (A34) and (A35), we get

R∗j ≥ I(Uj ;Vj , Yj |Sj , S̃j)− I(Uj ;Yj |Sj , S̃j)
= I(Uj ;Vj |Yj , Sj , S̃j). (A37)

Next, substituting (A37) into (A36), we get

R ≤ R+R
′

≤ I(Vj ;Uj , Yj |Sj , S̃j)− I(Uj ;Vj |Yj , Sj , S̃j)
= I(Vj ;Yj |Sj , S̃j). (A38)

Then, note that from (A31) and (A33), we can conclude that

R
′
+R∗j = I(Vj ;Z|Se). (A39)

Now substituting (A39) into (A36), we have

R ≤ I(Vj ;Uj , Yj |Sj , S̃j)− I(Vj ;Z|Se). (A40)

From the above (A38) and (A40), we have

R ≤ min{I(Vj ;Uj , Yj |Sj , S̃j)− I(Vj ;Z|Se),
I(Vj ;Yj |Sj , S̃j)}. (A41)

Next, note that if I(Vj ;Uj , Yj |Sj , S̃j) ≤ I(Vj ;Z|Se), from
(A36), we have

R+R
′
+R∗j ≤ I(Vj ;Uj , Yj |Sj , S̃j) ≤ I(Vj ;Z|Se).

(A42)

Combining (A42) with (A39), and observing that R ≥ 0,
we can conclude that R = 0 if I(Vj ;Uj , Yj |Sj , S̃j) ≤
I(Vj ;Z|Se). Hence (A41) should be re-written as

R ≤ min{[I(Vj ;Uj , Yj |Sj , S̃j)− I(Vj ;Z|Se)]+,
I(Vj ;Yj |Sj , S̃j)}. (A43)

Note that (A43) should be satisfied for all j ∈ {1, 2, ..., L},
hence we have

R ≤ min
j

min{[I(Vj ;Uj , Yj |Sj , S̃j)− I(Vj ;Z|Se)]+,

I(Vj ;Yj |Sj , S̃j)}. (A44)

Finally, note that the effective transmission rate is

H(W )

(n− dL)N + dLγN
=

∑n−dL
i=2dL+1H(Wi)

(n− dL)N + dLγN

=
(n− 3dL)NR

(n− dL)N + dLγN
=

n− 3dL
n− dL + dLγ

R, (A45)

which indicates that the effective transmission rate approaches
R as the number of blocks n → ∞, then maximizing the
bound in (A44), Theorem 3 is proved, and the proof is
completed.
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